( W Common Weakness Enumeration
. A Community-Developed Dictionary of Software Weakness Tyvpes
CWE Version 3.4

MITRE



CWE Version 3.4
2019-09-19

CWE is a Software Assurance strategic initiative sponsored by the National

Cyber Security Division of the U.S. Department of Homeland Security

Copyright 2019, The MITRE Corporation

CWE and the CWE logo are trademarks of The MITRE Corporation
Contact cwe@mitre.org for more information



CWE Version 3.4
Table of Contents

Table of Contents

SYMDBOIS USEA IN CWE ... xxiii
Individual CWE Weaknesses

CWE-5: J2EE Misconfiguration: Data Transmission Without ENCryption............c.cooiiiiiiia i
CWE-6: J2EE Misconfiguration: Insufficient SeSSion-ID Length............oooiiiiiiiiiiii e
CWE-7: J2EE Misconfiguration: Missing CUStOM Error Page..........ooooi i e
CWE-8: J2EE Misconfiguration: Entity Bean Declared REMOLE. .......c..ooiiiiiiiiiiiiiiiee e
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods............ccccooiiiiiiiiiiiiiiie e
CWE-11: ASP.NET Misconfiguration: Creating Debug BiNAry............cooouueiiiiiiiiiiiaee e
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page...........cccooiiiuiiiiiiiiiiiee e
CWE-13: ASP.NET Misconfiguration: Password in Configuration File..............ccccciiiiiiiiiii e
CWE-14: Compiler Removal of Code t0 Clear BUFfEIS...........uiiiiiiiiei e
CWE-15: External Control of System or Configuration SettiNg.........cooiueeirieaiiiiiire e
CWE-20: Improper INput Validation.............ooueiiiiiiii e e e

CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal’)

CWE-23: Relative Path TIAVEISAL.........cocuiiiiiiieiiiieiiiee ettt e s e e e e nnne e nenees
CWE-24: Path Traversal: "./fileir..........c.ooo e e e e e es
CWE-25: Path Traversal: [ Il IN . ..........ooo et e s
CWE-26: Path Traversal: '/dir/../filename’

CWE-27: Path Traversal: "dir/../.. /flENaME..........coo e
CWE-28: Path Traversal: " Miledir'..........coui e e e
CWE-29: Path Traversal: ‘\..\filename'

CWE-30: Path Traversal: \dir\.\fileNaME ...........ooi e
CWE-31: Path Traversal: "dir\.\..\fllename'...........oo e
CWE-32: Path Traversal: "..." (THPIE DOL)....ccciii ittt e e e e e et e e e e e e e nneeeaeeeaneeeeens
CWE-33: Path Traversal: '...." (Multiple Dot)

CWE-34: Path Traversal: ".../[....cccccooiiiiiiiieee e

CWE-35: Path TraVerSal: "ol et e st
CWE-36: ADSOIULE Pat TIAVEISAL.......cciiueieiiiiiieiiiie ettt e s e e nn e e s e e s e nnnees
CWE-37: Path Traversal: ‘/absolute/pathname/here’

CWE-38: Path Traversal: \absolute\pathname\here'

CWE-39: Path Traversal: "CidiMaIME"..........cuii ittt e et s e e e s e e e snn e e s nnneeenneee s
CWE-40: Path Traversal: "\UNC\share\name\' (Windows UNC Share)............cccceiiiuiiiiieiiniiiiee e 80
CWE-41: Improper Resolution of Path EQUIVAIENCE...........coiiiiiiiee e e 82
CWE-42: Path Equivalence: filename.' (Trailing DOL)........cccooiiiiiiiiiiiiiie e e e 88
CWE-43: Path Equivalence: ‘filename...." (Multiple Trailing DOt).........cccuuiiiiaiiiiiiie e 89
CWE-44: Path Equivalence: file.name' (Internal Dot)

CWE-45: Path Equivalence: ‘file...name' (Multiple Internal DOt)............ooiiiiiiiiiiii e 91

CWE-46:
CWE-47:
CWE-48:
CWE-49:
CWE-50:
CWE-51:
CWE-52:
CWE-53:
CWE-54:
CWE-55:
CWE-56:
CWE-57:
CWE-58:
CWE-59:
CWE-61:
CWE-62:
CWE-64:
CWE-65:
CWE-66:
CWE-67:

Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:

filename "' (Trailing SPACE).......cuueiiieiiiiiie e ee s 92
' filename' (Leading SPACE)........uueiieiiiiiiiiee et et e s 93
'file name' (Internal Whit€SPACE)......ccoeiiiiiiiiiee e 94
filename/* (Trailing SIash)...........ooo e 95
‘/Imultiple/leading/slash’
‘/multiple//internal/slash’
‘/multiple/trailing/slash//"
\multiple\internal\backslash'..............cooo e 100
filedir\' (Trailing Backslash)..........coo e 101
[.1' (SINQIE DOt DIFECLONY). . .eeeieeeieiitieee ettt e et a e et e e e e et e e e e e aneeeeae e e anees 102
FIledir® (WIlACAId)......cooeeeeee e e e 104
‘fakedir/../realdir/fleNamE’...........oooiii e 105

Path Equivalence: WINAOWS 8.3 FIlENAME.........ocuuiiiiii e 106
Improper Link Resolution Before File Access (‘Link FOIOWING')......ooocuiiiiiiiiiiiiieee e 108
UNIX Symbolic Link (Symlink) FOHOWING........coiiuiiiiiiiiiii ettt e e e 113
UNIX HEI LINK .ttt et h bttt e et e e sat et eeab e e nbe e et e e nneeenne s 115
Windows Shortcut FOHOWING ((LNK)......ooiiiiiiiee et e e e e enneeeea e 117
WINAOWS HAIT LINK. ..ottt e e e e s e e e s n e e e e e nanes 119
Improper Handling of File Names that Identify Virtual RESOUICES..........ccoiiiiiiiiiiiiiiiiee e 120
Improper Handling of WINdOWS DeViCe NAIMES........c.ooiiiiiiiee e e e e s 122

S1ualuU0D JO 3|qeL



Table of Contents

CWE Version 3.4
Table of Contents

CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream.............ccccveveeeiiiiiiiieecceiiiee e
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path
CWE-73: External Control of File Name Or Path...........ccccooiiiiiiiiii e e
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

(][ 1o o 1 T PP 133
CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)................... 137
CWE-76: Improper Neutralization of Equivalent Special EIements............ccccooiiiiiiieiiiiiiiee e 138
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)................ 139
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command

a1 =To 1 o] o N TSROSO
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting').....................
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS).........cccccvveeiins
CWE-81: Improper Neutralization of Script in an Error Message Web Page.............cccoovviiiiiiiiiiie e,
CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web Page..............ccocovvveeiiiiinne.n.
CWE-83: Improper Neutralization of Script in Attributes in a Web Page..........cccccveeiiiiiiiee i
CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page.............
CWE-85: Doubled Character XSS ManipUlatioNS............uviieiiiiiiiie et e et e e e sibae e e e e naaeeas
CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages............cccccoevivieiiiivnnne.n.
CWE-87: Improper Neutralization of Alternate XSS SYNTAX.........ccciiiiiiiieiiiiiiiiee e e e
CWE-88: Improper Delimitation of Arguments in a Command (‘Argument Injection’)...........cccccveevviiiiiieeeeeennnee,
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)............... 191
CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection’).................. 202
CWE-91: XML Injection (aka Blind XPath INJECHON)..........oiiiiiiiiiiiie et e e e 204
CWE-93: Improper Neutralization of CRLF Sequences ('CRLF INJECHION")..........ceveiiiiiiiiiee e 207
CWE-94: Improper Control of Generation of Code (‘Code INJECION").......ccvvevieiiiiiiiiee e 209
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code (‘Eval Injection’).................... 214
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection’)................... 218
CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page............ccccveveeeiiiiiiieeeeens 222
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File

g Tod [T 7o) o ) TR PUPR O UPRN:
CWE-99: Improper Control of Resource Identifiers ('Resource Injection’)
CWE-102: Struts: Duplicate Validation FOIMMS............uiiiiiiiiiii et essaare e e e
CWE-103: Struts: Incomplete validate() Method Definition.............coccviiiiiiiiiiiie e
CWE-104: Struts: Form Bean Does Not Extend Validation Class.........c.ccceeviiiiiiieiiiiiieniie e
CWE-105: Struts: Form Field WithOut Validator............oiuiiiiiiie it
CWE-106: Struts: Plug-in FrameWork NOt iN USE........cooiiuiiiiiiiiiiiiie ettt e sttt s st e e e s e e e e e s s satveeeaeaenns
CWE-107: Struts: Unused Validation FOMM.........ocuiiiiuiiiiiiie ettt e e e e sneeeesnnee
CWE-108: Struts: Unvalidated Action Form...............
CWE-109: Struts: Validator TUMME Off..........ciiiiiiiiieie et et e et e e sne e s nnaee s
CWE-110: Struts: Validator Without FOrm Field...........coouiiiiiiiiiiie e
CWE-111: Direct Use Of UNSAE INL......ccciiiiiiiiiiiiie ittt sttt e b e e ettt e e snte e e s nneeeessbeeennes
CWE-112: MiSSING XML ValidatiON........ccciiuiiiieeiiiiiiee e e ettt e e e sttt e e e s e st e e e e e s st e e s e e e sstbaaeaesasntbeeeeessnsbrneeaeaanns
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers (‘HTTP Response Splitting’)......... 256
CWE-114: PrOCESS CONLIOL....cciutiiiiiiiiieiiiie it ee ettt ettt e sttt e e sttt e et e e s bt e e sttt e e sabe e e aatb e e e anteeesnbeeeenbbeeeanteeesnnees
CWE-115: Misinterpretation Of INPUL...........ooiiiiiiiii e e e e e e e e st e e e e s st ba e e e e e s aanaeeaeas
CWE-116: Improper Encoding or Escaping of Output
CWE-117: Improper Output Neutralization fOr LOGS........ccuuiiiiiiiiiiiie ettt e e et e e e st e e e s satre e e e e s enens
CWE-118: Incorrect Access of Indexable Resource ('Range Error)........cccovevieiiiiieiee e cciiiiee e
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer
CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow")
CWE-121: Stack-based BUffer OVEITIOW. ........ccoiiiiiiiiiiiii ettt
CWE-122: Heap-based BUffer OVEITIOW. .........cooiiiiii ettt e e st e e e e s aaae e e e e s anens
CWE-123: Write-what-Where CONGItION. .........coiiiiiiiiiie ettt ettt ste e e nbe e e snbe e e sneeesnneee s
CWE-124: Buffer Underwrite (‘Buffer UnderfloW')..........uveiioiiiiiiicc ettt e
CWE-125: OUL-0f-DOUNAS REAM. .......coiiiiiiiiiiii ittt et e s rbbe e e sabeeesbaee s
CWE-126: BUFfEI OVEI-TEAM. ... .cciiiiiiitiee ittt ettt ettt e ettt e e et e e s abb e e s kbt e e sabeeeanbeeesbeeeesnbeeeanbeeeaan
CWE-127: Buffer Under-read
CWE-128: Wrap-arOUNG EITOF......ccuiiiiieei ittt e e ceeite e e e e ettt e e e e st e et e e e s e stba e e e e e eaatbeeeeeesantaeseeesasssseeeesassssseeeesaanees
CWE-129: Improper Validation Of Array INAEX.........coiiiiiiiie it e e e e e e e e e e e saraee s
CWE-130: Improper Handling of Length Parameter Inconsistency
CWE-131: Incorrect Calculation of BUfEr SIZ€.........cccuiiiiiiiiiiii e

iv



CWE Version 3.4
Table of Contents

CWE-134:
CWE-135:
CWE-138:
CWE-140:
CWE-141.:
CWE-142:
CWE-143:
CWE-144:
CWE-145:
CWE-146:
CWE-147:
CWE-148:
CWE-149:
CWE-150:
CWE-151:
CWE-152:
CWE-153:
CWE-154:
CWE-155:
CWE-156:
CWE-157:
CWE-158:
CWE-159:
CWE-160:
CWE-161.:
CWE-162:
CWE-163:
CWE-164:
CWE-165:
CWE-166:
CWE-167:
CWE-168:
CWE-170:
CWE-172:
CWE-173:
CWE-174:
CWE-175:
CWE-176:
CWE-177:
CWE-178:
CWE-179:
CWE-180:
CWE-181.:
CWE-182:
CWE-183:
CWE-184:
CWE-185:
CWE-186:
CWE-187:
CWE-188:
CWE-190:
CWE-191:
CWE-192:
CWE-193:
CWE-194:
CWE-195:
CWE-196:
CWE-197:
CWE-198:
CWE-200:
CWE-201:

Use of Externally-Controlled FOrmat StriNg..........ceeeeiiiiiiiiee et ee et e st e e esvaneea e e
Incorrect Calculation of Multi-Byte String LeNgth...........coooiiiiiiiiiiiee e
Improper Neutralization of Special EIEMENTS............coiiiiiiiiiiic e
Improper Neutralization of DEIMILEIS.......c.cciiiiiiii e
Improper Neutralization of Parameter/Argument Delimiters..........ccccceeviiiiiee e iiiiiiee e
Improper Neutralization of Value Delimiters
Improper Neutralization of Record DeliMiters..........ccciuviiiiiiiiiiiee e
Improper Neutralization of Line DeliMIters...........cooiiiiiiiiiiiiiiie e
Improper Neutralization of Section DeliMItErs...........ccoviiiiie i
Improper Neutralization of Expression/Command Delimiters .
Improper Neutralization of INPUt TEIMINALOIS.........c.uviiiiiiiiiee e e
Improper Neutralization of INPUL LEAAEIS........cccoiiiiiiii ittt
Improper Neutralization of QUOTING SYNTAX.......c.uuiiiiiiiiiiie e e e s e s e e e e e e satreree e
Improper Neutralization of Escape, Meta, or Control SEQUENCES..........cccvvvieeeeiiiiiee e 369
Improper Neutralization of Comment DeliMIters...........ccooiiiiiiiiiiiiiiiee e 372
Improper Neutralization of Macro SYMbOIS...........cciuiiiiiiiii e 374
Improper Neutralization of Substitution Characters............cccvveiiiiiiiiiiie e 375
Improper Neutralization of Variable Name Delimiters...........cccoovvveviiiiiiiiiiee e 377
Improper Neutralization of Wildcards or Matching Symbols............ccccooviiiiiie i, 379
Improper Neutralization of WhIite@SPACE. ..........coiiiiiiii i e 381
Failure to Sanitize Paired Delimiters
Improper Neutralization of Null Byte or NUL Character..........cccuveeieiiiiiiiie e 385
Failure to Sanitize Special EIEMENT..........cooiiiiiiiiii e a e 387
Improper Neutralization of Leading Special EIEMENtS.........cccuvviiiiiiiiiiiic e 389
Improper Neutralization of Multiple Leading Special Elements...........cccccoeiiiiiiiiee e 391
Improper Neutralization of Trailing Special EIEMENtS..........cccoviiiiiiiiiiiee e 393
Improper Neutralization of Multiple Trailing Special Elements...........ccccccveeiiiiiiiee e 394
Improper Neutralization of Internal Special Elements
Improper Neutralization of Multiple Internal Special Elements............cccocovveviiiiiiiieee e, 398
Improper Handling of Missing Special EIEMENt............cooiiiiiiiiiii e
Improper Handling of Additional Special EIEmMEeNt...........ccoviiiiiiiiiiiee e
Improper Handling of Inconsistent Special Elements
IMproper NUll TerMINALION. .........uiiiie e e e e s e e e s et e e e e s e saare e e e e s sntaereeesanes
[ a1t To [TaTo =t o SR PRSP RPRP
Improper Handling of Alternate ENCOQING.........cccuviiiiiiiiiiiiiee ettt e e et e s eiraee e
Double Decoding of the SAmME Data..........cceceiiiiiiiie i e e et are e
Improper Handling of MiXed ENCOAING..........cooiiiiieiiiiiiii ettt e aarae e e
Improper Handling of Unicode ENCOING.........c.ioiiiiiiiiie it
Improper Handling of URL Encoding (Hex Encoding)
Improper Handling of Case SENSITIVITY.........cciiiuiiiieiiiiiiie e e sbare e e e
Incorrect Behavior Order: Early Validation...............eeiiiiiiiiiiee e
Incorrect Behavior Order: Validate Before Canonicalize.............covvviiiiiiieiiieeiiiiee e 427
Incorrect Behavior Order: Validate Before Filter...........coouiiiiiiiiiiieiiie e 429
Collapse of Data into UNSafe ValUE...........cuveiiiiiiiiiiiee ettt e 431
Permissive WRIEIIST...........ueiiiiii ettt e et e e sate e e s beeeesrbeeennes 433
[aToTo] g ] o1 (=) (o 21 P ot ) S PRSPPIt 435
INCOITECt REQUIAT EXPrESSION.......iiiiiiie ittt e e e e e e e e s et e e e e e e saatr e e e e e s entreeaaeean 437
Overly Restrictive Regular EXPreSSIiON...........uuiii ittt ee e e earaee s 440
Partial String COMPAIISON. ... ...iiiiiiiiiiei ettt e e e e e e e s e e e e e e s e aatr e e e e e s stbeeeeessansraeeaeas
Reliance on Data/Memory Layout
Integer Overflow or Wraparound............c..cccocvveveeeninns
Integer Underflow (Wrap or Wraparound)
Ty Yo Lo O T=T (ol o] T o PSPPSR
(015 o) 2t o] LI I o SRR
Unexpected SigN EXIENSION..........uii ittt e e e e e e e e e e s et e e e e e s sbra e e e e s snntbareeesaanes
Signed to Unsigned CONVEISION EITON..........uuiiiiiiiiieee e s ettt e e et e e e e et e e e e s seiaaa e e e e s essaaae e e e e s esaaeeas
Unsigned to Signed CONVEISION EFTON.........c.iiiiiiiiii et eeee e e e et e e e eaare e e e e s eaareaea e
NUMETIC TIUNCALION EITOF ... iiiiiiiiiii ettt ettt ettt et e e st e s bt e e e snb e e snneee e nnes
Use Of INCOIrect BYte OFUEIING......ccciuuriiieeiiiiieie e e ettt e e ettt e e s e e e s et e e e e e e st e e e e s s entbaeeaeeennnnees
Information EXPOSUre.........cccccoevuvveeeeeiiiiieneenn,

Information Exposure Through Sent Data

S1ualuU0D JO 3|qeL



Table of Contents

CWE Version 3.4
Table of Contents

CWE-202:
CWE-203:
CWE-204:
CWE-205:
CWE-206:
CWE-207:
CWE-208:
CWE-209:
CWE-210:
CWE-211:
CWE-212:
CWE-213:
CWE-214:
CWE-215:
CWE-216:
CWE-219:
CWE-220:
CWE-221.:
CWE-222:
CWE-223:
CWE-224:
CWE-226:
CWE-228:
CWE-229:
CWE-230:
CWE-231:
CWE-232:
CWE-233:
CWE-234:
CWE-235:
CWE-236:
CWE-237:
CWE-238:
CWE-239:
CWE-240:
CWE-241.:
CWE-242:
CWE-243:
CWE-244:
CWE-245:
CWE-246:
CWE-248:
CWE-250:
CWE-252:
CWE-253:
CWE-256:
CWE-257:
CWE-258:
CWE-259:
CWE-260:
CWE-261.:
CWE-262:
CWE-263:
CWE-266:
CWE-267:
CWE-268:
CWE-269:
CWE-270:
CWE-271.:
CWE-272:
CWE-273:

Exposure of Sensitive Data Through Data QUETIES..........ccooiiiiiiieiiiiiiee e 484
Information Exposure Through Discrepancy
Response Discrepancy Information EXPOSUIE.........ccuuveiieiiiiiiiiie e cciiiiee e st e s et e e e e saraaee e e anens
Information Exposure Through Behavioral DiSCrePanCy..........ccoicuveiieeiiiiiiiieeeeiiiieee e eeiree e e
Information Exposure of Internal State Through Behavioral Inconsistency
Information Exposure Through an External Behavioral Inconsistency....................

Information Exposure Through Timing DiSCrepancCy.........ccccccuvevieeiiiivereeesiiiiieeeeeens

Information Exposure Through an Error MESSAQE. ........ccciiiuiiieeiiiiiiiiee et e e eesiere e e stees e eanes
Information Exposure Through Self-generated Error MESSage..........cvveeiiivviieeiiiiieieeeeeiiiieeeeeesines
Information Exposure Through Externally-Generated Error MeSSage........c..cooeuvvveeeeeiinvieeeeessvvnnnn.
Improper Cross-boundary Removal of Sensitive Data...........ccceveeeiiiiiieiieiiciiieee e
Intentional INfOrmMation EXPOSUIE.......ccciiiiuiiiie ettt e et e e e e s et e e e e e st ba e e e e s e enraaeeae s
Information Exposure Through Process ENVIrONMmMeNt............cceoiiiiiiiiee i
Information Exposure Through Debug Information.............cccooeuiieiiiiiiiiiic e
Containment Errors (CONtAINEr EITOIS).......cciiuiiiiieiiiiiiie ettt e ettt e e e e e et e e e e s saarae e e e s e
Sensitive Data UNder WED ROOL.........c.uiiiiiiiiiiie ettt s e e snbeee e
Sensitive Data Under FTP Root
Information LoSS or OMiSSION.........c.ceevvveerieeenninenn.
Truncation of Security-relevant Information
Omission of Security-relevant INfOrMation..............cooiiiiiii i
Obscured Security-relevant Information by Alternate Name...........ccccvviveeiiiiiiiee e
Sensitive Information Uncleared Before RelEaSE...........oocueieiiiiiiiiiiiiie e
Improper Handling of Syntactically Invalid StruCture..........cc.cceeeiiiiiiiee e
Improper Handling of Values
Improper Handling of MISSING ValUES.........ccciuiiiiiiiiiiiiee ettt et a e e eaare e e e aeaees
Improper Handling Of EXIra ValUES..........coocuiiiii ittt e e
Improper Handling of Undefined Values
Improper Handling Of Parameters..........cooiuiiiii oottt e e e e e e e eaebaee s
Failure to Handle MiSSING Parameter.........c.vuiiiiiiiiiiiie ettt e
Improper Handling of EXtra Parameters.........ccuviiiiiiiiiiiie ettt e eivae e e e
Improper Handling of Undefined Parameters.............ueeiiiiiiiiiie et
Improper Handling of Structural EIEMENTS.............oiiiiiiiiii e
Improper Handling of Incomplete Structural Elements..........c.cccoccviieei e
Failure to Handle Incomplete EIEMENT...........ocuiiiii it e aarre e
Improper Handling of Inconsistent Structural EIements............ccccveviieiiiiiiii e
Improper Handling of Unexpected Data TYPE......ccccuuiiiie ittt e e e
Use of Inherently Dangerous FUNCHON...........oooiiiiiie it e e
Creation of chroot Jail Without Changing Working Dir€Ctory...........ccccovcvveieeeiiiiiieee e
Improper Clearing of Heap Memory Before Release ('Heap Inspection’).........cccccceevviiivieeeceicineen..
J2EE Bad Practices: Direct Management of CONNECLIONS..........cccuvevieiiiiiiiiiee e
J2EE Bad Practices: DireCt USE Of SOCKELS.......c.uiiiiuiiiiiiiiiiiiie e
UNCAUGNE EXCEPLION. ... ittt e et e e e e et e e e e s et e e e e e seatbeeeaeeeasbeaeeeeesssaaeeeessanses
Execution with Unnecessary Privileges
UNChecked RETUIN VAIUE........cocuuiiiiiieeii ettt e e anb e e sbe e e nreee s
Incorrect Check of FUNCLON REUIN ValUE..........oouiiiiiiiiiiii e
Unprotected Storage of Credentials
Storing Passwords in a Recoverable FOrMat..........cccoiiiiiiiiciiiiiiic et
Empty Password in Configuration File
Use of Hard-coded Password......................
Password in Configuration File
Weak Cryptography fOor PaSSWOITS. ........cccuuiiiiiiiiiiies ettt e e e e e esaaaee s
NOt USING PASSWOIA AQING.....uviiieeiiiiiiiee ettt e e ettt e e e e sttt e e e s et e e e e e e e aatb e e e e e s sabaeeeeesasreees
Password Aging With LONG EXPIratioN.........c..ueiiiiiiiiiiie ettt e e e e e e e e envaee s
INCOITECt PrivIlege ASSIGNIMENL......cciiiiiiii et e e e e s e e e e st e e e e e st b e e e e e e ennaenes
Privilege Defined With UNSafe ACHONS........ccciiiiiiiiieiiiiiei ettt e e erare e e e e s saae e e e e
e A1 T=To TR @1 F= Tl 1 o o T PSPPI
Improper Privilege ManagemENt...........coiiiiiiiie it e e e st e e e e e et e e e e s st e e e e e s esrraeaes
Privilege Context SWItChING EFTON.........c.oiiiiiiiiie ettt e e e e s et e e e e s earaeeas
Privilege Dropping / LOWEING EITOIS.......iiiiiiiiiiii ettt e ettt e e e e e et e e e e s sntraeeaeaenans
Least Privilege Violation............c.ccoecvveneeenne

Improper Check for Dropped Privileges

Vi



CWE Version 3.4
Table of Contents

CWE-274: Improper Handling of INSUffiCieNnt PriVIlEgES. .........uvviiiiiiiiiee e
CWE-276: INncorrect Default PermMiSSIONS. ........cuiiiiiiieiiiee ittt ettt st e e s e e stbe e e snbe e e snteeesnneeean
CWE-277: Insecure INherited PerMISSIONS. ......cuuiiiiiieiiiie ettt ettt et e e s b e st e e st e e s neeeesnneeean
CWE-278: Insecure Preserved Inherited PErmISSIONS. .......ccoiiuiiiiiiiiiiiiieeiiie ettt e
CWE-279: Incorrect Execution-Assigned PermMiSSIONS..........ciiiiiiiiiiiiiiiiiiie et s et e e e et e e s sstaea e e e anes
CWE-280: Improper Handling of Insufficient Permissions or PriVilEges ..........ccovcveiiiiiiieee e
CWE-281: Improper Preservation of Permissions...........ccccccocevvveeeeviiiiiieneesiinns
CWE-282: Improper OwWnership ManagemMENt............iciiiiiuiiieeeiiiiiiee e e eeiiie e e e e s eitre e e e e s siraeeaessssataeeeeesssrreeeessanses
CWE-283: UNVENfied OWNEISNID......uiiiiii ittt e e e e e e e et e e e e s s etba et e e e s aatbeaeaeesantaeeaeesannees
CWE-284: IMproper ACCESS CONLIOL........oeiiiiiiiiiiie e e e e e e e e et e e e e e e sata e e e e e s satbe e e e e s santaaeeaeas
CWE-285: IMProper AUTNOTIZALION. .........ciiiiiiiee e eiiieee e s e s e e e e e e e e e e st e e e e e s stba et e e e sasbaaeeesasnsreeaeesasees
CWE-286: INCOreCt USEr MaNagEIMENT......ccciiiiiiuiiiiiitiietee et teeeeaeaeeeaeeeaeassssssatas bbb eserrrereeeeatataaasaeeseesesnnnnnnnns
CWE-287: Improper AUTNENTICALION. .........iiiiiiiiiiiee e e e e e e e e e e et e e e e e e st e e e e e s sabaeeeeesatnreeeeas
CWE-288: Authentication Bypass Using an Alternate Path or Channel............ccccccoooiiiiiiic e
CWE-289: Authentication Bypass by Alternate Name
CWE-290: Authentication Bypass by SPOOfiNG........cceiiiiiiiiiiiiiiiiiii et e e e et e e e e anees
CWE-291: Reliance on IP Address for Authentication
CWE-293: Using Referer Field for Authentication................cccoeveeiiiiinne.n.

CWE-294: Authentication Bypass by Capture-replay..........ccouiieiiiiiiiiee et e e a e
CWE-295: Improper Certificate ValidatioN.............oeeiiiiiiiiiic e e e e e e e st e e e e s sareeeas
CWE-296: Improper Following of a Certificate's Chain of TrUSE.........ccccciiiiiiiiiiee e
CWE-297: Improper Validation of Certificate with HOSt MiSmatCh.............cccovviiiiiiiiiiiii e
CWE-298: Improper Validation of Certificate EXPIration............cccoiiiiiiriiiiiiiiiie e
CWE-299: Improper Check for Certificate REVOCALION............eiieiiiiiiiiee et
CWE-300: Channel Accessible by Non-Endpoint (‘Man-in-the-MiddI€")...............ccocvuiiieeiiiiiieie e
CWE-301: Reflection Attack in an Authentication ProtOCOL...........cccoiiiiiiiiiiiiiiieiee e s
CWE-302: Authentication Bypass by Assumed-Immutable Data.............ccccooevviiieiiiiiiiice e
CWE-303: Incorrect Implementation of Authentication Algorithm
CWE-304: Missing Critical Step in Authentication..............ccccceeeevunn.

CWE-305: Authentication Bypass by Primary WEaKNESS..........ccuuiieiiiiiiiiiie ettt et e e s sivre s e e e
CWE-306: Missing Authentication for Critical FUNCHION..............ooiiiiiiie e
CWE-307: Improper Restriction of Excessive Authentication AEMPLS.........c.ceeeiiiiiiiieee e
CWE-308: Use of Single-factor AUthentiCatioN...............coiiiiiiiii e
CWE-309: Use of Password System for Primary Authentication
CWE-311: Missing Encryption of Sensitive Data.............ccccceeeevevvneen..

CWE-312: Cleartext Storage of Sensitive INformation............c.cooiiiiiiiie i
CWE-313: Cleartext Storage in @ File 0r 0N DiSK..........oiiiiiiiiiiiec e
CWE-314: Cleartext Storage in the REQISINY.......cuuiiiii et e e e e e e e sare e e e e s aaees
CWE-315: Cleartext Storage of Sensitive Information in @ Cookie.............cccocvvieiiiiiiiiiii e,
CWE-316: Cleartext Storage of Sensitive Information in MEMOIY...........cceeeiiiiiiiiii i i
CWE-317: Cleartext Storage of Sensitive Information in GUlL.........ccceeiiiiiiiiiie e
CWE-318: Cleartext Storage of Sensitive Information in Executable..............cccccoeeiiiiiiiiii e
CWE-319: Cleartext Transmission of Sensitive INfOrmation............cooceiiiiiiiiiiine e
CWE-321: Use of Hard-coded CryptographiC KEY.........cccuiiiiiiiiiiiie ettt e e e e et ea e e s eanes
CWE-322: Key Exchange without Entity AUthentiCation...............coccviiiii i
CWE-323: Reusing a Nonce, Key Pair in ENCryption..........c.ooiiiiiiiii it a e
CWE-324: Use of a Key Past its EXPIration Date..........cccuueiieiiiiiiiiiee e et e st e e e e s eiaee e e e e e snnaeeaeessnenes
CWE-325: Missing Required CryptographiC STEP........ccvuiiieiiiiiiiee ettt e ettt e st e e e st e e e e s naaeeas
CWE-326: Inadequate ENCryption StrENGN.........cooiiiiiii it e e s eerraeaaeeaans
CWE-327: Use of a Broken or Risky Cryptographic AlgOrithm..........cc.eeeiiiiiiiiiie e
CWE-328: Reversible ONe-Way Hash..........cccuuiiiiiiiiii e e e e e s rabae e e e
CWE-329: Not Using a Random IV with CBC MOGE............coeeiiiiiiiiiei it e e e e e s etbae e e e e
CWE-330: Use of Insufficiently RanNdom ValUES...........ccooiuiiiiiiiiiiiiiee ettt e e s e e etaae e e e
CWE-331L: INSUfICIENT ENITOPY...c.uitiiiie i ittt ee e ettt e e ettt e e e e e e e e e e st e e e e e s eatataeeeeeaaasbeeeaeesantaaseaeeeasssaeeaeesansses
CWE-332: Insufficient ENtropy in PRING.........coiiiiiiii ettt e e e st e e e e e e atre e e e e s enaaee s
CWE-333: Improper Handling of Insufficient Entropy in TRNG...........coiiiiiiiiiiie e
CWE-334: Small Space of RANAOM VAIUES..........ccoiiiiiiiii ettt e e e et a e e e st e e e s enaraeeea s
CWE-335: Incorrect Usage of Seeds in Pseudo-Random Number Generator (PRNG)...........c.ccooevvveveeeiinnnenn.
CWE-336: Same Seed in Pseudo-Random Number Generator (PRNG)..........cccveveeiiiiiieeee st eeiieee e
CWE-337: Predictable Seed in Pseudo-Random Number Generator (PRNG)...........cccccovviviiieiiiiiiieec e
CWE-338: Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG)

S1ualuU0D JO 3|qeL



Table of Contents

CWE Version 3.4
Table of Contents

CWE-339:
CWE-340:
CWE-341.:
CWE-342:
CWE-343:
CWE-344:
CWE-345:
CWE-346:
CWE-347:
CWE-348:
CWE-349:
CWE-350:
CWE-351.:
CWE-352:
CWE-353:
CWE-354:
CWE-356:
CWE-357:
CWE-358:
CWE-359:
CWE-360:
CWE-362:

Condition’)

CWE-363:
CWE-364:
CWE-365:
CWE-366:
CWE-367:
CWE-368:
CWE-369:
CWE-370:
CWE-372:
CWE-374:
CWE-375:
CWE-377:
CWE-378:
CWE-379:
CWE-382:
CWE-383:
CWE-384:
CWE-385:
CWE-386:
CWE-390:
CWE-391.:
CWE-392:
CWE-393:
CWE-394:
CWE-395:
CWE-396:
CWE-397:
CWE-400:
CWE-401.:
CWE-402:
CWE-403:
CWE-404:
CWE-405:
CWE-406:
CWE-407:
CWE-408:
CWE-409:
CWE-410:

Small Seed SPace iN PRING.........ooiiiiiie et e s e e s et e e e s e s ataeeae e s snnes 758
Predictability Problems

Predictable from ODServable STate...........cccoiiiiiiiiiiii e 761
Predictable Exact Value from Previous ValUES..........cociiiiiiiiiiiiieiiiie e 763
Predictable Value Range from Previous ValUES.............ooouviiiiiiiiiiiii et 764
Use of Invariant Value in Dynamically Changing ConteXt...........ccccoevuvireeiiiiiiiiee e e seiviee e e 765
Insufficient Verification of Data AUtNENTICITY..........cciuiiii i e 767
Origin Validation EFTOT........uiiiiiiiiiiie ettt e e e e s st e e e e et e e e e e e satb e e e e e s s tbeeeeeesanasareeaeeaas 769
Improper Verification of CryptographiC SIgNature............ccccviviiiiiiiieii e 772
USE Of LESS TIUSIEA SOUICE.....cciueeiiiiiieeiiie ettt ettt ettt e e sab e e st e e bt e e e snb e e sntaee e nnees 774
Acceptance of Extraneous Untrusted Data With Trusted Data..........c..cccccveeeeeiiiiiieiec e 776
Reliance on Reverse DNS Resolution for a Security-Critical ACtion.............cccccvvvveeiiiiiiiee e, 777
INSUFfICIENt TYPE DISHINCHON. .. .eiiiiiiiiiiii et e e e e e e e e e s et e e e e s e atbeeeeessnraaeas
Cross-Site Request FOrgery (CSRF) ...ttt e s senaraeea s
Missing Support for INegrity CHECK.........cciiiiiiei e
Improper Validation of Integrity Check ValUe..........cc..eeiiiiiiiiiiic et
Product Ul does not Warn User of Unsafe Actions

Insufficient Ul Warning of Dangerous OPErationsS............ccuuvieeiiiiiiieeeeiiiiiereeesesisreeeesesiveeeeessevvenes
Improperly Implemented Security Check for Standard.............ccccceeeiiiiiiiii e 795
Exposure of Private Information ('Privacy Violation').........ccceeeeiiiiiiiii e 796
Trust Of SYStEM EVENT DALA.........cciiiiiiiii ettt e s e e st e e e s ettt e e e e e s atb e e e e e s snbaeeas 800
Concurrent Execution using Shared Resource with Improper Synchronization (‘Race

Race Condition Enabling Link FOIHOWING........ccoiiiiiiiiic et
Signal Handler RAce CONITION..........ccuiiiiieiiiiiiie et e e e s e e e s e e e e e e sarr e e e e e s sabaeeaesaanes
Race Condition iN SWITCN......cooiiiiiii ettt e e n
Race Condition Within @ TRrEAU. ........ccoiuiiiiiiie e e
Time-of-check Time-of-use (TOCTOU) Race Condition...........ccccuvverieiiiiieieee e eeireee e
Context Switching RAce CONILION...........c.uviiieiiiiiiiie e e e e e s e e e e s aaraeeas
DAoL A= o T PSP PTPR
Missing Check for Certificate Revocation after Initial Check
Incomplete Internal State Distinction...........ccccceeevvvcivieeeeiiiiienennn.

Passing Mutable Objects to an Untrusted Method.............ccooouiiiiii i
Returning a Mutable Object to an Untrusted Caller............ccociviiieiiiiiiiec e
INSECUrEe TEMPOTANY FilE.....oeii it e e e e e e e e e s e a e e e e e e aaraeaeeaans
Creation of Temporary File With InSecure PermiSSiONS............c.ceiiiiiiiiieeiiiiiiiee e cciiee e e e
Creation of Temporary File in Directory with Incorrect Permissions...........cccccoevvvvveeeeeiiciieeeee v, 841
J2EE Bad Practices: Use Of SYStemM.eXIt().......cccuirieeiiiiiiiie ettt e et e e saraea e
J2EE Bad Practices: Direct Use of Threads
YIS (o] g e 11T ] PP PTRP
Covert TIMING Channel...........ooiiiii e e e e s e st e e e e s earr e e e e e
Symbolic Name not Mapping t0 CorreCt ODJECT..........ccuiiiie i 852
Detection of Error Condition WithOUt ACLION..........cooiiiiiiiiie e 853
Unchecked Error CONQITION.........ooueiiiiiieiiiie ettt ettt e et e sttt e e sabe e e s beeesneeeenanes
Missing Report of Error CONItION...........ccuvviiieiiiiiiiee e e s e e e e e saareeeas
Return of Wrong Status Code..........cccccecevvvrneennnn.

Unexpected Status Code or Return Value
Use of NullPointerException Catch to Detect NULL Pointer Dereference............coccveeeeeiiiveeeeeninns 865
Declaration of Catch for Generic EXCEPLION........ccvviiiiiiiiiiic e e 867
Declaration of Throws for GEneric EXCEPLION..........cviiiiiiiiiii et 869
Uncontrolled ReSoOUrce CONSUMPLION.........uuiiieiiiiiiieeeeeiiiie et e e s s e e e s et e e e e e s stbaeeeessstaareeeeeaanreeeas 871
Missing Release of Memory after Effective Lifetime..........ccovvviiiiiiiiiiec e 879
Transmission of Private Resources into a New Sphere ('Resource Leak)........ccccceeevviirereeeiinnenn. 882
Exposure of File Descriptor to Unintended Control Sphere (‘File Descriptor Leak’)............cccvvee... 883
Improper Resource Shutdown Or REIEASE. ..........cooiiiiiiiii it 885
Asymmetric Resource Consumption (Amplification)............ccoooiiieiiiiiiiieiee e 890
Insufficient Control of Network Message Volume (Network Amplification)...........cccccooviviereeeninnee. 892
Inefficient Algorithmic COMPIEXItY.........c.viiiieiiiiiie e e et e e e s
Incorrect Behavior Order: Early AMPIfiCation...........cccuvviiiiiiiiiiee e
Improper Handling of Highly Compressed Data (Data Amplification)
INSUTFICIENT RESOUICE POOL......coiiiiiiiiie ettt et s nne e e as

viii



CWE Version

3.4

Table of Contents

CWE-412:
CWE-413:
CWE-414:
CWE-415:
CWE-416:
CWE-419:
CWE-420:
CWE-421.:
CWE-422:
CWE-424:
CWE-425:
CWE-426:
CWE-427:
CWE-428:
CWE-430:
CWE-431.:
CWE-432:
CWE-433:
CWE-434:
CWE-435:
CWE-436:
CWE-437:
CWE-439:
CWE-440:
CWE-441.:
CWE-444:
CWE-446:
CWE-447:
CWE-448:
CWE-449:
CWE-450:
CWE-451.:
CWE-453:
CWE-454:
CWE-455:
CWE-456:
CWE-457:
CWE-459:
CWE-460:
CWE-462:
CWE-463:
CWE-464:
CWE-466:
CWE-467:
CWE-468:
CWE-469:
CWE-470:
CWE-471.:
CWE-472:
CWE-473:
CWE-474:
CWE-475:
CWE-476:
CWE-477:
CWE-478:
CWE-479:
CWE-480:
CWE-481.
CWE-482:
CWE-483:
CWE-484:

Unrestricted Externally AcCeSSIDIE LOCK.........coiiiiiiiiiiii e

Improper Resource Locking
Missing Lock ChecK............ccveeeee..

[ 10T o LT = TSRO
(0L AN 1 (=Y YT

Unprotected Primary Channel.................

Unprotected Alternate Channel

Race Condition During Access to Alternate Channel............cccooiiiiiiiie i
Unprotected Windows Messaging Channel ('Shatter').........ccccccoiviiiiie i
Improper Protection of Alternate Path...............oooiiiiiiii i

Direct Request (‘Forced Browsing')

(801 (o BT T(od o o= 11 PP
Uncontrolled Search Path EIEMENT.........eciiiiiiiiiii e e e e e e e e e e e e e e e e e seeeaaararrraeees

Unquoted Search Path or Element.

Deployment of Wrong HandIEr............cooiiiiiiiii et eraane e
T EE] T To [ F- T o | (=] GRS PUP S UUPUPRNt

Dangerous Signal Handler not Disabled During Sensitive Operations

Unparsed Raw Web Content Delivery..........ccovvveeiiiiiiieee e

Unrestricted Upload of File with Dal

NGEIOUS TYPE...oiviiitiietiiiete ettt ettt ettt ettt nns

Improper Interaction Between Multiple Correctly-Behaving Entities...........cccocceieiiiiiiicciiciieee e,

Interpretation Conflict......................

Incomplete Model of ENAPOINt FEALUIES..........ccoiiiiiiiiiiie it e e e eeaees

Behavioral Change in New Version
Expected Behavior Violation...........
Unintended Proxy or Intermediary (
Inconsistent Interpretation of HTTP

OF ENVIFONMENT. ..ottt
'Confused DEPULY").....uviieeeeiiiiieie e e
Requests (HTTP Request Smuggling’)........cccccevvvvieeeeeiinnnenn..

Ul Discrepancy for SECUrty FEAUIE.........ccviiii it

Unimplemented or Unsupported Fe

ature in Ul

ODSO0lEtE FEAIUIE 1N Ul . .iiiiiiiiieiee ittt ettt et e st e st e e snbe e e e bb e e e snbeeesnbeee s
The Ul Performs the WIroNg ACHION.........coiii ittt e e e e e e e e e s saaaee e e e seaees
Multiple Interpretations Of Ul INPUL...........ooiiiiiiii e e e

User Interface (Ul) Misrepresentation of Critical Information

Insecure Default Variable INtaliZation..............oooiiiiiiiiiiiiccccccre e saaaraenes
External Initialization of Trusted Variables or Data StOr€S..........coeevveieieiiiiieiiiecccirrrrreeee e

Non-exit on Failed Initialization.......

Missing Initialization Of @ Variable............cc.ooiiiiiiiiiiec e

Use of Uninitialized Variable...........
Incomplete Cleanup.........ccccvveeeenn.
Improper Cleanup on Thrown Exce

ption

Duplicate Key in AsSSOCIative LiSt (AlISL).......cciiiuuiieeieiiiiiiie e ese e e e e s saarae e e e

Deletion of Data Structure Sentinel

Addition of Data StruCtUre SENLINEL...........oooiiiiiiiice e re e

Return of Pointer Value Outside of

EXpected RaANGE........cocuuiiieiiiciiee et

Use Of Siz€OT() ON @ POINIET TYPE...iiii ittt e e e e e e e e s e st e e e e e s stbaaeae s

Incorrect Pointer Scaling.................

Use of Pointer Subtraction to Determine Size
Use of Externally-Controlled Input to Select Classes or Code (‘Unsafe Reflection’)

Modification of Assumed-Immutable Data (MAID).........cccuiieeiiiiiiiie e

External Control of Assumed-Immutable Web Parameter

PHP External Variable Modification

Use of Function with Inconsistent Implementations..................
Undefined Behavior for INPUL 10 APL.........oiiiiiiieie et e e e e e s sarrae e e e
NULL POINEr DEIEIEIENCE. ....ciitiiiiieiiie ettt st e et e e s e e nrbe e e st e s nes

Use of Obsolete Function...............

Missing Default Case in SWItCh StatemMeENt...........cocoiiiiiiiie e
Signal Handler Use of a Non-reentrant FUNCHON...........cccuvviiiiiiiiiiie e

Use of Incorrect Operator...............
Assigning instead of Comparing.....
Comparing instead of Assigning.....

INcorrect BIOCK DeIIMILAtION............ooiiiiiiiiiici e e e e e e e e e e e e e e e e e e b b r e s e e rereaeeeaeeeeeas

Omitted Break Statement in Switch

S1ualuU0D JO 3|qeL



Table of Contents

CWE Version 3.4
Table of Contents

CWE-486:
CWE-487:
CWE-488:
CWE-489:
CWE-491.:
CWE-492:
CWE-493:
CWE-494:
CWE-495:
CWE-496:
CWE-497:
CWE-498:
CWE-499:
CWE-500:
CWE-501:
CWE-502:
CWE-506:
CWE-507:
CWE-508:
CWE-509:
CWE-510:
CWE-511:
CWE-512:
CWE-514:
CWE-515:
CWE-520:
CWE-521.:
CWE-522:
CWE-523:
CWE-524:
CWE-525:
CWE-526:
CWE-527:
CWE-528:
CWE-529:
CWE-530:
CWE-531:
CWE-532:
CWE-535:
CWE-536:
CWE-537:
CWE-538:
CWE-539:
CWE-540:
CWE-541.:
CWE-543:
CWE-544:
CWE-546:
CWE-547:
CWE-548:
CWE-549:
CWE-550:
CWE-551.:
CWE-552:
CWE-553:
CWE-554:
CWE-555:
CWE-556:
CWE-558:
CWE-560:
CWE-561.:

Comparison of Classes DY NAME.........ooiiiiiiiiiiec e e et e e e e s sanes
Reliance on Package-level Scope.........cc.cc.ccouneee.

Exposure of Data Element to Wrong Session

(031 (o) V=T B T o 10 o [ @ Lo [ T PP EPRPPPPPPRN
Public cloneable() Method Without Final (‘Object Hijack').........cccccooviviiiiiiiiiiiee e 1051
Use of Inner Class Containing Sensitive Data

Critical Public Variable Without Final MOIfier...........ccccoiiiiiiiiiii e
Download of Code Without Integrity ChecK............coiiiiiiii i
Private Data Structure Returned From A Public Method...........cccccoeiiiiiiiiiii e, 1066
Public Data Assigned to Private Array-Typed Field............ccveiieiiiiiiiie e 1068
Exposure of System Data to an Unauthorized Control Sphere..........cccccooviiiiiee e 1069
Cloneable Class Containing Sensitive INformation............cccccvvveiiiiiiiiicc e 1072
Serializable Class Containing SenSitive Data.............ccoiiiuiiieeiiiiiiiice et 1074
Public Static Field Not Marked FiNal.............cooiiiiiiiii e 1075
Trust BoUNAAry ViIOIAtiION.........coiiuiiiiie ittt et e e e e e e st e e e e e st e e e e e s senrraeeaeas 1077
Deserialization Of UNruSted Dat@.........c.ueeiuiieiiiiiiiiiiieiiiee it e e saee e aeee s 1079
Embedded Malicious Code

BN (o)=L I [0 6T T PRSPPSO
Non-Replicating MaliCioUS COUE...........cociiiiiiiiee it e s s e e e s saanes 1087
Replicating Malicious Code (VIiruS OF WOIM)......ccciiiiuiiieei e it e st e e e s st e e e e satae s e e s s eiraeeaeeeanes 1088
B I =10 L 0T | PP EPRPPPPPPRN 1089
(oo (o7l I T g L= 2T 1 o TR RPRPTP 1090
Covert Storage ChanNEl...........oii oo e e e s e e e s st e e e e e e eaneees 1094
.NET Misconfiguration: Use of IMPersoNation...............cciiiiuuiieeiiiiiiiieee s ciiier e e sssvree e e e e ssiveeeeessaens 1095
Weak PassWord REQUIFEIMENTS. ......c.iiiiiiiiiee et e ettt e e et e e s st et e e e s et e e e s e aar e e e e e s snnraeeaeeaan
Insufficiently Protected Credentials.............

Unprotected Transport of Credentials

Information Exposure Through Caching

Information Exposure Through Browser Caching............ccceviiiiiiiiiiie i 1104
Information Exposure Through Environmental Variables.............ccccoooviiieiiiiiiiei e, 1105
Exposure of CVS Repository to an Unauthorized Control Sphere.........cccceeeviiiieeeee e, 1106
Exposure of Core Dump File to an Unauthorized Control Sphere...........ccooceeiiiiiiiee e 1107
Exposure of Access Control List Files to an Unauthorized Control Sphere.........cccccccoevivveeeeninnns 1108
Exposure of Backup File to an Unauthorized Control Sphere..........ccccoovvieveiiiiiiiee e, 1109
Information Exposure Through Test COUE.........cooiiiiiiiiiiiiiiie et 1110
Inclusion of Sensitive INformation iN LOg FileS...........coiiiiiiiiiiie e 1111
Information Exposure Through Shell Error MESSAgE.........uevieiiiiiiiieeeiiiiiiiee e et 1114
Information Exposure Through Servlet Runtime Error Message.........cccveeevvcvvieeeceiiciiieee e 1115
Information Exposure Through Java Runtime Error MeSSage...........ccovcuvviieeeiiiiiieeeesiiireeeeesesineees 1116
File and Directory INformation EXPOSUIE..........ccocuiiiiieiiiiiiiee ettt e
Information Exposure Through Persistent Cookies

Information Exposure Through Source COde..........cuuiieeiiiiiiiie et
Information Exposure Through Include Source COde.........ccceiiiiiiiieiiiiiiiie e

Use of Singleton Pattern Without Synchronization in a Multithreaded Context

Missing Standardized Error Handling MeChaniSmM............ccccuviiiiiiiiiiiii et
SUSPICIOUS COMIMEINL....eiiiiiiiiiiiie e e e ittt e e e et e e e e e ettt e e e e e st e e e e e aassbereeaeessatbeeeeessastbaseaesaasssneeeeeaasees

Use of Hard-coded, Security-relevant Constants............ccccccoevveveeevennen.

Information Exposure Through Directory Listing...............

Missing Password Field Masking...........ooiiiiiiiiiiiiiiiie et
Information Exposure Through Server Error MESSAQE. ......ccccviiuriiiieiiiiiiiiie e eiiiiee e e esiaree e eivee s
Incorrect Behavior Order: Authorization Before Parsing and Canonicalization

Files or Directories Accessible to External Parties
Command Shell in Externally Accessible Dir€CtOry..........cooiiiiiiieiiiiiiiee e
ASP.NET Misconfiguration: Not Using Input Validation Framework.............ccccceeviivereeeiiinieeeee e,
J2EE Misconfiguration: Plaintext Password in Configuration File............ccccccoooviiiiieiiiiiiiieee s
ASP.NET Misconfiguration: Use of Identity Impersonation............cccccceeeveiiieeeeeiiiiieee e
Use of getlogin() in Multithreaded AppliCatioN.............ccoiiiiiiiiiiiii e
Use of umask() with chmod-style ArgUMENT...........ooiiiiiiiiiie e
[D=T To [ oo [T PSP OURP




CWE Version 3.4
Table of Contents

CWE-562:
CWE-563:
CWE-564:
CWE-565:
CWE-566:
CWE-567:
CWE-568:
CWE-570:
CWE-571:
CWE-572:
CWE-573:
CWE-574:
CWE-575:
CWE-576:
CWE-577:
CWE-578:
CWE-579:
CWE-580:
CWE-581.:
CWE-582:
CWE-583:
CWE-584:
CWE-585:
CWE-586:
CWE-587:
CWE-588:
CWE-589:
CWE-590:
CWE-591.:
CWE-593:
CWE-594:
CWE-595:
CWE-597:
CWE-598:
CWE-599:
CWE-600:
CWE-601.:
CWE-602:
CWE-603:
CWE-605:
CWE-606:
CWE-607:
CWE-608:
CWE-609:
CWE-610:
CWE-611:
CWE-612:
CWE-613:
CWE-614:
CWE-615:
CWE-616:
CWE-617:
CWE-618:
CWE-619:
CWE-620:
CWE-621.:
CWE-622:
CWE-623:
CWE-624:
CWE-625:
CWE-626:

Return of Stack Variable Address..................

Assignment to Variable WIthOUL USE..........cccuiiiiiiiiiiiii e e e e
SQL INJECHION: HIDEINALE......eiiii it e s e e e e et re e e e e e e ataeeeas
Reliance on Cookies without Validation and Integrity Checking...........cccccovvvviieeeeiiiiiere e
Authorization Bypass Through User-Controlled SQL Primary KeY.........ccoovuveeeiiiiiieeeeiiiieeee e

Unsynchronized Access to Shared Data in a
finalize() Method Without super.finalize().......
Expression is Always False..............ccccuvuee...
Expression is Always True..........cccceeuvveeeennns

Call to Thread run() instead of start().............

Improper Following of Specification by Caller

Multithreaded Context

EJB Bad Practices: Use of Synchronization Primitives...........ccccccvvviee i

EJB Bad Practices: Use of AWT Swing
EJB Bad Practices: Use of Java I/O..............
EJB Bad Practices: Use of Sockets...............

EJB Bad Practices: USe Of Class LOAUET........uuuriiiiieiiiiiiiiieieeeeee e eecee e avrvrrere e e e e e e e e e e e e

J2EE Bad Practices: Non-serializable Object
clone() Method Without super.clone()............

Object Model Violation: Just One of Equals and Hashcode Defined

Stored in Session...........ccvvveees

Array Declared Public, Final, and StatiC.............ccoiiiiiiieiiiiiiiee e e e e e

finalize() Method Declared Public...................
Return Inside Finally Block............cccccoeeuvnnee...
Empty Synchronized Block.............cccvveeeini.
Explicit Call to Finalize().......cccoceeeeviivvereeeinns

Assignment of a Fixed Address to a Pointer..

Attempt to Access Child of a NON-Structure POINLEN............cooiiiiiiieiiiiiiiee e

Call to Non-ubiquitous API.........c.cccceeevvivneen.n.

Free of Memory not on the Heap...................

Sensitive Data Storage in Improperly Locked

MEIMOIY....cveveeeeieeeetee ettt ettt

Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created...............
J2EE Framework: Saving Unserializable Objects t0 DiSK.........cccccovcviiiieciiiiiieec e

Comparison of Object References Instead of

Object CoNteNtS......ccccvviiiiiieeiccie e

Use of Wrong Operator in String COMPAriSON.........cuuiiieiiiiiiiie e eciiee e e e s eeiiee e e e e s e e e e s setreeeaesenes

Information Exposure Through Query Strings
Missing Validation of OpenSSL Certificate.....
Uncaught Exception in Servlet ......................
URL Redirection to Untrusted Site ('Open Re

iN GET REQUESL.......ooviiiiiiiieee e

Lo 11 (=Tt ) ISP PRUPOt

Client-Side Enforcement of Server-Side SECUNLY........cuuiiiiiiiiiiiee e

Use of Client-Side Authentication

Multiple Binds to the Same Port.....................

Unchecked Input for Loop Condition
Public Static Final Field References Mutable

(0] o] [=To: P PP RPRP

Struts: Non-private Field in ACONFOIM CIaSsS.........ccuviiiiiiiiiiiie et e e

Double-Checked Locking...........ccocveeeeeinnnnen..

Externally Controlled Reference to a Resource in Another Sphere

Improper Restriction of XML External Entity Reference.........ccocceeeiviiiieec it
Information Exposure Through Indexing of Private Data............cccceeeiviiiieiie i

Insufficient Session Expiration........................

Sensitive Cookie in HTTPS Session Without 'Secure’ AttribUte...........coooeeiiiiiiiiiiiiiiccrrvveeeees

Information Exposure Through Comments.....

Incomplete Identification of Uploaded File Variables (PHP)...

Reachable Assertion...........cccccoeevvieeeeiiiinenennn.
Exposed Unsafe ActiveX Method...................

Dangling Database Cursor (‘Cursor Injection’)

Unverified Password Change.............cccuee.....

Variable EXIFACHON ETOr........oi ittt ettt et e et e et e st e e e nae e e nneeas
Improper Validation of Function HOOK ArgQUMENES........ccccuuiiiieiiiiiiiee ettt e et
Unsafe ActiveX Control Marked Safe FOr SCHPtNG........cccociviiiieiiiiiiiie e e
Executable Regular EXPreSSiON EFTON............ciiiiiiiieiiiiiiiee ettt a e et e e e e s stvae e e e s eearaeea s

Permissive Regular Expression......................
Null Byte Interaction Error (Poison Null Byte)

S1ualuU0D JO 3|qeL



Table of Contents

CWE Version 3.4
Table of Contents

CWE-627: Dynamic Variable EValUation..............ccooiiiiiiiii ittt et e e satre e e e e eavae s 1251
CWE-628: Function Call with Incorrectly Specified ArgUMENES..........cccviiiieiiiiiiiee e 1253
CWE-636: Not Failing Securely ('Failing OPEN').....cccciiiiiiiie ettt e e e e e e e e e e e aaanes 1256
CWE-637: Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism’)........... 1258
CWE-638: Not Using Complete MeIAtioN............ciieiiiiiiiiee e e e e et e e e e e e e s entb e e e e e e nnnnnes 1260
CWE-639: Authorization Bypass Through User-Controlled KeY............cccoiiiiiiiieiiiiiiiee e 1262
CWE-640: Weak Password Recovery Mechanism for Forgotten Password............ccccceeevviivieeeeiiiiieeee e, 1264
CWE-641: Improper Restriction of Names for Files and Other RESOUICES............c.ccovcvvereeciiiiiiiiee e 1266
CWE-642: External Control of Critical State Data.........ccceirueieiriiiiiiiie et 1268
CWE-643: Improper Neutralization of Data within XPath Expressions ("XPath Injection’)..........ccccccceeevvninenn.. 1274
CWE-644: Improper Neutralization of HTTP Headers for Scripting SyntaX...........cccccvvvveeeiiiiiieee e iiiieee e 1276
CWE-645: Overly Restrictive Account LOCKOUt MEChaNISM..........ccoiiiiiiiiiiiiiiei et e 1277
CWE-646: Reliance on File Name or Extension of Externally-Supplied File............ccccoviieiiiiiiee e, 1279
CWE-647: Use of Non-Canonical URL Paths for Authorization DECISIONS...........ccovvuveeriiiieiiieeeiiiee e 1280
CWE-648: Incorrect Use Of Privileged APIS.........oooiiiiie ettt et e e e e e st 1282
CWE-649: Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity Checking.... 1284

CWE-650:
CWE-651.:
CWE-652:
CWE-653:
CWE-654:
CWE-655:
CWE-656:
CWE-657:
CWE-662:
CWE-663:
CWE-664:
CWE-665:
CWE-666:
CWE-667:
CWE-668:
CWE-669:
CWE-670:
CWE-671:
CWE-672:
CWE-673:
CWE-674:
CWE-675:
CWE-676:
CWE-680:
CWE-681.:
CWE-682:
CWE-683:
CWE-684:
CWE-685:
CWE-686:
CWE-687:
CWE-688:
CWE-689:
CWE-690:
CWE-691.:
CWE-692:
CWE-693:
CWE-694:
CWE-695:
CWE-696:
CWE-697:
CWE-698:
CWE-703:
CWE-704:

CWE-705

Trusting HTTP Permission Methods on the Server Side
Information Exposure Through WSDL File..........cccoiiiiiiiiiiiee e
Improper Neutralization of Data within XQuery Expressions ("XQuery Injection’)
Insufficient CompartmMeNntaliZatioN..............coiiiiiiiie i a e
Reliance on a Single Factor in @ Security DeCISION............ceiiiiiiiiiie e
Insufficient Psychological ACCEPtability...........ccvveiiiiiiiiiiic e
Reliance on Security Through OBSCUNLY........ccuvviiiiiiiiiei e araee e
Violation of Secure Design PriNCIPIES...........coiiiiiiiii i
IMPropPer SYNCRIONIZATION. .......cciiuiiiiie ettt e e s e e e e e s b e e e e e s satb e e e e e s snraaeeaeas
Use of a Non-reentrant Function in @ Concurrent CONEXL.........ccuveruieeiniieinieee e
Improper Control of a Resource Through its Lifetime.........cccvvveiiiiiiiiie e
IMProper INItAlIZALION..........oiiiiiee e e e e e et e e e s et e e e e e s snareaee e
Operation on Resource in Wrong Phase of Lifetime
[0 o] o] o[ gl Mo Tod (13T RSP PRPR USSR
Exposure of Resource t0 Wrong SPhEIE........coouiiiiiiiiiieice et
Incorrect Resource Transfer Between Spheres .
Always-Incorrect Control FIow IMplementation...............eeeoiiiiiiiee i e
Lack of Administrator CONrol OVEI SECUNLY.......iieiiiiiiiiee e et e st e st e st e e e eaaae e e e e
Operation on a Resource after Expiration or REIEASE...........cceeeiiiiiiiiee i
External Influence of Sphere Definition............cooiiiiiiii i
UNCONLIOIEA RECUISION. ....eiiiiiiiiiiie ittt ettt e st e e st e e s abe e e e bb e e e anteeesnbeeeanbbeeeanee
Duplicate Operations 0N RESOUICE. ..........cciiiuiiiie ettt eeeeeeiit e e e e e e i e e e e s sabaareeesasbtaeeaesassbeeeeesannees
Use of Potentially Dangerous Function
Integer Overflow to BUffer OVEIMIOW............oooiiiiiiii e
Incorrect Conversion between NUMEKC TYPES......cciuuiiie it e e e et e e s eetree e e e s ssbaee e e e e esatreeaeeasanes
[aoo]q (=To1 Q@2 1[o10] - L1 o] o FO PP TRPPPRN
Function Call With Incorrect Order of ArgUMENLS.........ccciuiiiieiiiiiiee e
Incorrect Provision of Specified FUNCHONAIILY...........coooiiiiiiiiiiiieic e
Function Call With Incorrect Number of ArgUMENTS.........cccoviiiiiiiiiiiiiei e
Function Call With INCOrrect ArgUmMENT TYPE...uuuiiiiiiiiiiee e e ettt e e et e e e s e e e e s eibae e e e e e
Function Call With Incorrectly Specified Argument Value...........c.ccoeoiviiiiiiei e
Function Call With Incorrect Variable or Reference as Argument..........cccccoovvveeeeeiiiiienee e
Permission Race Condition During Resource COopY........cccevvveeeiviiuneeeeeeanns

Unchecked Return Value to NULL Pointer Dereference
Insufficient Control FIOW Management.............eiieiiiiiiiie e s e e e e e e st ae e e e s aaees
Incomplete Blacklist t0 Cross-Site€ SCHPLNG.....cvieiiiiiiiiiee i e e e
Protection MechaniSm FailUre...........cccuuiiiiiii it
Use of Multiple Resources with Duplicate [dentifier............ceeoeiiiiieiic e,
Use of LOW-Level FUNCHONAILY..........oociiiiii et e e e e s aaaa e e e
INCOITECE BENAVIOT OFUEN ... .eiiiiiiiiiiiie ettt ettt et e st e s sab e e st e e sntee e nenes
[ Tofo]q (=To1 S @f0] 0] o F= 1y 1T o FHU SRRV PR
Execution After REAIFECt (EAR).....cci ittt e et e e s et e e e e et e e e e s s etbaeeaeeaaes
Improper Check or Handling of Exceptional Conditions............ccceeeiiiiiiiee i
Incorrect Type Conversion or Cast
: Incorrect CoNtrol FIOW SCOPING......iiiiiiiiiiie et e e e s e e e e e e e e e st e e e e e s etbaeaaeean

Xii



CWE Version 3.4
Table of Contents

CWE-706:
CWE-707:
CWE-708:
CWE-710:
CWE-732:
CWE-733:
CWE-749:
CWE-754:
CWE-755:
CWE-756:
CWE-757:
CWE-758:
CWE-759:
CWE-760:
CWE-761.:
CWE-762:
CWE-763:
CWE-764:
CWE-765:
CWE-766:
CWE-767:
CWE-768:
CWE-770:
CWE-771:
CWE-772:
CWE-773:
CWE-774:
CWE-775:
CWE-776:
CWE-777:
CWE-778:
CWE-779:
CWE-780:
CWE-781.:
CWE-782:
CWE-783:
CWE-784:
CWE-785:
CWE-786:
CWE-787:
CWE-788:
CWE-789:
CWE-790:
CWE-791.:
CWE-792:
CWE-793:
CWE-794:
CWE-795:
CWE-796:
CWE-797:
CWE-798:
CWE-799:
CWE-804:
CWE-805:
CWE-806:
CWE-807:
CWE-820:
CWE-821.:
CWE-822:
CWE-823:
CWE-824:

Use of Incorrectly-Resolved Name Or REfEreNnCe.........cvvviieiiiiiiiii et
Improper Enforcement of Message Or Data StIUCKUME..........c.eoiueeiiieieeiiiesie e see s
INncorrect OWNErShiP ASSIGNIMENL.......cciiiiiiiie e it e e e e e s e e e e e e st e e e e s snataaeeaeas
Improper Adherence to Coding Standards............ccoociiiiieeiiiiiiie e
Incorrect Permission Assignment for Critical RESOUICE...........c.cccvviieeiiiiiiiie e
Compiler Optimization Removal or Modification of Security-critical Code
Exposed Dangerous Method or FUNCLION...........cccooiiiiiiie i

Improper Check for Unusual or Exceptional Conditions.............ccocciviieiiiiiiiiee e
Improper Handling of Exceptional Conditions..............cooiiiiiiiiiiiiiiic e
MiSSING CUSIOM EFTOr PAgE........uvviiee ittt ettt e e s st e e e e et e e e e e e st e e e e e s entbaneeeean
Selection of Less-Secure Algorithm During Negotiation (‘Algorithm Downgrade')...........ccccceeeene. 1405
Reliance on Undefined, Unspecified, or Implementation-Defined Behavior
Use of a One-Way Hash without @ Salt.............cccceeeiiiiiiiie e

Use of a One-Way Hash with a Predictable Salt.............c.ccooiiiiiiiii e
Free of Pointer not at Start Of BUfEr..........cooiiiiiiiie e
Mismatched Memory Management ROULINES. ..........cccuviiiei it e e
Release of Invalid Pointer or Reference
Multiple LOCKS Of @ CritiCaAl RESOUICE........cccuiiiiie ettt ettt e e e e s e e e e s s stbaeeaeeeaes
Multiple Unlocks of @ CritiCal RESOUICE...........ceiiiiiiiiiiie e e e e e e e e e e s
Critical Data Element Declared PUDBIIC..........c.cooiiiiiiiiiie e
Access to Critical Private Variable via Public Method.............ccocoiiiiiiiiiicee e
Incorrect Short CirCuit EVAIULION. .........cocuiiiiiiieiiiee ettt e e snbee e
Allocation of Resources Without Limits or Throtthing...........ccccvevieiiiiiiiiec e
Missing Reference to Active Allocated RESOUICE..........cccoiiuiiiiieiiiiiiiee e e e e
Missing Release of Resource after Effective Lifetime..........ccccveeiiiiiieeii i
Missing Reference to Active File Descriptor or Handle.............cc.cooiviiiiiec i
Allocation of File Descriptors or Handles Without Limits or Throttling
Missing Release of File Descriptor or Handle after Effective Lifetime
Improper Restriction of Recursive Entity References in DTDs (‘XML Entity Expansion’)............... 1454
Regular EXpression WithOUL ANCROTS. ........cuuuiiii et e e e

Lo I 015 el =T a1 A oo o 11 o T PRSPPI
Logging of Excessive Data..........cccccecovevvveeeeeiiiiiee e,

Use of RSA Algorithm without OAEP
Improper Address Validation in IOCTL with METHOD_NEITHER 1I/O Control Code..................... 1464
Exposed IOCTL with Insufficient ACCESS CONLIOL...........coiiiiiiiiiiiiiiiei e 1466
Operator PreCedence LOGIC EITON......cooiuuiiii ettt e e e a e e et e e e e e s etbaneeeean 1468
Reliance on Cookies without Validation and Integrity Checking in a Security Decision................. 1471
Use of Path Manipulation Function without Maximum-sized Buffer............ccccccooviieie e 1473
Access of Memory Location Before Start of BUffer.............cooiiiiiiiiiiiicc e 1475
OUL-OF-DOUNAS WIITE.....eii ittt sttt st seab e e snb e e s tbe e e snteeesnneee s 1478
Access of Memory Location After ENd of BUFfer...........ccooiiiiiiiieiiii e 1484
Uncontrolled Memory AlIOCALION...........ciii e e e e e st e e e e e e anees 1488
Improper Filtering of Special EIEMENTS.........ccooiiiiiiiii e 1491
Incomplete Filtering of Special EIEMENTS...........ccoiiiiiiii i 1493
Incomplete Filtering of One or More Instances of Special Elements.............ccccocoieviiiiiiiieecenins 1494
Only Filtering One Instance of a Special Element
Incomplete Filtering of Multiple Instances of Special Elements...........ccccccoviiiieeeciiiciiece e, 1497
Only Filtering Special Elements at a Specified LOCatioN..............ceeeeiiiiiiiiieeiiiiiieee e 1498
Only Filtering Special Elements Relative t0 @ Marker...........cccoveiieiiiiiiiiee e 1499
Only Filtering Special Elements at an Absolute POSItioN............cccoviiiiiiiiiieie e 1501
Use of Hard-coded CredentialS..........ooueii ettt s
Improper Control of INteraction FrEQUENCY.........cuuviieeiiciiiiee ettt e et
GUESSADIE CAPTCHA. ...ttt ettt ettt ettt et e e e e a bt e e sb e e e e nbb e e e anbeeesneeeenebeeean
Buffer Access with Incorrect Length Value............

Buffer Access Using Size of Source Buffer
Reliance on Untrusted Inputs in a Security DeCISION...........ccoiiiiiiiieiiiiiii e 1523
Missing Synchronization
INCOITECE SYNCNIONIZALION. .....cciiiiiiii ettt e et e e e et e e e e et e e e e e s atb e e e e e s sesbaaeeaeaaans 1530
Untrusted PoINter DErefErENCE. ......couiii it e e e nnes 1531
Use of Out-of-range PoINter OffSEL.........uuiiiiiiiiiiie e a e 1533
Access Of UNINItialized POINTET.........oiuiiiiiiieiie et e e snbee e 1536

S1ualuU0D JO 3|qeL



Table of Contents

CWE Version 3.4
Table of Contents

CWE-825: EXpired POINtEr DEIEfEIENCE. ... ..cci it ettt e e e e e e et e e e e s st e e e e e e entrees
CWE-826: Premature Release of Resource During Expected Lifetime..........cccvveeiiiiiiiie i
CWE-827: Improper Control of Document Type Definition............oooiiiiiiiiiiie e
CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe..............cccccooviiieiiiiiiiec v,
CWE-829: Inclusion of Functionality from Untrusted Control Sphere..........ccccccceovvivieeeeiiennnen.

CWE-830: Inclusion of Web Functionality from an Untrusted Source

CWE-831: Signal Handler Function Associated with Multiple Signals...........ccovivieiiiiiiie e,
CWE-832: Unlock of a Resource that iS NOt LOCKEM.........c..iiiiiiiiiiiieiiiie e

(@1 1 i I 1= To | o Yo PRSP PPPP TR
CWE-834: EXCESSIVE ITEIALION. ... utiiiiiiiieiieie ittt et e et e e sttt e s be e e ettt e e sabe e e s beeeeabbeeesnnaeeabeeeas
CWE-835: Loop with Unreachable Exit Condition ('Infinit€ LOOP")......ccuviiiiiiiiiiiie e
CWE-836: Use of Password Hash Instead of Password for Authentication.............cccoceeeiiieeiiiieenieee e
CWE-837: Improper Enforcement of a Single, Unique Action

CWE-838: Inappropriate Encoding for OULPUL CONEEXL.........ccciiiiiiiiiieeiiiiiiee e e e s e e e e s aarae e e
CWE-839: Numeric Range Comparison Without Minimum ChecCK............ccceeeiiiiiiiiie i
CWE-841: Improper Enforcement of Behavioral Workflow

CWE-842: Placement of User into INCOIMECt GrOUP.......cccoiiiuirerieeiiiiiiie e e eiitiee e e s esiire e e e e e e e e

CWE-843: Access of Resource Using Incompatible Type (‘Type Confusion’)........cccccceevviiiieeeeeiinnns

CWE-862: MiISSING AULNOMIZATION. .......c.uiiiiie ettt e et e e e s e e e e e st e e e e e st e e e e e s easbb e e e e e eastbsreeeeeannsbaneas
CWE-863: INCOITECt AULNOTIZALION. ... .ciiitiiiiiiiie ittt e et e e st e s at e e e snbeeeabbeeeaee
CWE-908: Use of UniNitialiZEd RESOUITE........coiuiiiiiiiiieiiiie ettt sttt sbe e bbe e e nnaeeenanes
CWE-909: Missing Initialization Of RESOUICE.........ciccuiiiie it e e e s e e s e e e e e s earaeeas
CWE-910: Use oOf EXPIred File DESCHPION. .......vviiiee ittt e ettt e e ettt e e s e e e s et e e e e e s eaab e e e e s s nntaeeeeesenaneees
CWE-911: Improper Update of Reference COUNL............coiiiuiiiiiiiiiiiiie ettt e e saaaee s
CWE-912: Hidden FUNCHONAIILY......ceiiiiiiiiiii ettt e st e e et e e e e et e e e e e et e b e e e e e s eatbeeeeessnaneeas
CWE-913: Improper Control of Dynamically-Managed Code RESOUICES............ccocvuvvieeeiiiiiiieeeeeiiireee e
CWE-914: Improper Control of Dynamically-ldentified Variables............cccccviiiiiiiiiiie e
CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes

CWE-916: Use of Password Hash With Insufficient Computational Effort.............ccccceeiiiiiiiii e,
CWE-917: Improper Neutralization of Special Elements used in an Expression Language Statement
('EXpression Language INJECHION")........iiii ittt e e e e st e e e e e et e e e e e e st e e e e e s stb e e e e e e eanraeeeeeaaas
CWE-918: Server-Side Request Forgery (SSRF)..........ccccuvvee...

CWE-920: Improper Restriction of Power Consumption

CWE-921: Storage of Sensitive Data in a Mechanism without Access Control...........cccccveeeeiiiiieeeeeiiciieeeeenn. 1618
CWE-922: Insecure Storage of Sensitive INfOrmation...............ooiiiiiiiiiie i 1619
CWE-923: Improper Restriction of Communication Channel to Intended Endpoints...........ccccceeeviiiieeeeeninnns 1621
CWE-924: Improper Enforcement of Message Integrity During Transmission in a Communication Channel. 1622
CWE-925: Improper Verification of Intent by Broadcast RECEIVET............cocciiiiiiiie i 1623
CWE-926: Improper Export of Android Application COMPONENTS..........ccceeiiiiiiiiieeiiiiiiee e 1625
CWE-927: Use of Implicit Intent for Sensitive COMMUNICALION............ccciuiiieeiiiiiiiee e 1628
CWE-939: Improper Authorization in Handler for Custom URL Scheme..........cccccooiiiiiiee i 1631
CWE-940: Improper Verification of Source of a Communication Channel............ccccccoeviiiieeiiiiiiien e, 1634
CWE-941: Incorrectly Specified Destination in a Communication Channel.............cccccceeeiviiiirie e, 1636
CWE-942: Overly Permissive Cross-domain WHiIteliSt............c..uvieiiiiiiiiii i 1638
CWE-943: Improper Neutralization of Special Elements in Data Query LOgIC..........c.ccocvuviereeeiiiiieee e, 1641
CWE-1004: Sensitive Cookie Without "HttpONIY' Flag.........cccveviiiiiiiiiee et 1643
CWE-1007: Insufficient Visual Distinction of Homoglyphs Presented to USEr..........ccccvveeiiiiiiiieei i 1645
CWE-1021: Improper Restriction of Rendered Ul Layers or Frames...........ccccvveieeiiiiiiiieeeceiiiieeeeessiveeeee e 1648
CWE-1022: Use of Web Link to Untrusted Target with window.opener Access 1650
CWE-1023: Incomplete Comparison with Missing Factors 1652
CWE-1024: Comparison of INCOMPALIDIE TYPES......ciiiiiiiiii et e e s earae e e e e e 1654
CWE-1025: Comparison UsiNg WIONQ FaCIOrS..........cuuviiieiiiiiiiee ettt e sttt eeaaae e e e e e e e e e s snnaneeas 1655
CWE-1037: Processor Optimization Removal or Modification of Security-critical Code............cccceeevvivnnnn.n. 1657
CWE-1038: Insecure Automated OPtiMIZAtIONS..........cciiiiiiiiiiie e e e e s e e e e s rra e e e e s s ntbereae s 1658
CWE-1039: Automated Recognition Mechanism with Inadequate Detection or Handling of Adversarial Input

[T 10 ] o L= Vo] o PRSP PTPPPTRR 1659
CWE-1041: Use of Redundant Code..........ccovuiiiiiiiiiiiiie ittt 1660
CWE-1042: Static Member Data Element outside of a Singleton Class Element 1661
CWE-1043: Data Element Aggregating an Excessively Large Number of Non-Primitive Elements................ 1662
CWE-1044: Architecture with Number of Horizontal Layers Outside of Expected Range...........ccccccceevnnnen.. 1663
CWE-1045: Parent Class with a Virtual Destructor and a Child Class without a Virtual Destructor................ 1665

Xiv



CWE Version 3.4
Table of Contents

CWE-1046: Creation of Immutable Text Using String Concatenation.............ccueeeeiiiiuiieeeeeeiiiiee e e siiveeeee e
CWE-1047: Modules with Circular DependencCi€s...........cccuviieeiiiiiiiiee e

CWE-1048: Invokable Control Element with Large Number of Outward Calls.............ccccovviiiieeiiiiiiieneeees
CWE-1049: Excessive Data Query Operations in a Large Data Table...........cccccooviiiieee i
CWE-1050: Excessive Platform Resource Consumption within @ LOOP.......ccccceeviiiiiiiiiiiiiece e
CWE-1051.: Initialization with Hard-Coded Network Resource Configuration Data.............cccccocvvveeeeiiiivnnennn.
CWE-1052: Excessive Use of Hard-Coded Literals in Initialization............cccccovieiiiiin i
CWE-1053: Missing Documentation fOr DESIGN..........uuiiiiiiiiiiiei et e et e st e e e sabae e e e e s earraea s
CWE-1054: Invocation of a Control Element at an Unnecessarily Deep Horizontal Layer

CWE-1055: Multiple Inheritance from Concrete ClasSEsS..........uiviiiiiiiiieie it
CWE-1056: Invokable Control Element with Variadic Parameters............cccocviiiiieeeiiiee e
CWE-1057: Data Access Operations Outside of Expected Data Manager Component...........cccocevvcvvveeeeennns
CWE-1058: Invokable Control Element in Multi-Thread Context with non-Final Static Storable or Member
[T =T o | S RSP OUPPPRP 1678
CWE-1059: Incomplete DOCUMENTALION..........uiiiiiiiiiiee e et e et e e e e e e st e e e e s et e e e e s e anaeeeeeesntbeeeeenan 1678
CWE-1060: Excessive Number of Inefficient Server-Side Data Accesses ... 1679
CWE-1061: Insufficient ENCAPSUIALION...........ueiiiiiiiiiiie et s e e e e e e e e saar e e e e e s etbaeaee s 1680
CWE-1062: Parent Class with References to Child ClIass..........cccoviiiiiiiiieiiiiiciie e 1682
CWE-1063: Creation of Class Instance within a Static Code BIOCK...........cccccevviiiiiiieiiniee 1683
CWE-1064: Invokable Control Element with Signature Containing an Excessive Number of Parameters...... 1684
CWE-1065: Runtime Resource Management Control Element in a Component Built to Run on Application

1= V=] £ F TP PO PP PPPOPPPP 1685
CWE-1066: Missing Serialization Control EIEMENL............ccoiiiiiiiii e e e 1686
CWE-1067: Excessive Execution of Sequential Searches of Data ReSOUICE...........cccceeevviiiieee e 1687
CWE-1068: Inconsistency Between Implementation and Documented DesSign..........cccveeeeeiiiviereeeiiciineeeesenns 1687
CWE-1069: EMPLY EXCEPLON BIOCK. ... .cciiiitiiiiieeiiiiiiee e ettt e st e e e e sttt e e e e s st e e e e e s satbae e e e s saasraeeaeeaans 1688
CWE-1070: Serializable Data Element Containing non-Serializable Iltem Elements..............ccccccceeeiiiiiiineenn. 1689
CWE-1071: EMPLY COAE BIOCK.......ceiiiiiiiiiiii ettt e e e e e e e e e e s e s be e e e e e s sntaeeeeeseanes
CWE-1072: Data Resource Access without Use of Connection Pooling

CWE-1073: Non-SQL Invokable Control Element with Excessive Number of Data Resource Accesses........ 1692
CWE-1074: Class with Excessively Deep INheritancCe..........c.cooiiviiii it
CWE-1075: Unconditional Control Flow Transfer outside of Switch Block

CWE-1076: Insufficient Adherence to Expected CONVENLIONS...........ccvuiiieiiiiiiiee e
CWE-1077: Floating Point Comparison with INCOrrect OPErator............cccuviiieeiiiiiiiiee et e e e e ea e
CWE-1078: Inappropriate Source Code Style or FOrmatting............oeeeeiiiiiiiiee i
CWE-1079: Parent Class without Virtual Destructor Method.............cccoviieiiiiiiiiiie e
CWE-1080: Source Code File with Excessive Number of Lines of Code............ccvoiviriiiiiiieeeiiiec e
CWE-1082: Class Instance Self Destruction Control Element............cccocoeevieenninenn.

CWE-1083: Data Access from Outside Expected Data Manager Component

CWE-1084: Invokable Control Element with Excessive File or Data Access Operations

CWE-1085: Invokable Control Element with Excessive Volume of Commented-out Code.............ccccevveeenee. 1704
CWE-1086: Class with Excessive Number of Child CIasSesS..........ccooviuiiiiiiiiiiiiieiiieeee e 1705
CWE-1087: Class with Virtual Method without a Virtual DeSIIUCTON...........cccueeiiiiiiiiie e 1706
CWE-1088: Synchronous Access of Remote Resource without TIMEOUL...........cccceovviiiiieeeiiiiiiee e 1706
CWE-1089: Large Data Table with Excessive Number of INdiCES..........c.ceieiiiiiiiiie i 1707
CWE-1090: Method Containing Access of a Member Element from Another Class...........cccvveeeeiiiiieneeeinns 1708
CWE-1091: Use of Object without Invoking Destructor Method..............ccoovviiii i, 1709
CWE-1092: Use of Same Invokable Control Element in Multiple Architectural Layers.............cccccveveeeiinnneen.. 1710
CWE-1093: Excessively Complex Data RepreSentation..............ccuiiuiiieiiiiiiieee e sciiier e eeiiree e e e sitve e e e eiraeees
CWE-1094: Excessive Index Range Scan for a Data Resource

CWE-1095: Loop Condition Value Update within the LOOP..........coiiiiiiiiiiiiiiiie e
CWE-1096: Singleton Class Instance Creation without Proper Locking or Synchronization........................... 1714
CWE-1097: Persistent Storable Data Element without Associated Comparison Control Element.................. 1715
CWE-1098: Data Element containing Pointer Item without Proper Copy Control Element..............ccccccceone. 1716
CWE-1099: Inconsistent Naming Conventions for Identifiers............ccccocuviiiiiiiiiii e 1717
CWE-1100: Insufficient Isolation of System-Dependent FUNCHONS............cccvevieiiiiiiiie e 1718
CWE-1101: Reliance on Runtime Component in Generated COUE...........ccoeviuiiirieeiiiiiiiee e cciieee e e 1719
CWE-1102: Reliance on Machine-Dependent Data Representation..............cccceoiviveiieeiiiiinieeeceeiiieee e 1720
CWE-1103: Use of Platform-Dependent Third Party COMPONENTS...........ceeeiiiiiiiiiieiiiiiiiee e eeiiee e eeiireeea e 1721
CWE-1104: Use of Unmaintained Third Party COMPONENTS........cccuuiiiieiiiiiiiie e ccitiiee et e e enranee e 1721
CWE-1105: Insufficient Encapsulation of Machine-Dependent Functionality............c.ccccveveeeiiiiiiiee i, 1722

S1ualuU0D JO 3|qeL



Table of Contents

CWE Version 3.4
Table of Contents

CWE-1106: Insufficient Use of Symbolic CONSIANTS..........cccooiiiiiiiiiiiiiiiee e

CWE-1107: Insufficient Isolation of Symbolic Constant Definitions

CWE-1108: Excessive Reliance on Global Variables..............cccciiiiiiiiiiiie e
CWE-1109: Use of Same Variable for MUltiple PUIPOSES...........coiiiiiiiiiiee ettt e et e e
CWE-1110: Incomplete Design DOCUMENTALION..........c.ciiiiiiiiiie et e st e e e e e e e e e saar e e e e s s sataeeeae s
CWE-1111: Incomplete 1/O DOCUMENTALION. .......ccoiiiriieee ittt e e e eecitee e e e e et e e e e e seiae e e e e e s sber e e e e s s sntbaeaeessansraeeaeas

CWE-1112: Incomplete Documentation of Program Execution

CWE-1113: Inappropriate CoOmMMENT STYIE......cciiiiiiei ettt e e e e s e e e e s e ab e e e e e s esaareeeeeannnees
CWE-1114: Inappropriate WhIt€SPACE SEYIE........cciiiviiiiei i e e earaae e

CWE-1115: Source Code Element without Standard Prologue

CWE-1116: INACCUIAte COMMIENTS. ... ..uiiiiieiiiitiiee e ittt e e ettt e e e et e e e e e e bb et e e e e asbee e e e e e aanbbe e e e e e aaanaeeeaeeeanneneeeas
CWE-1117: Callable with Insufficient Behavioral SUMMArY...........ccccooiiiiiii e
CWE-1118: Insufficient Documentation of Error Handling Techniques.............ccccovvevieiiiiiiiiie e 1732

CWE-1119: Excessive Use of Unconditional Branching

CWE-1120: EXCESSIVE COUE COMPIEXILY....cciuiriiieeiiiiieiee e e ettt e e e e e et e e e e st e e e e e e st e e e e e s etba e e e e s sasbneeaeessnsaeeeas

CWE-1121: Excessive McCabe Cyclomatic Complexity

CWE-1122: Excessive Halstead Complexity..........ccccoveuvvereeennnnns

CWE-1123: Excessive Use of Self-Modifying Code

CWE-1124: EXCESSIVElY DEEP NESHING....cciiiiiiiiiie ettt eee et e e st e e e s st e e e e e s etb e e e e e e e sataeeeeessnsaneas
CWE-1125: EXCESSIVE ALACK SUMACE. ... ueiiiiiiiiiiiie ittt sttt et e e b e e e snbe e e sabeee s nneee s
CWE-1126: Declaration of Variable with Unnecessarily Wide SCOPE..........ccouviveiiiiiiiiiie e 1739
CWE-1127: Compilation with Insufficient Warnings or EITOIS..........cooiiiiiii it siveee e 1740
CWE-1164: ITEIEVANT COUC. .....eviiiiiiieiitie ettt ettt e ettt e sttt e s e bt e e anbe e e sbe e e e st bt e e anbe e e saneeeesbbeeeanbneesnnees 1740
CWE-1173: Improper Use of Validation FrameWOTK..........c.uuviieiiiiuiiieeceiiiiiee et e s et e e e e e e snare e e e s s saiveeaae s 1741
CWE-1174: ASP.NET Misconfiguration: Improper Model Validation...............cccccouviieiiiiiiiee e, 1743
CWE-1176: Inefficient CPU COMPULALION. .......ccuuiiiieiiiiiei ettt e e e et e e s et e e e s et br e e e e s s satr e e e e e s snrreeas
CWE-1177: Use of Prohibited Code.............

CWE-1187: Use of Uninitialized Resource
CWE-1188: Insecure Default Initialization of Resource

CWE Categories
Category-2: 7PK - Environment...................

Category-4: J2EE Environment Issues

(O 11=To (o] VAl K T @Xo o1 T [0 =Y i o] o VNP UPPPPPERRN
Category-19: Data ProCeSSING EFTOIS........uuiii ittt c ittt e e e s e e e s st e e e e s e at e e e e e e sntbeeeeesanes
Category-21: Pathname Traversal and EQUIVAlENCE EITOIS...........coviiiiiiiiiie e esaae e

Category-133:
Category-136:
Category-137:
Category-171:
Category-189:
Category-199:
Category-227:
Category-251:
Category-254:
Category-255:
Category-264:
Category-265:
Category-275:
Category-310:
Category-320:
Category-355:
Category-361.:
Category-371.:
Category-376:
Category-380:
Category-381.:
Category-387:
Category-388:
Category-389:
Category-398:

S T T =1 (0] £ TSP
BN S LI = 0] £ TP PPR
REPIESENTALION ETOIS...ciiuiiii ittt ettt e b e et e e snte e e s sbaeeeanbeeenas
Cleansing, Canonicalization, and Comparison ErrOrS..........cccccovcviiveeiieiiiiee e
N U0 a (=T ol o (= PR PPPP
Information ManagemMENT EITOIS........iiiiiiiiiie et e ettt e e e e e e e e e e e e s sabaeeeeeaanes
TPK = AP ADUSE....ccciiittiee ettt et e e e et e e e e e st e e e s e et b e e e e e e s e e e e e e taaes
Often Misused: String ManagemENT..........ccoiiuiiiiee it e e e e e s e e e e e saere e e e e s saraeeas
TPK - SECUNMLY FEAIUIES. .. ciii ittt e ettt e et e e e et e e e s e e e e e e et b e e e e e e aatb e e e e e s asaaeeas
Credentials ManagemMENL...........oiiuiiiieeiiiiiee e st e e e e e e e st e e e e s stb e e e e e saasreeeeessntreeeeesannes
Permissions, Privileges, and ACCESS CONLIOIS.........cccoiiiiiiiieeiiiiriee e
Privilege / SANADOX ISSUEBS........c.uuiiieiiiiiiit ettt e e st e e e s e e e e e s e aaraeaeeeaannaes
PEIMISSION ISSUBS......uteiieiiiiie ettt ettt et e e asb e e sbe e e e ebb e e e snbeeesneeaesnbeeean
CryptographiC ISSUES.........uiiie ittt e e e e e e e et e e e s st b e e e e s eabae e e e e s enanees
KeY ManagemENt EITOIS.......coiuiiiiiiieiiiie ettt ettt et sttt e et e et e e anb e e nnbeee s nnaee s
User Interface Security Issues
4 SO 11T T o B - (T PRSP
State ISSUES.......covvvviieieeiiiiieeeen,

Temporary File Issues
Technology-Specific Time and State ISSUES.......cccciiiiiiiie e
J2EE TimMeE and StALE ISSUES. ... .ueiiiiiieiiiiieiiie ettt sttt e et saee e seb e e e snteeesnnees
S (o F= U A4 o] £ PP USPRPPRNY
A SO = o] =T PP OPR
Error Conditions, Return Values, Status COUES.........ucoiiiiiiiiiieiiiee e
44 (G 0o o [C I @ U T 1) Y2 PP PRPR

XVi



CWE Version 3.4
Table of Contents

Category-399:
Category-411.:
Category-417:
Category-429:
Category-438:
Category-442:
Category-452:
Category-461.:
Category-465:
Category-485:
Category-490:
Category-519:
Category-557:
Category-559:
Category-569:
Category-712:
Category-713:
Category-714:
Category-715:
Category-716:
Category-717:
Category-718:
Category-719:
Category-720:
Category-721.:
Category-722:
Category-723:
Category-724:
Category-725:
Category-726:
Category-727:
Category-728:
Category-729:
Category-730:
Category-731.:
Category-735:
Category-736:
Category-737:
Category-738:
Category-739:
Category-740:
Category-741.:
Category-742:
Category-743:
Category-744:
Category-745:
Category-746:
Category-747:
Category-748:
Category-751:
Category-752:
Category-753:
Category-801.:
Category-802:
Category-803:
Category-808:
Category-810:
Category-811.:
Category-812:
Category-813:
Category-814:

ResSoUrce ManagemENt EITOIS........ocuuiiiiiieiiiie ettt ettt ettt sttt sbee e snb e et eeneeeennnes 1764
Resource LOCKING ProbIEMS..........oiiiiiiiiiic ettt e 1765
Channel and Path EITOIS.......ccuiiiiiiieiiiie ittt e e e st e e nnteaesnbeee s 1765
[ L= TaTo | L Bty (o] £ F PP 1766
Behavioral ProbIEMS. ..........oi et 1767
WED PrODIEMS. ... .ottt et b e e tb e e st et e ne e e e nnnee s 1767
Initialization and Cleanup EITOIS..........oiiiiiiiiiie et e e e saaae e 1768
Data STTUCLUIE ISSUBS........eeiiiiiiitiiie ettt e e s e e e e e et e e e e st b e e e e eanees 1769
POINEET ISSUBS. ...ttt ettt b e st e e s be e eab e e enbe e e ebbe e e snbeeeeneee s 1769
TPK = ENCAPSUIALION. .....ccciiiiiiiee ettt e e e e e e e e e e st e e e e e s e ntbtr e e e e e ananraeeeeeans 1769
MODIIE COUE ISSUBS......eiiiiiiieitee ettt sttt et e e et e e sneee e nebeeean 1770
INET ENVIFONMENT ISSUES......eiiiiiieiiiiie it eieee e sitee sttt ettt e bt e e snte e e sabe e e nbb e e e snbeeesnnees 1771
CONCUITENCY ISSUEBS....uuuuiuitiiiitiieteieetetettteaeeaaeaaeeasssssaasa e aeaaestbeataaeeeeeretaeeaaaaeaeaaeeesssssnsnnnnssnsnenes 1771
Often Misused: Arguments and Parameters..........cocouviiieiiiiiiiee e 1772
EXPIESSION ISSUES....ccii i ittt e ettt s et e e ettt e e e et e e e e e s bt e e e e e e saba et e e e satbsseaeesaasaeeeeessanees 1772
OWASP Top Ten 2007 Category Al - Cross Site Scripting (XSS)......ccoveveeeiviiiieee e, 1772
OWASP Top Ten 2007 Category A2 - Injection Flaws............cccccoviviieeeeiiiiieeee e 1773
OWASP Top Ten 2007 Category A3 - Malicious File EXeCUiON...........cccceeeeeiiiiiieeeeiiiiieeeee 1773
OWASP Top Ten 2007 Category A4 - Insecure Direct Object Reference..........ccccccccevvvvnen... 1773
OWASP Top Ten 2007 Category A5 - Cross Site Request Forgery (CSRF).........cccccoeevveeee. 1774
OWASP Top Ten 2007 Category A6 - Information Leakage and Improper Error Handling..... 1774
OWASP Top Ten 2007 Category A7 - Broken Authentication and Session Management....... 1775
OWASP Top Ten 2007 Category A8 - Insecure Cryptographic Storage...........ccccveeeevivnennnn. 1775
OWASP Top Ten 2007 Category A9 - Insecure COmMmMUNICAtIONS...........ccoevvvieeeeriiireeeeeniinnns 1775
OWASP Top Ten 2007 Category A10 - Failure to Restrict URL ACCESS.........cccvvveeeeeiiivreneennn. 1776
OWASP Top Ten 2004 Category Al - Unvalidated INPUL..........cccceeeviiiiiee i 1776
OWASP Top Ten 2004 Category A2 - Broken Access Control.........c.ccccccveeeeeiiiiiieee s, 1777
OWASP Top Ten 2004 Category A3 - Broken Authentication and Session Management....... 1778
OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) Flaws..........cccccceeevvvvneen.n. 1778
OWASP Top Ten 2004 Category A5 - Buffer OVerflows...........ccceeoiveiviiie i 1779
OWASP Top Ten 2004 Category A6 - Injection Flaws............cccccoevviieee i 1779
OWASP Top Ten 2004 Category A7 - Improper Error Handling...........ccccceeeiiiiiiieeeeiiiiieneeene 1780
OWASP Top Ten 2004 Category A8 - INSECUIEe STOrage..........ooeeviiivrrirriiiiiiiirrieieieeeaeaaeaeeeens 1780
OWASP Top Ten 2004 Category A9 - Denial of SErviCe.........ccocvviveeiiiiiiiie e 1781
OWASP Top Ten 2004 Category A10 - Insecure Configuration Management........................ 1781
CERT C Secure Coding Standard (2008) Chapter 2 - Preprocessor (PRE)...........cccccccecuve... 1782
CERT C Secure Coding Standard (2008) Chapter 3 - Declarations and Initialization (DCL)... 1783
CERT C Secure Coding Standard (2008) Chapter 4 - Expressions (EXP).......cccccoccveeeeeiinns 1783
CERT C Secure Coding Standard (2008) Chapter 5 - Integers (INT).....cccccveeeiviivieeeeiviiieeenen, 1784
CERT C Secure Coding Standard (2008) Chapter 6 - Floating Point (FLP)..............coccvveeee.. 1785
CERT C Secure Coding Standard (2008) Chapter 7 - Arrays (ARR).......c.cccooevvvveeeeiiiiiiieeeeens 1786
CERT C Secure Coding Standard (2008) Chapter 8 - Characters and Strings (STR)............. 1786
CERT C Secure Coding Standard (2008) Chapter 9 - Memory Management (MEM)............. 1787
CERT C Secure Coding Standard (2008) Chapter 10 - Input Output (FIO)..........cccccvvveeennnns 1789
CERT C Secure Coding Standard (2008) Chapter 11 - Environment (ENV)...........cccovveeeienis 1790
CERT C Secure Coding Standard (2008) Chapter 12 - Signals (SIG).........cccovveeeeiiciiereeennnns 1791
CERT C Secure Coding Standard (2008) Chapter 13 - Error Handling (ERR).........c..cccvene... 1791
CERT C Secure Coding Standard (2008) Chapter 14 - Miscellaneous (MSC)............cccvee..... 1792
CERT C Secure Coding Standard (2008) Appendix - POSIX (POS)......ccccccevvivviieeeeiiiiieeeee, 1793
2009 Top 25 - Insecure Interaction Between COMPONENLES.........ccoocvvieeeeiiiiiieeeee e e 1794
2009 Top 25 - Risky Resource Management...........cccuveieeeiiiiiiireeeiiiirieeeeeeiireee e e s seirreeeeesesneeas 1794
2009 TOP 25 - POroUS DEENSES........uviiiiiiiiiiiee ettt e e eeaaree s 1795
2010 Top 25 - Insecure Interaction Between COMPONENLS.........ccoocvvieeeeiiiiieeeeee i e e 1795
2010 Top 25 - Risky ResoUrce Management...........cccuveeieeiiiiiiereeeiiiirieeeeeeiireeee e s eeitreeeeesesnneas 1796
2010 TOP 25 - POroUS DEENSES........uviiieiiiiiiiei ettt e e a e e e eaaree s 1797
2010 Top 25 - Weaknesses ON the CUSP....c.uuiiieiiiiiiiie ettt e e earaae s 1797
OWASP Top Ten 2010 Category AL - INJECHION.........cviiiiiiiiiiee e e 1798
OWASP Top Ten 2010 Category A2 - Cross-Site Scripting (XSS)......ccccvvveveeeiiiiiieieeeeiiineenn, 1798
OWASP Top Ten 2010 Category A3 - Broken Authentication and Session Management....... 1799
OWASP Top Ten 2010 Category A4 - Insecure Direct Object References..........ccccceeeevunnee.. 1799
OWASP Top Ten 2010 Category A5 - Cross-Site Request Forgery(CSRF).........cccccveeeevneee. 1800

S1ualuU0D JO 3|qeL



Table of Contents

CWE Version 3.4
Table of Contents

Category-815: OWASP Top Ten 2010 Category A6 - Security Misconfiguration..............ccccoevvvvereeeiiiieneenn. 1800
Category-816: OWASP Top Ten 2010 Category A7 - Insecure Cryptographic Storage...........cccccveeeevivvnnennn. 1800
Category-817: OWASP Top Ten 2010 Category A8 - Failure to Restrict URL ACCESS........ccccevvvivvieeeeiinnnnne.. 1801
Category-818: OWASP Top Ten 2010 Category A9 - Insufficient Transport Layer Protection....................... 1801
Category-819: OWASP Top Ten 2010 Category A10 - Unvalidated Redirects and Forwards........................ 1802
Category-840: BUSINESS LOQIC EITOIS.......cciiiuiiieeeiiiiiees e ettt e ettt e e e e s sttt e e s st e e e e s e s bt e e e e e s saba e e e e e sasnaaeaeas 1802
Category-845: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 2 - Input Validation and
Data SaNItiZAtION (IDS).......uviiii ettt e ettt e e e e et e e e e e st e e e e e e s bbb e e e e e e atb b e e e e e aaabrraaeeaanrreeaeeaanre 1803
Category-846: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 3 - Declarations and

a1 E 1Tz Lo g I (1 I T USRI 1804
Category-847: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 4 - Expressions (EXP). 1804

Category-848: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 5 - Numeric Types and
(@1 =1 d[o] a ET (NN 161 PO SO EUPUTPUPN 1805
Category-849: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 6 - Object Orientation

(OBUI). e et 1805
Category-850: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 7 - Methods (MET)....... 1806
Category-851: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 8 - Exceptional Behavior
(ERR) .ottt eeees 1806
Category-852: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 9 - Visibility and Atomicity
(VN e ettt n e en e 1807
Category-853: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 10 - Locking (LCK)....... 1808
Category-854: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 11 - Thread APIs

(T ettt et n e e n e et en oo ines 1808
Category-855: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 12 - Thread Pools

QLIRS TP TPRT 1809
Category-856: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 13 - Thread-Safety
MISCEIIANEOUS (TSM)....iiiiiiiie ittt ettt e et e e e e ettt e e e e e s atb et e e e e e asaebeeeeessatbaeeeeesastbeseeeeeasntreeeeesssseneas 1809
Category-857: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 14 - Input Output

(L1 ) PRSPPI 1809
Category-858: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 15 - Serialization

(SER). ettt e et 1810
Category-859: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 16 - Platform Security
(SE D). ettt 1811
Category-860: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 17 - Runtime Environment
(ENV ). e e ettt en et 1811
Category-861: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 18 - Miscellaneous

L5103 T PP PRT 1812
Category-864: 2011 Top 25 - Insecure Interaction Between COMPONENTS...........ceeeviiivieeeeiiiiieeeeesiiieeeeeeeans 1812
Category-865: 2011 Top 25 - Risky Resource Management...........ccuuuieeeiiiiiiiereeeiiiieeee e s esitreee e e s snrreeeeesesrees 1813
Category-866: 2011 TOp 25 - POrOUS DEIENSES.......uiiiiiiiiiiiie ettt e e e e e arae e e e 1813
Category-867: 2011 Top 25 - Weaknesses ON the CUSP......uuiiiiiiiiiiie ettt e et e e siaaeeae s 1814
Category-869: CERT C++ Secure Coding Section 01 - Preprocessor (PRE).......ccccccccovviiiiiee i 1815
Category-870: CERT C++ Secure Coding Section 02 - Declarations and Initialization (DCL).............cc........ 1815
Category-871: CERT C++ Secure Coding Section 03 - EXpressions (EXP).........cccovcveeiiiiiieeeeeiiiieeee e 1815
Category-872: CERT C++ Secure Coding Section 04 - Integers (INT)....uuiviiiiiiieeee e 1816
Category-873: CERT C++ Secure Coding Section 05 - Floating Point Arithmetic (FLP)..........c.ccoovvviieeiniins 1816
Category-874: CERT C++ Secure Coding Section 06 - Arrays and the STL (ARR)........cccocviiveeiiiiiiieneeeinns 1817
Category-875: CERT C++ Secure Coding Section 07 - Characters and Strings (STR)......ccccovvvvvieveeiiiiiineenn. 1817
Category-876: CERT C++ Secure Coding Section 08 - Memory Management (MEM)............ccccceeeevivnnennnn. 1818
Category-877: CERT C++ Secure Coding Section 09 - Input Output (FIO).........ceeiiiiiiieeieeiiieeee e 1819
Category-878: CERT C++ Secure Coding Section 10 - Environment (ENV).........c.ocoiiiieiiiiiiieee e 1820
Category-879: CERT C++ Secure Coding Section 11 - Signals (SIG).....ccccoviiviiieeiiiiiiiie e 1820
Category-880: CERT C++ Secure Coding Section 12 - Exceptions and Error Handling (ERR)...................... 1821
Category-881: CERT C++ Secure Coding Section 13 - Object Oriented Programming (OOP)...................... 1821
Category-882: CERT C++ Secure Coding Section 14 - Concurrency (CON).......cccooviiiieiieiiiiiiiiee e iiiiieee e 1822
Category-883: CERT C++ Secure Coding Section 49 - Miscellaneous (MSC)..........ccoovvvieeeiiiiiiieee e 1822
Category-885: SFP Primary Cluster: RISKY ValUES.............coiiiiiiiiiiie ittt eete e et e e eivaee e e 1823
Category-886: SFP Primary Cluster: UNUSEd ENtItIES........cccoiiiiiiiie ittt e st e e e e e itve e e e e s 1823
Category-887: SFP Primary CIUSIEI: APl ...ttt e e e e st e e e s et e e e e s antreeaeessnees 1824
Category-889: SFP Primary Cluster: Exception Management............ccoiiuiiiiiiiiiiiiiie e scciieee e esiireee e e siineee e 1824
Category-890: SFP Primary CIUStEr: MEMOIY ACCESS......uuuiieiiiiiiiiteeeiiitieeeeeeseare e e e s s satae e e e s sstbereeessnaraeeaeaans 1824

XViii



CWE Version 3.4
Table of Contents

Category-891.:
Category-892:
Category-893:
Category-894:
Category-895:
Category-896:
Category-897:
Category-898:
Category-899:
Category-901:
Category-902:
Category-903:
Category-904:
Category-905:
Category-906:
Category-907:
Category-929:
Category-930:
Category-931.:
Category-932:
Category-933:
Category-934:
Category-935:
Category-936:
Category-937:
Category-938:
Category-944:
Category-945:
Category-946:
Category-947:
Category-948:
Category-949:
Category-950:
Category-951.:
Category-952:
Category-953:
Category-954:
Category-955:
Category-956:
Category-957:
Category-958:
Category-959:
Category-960:
Category-961.:
Category-962:
Category-963:
Category-964:
Category-965:
Category-966:
Category-967:
Category-968:
Category-969:
Category-970:
Category-971.:
Category-972:
Category-973:
Category-974:
Category-975:
Category-976:
Category-977:
Category-978:

SFP Primary Cluster: Memory Management...........uuvieeiiiuiiiee e i e e e et e e e st e e e e s savreeea s

SFP Primary Cluster: Resource Management...........ueieeiiiiviieeeiiiiiiieeeeeesiieee e e e seivreee e e e saeveeeas

SFP Primary Cluster: Path RESOIULION..........cooiiiiiie it e

SFP Primary Cluster: SYNChronization............c.uueiiiiiiiieiie et

SFP Primary Cluster: INnformation LeaK.............ccuuiiiiiiiiiiiii ettt

SFP Primary Cluster: Tainted INPUL..........ooiiiiiiiiiie e e s e e s e saree e e e eeannes
SFP Primary ClIuster: ENtry POINES.......cooiiiiiii ittt e a e

SFP Primary Cluster: AUtNENtICAtION. .........cccuiiiie it eeaaree s

SFP Primary Cluster: ACCESS CONIOL........cuuiiiei i

SFP Primary CIUSEr: PriVIIEgE. .......oouiiiei et et

SFP Primary CIUSter: ChanNel..........c.uviiiiiiiiiiie et

SFP Primary Cluster: Cryptographly......c..ueeic oottt e e st e e e e saaae e e e e s ennes

SFP Primary CIUSIEr: MaAIWAIE........ccciiiiiiiiie ettt e e e s e e e e e st e e e e e s annnes

SFP Primary Cluster: Predictability............ccoiiiiiiiiicc e

SFP Primary CIUSIEI: Ul ......uviiiii ettt e e s e e e e s st e e e e e sataeeaaeaan

SFP Primary ClIUSIEN: Other.......ciiiiiiiiiie et s e e e
OWASP Top Ten 2013 Category Al - Injection

OWASP Top Ten 2013 Category A2 - Broken Authentication and Session Management....... 1831
OWASP Top Ten 2013 Category A3 - Cross-Site Scripting (XSS).......cccvvveveeeiiiiiieiee i, 1831
OWASP Top Ten 2013 Category A4 - Insecure Direct Object References..........ccccceeeevunnee.. 1831
OWASP Top Ten 2013 Category A5 - Security Misconfiguration..............ccccceeeeviiveeeeeiinnnen. 1832
OWASP Top Ten 2013 Category A6 - Sensitive Data EXPOSUIE.........cccoevuveeeeeeiiiiiereeeeeenne 1832
OWASP Top Ten 2013 Category A7 - Missing Function Level Access Control...................... 1833
OWASP Top Ten 2013 Category A8 - Cross-Site Request Forgery (CSRF)........ccccovveveeninns 1833
OWASP Top Ten 2013 Category A9 - Using Components with Known Vulnerabilities........... 1833
OWASP Top Ten 2013 Category A10 - Unvalidated Redirects and Forwards........................ 1834
SFP Secondary Cluster: ACCESS ManNagemMENt..........cceiiiiiiiiiieeiiiiiiee e ciiieee e e e e e e sarreeees 1834
SFP Secondary Cluster: INSECUre RESOUICE ACCESS.......uuiieiiiireieeeiiiirieeeeeaiireeeeessiireeeessenes 1835
SFP Secondary Cluster: Insecure Resource PermisSions...........coocviveeeeeiiiiiereeesiiieeeee e 1835
SFP Secondary Cluster: Authentication BYPasS.........ccoiiiiiiiiieiiiiiiiiee e 1835
SFP Secondary Cluster: Digital CertifiCate...........cccvviiiiiiiiiieie it 1836
SFP Secondary Cluster: Faulty Endpoint Authentication............c.cccoccviiiii e 1836
SFP Secondary Cluster: Hardcoded Sensitive Data...........cccoccvveieeeiiiiiiiiee e 1837
SFP Secondary Cluster: Insecure Authentication PoliCy............cccocveeiiiiiiiee i, 1837
SFP Secondary Cluster: Missing AUthentiCation..............cccvviieiiiiiiiee e 1837
SFP Secondary Cluster: Missing Endpoint Authentication.............ccccoceveviie i 1838
SFP Secondary Cluster: Multiple Binds to the Same Port..........c.cccoccvvieeeeiiiiieee e 1838
SFP Secondary Cluster: Unrestricted Authentication..............cceeevviiiiie e i 1838
SFP Secondary Cluster: Channel AtACK...........ccciuviiieiiiiiiiic e 1839
SFP Secondary Cluster: ProtOCOI EITOr..........uviiieiiiiiiiie ettt a e 1839
SFP Secondary Cluster: Broken Cryptography.......ccceeeeiiiiiiieeiiiiiiieec e 1839
SFP Secondary Cluster: Weak Cryptography........c.coooiiviiiiiiiiiiiiec e 1840
SFP Secondary Cluster: Ambiguous EXCEPtioN TYPE......cviiiiiiriiieeiiiiiiiee e et e e esiieee e 1840
SFP Secondary Cluster: Incorrect Exception BEhavior...........cceeeiviiuiiiee i 1840
SFP Secondary Cluster: Unchecked Status Condition............cceeeeeiiiiiiiiee i 1841
SFP Secondary Cluster: EXPOSEd Datal..........c.vveiiiiiiiiiiiee i iiiieiee ettt et e e 1841
SFP Secondary Cluster: Exposure Temporary File..........ccoouiiieeiiiiiiiiiiiee e 1843
SFP Secondary Cluster: Insecure Session Management...........cccvvvveeiiiiiiiieeeeeciiiiereeeseiineeeen 1844
SFP Secondary Cluster: Other EXPOSUIES...........ciieiiiiiirieeesiiiiiieeeessiiieseesseivsreeesesnsaeeeeessnens 1844
SFP Secondary Cluster: State DISCIOSUIE..........ccciuiiiiieiiiiiiee ettt 1844
SFP Secondary Cluster: Covert Channel..............cooeiiiiiiiii e 1845
SFP Secondary Cluster: Faulty Memory Release..........cccccooeiiiieiiiiiiiiiiee e 1845
SFP Secondary Cluster: Faulty BUffer ACCESS........coiiiiiiiiiiiie it 1845
SFP Secondary Cluster; Faulty POINtEr USE...........cccoiiiiiiiieiiiiiiiie et 1846
SFP Secondary Cluster: Faulty String EXPansion...........ccccooiiiiierii e 1846
SFP Secondary Cluster: Improper NULL Termination...........cccceeeiiiivieieeceiiiiiee e e e 1846
SFP Secondary Cluster: Incorrect Buffer Length Computation...............cccccveeeiiiiiiee e, 1847
SFP Secondary ClIUster: ArChiteCIUIE...........iiiiiiiiiiiie e e 1847
SFP Secondary Cluster: COMPIIET...........uviiiiiiiiiee e 1848
SFP Secondary ClIUSIEr: DeSIGN........ueiiiiiiiiiiiee ettt e e e e e e e e e e sareeaaeaans 1848
SFP Secondary Cluster: Implementation............c.ueeeeeiiiiiieee e siree e e 1849

S1ualuU0D JO 3|qeL



Table of Contents

CWE Version 3.4
Table of Contents

Category-979: SFP Secondary Cluster: Failed Chroot Jail.............cceooiiiiiiiiiei i 1849
Category-980: SFP Secondary Cluster: Link in Resource Name Resolution............cccccovcivieeeceiiiiiee e 1849
Category-981: SFP Secondary Cluster: Path Traversal...........ccccveiiiiiiiiiii e 1850
Category-982: SFP Secondary Cluster: Failure to Release RESOUICE...........cccceovvvieiieiiiiiiiee e 1851
Category-983: SFP Secondary Cluster: Faulty RESOUICE USE........cccuvieiiiiiiiiiiie et 1851
Category-984: SFP Secondary CIUSter: Life CYCIE.......ccoiiiiiiiiiie it 1852
Category-985: SFP Secondary Cluster: Unrestricted CONSUMPLION. ........ccocvvirieeiiiiiiee e ee e e ssiveeas 1852
Category-986: SFP Secondary Cluster: MiSSING LOCK............cciiiiiiiieiiiiiiiee ettt a e 1852
Category-987: SFP Secondary Cluster: Multiple LOCKS/UNIOCKS..............ccooiiiiiiiiieiiiiiiiee e 1853
Category-988: SFP Secondary Cluster: Race Condition WINAOW.............cocciviiieeiiiiiiiiee i 1853
Category-989: SFP Secondary Cluster: UnresStricted LOCK..........coocuiiiieiiiiiiiee et 1853
Category-990: SFP Secondary Cluster: Tainted Input to COmMMaNnd............ccccveeeiiiiiieii e 1854
Category-991: SFP Secondary Cluster: Tainted Input to ENVIFONMENt...........coooiiiiieeiiiiiiieee e 1856
Category-992: SFP Secondary Cluster: Faulty Input Transformation.............ccccccvieee i 1857
Category-993: SFP Secondary Cluster: Incorrect Input Handling...........cccveeiiiiiiiiiie i 1857
Category-994: SFP Secondary Cluster: Tainted Input to Variable.............cccevieiiiiiiiii e 1858
Category-995: SFP Secondary ClIUSIEI: FEATUIE..........vuiiie ittt s e e s e e e e e e e e e e e s eaaaeeeas 1858
Category-996: SFP Secondary CIUSIEI: SECUILY.......uuuiieiiiiiiiee e et e ettt e e s et e e e e re e e e e st e e e e e s senaraeeaeas 1859
Category-997: SFP Secondary Cluster: INfOrmation LOSS.........ccoiiiviiiieiiiiiiiee et e s 1859
Category-998: SFP Secondary Cluster: Glitch in COMPULALION...........cccvviiieiiiiiiiee e 1859
Category-1001: SFP Secondary Cluster: Use of an Improper APl.........ccuviiiiiiiiiiiiee et 1860
Category-1002: SFP Secondary Cluster: Unexpected Entry POINtS.........ccovieiiiiiiiii e 1861
Category-1005: 7PK - Input Validation and Representation...........cccccccuvveeeeiiiiiiieie e eciiieee e esiree e siireeea e 1862
Category-1006: Bad CodiNG PraCliCES........uuuiiiiiiiiiiii e e eeiiiiee e e e ettt e e s ettt e e e s et e e e e e st e e e e e s saabreeeessatraeeaesannes 1862
(0 11=To (o] Y2l (0101 AN E T [ SO SOPRPOOTPPP 1863
Category-1010: AUTNENTICAIE ACIOIS.......cci ettt e s e e e e e et e e e e e e st e e e e e s estbaeeeaeeasaraeeeeeaaas 1864
(0 11=To (o] oVl 0 ) I XU g To ) (A= I Y1 (o] £ P PRRORP 1865
Category-1012: CroSS CULING.......cuuiiieeiiiitiee e e e et ee e e e s e e e e e e st e e e e e s iatreeeeasstbaataeesastbsseeeesasssseeaessanstaeeeessanses 1867
Category-1013: ENCIYPE DALA......ccccuuiriiiiiiiiiiitiiieeiete et e e e e e e e e e e s s s s ss s aeb b s asaeeereteaaaaeaaaaeeeaesssssssasasassssnsnsssnnnns 1868
(0= 1=To [0 oYl 0 I S o =T |11 VA (o £ TP PUPOUPPSPROS 1869
(0= 11=To To] Y2l 0 T I 4 1) AN oo =T TP UEPTOPPRR 1870
Category-1016: LiMIt EXPOSUIE.......uuuiieiiiiuiiieee e ittt e e e e eetbae e e e s eeataeeaeeasatreeeeaastbaeeeessassbaseaesaasssseeeesaassneeeessanses 1870
Category-1017: LOCK COMPULET......oiiiiiiiiiiee e ettt e et e e e e st e e e e s et e e e e e s et b e e e e e e e aaatbeeeesssasbaeeeessansrneas 1871
Category-1018: Manage USEI SESSIONS.....c.ccciiiuiiiieeiiiiiiteeeeiiitr e e e e e sitre e e e e s st ae e e e e s astbaaeaeesasatbeeeeesssbaeeeeesansreees 1872
Category-1019: Validate INPULS..........iiiiiiiiiiee e et e e st e e e et e e e e e st e e e e e s stb e et e e e sabbaeeaesesbsreeaesassbeeeeessanses 1872
Category-1020: Verify MeSSage INTEOIITY......ccciiiiuiiiie ettt e e e s e e e e s e e e e e e asnreeeeessnees 1874
Category-1027: OWASP Top Ten 2017 Category AL - INJECHON........ccoiiviieei ittt 1875
Category-1028: OWASP Top Ten 2017 Category A2 - Broken Authentication..............ccccveeeeiiiiieee e, 1875
Category-1029: OWASP Top Ten 2017 Category A3 - Sensitive Data EXPOSUIe..........cccoevvuvveeeeeiiivnereesiinnns 1876
Category-1030: OWASP Top Ten 2017 Category A4 - XML External Entities (XXE)........ccccceeeeeiiiviereeesiinnnen. 1876
Category-1031: OWASP Top Ten 2017 Category A5 - Broken Access CONtrol.........ccccccovvvvvieeeeiiiiiieeeeeinns 1877
Category-1032: OWASP Top Ten 2017 Category A6 - Security Misconfiguration.............ccccceveeeiiiiiiieeeennns 1877
Category-1033: OWASP Top Ten 2017 Category A7 - Cross-Site Scripting (XSS).....cccceivviiiieeeiiiiiieeeesiiins 1878
Category-1034: OWASP Top Ten 2017 Category A8 - Insecure Deserialization...............ccccveeeiiiiiiieneeeiinns 1878
Category-1035: OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities......... 1878
Category-1036: OWASP Top Ten 2017 Category A10 - Insufficient Logging & Monitoring.............c.cceeevvvee... 1879
Category-1129: CISQ Quality Measures - Reliability..........c..oooiiiiiiiiii e 1879
Category-1130: CISQ Quality Measures - Maintainability.............ccccoeiiiiiiiei e 1880
Category-1131: CISQ Quality MEASUIES = SECUNLY....c.cciiiiiiiieeiiiiieiee e est et e e e e e e et e e e e e sarr e e e e e s eabaeaeeean 1881
Category-1132: CISQ Quality Measures - PerfOrmManCe............uvviiiiiiiiie ettt 1882
Category-1134: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data
SF- T a1 ih4= e (o A I (] DS R PSPPSRI 1883
Category-1135: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 01. Declarations and

a1 E 1Tz Ui o] g I (1 I T U PRSPPI 1884
Category-1136: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 02. Expressions (EXP)....1884
Category-1137: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 03. Numeric Types and
(@1 =1 (o] ET (1N 1611 PO OO EURUTPRPTN 1885
Category-1138: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 04. Characters and Strings
(STR) ettt ettt ettt ettt ettt ettt ettt e, 1885
Category-1139: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 05. Object Orientation

(= ) PSPPI 1886




CWE Version 3.4
Table of Contents

Category-1140: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET)......... 1886
Category-1141: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior
(ERR) .ottt eees 1887
Category-1142: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 08. Visibility and Atomicity
(VN ettt en e 1888
Category-1143: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 09. Locking (LCK)........... 1888
Category-1144: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 10. Thread APIs (THI).....1889
Category-1145: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 11. Thread Pools (TPS).. 1889
Category-1146: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 12. Thread-Safety
MISCEIIANEOUS (TSM)....iiiiiiiie ittt e et e e e e st e e e e e e s eat b et e e e e e asaebeee e e e st baeeeesaastaeseeeeeannnseeeeesssraneas 1890
Category-1147: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO).....1890
Category-1148: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization (SER)....1891
Category-1149: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 15. Platform Security

] L0 TSRS 1891
Category-1150: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 16. Runtime Environment
(ENV ). e et 1892
Category-1151: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 17. Java Native Interface
(TN ettt n e 1892
Category-1152: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous

53 USRS 1893
Category-1153: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 50. Android (DRD).......... 1893
Category-1155: SEI CERT C Coding Standard - Guidelines 01. Preprocessor (PRE).........ccccccccvvvvveeeeeainnn, 1894
Category-1156: SEI CERT C Coding Standard - Guidelines 02. Declarations and Initialization (DCL)........... 1894
Category-1157: SEI CERT C Coding Standard - Guidelines 03. Expressions (EXP)..........cccccovveeeiiiiineeeeeennns 1895
Category-1158: SEI CERT C Coding Standard - Guidelines 04. Integers (INT).......ccccceeiiiiiiieeeeiiiiieeee e 1895
Category-1159: SEI CERT C Coding Standard - Guidelines 05. Floating Point (FLP).........cccccccoviiiiieeeeiiins 1896
Category-1160: SEI CERT C Coding Standard - Guidelines 06. Arrays (ARR)........cccccovviiiieeeeiiiiieee e 1896
Category-1161: SElI CERT C Coding Standard - Guidelines 07. Characters and Strings (STR)...........cc....... 1897
Category-1162: SEI CERT C Coding Standard - Guidelines 08. Memory Management (MEM)..................... 1898
Category-1163: SEI CERT C Coding Standard - Guidelines 09. Input Output (FIO).......cccccveeeviiiiiiereeeiiiiene. 1899
Category-1165: SEI CERT C Coding Standard - Guidelines 10. Environment (ENV)..........cccccovvvivieeeeiiiinnen. 1899
Category-1166: SEI CERT C Coding Standard - Guidelines 11. Signals (SIG).........ccccceviiieeiiiiiiiieee e, 1900
Category-1167: SEI CERT C Coding Standard - Guidelines 12. Error Handling (ERR)..........cccccovviviiieeninn, 1900
Category-1168: SEI CERT C Coding Standard - Guidelines 13. Application Programming Interfaces (API).. 1901
Category-1169: SEI CERT C Coding Standard - Guidelines 14. Concurrency (CON)........ccccccevviivieeeesiinnnnen. 1901
Category-1170: SEI CERT C Coding Standard - Guidelines 48. Miscellaneous (MSC).........cccccceeviiiviveeeninns 1902
Category-1171: SEI CERT C Coding Standard - Guidelines 50. POSIX (POS).......cccociviieeiiiiiiieeeesciieeeeene 1902
Category-1172: SEI CERT C Coding Standard - Guidelines 51. Microsoft Windows (WIN) ............ccccceeunneee. 1903
Category-1175: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 18. Concurrency (CON).. 1904
Category-1179: SEI CERT Perl Coding Standard - Guidelines 01. Input Validation and Data Sanitization

(D) ettt 1904
Category-1180: SEI CERT Perl Coding Standard - Guidelines 02. Declarations and Initialization (DCL)....... 1904
Category-1181: SEI CERT Perl Coding Standard - Guidelines 03. Expressions (EXP).........ccccoccvveevviivvenennn. 1905
Category-1182: SEI CERT Perl Coding Standard - Guidelines 04. Integers (INT)......cccceeeiiiiieeieeiiiiiieee e, 1905
Category-1183: SEI CERT Perl Coding Standard - Guidelines 05. Strings (STR)......ccccovviiieeeeiiiiieeee e 1906
Category-1184: SEI CERT Perl Coding Standard - Guidelines 06. Object-Oriented Programming (OOP)..... 1906
Category-1185: SEI CERT Perl Coding Standard - Guidelines 07. File Input and Output (FIO)..................... 1906
Category-1186: SEI CERT Perl Coding Standard - Guidelines 50. Miscellaneous (MSC)............ccccveveeeinns 1907
CWE Views

ViIieW-604; DEPIECALEU ENMIIES. .....ciiiiiiiie ettt e ettt e ettt e e e e e et e e e e e st b e e e e e s aasbaeeeaesessntaeeeeesantbaeeaenan 1907
View-629: Weaknesses in OWASP TOP TN (2007)......uuiiiieiiiiiiieeeeiiiieiee e e eeiiree e e e s eitvaee e e e ssaase e e e e e snatvaeeaesenns 1908
View-635: Weaknesses Originally Used by NVD from 2008 t0 2016.........cccccuvviieeiiiiiiiieeeiiiirieeeeesiiveeee e s 1909
View-658: Weaknesses in Software WHEN N C.......oueiiiiiiiiiieeiiee et s 1910
View-659: Weaknesses in Software WHEN IN CHt... oo 1910
View-660: Weaknesses in Software WItEN IN JAVA.........c.cooruiieiiiiiiiiie ettt s e s 1911
View-661: Weaknesses in Software WHten in PHP ... 1911
View-677: Weakness Base EIEMENTS..........oiiiiiiiiiie ettt sttt e e be e e st e e sneee s nnaee s 1912
VIBW-B78: COMPOSITES. ... iiteiiieeiiiiii et e e e sttt e e e ettt e e e e s et e et e e e s eatb e e e e e e easaeseeaeeassssaeeeessaatbaseeessassssseaeesssteeseesaanses 1912
View-699: DeVEIOPMENT CONCEPLS. . .uiiiiiiiriiiie e ittt e e e e ettt e e e et e e e e e st e e e e e s stb e e e e e e eabbaeeeeesaatreseeesaasseneeaenanns 1913
View-700: Seven Pernicious KiNGUOMS. ........c.uiiiii ittt e e st e e s e e e e e e e anaar e e e e e s eaaraeeas 1914

S1ualuU0D JO 3|qeL



Table of Contents

CWE Version 3.4
Table of Contents

View-701: Weaknesses Introduced DUrNG DeSIGN..........uuviiiiiiiiiiie ettt e e s e siarre e e e e s snaae e e e s aeanes 1914
View-702: Weaknesses Introduced During Implementation.............cccvveieiiiiiieiee e 1915
VIEW-709: NAMEA CRAINS. ... ..ttt ettt st e et e e s bt e e s bt e e e et be e e sabeeeabeeeeasbeeesnbaeesanbeeeanbeeenas 1915
View-711: Weaknesses in OWASP Top TN (2004).......couiieiiiiieiee e e eetree e e s eivaee e e e e e e e e s ssataeeeaeseans 1916
View-734: Weaknesses Addressed by the CERT C Secure Coding Standard (2008)..........ccccceevcvvvereeevinnnen. 1917
View-750: Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors................... 1918
View-800: Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors................... 1919
View-809: Weaknesses in OWASP Top TeN (2010).......uuiiiiiiiiiiiee e eiiiiiee e e et e s eivaee e s et e e e e s ssatveeeaesenns 1920
View-844: Weaknesses Addressed by The CERT Oracle Secure Coding Standard for Java (2011)............. 1921
View-868: Weaknesses Addressed by the SEI CERT C++ Coding Standard (2016 Version).............ccuue...... 1923
VIEW-884: CWE CrOSS-SECHON. ....ccitiiiiiitiieiitee i ittee e ettt e sttee ettt e sbe e e e sbaeeesabeeeabeeesanteeesabeeeaabbeeeaabeeesbeeeensbeeennes 1924
View-888: Software Fault Pattern (SFP) CIUSIEIS..........ciiiiiiiiiie ettt e e e et 1928
View-900: Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors.............c.cccvveeee.. 1929
View-919: Weaknesses in Mobile APPlICALIONS............coiiiiiiiiiiiiies et e e e s e e e e
View-928: Weaknesses in OWASP TOP TN (2013).....uuuiiiiiiiiiiiiieeecciiieee e esirer e e e s et e e e e e eiaae e e e e s ssataeeeaesenns
View-999: Weaknesses without Software Fault Patterns

View-1000: Research COoNCEPLS........ccvvuviiiieiiiiiiiiee e

View-1003: Weaknesses for Simplified Mapping of Published Vulnerabilities..............c.cccovveeeiiiiiierc i, 1933
View-1008: ArChitECIUral CONCEPLS. .. .uviiie ittt ettt e e e e e e et e e e e e e st e e e e e s et b aaeeesaaasaeeaeessntaeeaeeaas 1935
View-1026: Weaknesses in OWASP TOP TN (2017)....uuiieiiiiiiiiie et eetet e e ettt e s et e e e e enaaaee e e e e snnes 1936
View-1040: Quality Weaknesses with Indirect Security IMpPactS..........ccceeeiiiiiiiiee i 1937
View-1128: CISQ Quality MEaSUres (2016).......cueeieiiiiiiiiieeiiiiiiee e e eeiiie e e e e s stree e e e e seibe s e e e s e sataeeeeesstbaeeeesansrees 1938
View-1133: Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java.............cccceeeeeinnns 1938
View-1154: Weaknesses Addressed by the SEI CERT C Coding Standard............cccccceeeviiiiieeeeiiiiieeee e 1940
View-1178: Weaknesses Addressed by the SEI CERT Perl Coding Standard............ccccooevveeeeeiiiiieree e, 1942
View-1200: Weaknesses in the 2019 CWE Top 25 Most Dangerous Software Errors.........ccccceevevvveeeeeninns 1943
View-2000: Comprehensive CWE DICHONAIY..........ueiiiiiiiieiee et ee e ettt e e e e s e e e e s s e e e e s ssaabaeaeessnntveseeesanes 1944

Appendix A: Graph Views

XXii



CWE Version 3.4
Symbols Used in CWE

Symbols

Symbol Meaning
View
Category

Weakness - Class
Weakness - Base
Weakness - Variant

Compound Element - Composite

Compound Element - Named Chain
Deprecated

s GRS

XXiii

3IMD Ul pasn s|oquis



CWE Version 3.4

XXiV



CWE Version 3.4
CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption

Weaknesses

CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption

Weakness ID : 5 Status: Draft
Structure : Simple
Abstraction : Variant

Description

Information sent over a network can be compromised while in transit. An attacker may be able to
read or modify the contents if the data are sent in plaintext or are weakly encrypted.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 319 Cleartext Transmission of Sensitive Information 713

Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
MemberOf 4 J2EE Environment Issues 1748

Applicable Platforms
Language : Java (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Integrity Modify Application Data

Potential Mitigations
Phase: System Configuration

The application configuration should ensure that SSL or an encryption mechanism of equivalent
strength and vetted reputation is used for all access-controlled pages.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 2 7PK - Environment 700 1747

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 1841
Notes

Other

If an application uses SSL to guarantee confidential communication with client browsers, the
application configuration should make it impossible to view any access controlled page without
SSL. There are three common ways for SSL to be bypassed: A user manually enters URL and
types "HTTP" rather than "HTTPS". Attackers intentionally send a user to an insecure URL.

uondAi1oug InoylM uoIsSIwSUeRL] Bleq :uoleInBiyuosIA IIZC S-IMD



CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

CWE Version 3.4
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

A programmer erroneously creates a relative link to a page in the application, which does not
switch from HTTP to HTTPS. (This is particularly easy to do when the link moves between public
and secured areas on a web site.)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Insecure
Transport

CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

Weakness ID : 6 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description
The J2EE application is configured to use an insufficient session ID length.
Extended Description

If an attacker can guess or steal a session ID, then they may be able to take over the user's
session (called session hijacking). The number of possible session IDs increases with increased
session ID length, making it more difficult to guess or steal a session ID.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 334  Small Space of Random Values 749
Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1018 Manage User Sessions 1872
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
MemberOf 4 J2EE Environment Issues 1748

Applicable Platforms
Language : Java (Prevalence = Undetermined)

Background Details
Session ID's can be used to identify communicating parties in a web environment.

The expected number of seconds required to guess a valid session identifier is given by the
equation: (2°B+1)/(2*A*S) Where: - B is the number of bits of entropy in the session identifier. -

A is the number of guesses an attacker can try each second. - S is the number of valid session
identifiers that are valid and available to be guessed at any given time. The number of bits of
entropy in the session identifier is always less than the total number of bits in the session identifier.
For example, if session identifiers were provided in ascending order, there would be close to zero
bits of entropy in the session identifier no matter the identifier's length. Assuming that the session
identifiers are being generated using a good source of random numbers, we will estimate the




CWE Version 3.4
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

number of bits of entropy in a session identifier to be half the total number of bits in the session
identifier. For realistic identifier lengths this is possible, though perhaps optimistic.

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Ildentity

If an attacker can guess an authenticated user's session
identifier, they can take over the user's session.

Potential Mitigations
Phase: Implementation

Session identifiers should be at least 128 bits long to prevent brute-force session guessing. A
shorter session identifier leaves the application open to brute-force session guessing attacks.

Phase: Implementation

A lower bound on the number of valid session identifiers that are available to be guessed is the
number of users that are active on a site at any given moment. However, any users that abandon
their sessions without logging out will increase this number. (This is one of many good reasons to
have a short inactive session timeout.) With a 64 bit session identifier, assume 32 bits of entropy.
For a large web site, assume that the attacker can try 1,000 guesses per second and that there
are 10,000 valid session identifiers at any given moment. Given these assumptions, the expected
time for an attacker to successfully guess a valid session identifier is less than 4 minutes. Now
assume a 128 bit session identifier that provides 64 bits of entropy. With a very large web site, an
attacker might try 10,000 guesses per second with 100,000 valid session identifiers available to
be guessed. Given these assumptions, the expected time for an attacker to successfully guess a
valid session identifier is greater than 292 years.

Demonstrative Examples
Example 1:

The following XML example code is a deployment descriptor for a Java web application deployed
on a Sun Java Application Server. This deployment descriptor includes a session configuration
property for configuring the session ID length.

Example Language: XML (bad)
<sun-web-app>

<session-config>
<session-properties>

ngn

<description>The number of bytes in this web module's session ID.</description>
</property>
</session-properties>
</session-config>

</sun-web-app>

This deployment descriptor has set the session ID length for this Java web application to 8 bytes
(or 64 bits). The session ID length for Java web applications should be set to 16 bytes (128 bits) to
prevent attackers from guessing and/or stealing a session ID and taking over a user's session.

Note for most application servers including the Sun Java Application Server the session ID length is
by default set to 128 bits and should not be changed. And for many application servers the session
ID length cannot be changed from this default setting. Check your application server documentation
for the session ID length default setting and configuration options to ensure that the session 1D
length is set to 128 bits.

MemberOf Relationships

y1Bua QI-uoISSas JUBIDIHNSU| (UOIRINBIFUOISIN IT2ZC :9-IMD



CWE-7: J2EE Misconfiguration: Missing Custom Error Page

CWE Version 3.4
CWE-7: J2EE Misconfiguration: Missing Custom Error Page

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 1747
MemberOf 965 SFP Secondary Cluster: Insecure Session Management 888 1844

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Insufficient
Session-ID Length

Related Attack Patterns
CAPEC-ID Attack Pattern Name

21 Exploitation of Trusted Credentials
59 Session Credential Falsification through Prediction
References

[REF-482]2vi Gutterman. "Hold Your Sessions: An Attack on Java Session-id Generation". 2005
February 3. < http://www.securiteam.com/securityreviews/5TPOFOUEVQ.html| >.

CWE-7: J2EE Misconfiguration: Missing Custom Error Page

Weakness ID : 7 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The default error page of a web application should not display sensitive information about the
software system.

Extended Description
A Web application must define a default error page for 4xx errors (e.g. 404), 5xx (e.g. 500) errors

and catch java.lang.Throwable exceptions to prevent attackers from mining information from the
application container's built-in error response.

When an attacker explores a web site looking for vulnerabilities, the amount of information that the
site provides is crucial to the eventual success or failure of any attempted attacks.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf C] 756  Missing Custom Error Page 1404
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
MemberOf 4 J2EE Environment Issues 1748
ChildOf @ 756  Missing Custom Error Page 1404




CWE Version 3.4
CWE-7: J2EE Misconfiguration: Missing Custom Error Page

Applicable Platforms
Language : Java (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

A stack trace might show the attacker a malformed SQL
query string, the type of database being used, and the
version of the application container. This information
enables the attacker to target known vulnerabilities in
these components.

Potential Mitigations
Phase: Implementation
Handle exceptions appropriately in source code.
Phase: Implementation
Phase: System Configuration

Always define appropriate error pages. The application configuration should specify a default
error page in order to guarantee that the application will never leak error messages to an
attacker. Handling standard HTTP error codes is useful and user-friendly in addition to being a
good security practice, and a good configuration will also define a last-chance error handler that
catches any exception that could possibly be thrown by the application.

Phase: Implementation
Do not attempt to process an error or attempt to mask it.
Phase: Implementation
Verify return values are correct and do not supply sensitive information about the system.
Demonstrative Examples
Example 1:

In the snippet below, an unchecked runtime exception thrown from within the try block may cause
the container to display its default error page (which may contain a full stack trace, among other
things).

Example Language: Java (bad)

Public void doPost(HttpServletRequest request, HitpServletResponse response) throws ServletException, IOException {
try {

} catch (ApplicationSpecificException ase) {
logger.error("Caught: " + ase.toString());
}
}

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 2 7PK - Environment 700 1747

MemberOf 728 OWASP Top Ten 2004 Category A7 - Improper Error 711 1780
Handling

abed 10443 woisnd BuissIy :uoneinbiyuodsIN I3ZC 2-IMD



CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

CWE Version 3.4
CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

Nature Type ID Name Page
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 1841
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Missing Error
Handling
References

[REF-65]M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". 2005 July 6.
McGraw-Hill/Osborne.

CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

Weakness ID : 8 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

When an application exposes a remote interface for an entity bean, it might also expose methods
that get or set the bean's data. These methods could be leveraged to read sensitive information,
or to change data in ways that violate the application's expectations, potentially leading to other
vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf @ 668  Exposure of Resource to Wrong Sphere 1316

Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page

MemberOf 4 J2EE Environment Issues 1748
Common Consequences

Scope Impact Likelihood

Confidentiality Read Application Data

Integrity Modify Application Data

Potential Mitigations
Phase: Implementation

Declare Java beans "local" when possible. When a bean must be remotely accessible, make
sure that sensitive information is not exposed, and ensure that the application logic performs
appropriate validation of any data that might be modified by an attacker.

Demonstrative Examples
Example 1:

The following example demonstrates the weakness.




CWE Version 3.4
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

Example Language: XML (bad)

<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>

</entity>
</enterprise-beans>
</ejb-jar>
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 2 7PK - Environment 700 1747

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 1841
Notes

Other

Entity beans that expose a remote interface become part of an application's attack surface. For
performance reasons, an application should rarely use remote entity beans, so there is a good
chance that a remote entity bean declaration is an error.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms J2EE Misconfiguration: Unsafe Bean
Declaration

Software Fault Patterns SFP23 Exposed Data

CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

Weakness ID : 9 Status: Draft
Structure : Simple
Abstraction : Variant

Description

If elevated access rights are assigned to EJB methods, then an attacker can take advantage of the
permissions to exploit the software system.

Extended Description

If the EJB deployment descriptor contains one or more method permissions that grant access to
the special ANYONE role, it indicates that access control for the application has not been fully
thought through or that the application is structured in such a way that reasonable access control
restrictions are impossible.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

SPOYIBIN gr3 10) SUOISSIWISG SS9V Yeap :uoletnBiyuodsin I3ZC :6-IMD



CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

CWE Version 3.4
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf E] 266  Incorrect Privilege Assignment 587
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
MemberOf 4 J2EE Environment Issues 1748

Common Consequences
Scope Impact Likelihood
Other Other
Potential Mitigations
Phase: Architecture and Design
Phase: System Configuration

Follow the principle of least privilege when assigning access rights to EJB methods. Permission
to invoke EJB methods should not be granted to the ANYONE role.

Demonstrative Examples
Example 1:

The following deployment descriptor grants ANYONE permission to invoke the Employee EJB's
method named getSalary().

Example Language: XML (bad)
<ejb-jar>

<assembly-descriptor>
<method-permission>
<role-name>ANYONE</role-name>
<method>
<ejb-name>Employee</ejb-name>
<method-name>getSalary</method-name>
</method-permission>
</assembly-descriptor>

</ejb-jar>

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 1747
MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access 711 1777
Control
MemberOf 901 SFP Primary Cluster: Privilege 888 1827
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Weak Access
Permissions




CWE Version 3.4
CWE-11: ASP.NET Misconfiguration: Creating Debug Binary

CWE-11: ASP.NET Misconfiguration: Creating Debug Binary

Weakness ID : 11 Status: Draft
Structure : Simple
Abstraction : Variant

Description
Debugging messages help attackers learn about the system and plan a form of attack.
Extended Description

ASP .NET applications can be configured to produce debug binaries. These binaries give detailed
debugging messages and should not be used in production environments. Debug binaries are
meant to be used in a development or testing environment and can pose a security risk if they are
deployed to production.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 215 Information Exposure Through Debug Information 513
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
MemberOf 519 .NET Environment Issues 1771

Applicable Platforms
Language : ASP.NET (Prevalence = Undetermined)
Background Details

The debug attribute of the <compilation> tag defines whether compiled binaries should include
debugging information. The use of debug binaries causes an application to provide as much
information about itself as possible to the user.

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Attackers can leverage the additional information they
gain from debugging output to mount attacks targeted on
the framework, database, or other resources used by the
application.

Potential Mitigations
Phase: System Configuration

Avoid releasing debug binaries into the production environment. Change the debug mode to
false when the application is deployed into production.

Demonstrative Examples
Example 1:

The file web.config contains the debug mode setting. Setting debug to "true" will let the browser
display debugging information.

Areuig Bngaq Buiresi) :uoireinbiyuodsiN 1IN'dSY TT-IMD



CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

CWE Version 3.4
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

Example Language: XML (bad)

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<compilation
defaultLanguage="c#"
debug="true"
/>

</system.web>
</configuration>

Change the debug mode to false when the application is deployed into production.
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 2 7PK - Environment 700 1747

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 1841
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms ASP.NET Misconfiguration: Creating

Debug Binary

CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

Weakness ID : 12 Status: Draft
Structure : Simple
Abstraction : Variant

Description

An ASP .NET application must enable custom error pages in order to prevent attackers from mining
information from the framework's built-in responses.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf @ 756  Missing Custom Error Page 1404
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
MemberOf 519 .NET Environment Issues 1771

Applicable Platforms
Language : ASP.NET (Prevalence = Undetermined)
Background Details

10



CWE Version 3.4
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

The mode attribute of the <customErrors> tag defines whether custom or default error pages are
used.

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Default error pages gives detailed information about the
error that occurred, and should not be used in production
environments. Attackers can leverage the additional
information provided by a default error page to mount
attacks targeted on the framework, database, or other
resources used by the application.

Potential Mitigations
Phase: System Configuration

Handle exceptions appropriately in source code. ASP .NET applications should be configured to
use custom error pages instead of the framework default page.

Phase: Architecture and Design
Do not attempt to process an error or attempt to mask it.
Phase: Implementation
Verify return values are correct and do not supply sensitive information about the system.
Demonstrative Examples
Example 1:

The mode attribute of the <customErrors> tag in the Web.config file defines whether custom or
default error pages are used.

In the following insecure ASP.NET application setting, custom error message mode is turned off.
An ASP.NET error message with detailed stack trace and platform versions will be returned.
Example Language: ASP.NET (bad)

<customErrors mode="0Off" />

A more secure setting is to set the custom error message mode for remote users only. No
defaultRedirect error page is specified. The local user on the web server will see a detailed stack
trace. For remote users, an ASP.NET error message with the server customError configuration
setting and the platform version will be returned.

Example Language: ASP.NET (good)

<customErrors mode="RemoteOnly" />

Another secure option is to set the mode attribute of the <customErrors> tag to use a custom page
as follows:
Example Language: ASP.NET (good)

<customErrors mode="0On" defaultRedirect="YourErrorPage.htm" />

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

11

abed 10443 woisnd BuissIN :uoeInBiyuodSIN 1IN'dSY Z2T-IMD



CWE-13: ASP.NET Misconfiguration: Password in Configuration File

CWE Version 3.4
CWE-13: ASP.NET Misconfiguration: Password in Configuration File

Nature Type ID Name Page

MemberOf 2 7PK - Environment 700 1747

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 1841
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms ASP.NET Misconfiguration: Missing

Custom Error Handling
References

[REF-65]M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". 2005 July 6.
McGraw-Hill/Osborne.

[REF-66]OWASP, Fortify Software. "ASP.NET Misconfiguration: Missing Custom Error Handling". <
http://www.owasp.org/index.php/ASP.NET_Misconfiguration:_Missing_Custom_Error_Handling >.

CWE-13: ASP.NET Misconfiguration: Password in Configuration File

Weakness ID : 13 Status: Draft
Structure : Simple
Abstraction : Variant

Description

Storing a plaintext password in a configuration file allows anyone who can read the file access to
the password-protected resource making them an easy target for attackers.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf V] 260  Password in Configuration File 580

Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page

MemberOf 519  .NET Environment Issues 1771
Common Consequences

Scope Impact Likelihood

Access Control Gain Privileges or Assume ldentity

Potential Mitigations
Phase: Implementation

Credentials stored in configuration files should be encrypted, Use standard APIs and industry
accepted algorithms to encrypt the credentials stored in configuration files.

Demonstrative Examples
Example 1:

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database but
the pair is stored in plaintext.

12



CWE Version 3.4
CWE-14: Compiler Removal of Code to Clear Buffers

Example Language: ASP.NET (bad)

<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />

</connectionStrings>

Username and password information should not be included in a configuration file or a properties
file in plaintext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 2 7PK - Environment 700 1747

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 1841
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms ASP.NET Misconfiguration;: Password

in Configuration File
References

[REF-103]Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using
DPAPI". < http://msdn.microsoft.com/en-us/library/ms998280.aspx >.

[REF-104]Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using
RSA". < http://msdn.microsoft.com/en-us/library/ms998283.aspx >.

[REF-105]Microsoft Corporation. ".NET Framework Developer's Guide - Securing Connection
Strings". < http://msdn.microsoft.com/en-us/library/89211k9b(VS.80).aspx >.

CWE-14: Compiler Removal of Code to Clear Buffers

Weakness ID : 14 Status: Draft
Structure : Simple
Abstraction : Variant

Description

Sensitive memory is cleared according to the source code, but compiler optimizations leave the
memory untouched when it is not read from again, aka "dead store removal."

Extended Description
This compiler optimization error occurs when:

» 1. Secret data are stored in memory.

» 2. The secret data are scrubbed from memory by overwriting its contents.

» 3. The source code is compiled using an optimizing compiler, which identifies and removes
the function that overwrites the contents as a dead store because the memory is not used
subsequently.

Relationships

13

sJiayng Iea|D 01 apoI Jo [eAoway Ja1dwod FT-IMD



CWE-14: Compiler Removal of Code to Clear Buffers

CWE Version 3.4
CWE-14: Compiler Removal of Code to Clear Buffers

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 733  Compiler Optimization Removal or Modification of Security- 1388
critical Code

Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (B) 733  Compiler Optimization Removal or Modification of Security- 1388
critical Code

Applicable Platforms
Language : C (Prevalence = Undetermined)
Language : C++ (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Memory
Access Control Bypass Protection Mechanism

This weakness will allow data that has not been cleared
from memory to be read. If this data contains sensitive
password information, then an attacker can read the
password and use the information to bypass protection
mechanisms.

Detection Methods
Black Box

This specific weakness is impossible to detect using black box methods. While an analyst could
examine memory to see that it has not been scrubbed, an analysis of the executable would

not be successful. This is because the compiler has already removed the relevant code. Only
the source code shows whether the programmer intended to clear the memory or not, so this
weakness is indistinguishable from others.

White Box

This weakness is only detectable using white box methods (see black box detection factor).
Careful analysis is required to determine if the code is likely to be removed by the compiler.

Potential Mitigations
Phase: Implementation
Store the sensitive data in a "volatile" memory location if available.
Phase: Build and Compilation
If possible, configure your compiler so that it does not remove dead stores.
Phase: Architecture and Design
Where possible, encrypt sensitive data that are used by a software system.
Demonstrative Examples

Example 1:

14



CWE Version 3.4
CWE-14: Compiler Removal of Code to Clear Buffers

The following code reads a password from the user, uses the password to connect to a back-end
mainframe and then attempts to scrub the password from memory using memset().

Example Language: C (bad)

void GetData(char *MFAddr) {
char pwd[64];
if (GetPasswordFromUser(pwd, sizeof(pwd))) {
if (ConnectToMainframe(MFAddr, pwd)) {
/I Interaction with mainframe
}

}

memset(pwd, 0, sizeof(pwd));

}

The code in the example will behave correctly if it is executed verbatim, but if the code is compiled
using an optimizing compiler, such as Microsoft Visual C++ .NET or GCC 3.x, then the call to
memset() will be removed as a dead store because the buffer pwd is not used after its value

is overwritten [18]. Because the buffer pwd contains a sensitive value, the application may be
vulnerable to attack if the data are left memory resident. If attackers are able to access the correct
region of memory, they may use the recovered password to gain control of the system.

It is common practice to overwrite sensitive data manipulated in memory, such as passwords or
cryptographic keys, in order to prevent attackers from learning system secrets. However, with the
advent of optimizing compilers, programs do not always behave as their source code alone would
suggest. In the example, the compiler interprets the call to memset() as dead code because the
memory being written to is not subsequently used, despite the fact that there is clearly a security
motivation for the operation to occur. The problem here is that many compilers, and in fact many
programming languages, do not take this and other security concerns into consideration in their
efforts to improve efficiency.

Attackers typically exploit this type of vulnerability by using a core dump or runtime mechanism to
access the memory used by a particular application and recover the secret information. Once an
attacker has access to the secret information, it is relatively straightforward to further exploit the
system and possibly compromise other resources with which the application interacts.

Affected Resources
* Memory
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 2 7PK - Environment 700 1747

MemberOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 1780

MemberOf 747 CERT C Secure Coding Standard (2008) Chapter 14 - 734 1792
Miscellaneous (MSC)

MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous 868 1822
(MSC)

MemberOf 884 CWE Cross-section 884 1924

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 1841

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms Insecure Compiler Optimization

PLOVER Sensitive memory uncleared by

compiler optimization

15

sJiayng Iea|D 01 apoI Jo [eAoway Ja1dwod FT-IMD



CWE-15: External Control of System or Configuration Setting

CWE Version 3.4
CWE-15: External Control of System or Configuration Setting

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage
CERT C Secure Coding MSCO06- Be aware of compiler optimization when
C dealing with sensitive data
Software Fault Patterns SFP23 Exposed Data
References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-124]Michael Howard. "When scrubbing secrets in memory doesn't work". BugTrag. 2002
November 5. < http://cert.uni-stuttgart.de/archive/bugtrag/2002/11/msg00046.html >.

[REF-125]Michael Howard. "Some Bad News and Some Good News". 2002 October 1. Microsoft.
< http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure10102002.asp
>,

[REF-126]Joseph Wagner. "GNU GCC: Optimizer Removes Code Necessary for Security".
Bugtrag. 2002 November 6. < http://www.derkeiler.com/Mailing-Lists/securityfocus/
bugtrag/2002-11/0257.html >,

CWE-15: External Control of System or Configuration Setting

Weakness ID : 15 Status: Incomplete
Structure : Simple
Abstraction : Base

Description
One or more system settings or configuration elements can be externally controlled by a user.
Extended Description

Allowing external control of system settings can disrupt service or cause an application to behave
in unexpected, and potentially malicious ways.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf @ 610 Externally Controlled Reference to a Resource in Another 1223
Sphere

ChildOf (C] 642 External Control of Critical State Data 1268
Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 1865
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (C) 642 External Control of Critical State Data 1268

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

16



CWE Version 3.4
CWE-15: External Control of System or Configuration Setting

Nature Type ID Name Page

ChildOf @ 20 Improper Input Validation 18
Common Consequences

Scope Impact Likelihood

Other Varies by Context

Potential Mitigations
Phase: Architecture and Design
Strategy = Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design and that the compartmentalization serves to
allow for and further reinforce privilege separation functionality. Architects and designers should
rely on the principle of least privilege to decide when it is appropriate to use and to drop system
privileges.

Phase: Implementation
Phase: Architecture and Design

Because setting manipulation covers a diverse set of functions, any attempt at illustrating it

will inevitably be incomplete. Rather than searching for a tight-knit relationship between the
functions addressed in the setting manipulation category, take a step back and consider the sorts
of system values that an attacker should not be allowed to control.

Phase: Implementation
Phase: Architecture and Design

In general, do not allow user-provided or otherwise untrusted data to control sensitive values.
The leverage that an attacker gains by controlling these values is not always immediately
obvious, but do not underestimate the creativity of the attacker.

Demonstrative Examples
Example 1:
The following C code accepts a number as one of its command line parameters and sets it as the
host ID of the current machine.

Example Language: C (bad)

;éthostid(argv[l]);

Although a process must be privileged to successfully invoke sethostid(), unprivileged users may
be able to invoke the program. The code in this example allows user input to directly control the
value of a system setting. If an attacker provides a malicious value for host ID, the attacker can
misidentify the affected machine on the network or cause other unintended behavior.

Example 2:

The following Java code snippet reads a string from an HttpServietRequest and sets it as the active
catalog for a database Connection.

Example Language: Java (bad)

conn.setCatalog(request.getParameter(“catalog"));

17

Buias uoneinbiyuod 10 WalSAS JO [041U0D [eUIBIXT ST-IMD



CWE-20: Improper Input Validation

CWE Version 3.4
CWE-20: Improper Input Validation

In this example, an attacker could cause an error by providing a nonexistent catalog name or
connect to an unauthorized portion of the database.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 994  SFP Secondary Cluster: Tainted Input to Variable 888 1858
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms Setting Manipulation

Software Fault Patterns SFP25 Tainted input to variable

Related Attack Patterns
CAPEC-ID Attack Pattern Name

13 Subverting Environment Variable Values

69 Target Programs with Elevated Privileges
76 Manipulating Web Input to File System Calls
77 Manipulating User-Controlled Variables

146 XML Schema Poisoning

176 Configuration/Environment Manipulation
203 Manipulate Registry Information

270 Modification of Registry Run Keys

271 Schema Poisoning

CWE-20: Improper Input Validation

Weakness ID : 20 Status: Stable
Structure : Simple
Abstraction : Class

Description

The product does not validate or incorrectly validates input that can affect the control flow or data
flow of a program.

Extended Description

When software does not validate input properly, an attacker is able to craft the input in a form
that is not expected by the rest of the application. This will lead to parts of the system receiving
unintended input, which may result in altered control flow, arbitrary control of a resource, or
arbitrary code execution.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (C] 693 Protection Mechanism Failure 1357

18



CWE Version 3.4
CWE-20: Improper Input Validation

Nature

ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf

ParentOf
CanPrecede

CanPrecede
CanPrecede

CanPrecede

@ @0 06 GGCO6 6T
o
D

ID

114
129
606
622
626
781

1173
22

41
74

119

Name Page
Process Control 261
Improper Validation of Array Index 318
Unchecked Input for Loop Condition 1217
Improper Validation of Function Hook Arguments 1243
Null Byte Interaction Error (Poison Null Byte) 1250
Improper Address Validation in IOCTL with 1464
METHOD_NEITHER I/O Control Code

Improper Use of Validation Framework 1741

Improper Limitation of a Pathname to a Restricted Directory 31
(‘Path Traversal’)

Improper Resolution of Path Equivalence 82
Improper Neutralization of Special Elements in Output Used 133
by a Downstream Component (‘Injection’)

Improper Restriction of Operations within the Bounds ofa 276
Memory Buffer

Relevant to the view "Weaknesses for Simplified Mapping of Published

Vulnerabilities" (CWE-1003)

Nature
ParentOf

Nature
MemberOf

Nature
MemberOf
ParentOf
ParentOf

ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf

ParentOf
ParentOf
ParentOf
ParentOf
ParentOf

Type ID Name Page
o 129  Improper Validation of Array Index 318
Relevant to the view "Architectural Concepts" (CWE-1008)
Type ID Name Page
1019 Validate Inputs 1872
Relevant to the view "Development Concepts" (CWE-699)
Type ID Name Page
19 Data Processing Errors 1749
@ 73 External Control of File Name or Path 128
(C] 74 Improper Neutralization of Special Elements in Output Used 133
by a Downstream Component (‘Injection’)
V] 103  Struts: Incomplete validate() Method Definition 235
V] 104  Struts: Form Bean Does Not Extend Validation Class 237
V] 107  Struts: Unused Validation Form 245
V] 110  Struts: Validator Without Form Field 250
(B] 111 Direct Use of Unsafe JNI 252
E) 114  Process Control 261
] 129  Improper Validation of Array Index 318
E) 179  Incorrect Behavior Order: Early Validation 424
] 180 Incorrect Behavior Order: Validate Before Canonicalize 427
E) 181 Incorrect Behavior Order: Validate Before Filter 429
] 470  Use of Externally-Controlled Input to Select Classes or Code 1004
(‘Unsafe Reflection")
Q 601  URL Redirection to Untrusted Site ('Open Redirect') 1205
E) 606  Unchecked Input for Loop Condition 1217
V] 608  Struts: Non-private Field in ActionForm Class 1219
V] 622  Improper Validation of Function Hook Arguments 1243
V] 626  Null Byte Interaction Error (Poison Null Byte) 1250
V] 781  Improper Address Validation in IOCTL with 1464

ParentOf

METHOD_NEITHER I/O Control Code

19

uoneplieA 1nduj Jadoidwy :0z-3MD



CWE Version 3.4
CWE-20: Improper Input Validation

Nature Type ID Name Page
ParentOf (V] 785  Use of Path Manipulation Function without Maximum-sized 1473
Buffer
ParentOf (B] 1173 Improper Use of Validation Framework 1741
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)
Nature Type ID Name Page
ParentOf (E] 15 External Control of System or Configuration Setting 16
ParentOf (C) 73 External Control of File Name or Path 128
ParentOf V] 102  Struts: Duplicate Validation Forms 233
ParentOf V] 103  Struts: Incomplete validate() Method Definition 235
ParentOf V] 104  Struts: Form Bean Does Not Extend Validation Class 237
ParentOf (V] 105  Struts: Form Field Without Validator 239
ParentOf V] 106  Struts: Plug-in Framework not in Use 242
ParentOf (V] 107  Struts: Unused Validation Form 245
ParentOf V] 108  Struts: Unvalidated Action Form 247
ParentOf (V] 109  Struts: Validator Turned Off 248
ParentOf V] 110  Struts: Validator Without Form Field 250
c ParentOf (B] 111 Direct Use of Unsafe JNI 252
-2 ParentOf Q@ 112 Missing XML Validation 254
-g ParentOf E] 113  Improper Neutralization of CRLF Sequences in HTTP 256
T Headers ('HTTP Response Splitting’)
> ParentOf (B] 114  Process Control 261
= ParentOf E] 117  Improper Output Neutralization for Logs 272
% ParentOf @ 119  Improper Restriction of Operations within the Bounds ofa 276
— Memory Buffer
8_ ParentOf (B] 120  Buffer Copy without Checking Size of Input (‘Classic Buffer 286
o Overflow")
o ParentOf B] 134  Use of Externally-Controlled Format String 340
£ ParentOf Q 170  Improper Null Termination 404
g ParentOf (B] 190 Integer Overflow or Wraparound 446
L] ParentOf Q 466  Return of Pointer Value Outside of Expected Range 997
= ParentOf B] 470  Use of Externally-Controlled Input to Select Classes or Code 1004
@) (‘Unsafe Reflection")
ParentOf (V] 785  Use of Path Manipulation Function without Maximum-sized 1473

Buffer
Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Likelihood Of Exploit
High
Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

DoS: Resource Consumption (CPU)

DoS: Resource Consumption (Memory)

An attacker could provide unexpected values and cause
a program crash or excessive consumption of resources,
such as memory and CPU.

Confidentiality Read Memory
Read Files or Directories

20



CWE Version 3.4
CWE-20: Improper Input Validation

Scope Impact Likelihood
An attacker could read confidential data if they are able to
control resource references.

Integrity Modify Memory
Confidentiality Execute Unauthorized Code or Commands
Availability An attacker could use malicious input to modify data or

possibly alter control flow in unexpected ways, including
arbitrary command execution.

Detection Methods

Automated Static Analysis

Some instances of improper input validation can be detected using automated static analysis. A
static analysis tool might allow the user to specify which application-specific methods or functions
perform input validation; the tool might also have built-in knowledge of validation frameworks
such as Struts. The tool may then suppress or de-prioritize any associated warnings. This allows
the analyst to focus on areas of the software in which input validation does not appear to be
present. Except in the cases described in the previous paragraph, automated static analysis
might not be able to recognize when proper input validation is being performed, leading to

false positives - i.e., warnings that do not have any security consequences or require any code

changes.

Manual Static Analysis
When custom input validation is required, such as when enforcing business rules, manual
analysis is necessary to ensure that the validation is properly implemented.

Fuzzing

Fuzzing techniques can be useful for detecting input validation errors. When unexpected inputs
are provided to the software, the software should not crash or otherwise become unstable, and
it should generate application-controlled error messages. If exceptions or interpreter-generated
error messages occur, this indicates that the input was not detected and handled within the
application logic itself.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = SOAR Partial
Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial
Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Web
Application Scanner Web Services Scanner Database Scanners

Effectiveness = High
Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Fuzz
Tester Framework-based Fuzzer Cost effective for partial coverage: Host Application Interface
Scanner Monitored Virtual Environment - run potentially malicious code in sandbox / wrapper /
virtual machine, see if it does anything suspicious

21

uoneplieA 1nduj Jadoidwy :0z-3MD



CWE-20: Improper Input Validation

CWE Version 3.4
CWE-20: Improper Input Validation

Effectiveness = High
Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High
Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High
Architecture or Desigh Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction Cost effective for partial coverage: Attack Modeling

Effectiveness = High
Potential Mitigations
Phase: Architecture and Design
Strategy = Input Validation

Use an input validation framework such as Struts or the OWASP ESAPI Validation API. If you
use Struts, be mindful of weaknesses covered by the CWE-101 category.

Phase: Architecture and Design
Strategy = Libraries or Frameworks

Use an input validation framework such as Struts or the OWASP ESAPI Validation API. If you
use Struts, be mindful of weaknesses covered by the CWE-101 category.

Phase: Architecture and Design
Phase: Implementation
Strategy = Attack Surface Reduction

Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may
be obtained indirectly through API calls.

Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting

22



CWE Version 3.4
CWE-20: Improper Input Validation

potential attacks or determining which inputs are so malformed that they should be rejected
outright.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client
to remove the client-side checks entirely. Then, these modified values would be submitted to
the server. Even though client-side checks provide minimal benefits with respect to server-
side security, they are still useful. First, they can support intrusion detection. If the server
receives input that should have been rejected by the client, then it may be an indication of an
attack. Second, client-side error-checking can provide helpful feedback to the user about the
expectations for valid input. Third, there may be a reduction in server-side processing time for
accidental input errors, although this is typically a small savings.

Phase: Implementation

When your application combines data from multiple sources, perform the validation after the
sources have been combined. The individual data elements may pass the validation step but
violate the intended restrictions after they have been combined.

Phase: Implementation

Be especially careful to validate all input when invoking code that crosses language boundaries,
such as from an interpreted language to native code. This could create an unexpected interaction
between the language boundaries. Ensure that you are not violating any of the expectations

of the language with which you are interfacing. For example, even though Java may not be
susceptible to buffer overflows, providing a large argument in a call to native code might trigger
an overflow.

Phase: Implementation

Directly convert your input type into the expected data type, such as using a conversion function
that translates a string into a number. After converting to the expected data type, ensure that the
input's values fall within the expected range of allowable values and that multi-field consistencies

are maintained.
Phase: Implementation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
whitelist schemes by introducing dangerous inputs after they have been checked. Use

libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated
canonicalization until your input does not change any more. This will avoid double-decoding and
similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-
encoded dangerous content.

Phase: Implementation

When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set
the encoding you are using whenever the protocol allows you to do so.

Phase: Testing

Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Phase: Testing

23

uoneplieA 1nduj Jadoidwy :0z-3MD



CWE-20: Improper Input Validation

CWE Version 3.4
CWE-20: Improper Input Validation

Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Demonstrative Examples
Example 1:

This example demonstrates a shopping interaction in which the user is free to specify the quantity
of items to be purchased and a total is calculated.

Example Language: Java (bad)

public static final double price = 20.00;

int quantity = currentUser.getAttribute("quantity");
double total = price * quantity;

chargeUser(total);

The user has no control over the price variable, however the code does not prevent a negative
value from being specified for quantity. If an attacker were to provide a negative value, then the
user would have their account credited instead of debited.

Example 2:

This example asks the user for a height and width of an m X n game board with a maximum
dimension of 100 squares.

Example Language: C (bad)

#define MAX_DIM 100

/* board dimensions */
int m,n, error;
board_square_t *board;
printf("Please specify the board height: \n");
error = scanf("%d", &m);
if (EOF == error ){
die("No integer passed: Die evil hacker'\n");

}
printf("Please specify the board width: \n");
error = scanf("%d", &n);
if (EOF == error ){
die("No integer passed: Die evil hacker'\n");

if (m > MAX_DIM || n > MAX_DIM ) {
die("Value too large: Die evil hacker'\n");

board = (board_square_t*) malloc( m * n * sizeof(board_square_t));

While this code checks to make sure the user cannot specify large, positive integers and consume
too much memory, it does not check for negative values supplied by the user. As a result, an
attacker can perform a resource consumption (CWE-400) attack against this program by specifying
two, large negative values that will not overflow, resulting in a very large memory allocation
(CWE-789) and possibly a system crash. Alternatively, an attacker can provide very large negative
values which will cause an integer overflow (CWE-190) and unexpected behavior will follow
depending on how the values are treated in the remainder of the program.

Example 3:

24



CWE Version 3.4
CWE-20: Improper Input Validation

The following example shows a PHP application in which the programmer attempts to display a
user's birthday and homepage.

Example Language: PHP (bad)

$birthday = $_GET['birthday'];
$homepage = $_GET['homepage'];
echo "Birthday: $birthday<br>Homepage: <a href=$homepage>click here</a>"

The programmer intended for $birthday to be in a date format and $homepage to be a valid URL.
However, since the values are derived from an HTTP request, if an attacker can trick a victim into
clicking a crafted URL with <script> tags providing the values for birthday and / or homepage, then
the script will run on the client's browser when the web server echoes the content. Notice that even
if the programmer were to defend the $birthday variable by restricting input to integers and dashes,
it would still be possible for an attacker to provide a string of the form:

Example Language: (attack)

2009-01-09--

If this data were used in a SQL statement, it would treat the remainder of the statement as a
comment. The comment could disable other security-related logic in the statement. In this case,
encoding combined with input validation would be a more useful protection mechanism.

Furthermore, an XSS (CWE-79) attack or SQL injection (CWE-89) are just a few of the potential
consequences when input validation is not used. Depending on the context of the code, CRLF
Injection (CWE-93), Argument Injection (CWE-88), or Command Injection (CWE-77) may also be
possible.

Example 4:
This function attempts to extract a pair of numbers from a user-supplied string.

Example Language: C (bad)

void parse_data(char *untrusted_input){
int m, n, error;
error = sscanf(untrusted_input, "%d:%d", &m, &n);
if (EOF == error ){
die("Did not specify integer value. Die evil hacker\n");

}

/* proceed assuming n and m are initialized correctly */

This code attempts to extract two integer values out of a formatted, user-supplied input. However, if
an attacker were to provide an input of the form:
Example Language: (attack)

123:

then only the m variable will be initialized. Subsequent use of n may result in the use of an
uninitialized variable (CWE-457).

Example 5:

The following example takes a user-supplied value to allocate an array of objects and then
operates on the array.

Example Language: Java (bad)

private void buildList ( int untrustedListSize ){
if (0 > untrustedListSize ){

25

uoneplieA 1nduj Jadoidwy :0z-3MD



CWE Version 3.4
CWE-20: Improper Input Validation

die("Negative value supplied for list size, die evil hacker!");

}
Widget[] list = new Widget [ untrustedListSize ];
list[0] = new Widget();

}

This example attempts to build a list from a user-specified value, and even checks to ensure a non-
negative value is supplied. If, however, a 0 value is provided, the code will build an array of size 0
and then try to store a new Widget in the first location, causing an exception to be thrown.

Example 6:
This application has registered to handle a URL when sent an intent:

Example Language: Java (bad)

IntentFilter filter = new IntentFilter("com.example.URLHandler.openURL");
MyReceiver receiver = new MyReceiver();
registerReceiver(receiver, filter);

public class UrlHandlerReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {
if("com.example.URLHandler.openURL".equals(intent.getAction())) {
String URL = intent.getStringExtra("URLToOpen");
int length = URL.length();

The application assumes the URL will always be included in the intent. When the URL is not
present, the call to getStringExtra() will return null, thus causing a null pointer exception when
length() is called.

Observed Examples

Reference Description
CVE-2008-5305 Eval injection in Perl program using an ID that should only contain hyphens
and numbers.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5305
CVE-2008-2223  SQL injection through an ID that was supposed to be numeric.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2223
CVE-2008-3477 lack of input validation in spreadsheet program leads to buffer overflows,
integer overflows, array index errors, and memory corruption.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3477
CVE-2008-3843 insufficient validation enables XSS
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3843
CVE-2008-3174  driver in security product allows code execution due to insufficient validation
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3174
CVE-2007-3409 infinite loop from DNS packet with a label that points to itself
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3409
CVE-2006-6870 infinite loop from DNS packet with a label that points to itself
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6870
CVE-2008-1303  missing parameter leads to crash
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1303
CVE-2007-5893  HTTP request with missing protocol version number leads to crash
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5893
CVE-2006-6658 request with missing parameters leads to information exposure
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6658

CWE-20: Improper Input Validation

26



CWE Version 3.4
CWE-20: Improper Input Validation

Reference
CVE-2008-4114

CVE-2006-3790

CVE-2008-2309

CVE-2008-3494

CVE-2006-5462

CVE-2008-3571

CVE-2006-5525

CVE-2008-1284

CVE-2008-0600

CVE-2008-1738

CVE-2008-1737

CVE-2008-3464

CVE-2008-2252

CVE-2008-2374

CVE-2008-1440

CVE-2008-1625

CVE-2008-3177

CVE-2007-2442

CVE-2008-5563

CVE-2008-5285

CVE-2008-3812

CVE-2008-3680

CVE-2008-3660

Description

system crash with offset value that is inconsistent with packet size
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4114

size field that is inconsistent with packet size leads to buffer over-read
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3790

product uses a blacklist to identify potentially dangerous content, allowing
attacker to bypass a warning
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2309

security bypass via an extra header
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3494

use of extra data in a signature allows certificate signature forging
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5462

empty packet triggers reboot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3571
incomplete blacklist allows SQL injection
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5525

NUL byte in theme name cause directory traversal impact to be worse
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1284

kernel does not validate an incoming pointer before dereferencing it
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0600

anti-virus product has insufficient input validation of hooked SSDT functions,
allowing code execution
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1738

anti-virus product allows DoS via zero-length field
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1737

driver does not validate input from userland to the kernel
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3464

kernel does not validate parameters sent in from userland, allowing code
execution

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2252

lack of validation of string length fields allows memory consumption or buffer
over-read

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2374

lack of validation of length field leads to infinite loop
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1440

lack of validation of input to an IOCTL allows code execution
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1625
zero-length attachment causes crash
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3177
zero-length input causes free of uninitialized pointer
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2442

crash via a malformed frame structure
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5563

infinite loop from a long SMTP request
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5285

router crashes with a malformed packet
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3812

packet with invalid version number leads to NULL pointer dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3680

crash via multiple "." characters in file extension
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3660

MemberOf Relationships

27

uoneplieA 1nduj Jadoidwy :0z-3MD



CWE-20: Improper Input Validation

CWE Version 3.4
CWE-20: Improper Input Validation

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this

weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 1909

MemberOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 1776

MemberOf 738 CERT C Secure Coding Standard (2008) Chapter 5- 734 1784
Integers (INT)

MemberOf 742  CERT C Secure Coding Standard (2008) Chapter9- 734 1787
Memory Management (MEM)

MemberOf 746  CERT C Secure Coding Standard (2008) Chapter 13- 734 1791
Error Handling (ERR)

MemberOf 747 CERT C Secure Coding Standard (2008) Chapter 14 - 734 1792
Miscellaneous (MSC)

MemberOf 751 2009 Top 25 - Insecure Interaction Between 750 1794
Components

MemberOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 1816

MemberOf 876 CERT C++ Secure Coding Section 08 - Memory 868 1818
Management (MEM)

MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous 868 1822
(MSC)

MemberOf 994  SFP Secondary Cluster: Tainted Input to Variable 888 1858

MemberOf 1003 Weaknesses for Simplified Mapping of Published 1003 1933
Vulnerabilities

MemberOf 1005 7PK - Input Validation and Representation 700 1862

MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input 1154 1899
Output (FIO)

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous 1200 1943
Software Errors

Notes

Relationship

CWE-116 and CWE-20 have a close association because, depending on the nature of the
structured message, proper input validation can indirectly prevent special characters from
changing the meaning of a structured message. For example, by validating that a numeric

ID field should only contain the 0-9 characters, the programmer effectively prevents injection
attacks. However, input validation is not always sufficient, especially when less stringent data
types must be supported, such as free-form text. Consider a SQL injection scenario in which a
last name is inserted into a query. The name "O'Reilly" would likely pass the validation step since
it is a common last name in the English language. However, it cannot be directly inserted into
the database because it contains the " apostrophe character, which would need to be escaped
or otherwise neutralized. In this case, stripping the apostrophe might reduce the risk of SQL
injection, but it would produce incorrect behavior because the wrong name would be recorded.

Applicable Platform

Input validation can be a problem in any system that receives data from an external source.
Maintenance

Input validation - whether missing or incorrect - is such an essential and widespread part of

secure development that it is implicit in many different weaknesses. Traditionally, problems such
as buffer overflows and XSS have been classified as input validation problems by many security
professionals. However, input validation is not necessarily the only protection mechanism

available for avoiding such problems, and in some cases it is not even sufficient. The CWE team

28



CWE Version 3.4
CWE-20: Improper Input Validation

has begun capturing these subtleties in chains within the Research Concepts view (CWE-1000),
but more work is needed.

Terminology

The "input validation" term is extremely common, but it is used in many different ways. In some
cases its usage can obscure the real underlying weakness or otherwise hide chaining and
composite relationships. Some people use "input validation" as a general term that covers
many different neutralization techniques for ensuring that input is appropriate, such as filtering,
canonicalization, and escaping. Others use the term in a more narrow context to simply mean
"checking if an input conforms to expectations without changing it."

Research Gap

There is not much research into the classification of input validation techniques and their
application. Many publicly-disclosed vulnerabilities simply characterize a problem as "input
validation" without providing more specific details that might contribute to a deeper understanding
of validation techniques and the weaknesses they can prevent or reduce. Validation is over-
emphasized in contrast to other neutralization techniques such as filtering and enforcement by
conversion. See the vulnerability theory paper.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Input validation and representation
OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input
CERT C Secure Coding ERRO7- Prefer functions that support error
C checking over equivalent functions that
don't
CERT C Secure Coding FIO30-C CWE More Exclude user input from format strings
Abstract
CERT C Secure Coding MEM10- Define and use a pointer validation
C function
WASC 20 Improper Input Handling
Software Fault Patterns SFP25 Tainted input to variable

Related Attack Patterns
CAPEC-ID Attack Pattern Name

3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
7 Blind SQL Injection

8 Buffer Overflow in an API Call

9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables

13 Subverting Environment Variable Values

14 Client-side Injection-induced Buffer Overflow

22 Exploiting Trust in Client

23 File Content Injection

24 Filter Failure through Buffer Overflow

28 Fuzzing

31 Accessing/Intercepting/Modifying HTTP Cookies
42 MIME Conversion

43 Exploiting Multiple Input Interpretation Layers
45 Buffer Overflow via Symbolic Links

46 Overflow Variables and Tags

a7 Buffer Overflow via Parameter Expansion

52 Embedding NULL Bytes

53 Postfix, Null Terminate, and Backslash

29

uoneplieA 1nduj Jadoidwy :0z-3MD



CWE Version 3.4
CWE-20: Improper Input Validation

CAPEC-ID Attack Pattern Name

63 Cross-Site Scripting (XSS)
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
66 SQL Injection
67 String Format Overflow in syslog()
71 Using Unicode Encoding to Bypass Validation Logic
72 URL Encoding
73 User-Controlled Filename
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
81 Web Logs Tampering
83 XPath Injection
85 AJAX Fingerprinting
88 OS Command Injection
99 XML Parser Attack
101 Server Side Include (SSI) Injection
104 Cross Zone Scripting
108 Command Line Execution through SQL Injection
S 109 Object Relational Mapping Injection
= 110 SQL Injection through SOAP Parameter Tampering
o 120 Double Encoding
© 135 Format String Injection
E 136 LDAP Injection
= 153 Input Data Manipulation
£ 182 Flash Injection
o 209 XSS Using MIME Type Mismatch
% 230 XML Nested Payloads
=4 231 XML Oversized Payloads
= 250 XML Injection
. 261 Fuzzing for garnering other adjacent user/sensitive data
8 267 Leverage Alternate Encoding
Ll 473 Signature Spoof
= 484 XML Client-Side Attack
O 588 DOM-Based XSS
References

[REF-166]Jim Manico. "Input Validation with ESAPI - Very Important”. 2008 August 5. < http://
manicode.blogspot.com/2008/08/input-validation-with-esapi.html >,

[REF-45]O0WASP. "OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

[REF-168]Joel Scambray, Mike Shema and Caleb Sima. "Hacking Exposed Web Applications,
Second Edition". 2006 June 5. McGraw-Hill.

[REF-48]Jeremiah Grossman. "Input validation or output filtering, which is better?". 2007 January 0.
< http://jeremiahgrossman.blogspot.com/2007/01/input-validation-or-output-filtering.html >.

[REF-170]Kevin Beaver. "The importance of input validation". 2006 September 6. < http://
searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1214373,00.html >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

30



CWE Version 3.4
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path
Traversal')

Weakness ID : 22 Status: Stable
Structure : Simple
Abstraction : Base

Description

The software uses external input to construct a pathname that is intended to identify a file or
directory that is located underneath a restricted parent directory, but the software does not properly
neutralize special elements within the pathname that can cause the pathname to resolve to a
location that is outside of the restricted directory.

Extended Description

Many file operations are intended to take place within a restricted directory. By using special
elements such as ".." and "/" separators, attackers can escape outside of the restricted location
to access files or directories that are elsewhere on the system. One of the most common special
elements is the "../" sequence, which in most modern operating systems is interpreted as the
parent directory of the current location. This is referred to as relative path traversal. Path traversal
also covers the use of absolute pathnames such as "/usr/local/bin”, which may also be useful in
accessing unexpected files. This is referred to as absolute path traversal.

In many programming languages, the injection of a null byte (the 0 or NUL) may allow an attacker
to truncate a generated filename to widen the scope of attack. For example, the software may add
"txt" to any pathname, thus limiting the attacker to text files, but a null injection may effectively
remove this restriction.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

Nature Type ID Name Page
ChildOf C] 668  Exposure of Resource to Wrong Sphere 1316
ChildOf (C]) 706  Use of Incorrectly-Resolved Name or Reference 1373
ParentOf o 23 Relative Path Traversal 41
ParentOf ] 36 Absolute Path Traversal 70
CanFollow C] 20 Improper Input Validation 18
CanFollow (C] 73 External Control of File Name or Path 128
CanFollow C] 172  Encoding Error 408

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf @ 706  Use of Incorrectly-Resolved Name or Reference 1373
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
MemberOf 21 Pathname Traversal and Equivalence Errors 1749
ParentOf o 23 Relative Path Traversal 41
ParentOf ] 36 Absolute Path Traversal 70

Weakness Ordinalities

31



CWE-22: Improper Limitation of a Pathname

to a Restricted Directory (‘Path Traversal')

CWE Version 3.4
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Primary :

Resultant :
Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)
Alternate Terms

Directory traversal :

Path traversal : "Path traversal" is preferred over "directory traversal," but both terms are attack-
focused.

Likelihood Of Exploit
High

Common Consequences

Scope Impact Likelihood
Integrity Execute Unauthorized Code or Commands
Con.ﬁde.r?uahty The attacker may be able to create or overwrite critical
Availability files that are used to execute code, such as programs or
libraries.
Integrity Modify Files or Directories
The attacker may be able to overwrite or create critical
files, such as programs, libraries, or important data. If
the targeted file is used for a security mechanism, then
the attacker may be able to bypass that mechanism.
For example, appending a new account at the end
of a password file may allow an attacker to bypass
authentication.
Confidentiality Read Files or Directories

The attacker may be able read the contents of unexpected
files and expose sensitive data. If the targeted file is used
for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, by reading a
password file, the attacker could conduct brute force
password guessing attacks in order to break into an
account on the system.

Availability DoS: Crash, Exit, or Restart

The attacker may be able to overwrite, delete, or corrupt
unexpected critical files such as programs, libraries,

or important data. This may prevent the software from
working at all and in the case of a protection mechanisms
such as authentication, it has the potential to lockout every
user of the software.

Detection Methods
Automated Static Analysis

Automated techniques can find areas where path traversal weaknesses exist. However, tuning
or customization may be required to remove or de-prioritize path-traversal problems that are only
exploitable by the software's administrator - or other privileged users - and thus potentially valid
behavior or, at worst, a bug instead of a vulnerability.

Effectiveness = High
Manual Static Analysis

32



CWE Version 3.4
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Manual white box techniques may be able to provide sufficient code coverage and reduction of
false positives if all file access operations can be assessed within limited time constraints.

Effectiveness = High
Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Bytecode Weakness Analysis - including disassembler + source code weakness analysis Cost
effective for partial coverage: Binary Weakness Analysis - including disassembler + source code
weakness analysis

Effectiveness = High
Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Patrtial
Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Web
Application Scanner Web Services Scanner Database Scanners

Effectiveness = High
Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Fuzz
Tester Framework-based Fuzzer

Effectiveness = High
Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High
Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

Effectiveness = High
Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High
Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related

33



CWE-22: Improper Limitation of a Pathname

to a Restricted Directory (‘Path Traversal')

CWE Version 3.4
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright. When validating filenames, use stringent whitelists that limit the character set to be
used. If feasible, only allow a single "." character in the filename to avoid weaknesses such

as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of
allowable file extensions, which will help to avoid CWE-434. Do not rely exclusively on a filtering
mechanism that removes potentially dangerous characters. This is equivalent to a blacklist,
which may be incomplete (CWE-184). For example, filtering "/" is insufficient protection if the
filesystem also supports the use of "\" as a directory separator. Another possible error could
occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For
example, if "../" sequences are removed from the ".../.../[" string in a sequential fashion, two
instances of "../" would be removed from the original string, but the remaining characters would
still form the "../" string.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked. Use a built-in path canonicalization
function (such as realpath() in C) that produces the canonical version of the pathname, which
effectively removes ".." sequences and symbolic links (CWE-23, CWE-59). This includes:
realpath() in C getCanonicalPath() in Java GetFullPath() in ASP.NET realpath() or abs_path() in
Perl realpath() in PHP

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Phase: Operation

Strategy = Firewall

Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.

Effectiveness = Moderate

An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

34



CWE Version 3.4
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Phase: Architecture and Design
Phase: Operation
Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Phase: Architecture and Design
Strategy = Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLSs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs. For example, ID 1 could map to "inbox.txt" and ID 2 could map to
"profile.txt". Features such as the ESAPI AccessReferenceMap [REF-185] provide this capability.

Phase: Architecture and Design
Phase: Operation
Strategy = Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed
in a particular directory or which commands can be executed by the software. OS-level examples
include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the
software to specify restrictions on file operations. This may not be a feasible solution, and it

only limits the impact to the operating system; the rest of the application may still be subject to
compromise. Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness = Limited

The effectiveness of this mitigation depends on the prevention capabilities of the specific
sandbox or jail being used and might only help to reduce the scope of an attack, such as
restricting the attacker to certain system calls or limiting the portion of the file system that can be
accessed.

Phase: Architecture and Design

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

Phase: Operation
Strategy = Attack Surface Reduction

Store library, include, and utility files outside of the web document root, if possible. Otherwise,
store them in a separate directory and use the web server's access control capabilities to prevent
attackers from directly requesting them. One common practice is to define a fixed constant in
each calling program, then check for the existence of the constant in the library/include file; if the
constant does not exist, then the file was directly requested, and it can exit immediately. This
significantly reduces the chance of an attacker being able to bypass any protection mechanisms
that are in the base program but not in the include files. It will also reduce the attack surface.

Phase: Implementation

Ensure that error messages only contain minimal details that are useful to the intended audience,
and nobody else. The messages need to strike the balance between being too cryptic and

not being cryptic enough. They should not necessarily reveal the methods that were used

to determine the error. Such detailed information can be used to refine the original attack to
increase the chances of success. If errors must be tracked in some detail, capture them in log
messages - but consider what could occur if the log messages can be viewed by attackers.
Avoid recording highly sensitive information such as passwords in any form. Avoid inconsistent

35



CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

CWE Version 3.4
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

messaging that might accidentally tip off an attacker about internal state, such as whether a
username is valid or not. In the context of path traversal, error messages which disclose path
information can help attackers craft the appropriate attack strings to move through the file system
hierarchy.

Phase: Operation
Phase: Implementation
Strategy = Environment Hardening

When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Demonstrative Examples
Example 1:
The following code could be for a social networking application in which each user's profile
information is stored in a separate file. All files are stored in a single directory.
Example Language: Perl (bad)

my $dataPath = "/users/cwe/profiles";
my $username = param(“"user");
my $profilePath = $dataPath . "/" . $username;
open(my $fh, "<$profilePath") || ExitError("profile read error: $profilePath");
print "<ul>\n";
while (<$fh>) {
print "<li>$_</li>\n";

print "</ul>\n";

While the programmer intends to access files such as "/users/cwe/profiles/alice" or "/users/cwe/
profiles/bob", there is no verification of the incoming user parameter. An attacker could provide a
string such as:

Example Language: (attack)

.[I..I..Jetc/passwd

The program would generate a profile pathname like this:

Example Language: (result)

lusers/cwel/profiles/../../../etc/passwd

When the file is opened, the operating system resolves the "../" during path canonicalization and
actually accesses this file:
Example Language: (result)

letc/passwd

As a result, the attacker could read the entire text of the password file.

Notice how this code also contains an error message information leak (CWE-209) if the user
parameter does not produce a file that exists: the full pathname is provided. Because of the lack
of output encoding of the file that is retrieved, there might also be a cross-site scripting problem
(CWE-79) if profile contains any HTML, but other code would need to be examined.

Example 2:

36



CWE Version 3.4
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object.
Example Language: Java (bad)

String filename = System.getProperty(“com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);

However, the path is not validated or modified to prevent it from containing relative or absolute
path sequences before creating the File object. This allows anyone who can control the system
property to determine what file is used. Ideally, the path should be resolved relative to some kind of
application or user home directory.

Example 3:

The following code takes untrusted input and uses a regular expression to filter "../" from the input.
It then appends this result to the /home/user/ directory and attempts to read the file in the final
resulting path.

Example Language: Perl (bad)

my $Username = GetUntrustedInput();
$Username =~ sN\.\.V//;

my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the regular expression does not have the /g global match modifier, it only removes the first
instance of "../" it comes across. So an input value such as:

Example Language: (attack)

.[I..I..Jetc/passwd

will have the first "../" stripped, resulting in:

Example Language: (result)

.I..letc/passwd

This value is then concatenated with the /home/user/ directory:

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

Example Language: (result)

/home/user/../..letc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-23).

Example 4:

The following code attempts to validate a given input path by checking it against a whitelist and
once validated delete the given file. In this specific case, the path is considered valid if it starts with
the string "/safe_dir/".

Example Language: Java (bad)

String path = getlnputPath();
if (path.startsWith("/safe_dir/"))

File f = new File(path);
f.delete()

37



CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

CWE Version 3.4
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

An attacker could provide an input such as this:

Example Language: (attack)

/safe_dir/../important.dat

The software assumes that the path is valid because it starts with the "/safe_path/" sequence, but
the "../" sequence will cause the program to delete the important.dat file in the parent directory

Example 5:

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The HTML code is the same as in the previous example with the action
attribute of the form sending the upload file request to the Java servlet instead of the PHP code.

Example Language: HTML (good)

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:
<input type="file" name="filename"/>
<br/>
<input type="submit" name="submit" value="Submit"/>
</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

Example Language: Java (bad)

public class FileUploadServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServlietResponse response) throws ServletException,
I0Exception {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
/I the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
/I verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data”) != -1) {
/Il extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getinputStream()));

pLine = br.readLine();
String filename = pLine.substring(pLine.lastindexOf("\\"), pLine.lastindexOf("\""));

/I output the file to the local upload directory
try {
BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null; ) {
if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

}
} /lend of for loop
bw.close();
} catch (IOException ex) {...}
/I output successful upload response HTML page
}
/I output unsuccessful upload response HTML page
else

38



CWE Version 3.4

CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

{3

This code does not check the filename that is provided in the header, so an attacker can use

"..I" sequences to write to files outside of the intended directory. Depending on the executing
environment, the attacker may be able to specify arbitrary files to write to, leading to a wide variety
of consequences, from code execution, XSS (CWE-79), or system crash.

Also, this code does not perform a check on the type of the file being uploaded. This could allow an
attacker to upload any executable file or other file with malicious code (CWE-434).

Observed Examples

Reference
CVE-2010-0467

CVE-2009-4194

CVE-2009-4053

CVE-2009-0244

CVE-2009-4013

CVE-2009-4449

CVE-2009-4581

CVE-2010-0012

CVE-2010-0013

CVE-2008-5748

CVE-2009-1936

Functional Areas

 File Processing
Affected Resources

 File or Directory

Description

Newsletter module allows reading arbitrary files using "../" sequences.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0467

FTP server allows deletion of arbitrary files using ".." in the DELE command.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4194

FTP server allows creation of arbitrary directories using ".." in the MKD
command.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4053

OBEX FTP service for a Bluetooth device allows listing of directories, and
creation or reading of files using ".." sequences.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0244

Software package maintenance program allows overwriting arbitrary files using
"..I" sequences.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4013

Bulletin board allows attackers to determine the existence of files using the
avatar.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4449

PHP program allows arbitrary code execution using ".." in flenames that are
fed to the include() function.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4581

Overwrite of files using a .. in a Torrent file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0012

Chat program allows overwriting files using a custom smiley request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0013

Chain: external control of values for user's desired language and theme
enables path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5748

Chain: library file sends a redirect if it is directly requested but continues to
execute, allowing remote file inclusion and path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1936

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

39

(,res1anel] yred,) A1019811Q pa1dli1say e 0]

aweuyred e jo uonenwi sadoidwi :zz-IMD



CWE-22: Improper Limitation of a Pathname

to a Restricted Directory (‘Path Traversal')

CWE Version 3.4
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Nature Type ID Name Page

MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 1909

MemberOf 715 OWASP Top Ten 2007 Category A4 - Insecure Direct 629 1773
Object Reference

MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access 711 1777
Control

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 1789
Input Output (FIO)

MemberOf 802 2010 Top 25 - Risky Resource Management 800 1796

MemberOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct 809 1799
Object References

MemberOf 865 2011 Top 25 - Risky Resource Management 900 1813

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 1819
(FIO)

MemberOf 884 CWE Cross-section 884 1924

MemberOf 932 OWASP Top Ten 2013 Category A4 - Insecure Direct 928 1831
Object References

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850

MemberOf 1031 OWASP Top Ten 2017 Category A5 - Broken Access 1026 1877
Control

MemberOf 1131 CISQ Quality Measures - Security 1128 1881

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous 1200 1943
Software Errors

Notes

Relationship
Pathname equivalence can be regarded as a type of canonicalization error.
Relationship

Some pathname equivalence issues are not directly related to directory traversal, rather are used
to bypass security-relevant checks for whether a file/directory can be accessed by the attacker
(e.g. a trailing "/" on a filename could bypass access rules that don't expect a trailing /, causing a
server to provide the file when it normally would not).

Terminology

Like other weaknesses, terminology is often based on the types of manipulations used, instead
of the underlying weaknesses. Some people use "directory traversal" only to refer to the injection
of ".." and equivalent sequences whose specific meaning is to traverse directories. Other variants
like "absolute pathname" and "drive letter" have the *effect* of directory traversal, but some

people may not call it such, since it doesn't involve ".." or equivalent.
Research Gap

Many variants of path traversal attacks are probably under-studied with respect to root cause.
CWE-790 and CWE-182 begin to cover part of this gap.

Research Gap

Incomplete diagnosis or reporting of vulnerabilities can make it difficult to know which variant is
affected. For example, a researcher might say that "..\" is vulnerable, but not test "../" which may
also be vulnerable. Any combination of directory separators ("/", "\", etc.) and numbers of "." (e.g.
"....") can produce unique variants; for example, the "//../" variant is not listed (CVE-2004-0325).
See this entry's children and lower-level descendants.

Taxonomy Mappings

40



CWE Version 3.4
CWE-23: Relative Path Traversal

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Path Traversal
OWASP Top Ten 2007 A4 CWE More Specific Insecure Direct Object Reference
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control
CERT C Secure Coding FIO02-C Canonicalize path names originating
from untrusted sources
SEI CERT Perl Coding IDS00- Exact Canonicalize path names before
Standard PL validating them
WASC 33 Path Traversal
Software Fault Patterns SFP16 Path Traversal
OMG ASCSM ASCSM-
CWE-22

Related Attack Patterns
CAPEC-ID Attack Pattern Name

64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
76 Manipulating Web Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
126 Path Traversal
References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >,

[REF-45]O0WASP. "OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

[REF-185]OWASP. "Testing for Path Traversal (OWASP-AZ-001)". < http://www.owasp.org/
index.php/Testing_for_Path_Traversal (OWASP-AZ-001) >.

[REF-186]Johannes Ullrich. "Top 25 Series - Rank 7 - Path Traversal". 2010 March 9. SANS
Software Security Institute. < http://blogs.sans.org/appsecstreetfighter/2010/03/09/top-25-series-
rank-7-path-traversal/ >.

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. 1st Edition. 2006. Addison Wesley.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-23: Relative Path Traversal

Weakness ID : 23 Status: Draft
Structure : Simple
Abstraction : Base

Description
The software uses external input to construct a pathname that should be within a restricted

directory, but it does not properly neutralize sequences such as ".." that can resolve to a location
that is outside of that directory.

Extended Description

41

[esianel] yred aAleay :€z-3MD



CWE-23: Relative Path Traversal

CWE Version 3.4
CWE-23: Relative Path Traversal

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 22 Improper Limitation of a Pathname to a Restricted Directory 31
(‘Path Traversal’)

ParentOf (V] 24 Path Traversal: "../filedir’ 48
ParentOf (V] 25 Path Traversal: '/../ffiledir' 49
ParentOf (V] 26 Path Traversal: '/dir/../filename’ 51
ParentOf (V] 27 Path Traversal: 'dir/../../filename’ 52
ParentOf (V] 28 Path Traversal: "..\filedir' 54
ParentOf O 29 Path Traversal: \..\filename' 56
ParentOf (V] 30 Path Traversal: \dir\..\filename' 58
ParentOf (V] 31 Path Traversal: 'dir\..\..\filename' 60
ParentOf V] 32 Path Traversal: "..." (Triple Dot) 62
ParentOf (V] 33 Path Traversal: '...." (Multiple Dot) 64
ParentOf (V] 34 Path Traversal: "..../I" 66
ParentOf O 35 Path Traversal: '.../..II" 68
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (B] 22 Improper Limitation of a Pathname to a Restricted Directory 31

(‘Path Traversal’)

ParentOf (V] 24 Path Traversal: '../filedir' 48
ParentOf V] 25 Path Traversal: '/../filedir' 49
ParentOf (V] 26 Path Traversal: '/dir/../filename’ 51
ParentOf V] 27 Path Traversal: 'dir/../../filename’ 52
ParentOf (V] 28 Path Traversal: "..\filedir' 54
ParentOf V] 29 Path Traversal: \..\filename' 56
ParentOf (V] 30 Path Traversal: \dir\..\filename' 58
ParentOf V] 31 Path Traversal: 'dir\..\..\filename' 60
ParentOf V] 32 Path Traversal: "..." (Triple Dot) 62
ParentOf V] 33 Path Traversal: '...." (Multiple Dot) 64
ParentOf (V] 34 Path Traversal: "..../I' 66
ParentOf V] 35 Path Traversal: '.../..II" 68

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Execute Unauthorized Code or Commands
Con_f|de_nt|a||ty The attacker may be able to create or overwrite critical
Availability files that are used to execute code, such as programs or
libraries.
Integrity Modify Files or Directories

42



CWE Version 3.4
CWE-23: Relative Path Traversal

Scope Impact Likelihood
The attacker may be able to overwrite or create critical
files, such as programs, libraries, or important data. If
the targeted file is used for a security mechanism, then
the attacker may be able to bypass that mechanism.
For example, appending a new account at the end
of a password file may allow an attacker to bypass
authentication.
Confidentiality Read Files or Directories

The attacker may be able read the contents of unexpected
files and expose sensitive data. If the targeted file is used
for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, by reading a
password file, the attacker could conduct brute force
password guessing attacks in order to break into an
account on the system.

Availability DoS: Crash, Exit, or Restart

The attacker may be able to overwrite, delete, or corrupt
unexpected critical files such as programs, libraries,

or important data. This may prevent the software from
working at all and in the case of a protection mechanisms
such as authentication, it has the potential to lockout every
user of the software.

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright. When validating filenames, use stringent whitelists that limit the character set to be
used. If feasible, only allow a single "." character in the filename to avoid weaknesses such

as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of
allowable file extensions, which will help to avoid CWE-434. Do not rely exclusively on a filtering
mechanism that removes potentially dangerous characters. This is equivalent to a blacklist,
which may be incomplete (CWE-184). For example, filtering "/" is insufficient protection if the
filesystem also supports the use of "\" as a directory separator. Another possible error could
occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For
example, if "../" sequences are removed from the ".../.../[" string in a sequential fashion, two
instances of "../" would be removed from the original string, but the remaining characters would
still form the "../" string.

Phase: Implementation
Strategy = Input Validation

43

[esianel] yred aAleay :€z-3MD



CWE-23: Relative Path Traversal

CWE Version 3.4
CWE-23: Relative Path Traversal

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked. Use a built-in path canonicalization
function (such as realpath() in C) that produces the canonical version of the pathname, which
effectively removes ".." sequences and symbolic links (CWE-23, CWE-59). This includes:
realpath() in C getCanonicalPath() in Java GetFullPath() in ASP.NET realpath() or abs_path() in
Perl realpath() in PHP

Demonstrative Examples
Example 1:
The following URLs are vulnerable to this attack:

Example Language: (bad)

http://example.com.br/get-files.jsp?file=report.pdf
http://example.com.br/get-page.php?home=aaa.html
http://example.com.br/some-page.asp?page=index.html

A simple way to execute this attack is like this:

Example Language: (attack)

http://example.com.br/get-files?file=../../../../somedir/somefile
http://example.com.br/../../../../etc/shadow
http://example.com.br/get-files?file=../../../../etc/passwd

Example 2:

The following code could be for a social networking application in which each user's profile
information is stored in a separate file. All files are stored in a single directory.

Example Language: Perl (bad)

my $dataPath = "/users/cwe/profiles";
my $username = param(“user");
my $profilePath = $dataPath . "/" . $username;
open(my $fh, "<$profilePath") || ExitError("profile read error: $profilePath");
print "<ul>\n";
while (<$fh>) {
print "<li>$_</li>\n";

print "</ul>\n";

While the programmer intends to access files such as "/users/cwe/profiles/alice" or "/users/cwe/
profiles/bob", there is no verification of the incoming user parameter. An attacker could provide a
string such as:

Example Language: (attack)

.I..I..Jetc/passwd

The program would generate a profile pathname like this:

Example Language: (result)

lusers/cwel/profiles/../../../etc/passwd

When the file is opened, the operating system resolves the "../" during path canonicalization and
actually accesses this file:

44



CWE Version 3.4
CWE-23: Relative Path Traversal

Example Language: (result)

/etc/passwd

As a result, the attacker could read the entire text of the password file.

Notice how this code also contains an error message information leak (CWE-209) if the user
parameter does not produce a file that exists: the full pathname is provided. Because of the lack
of output encoding of the file that is retrieved, there might also be a cross-site scripting problem
(CWE-79) if profile contains any HTML, but other code would need to be examined.

Example 3:

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The action attribute of an HTML form is sending the upload file request to the
Java servlet.

Example Language: HTML (good)

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:

<input type="file" name="filename"/>

<br/>

<input type="submit" name="submit" value="Submit"/>

</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

Example Language: Java (bad)

public class FileUploadServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServlietResponse response) throws ServletException,
IOException {
response.setContentType(“text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
/I the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
/I verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data”) != -1) {
/I extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getinputStream()));

pLine = br.readLine();
String filename = pLine.substring(pLine.lastindexOf("\\"), pLine.lastindexOf("\""));

/I output the file to the local upload directory
try {
BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null; ) {
if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

}
} /lend of for loop
bw.close();
} catch (IOException ex) {...}
/I output successful upload response HTML page

45

[esianel] yled aAle|ay :£z2-IMD



CWE-23: Relative Path Traversal

CWE Version 3.4
CWE-23: Relative Path Traversal

/I output unsuccessful upload response HTML page

else
{3
}

As with the previous example this code does not perform a check on the type of the file being
uploaded. This could allow an attacker to upload any executable file or other file with malicious

code.

Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-22,
CWE-23). Depending on the executing environment, the attacker may be able to specify arbitrary
files to write to, leading to a wide variety of consequences, from code execution, XSS (CWE-79), or

system crash.

Observed Examples

Reference
CVE-2002-0298

CVE-2002-0661

CVE-2002-0946

CVE-2002-1042

CVE-2002-1209

CVE-2002-1178

CVE-2002-1987

CVE-2005-2142

CVE-2002-0160

CVE-2001-0467

CVE-2001-0963

CVE-2001-1193

CVE-2001-1131

CVE-2001-0480

Description

Server allows remote attackers to cause a denial of service via certain

HTTP GET requests containing a %2e%2e (encoded dot-dot), several "/../"
sequences, or several "../" in a URI.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0298

"\" not in blacklist for web server, allowing path traversal attacks when the
server is run in Windows and other OSes.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0661

Arbitrary files may be read files via ..\ (dot dot) sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0946

Directory traversal vulnerability in search engine for web server allows remote
attackers to read arbitrary files via "..\" sequences in queries.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1042

Directory traversal vulnerability in FTP server allows remote attackers to read
arbitrary files via "..\" sequences in a GET request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1209

Directory traversal vulnerability in servlet allows remote attackers to execute
arbitrary commands via "..\" sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1178

Protection mechanism checks for "/.." but doesn't account for Windows-specific
"\.." allowing read of arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1987

Directory traversal vulnerability in FTP server allows remote authenticated
attackers to list arbitrary directories via a "\.." sequence in an LS command.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2142

The administration function in Access Control Server allows remote attackers
to read HTML, Java class, and image files outside the web root via a "..\.."
sequence in the URL to port 2002.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0160

"\..." in web server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0467

"..."in cd command in FTP server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0963

"..."in cd command in FTP server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1193

"..."in cd command in FTP server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1131

read of arbitrary files and directories using GET or CD with "..." in Windows-
based FTP server.

46



CWE Version 3.4
CWE-23: Relative Path Traversal

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0480

CVE-2002-0288 read files using "." and Unicode-encoded "/" or "\" characters in the URL.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0288
CVE-2003-0313  Directory listing of web server using "..."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0313
CVE-2005-1658  Triple dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1658
CVE-2000-0240 read filesvia"/.......... /" in URL
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0240
CVE-2000-0773  read files via "...." in web server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0773

CVE-1999-1082 read files via "......" in web server (doubled triple dot?)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1082
CVE-2004-2121 read files via "......" in web server (doubled triple dot?)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2121
CVE-2001-0491  multiple attacks using "..", "...", and "...." in different commands
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0491
CVE-2001-0615 ".."or"..."in chat server

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0615

CVE-2005-2169 chain: ".../.../[" bypasses protection mechanism using regexp's that remove "../"
resulting in collapse into an unsafe value "../* (CWE-182) and resultant path

traversal.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2169
CVE-2005-0202  "...[.../II" bypasses regexp's that remove "./* and "../"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0202

CVE-2004-1670  Mail server allows remote attackers to create arbitrary directories via a

rename arbitrary files via a "....//" in user supplied parameters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1670

MemberOf Relationships

" or

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits

within the context of external information sources.

Nature Type ID Name

MemberOf 884 CWE Cross-section 884

MemberOf 981 SFP Secondary Cluster: Path Traversal 888
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Relative Path Traversal

Software Fault Patterns SFP16 Path Traversal

Related Attack Patterns
CAPEC-ID Attack Pattern Name

76 Manipulating Web Input to File System Calls
139 Relative Path Traversal
References

[REF-192]OWASP. "OWASP Attack listing". < http://www.owasp.org/index.php/
Relative_Path_Traversal >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment"”. 1st Edition. 2006. Addison Wesley.

Page
1924
1850

47

[esianel] yred aAleay :€z-3MD



" [filedir’

CWE-24: Path Traversal:

CWE Version 3.4
CWE-24: Path Traversal: "../filedir'

CWE-24: Path Traversal: '../filedir'

Weakness ID : 24 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "../" sequences that can resolve to a location that is
outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The "../" manipulation is the canonical manipulation for operating systems that use "/" as directory
separators, such as UNIX- and Linux-based systems. In some cases, it is useful for bypassing
protection schemes in environments for which "/" is supported but not the primary separator, such
as Windows, which uses "\" but can also accept "/".

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 23 Relative Path Traversal 41
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (B] 23 Relative Path Traversal 41

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers

48




CWE Version 3.4
CWE-25: Path Traversal: '/../filedir'

enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright. When validating filenames, use stringent whitelists that limit the character set to be
used. If feasible, only allow a single "." character in the filename to avoid weaknesses such

as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of
allowable file extensions, which will help to avoid CWE-434. Do not rely exclusively on a filtering
mechanism that removes potentially dangerous characters. This is equivalent to a blacklist,
which may be incomplete (CWE-184). For example, filtering "/" is insufficient protection if the
filesystem also supports the use of "\" as a directory separator. Another possible error could
occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For
example, if "../" sequences are removed from the ".../.../[" string in a sequential fashion, two
instances of "../" would be removed from the original string, but the remaining characters would
still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER " [filedir

Software Fault Patterns SFP16 Path Traversal

CWE-25: Path Traversal: '/../filedir'

Weakness ID : 25 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "/../" sequences that can resolve to a location that is
outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

Sometimes a program checks for "../" at the beginning of the input, so a "/../" can bypass that
check.

Relationships

49

.Jesianel] yred :GZ-ImMD

AIPB/,



. [filedir'

CWE-25: Path Traversal:

CWE Version 3.4
CWE-25: Path Traversal: '/../filedir'

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 23 Relative Path Traversal 41
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (B] 23 Relative Path Traversal 41

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright. When validating filenames, use stringent whitelists that limit the character set to be
used. If feasible, only allow a single "." character in the filename to avoid weaknesses such

as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of
allowable file extensions, which will help to avoid CWE-434. Do not rely exclusively on a filtering
mechanism that removes potentially dangerous characters. This is equivalent to a blacklist,
which may be incomplete (CWE-184). For example, filtering "/" is insufficient protection if the
filesystem also supports the use of "\" as a directory separator. Another possible error could
occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For
example, if "../" sequences are removed from the ".../.../[" string in a sequential fashion, two
instances of "../" would be removed from the original string, but the remaining characters would
still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

50



CWE Version 3.4
CWE-26: Path Traversal: '/dir/../filename'

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER '/..[filedir

Software Fault Patterns SFP16 Path Traversal

CWE-26: Path Traversal: '/dir/../filename’

Weakness ID : 26 Status: Draft
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "/dir/../filename" sequences that can resolve to a
location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The '/dir/../[flename' manipulation is useful for bypassing some path traversal protection schemes.
Sometimes a program only checks for "../" at the beginning of the input, so a "/../" can bypass that
check.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B 23 Relative Path Traversal 41
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (E] 23 Relative Path Traversal 41

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Technology : Web Server (Prevalence = Often)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

51

.Jlesianel] yred :92-ImMo

Sweus|y//Ip/,



'dir/../../[filename'

CWE-27: Path Traversal:

CWE Version 3.4
CWE-27: Path Traversal: 'dir/../../filename'

Scope Impact Likelihood
Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright. When validating filenames, use stringent whitelists that limit the character set to be
used. If feasible, only allow a single "." character in the filename to avoid weaknesses such

as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of
allowable file extensions, which will help to avoid CWE-434. Do not rely exclusively on a filtering
mechanism that removes potentially dangerous characters. This is equivalent to a blacklist,
which may be incomplete (CWE-184). For example, filtering "/" is insufficient protection if the
filesystem also supports the use of "\" as a directory separator. Another possible error could
occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For
example, if "../" sequences are removed from the ".../.../[" string in a sequential fashion, two
instances of "../" would be removed from the original string, but the remaining characters would
still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER '[directoryl/../filename

Software Fault Patterns SFP16 Path Traversal

CWE-27: Path Traversal: 'dir/../../filename'

Weakness ID : 27 Status: Draft
Structure : Simple
Abstraction : Variant

52



CWE Version 3.4
CWE-27: Path Traversal: 'dir/../../filename'

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize multiple internal "../" sequences that can resolve to a
location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The 'directory/../../flename' manipulation is useful for bypassing some path traversal protection
schemes. Sometimes a program only removes one "../" sequence, so multiple "../" can bypass that
check. Alternately, this manipulation could be used to bypass a check for "../" at the beginning of
the pathname, moving up more than one directory level.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 23 Relative Path Traversal 41
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (B 23 Relative Path Traversal 41

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue.” Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright. When validating filenames, use stringent whitelists that limit the character set to be

used. If feasible, only allow a single "." character in the filename to avoid weaknesses such

53

.Jlesianel] yred :LZ2-IMD

Sweus|y/ /T HIp,



Xfiledir!

CWE-28: Path Traversal:

CWE Version 3.4
CWE-28: Path Traversal: "..\filedir'

as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of
allowable file extensions, which will help to avoid CWE-434. Do not rely exclusively on a filtering
mechanism that removes potentially dangerous characters. This is equivalent to a blacklist,
which may be incomplete (CWE-184). For example, filtering "/" is insufficient protection if the
filesystem also supports the use of "\" as a directory separator. Another possible error could
occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For
example, if "../" sequences are removed from the ".../.../[" string in a sequential fashion, two
instances of "../" would be removed from the original string, but the remaining characters would
still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-0298  Server allows remote attackers to cause a denial of service via certain
HTTP GET requests containing a %2e%2e (encoded dot-dot), several "/../"
sequences, or several "../" in a URI.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0298

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER ‘directoryl/../../filename

Software Fault Patterns SFP16 Path Traversal

CWE-28: Path Traversal: ‘. \filedir'

Weakness ID : 28 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "..\" sequences that can resolve to a location that is
outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The '..\" manipulation is the canonical manipulation for operating systems that use "\" as directory
separators, such as Windows. However, it is also useful for bypassing path traversal protection
schemes that only assume that the "/" separator is valid.

54



CWE Version 3.4
CWE-28: Path Traversal: "..\filedir'

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B] 23 Relative Path Traversal 41
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (E] 23 Relative Path Traversal 41

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright. When validating filenames, use stringent whitelists that limit the character set to be
used. If feasible, only allow a single "." character in the filename to avoid weaknesses such

as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of
allowable file extensions, which will help to avoid CWE-434. Do not rely exclusively on a filtering
mechanism that removes potentially dangerous characters. This is equivalent to a blacklist,
which may be incomplete (CWE-184). For example, filtering /" is insufficient protection if the
filesystem also supports the use of "\" as a directory separator. Another possible error could
occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For
example, if "../" sequences are removed from the ".../.../[" string in a sequential fashion, two
instances of "../" would be removed from the original string, but the remaining characters would
still form the "../" string.

Phase: Implementation
Strategy = Input Validation

55

.Jlesianel] yred :82-IMD

ARSI,



\..\filename'

CWE-29: Path Traversal:

CWE Version 3.4
CWE-29: Path Traversal: ‘\..\filename'

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-0661  "\" not in blacklist for web server, allowing path traversal attacks when the
server is run in Windows and other OSes.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0661

CVE-2002-0946  Arbitrary files may be read files via ..\ (dot dot) sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0946

CVE-2002-1042  Directory traversal vulnerability in search engine for web server allows remote
attackers to read arbitrary files via "..\" sequences in queries.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1042

CVE-2002-1209 Directory traversal vulnerability in FTP server allows remote attackers to read
arbitrary files via "..\" sequences in a GET request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1209

CVE-2002-1178  Directory traversal vulnerability in servlet allows remote attackers to execute
arbitrary commands via "..\" sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1178

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER " \filename' ('dot dot backslash")

Software Fault Patterns SFP16 Path Traversal

CWE-29: Path Traversal: '\..\filename'

Weakness ID : 29 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize \..\filename' (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

This is similar to CWE-25, except using "\" instead of "/". Sometimes a program checks for "..\"
at the beginning of the input, so a "\..\" can bypass that check. It is also useful for bypassing path
traversal protection schemes that only assume that the "/* separator is valid.

Relationships

56



CWE Version 3.4
CWE-29: Path Traversal: '\..\flename'

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 23 Relative Path Traversal 41
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (B] 23 Relative Path Traversal 41

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright. When validating filenames, use stringent whitelists that limit the character set to be
used. If feasible, only allow a single "." character in the filename to avoid weaknesses such

as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of
allowable file extensions, which will help to avoid CWE-434. Do not rely exclusively on a filtering
mechanism that removes potentially dangerous characters. This is equivalent to a blacklist,
which may be incomplete (CWE-184). For example, filtering "/" is insufficient protection if the
filesystem also supports the use of "\" as a directory separator. Another possible error could
occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For
example, if "../" sequences are removed from the ".../.../[" string in a sequential fashion, two
instances of "../" would be removed from the original string, but the remaining characters would
still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same

57

.Jlesianel] yred :62-IMD

SWEBUS[IN™,



\dir\..\filename'

CWE-30; Path Traversal:

CWE Version 3.4
CWE-30: Path Traversal: \dir\..\filename'

input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-1987  Protection mechanism checks for "/.." but doesn't account for Windows-specific
"\.." allowing read of arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1987

CVE-2005-2142  Directory traversal vulnerability in FTP server allows remote authenticated
attackers to list arbitrary directories via a "\.." sequence in an LS command.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2142

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER \..\filename' ('leading dot dot
backslash’)
Software Fault Patterns SFP16 Path Traversal

CWE-30: Path Traversal: "\dir\..\filename'

Weakness ID : 30 Status: Draft
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize \dir\..\filename' (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

This is similar to CWE-26, except using "\" instead of "/". The "\dir\..\filename' manipulation is useful
for bypassing some path traversal protection schemes. Sometimes a program only checks for "..\"
at the beginning of the input, so a "\..\" can bypass that check.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 41

58



CWE Version 3.4
CWE-30: Path Traversal: \dir\..\filename'

Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf Q 23 Relative Path Traversal 41

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright. When validating filenames, use stringent whitelists that limit the character set to be
used. If feasible, only allow a single "." character in the filename to avoid weaknesses such

as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of
allowable file extensions, which will help to avoid CWE-434. Do not rely exclusively on a filtering
mechanism that removes potentially dangerous characters. This is equivalent to a blacklist,
which may be incomplete (CWE-184). For example, filtering "/" is insufficient protection if the
filesystem also supports the use of "\" as a directory separator. Another possible error could
occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For
example, if "../" sequences are removed from the ".../.../[" string in a sequential fashion, two
instances of "../" would be removed from the original string, but the remaining characters would
still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-1987  Protection mechanism checks for "/.." but doesn't account for Windows-specific
"\.." allowing read of arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1987

MemberOf Relationships

59

.Jlesianel] yred :0e-IMO

SWEUS[IN\\JIP\,



'dir\..\..\filename'

CWE-31: Path Traversal:

CWE Version 3.4
CWE-31: Path Traversal: 'dir\..\..\filename'

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER 7 - \directory\..\filename

Software Fault Patterns SFP16 Path Traversal

CWE-31: Path Traversal: 'dir\..\..\filename'

Weakness ID : 31 Status: Draft
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize 'dir\..\..\filename' (multiple internal backslash dot dot)
sequences that can resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The 'dir\..\..\filename' manipulation is useful for bypassing some path traversal protection schemes.
Sometimes a program only removes one "..\" sequence, so multiple "..\" can bypass that check.
Alternately, this manipulation could be used to bypass a check for "..\" at the beginning of the
pathname, moving up more than one directory level.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 23 Relative Path Traversal 41
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (E] 23 Relative Path Traversal 41

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

60



CWE Version 3.4
CWE-31: Path Traversal: ‘dir\..\..\filename'

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright. When validating filenames, use stringent whitelists that limit the character set to be
used. If feasible, only allow a single "." character in the filename to avoid weaknesses such

as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of
allowable file extensions, which will help to avoid CWE-434. Do not rely exclusively on a filtering
mechanism that removes potentially dangerous characters. This is equivalent to a blacklist,
which may be incomplete (CWE-184). For example, filtering "/" is insufficient protection if the
filesystem also supports the use of "\" as a directory separator. Another possible error could
occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For
example, if "../" sequences are removed from the ".../.../[" string in a sequential fashion, two
instances of "../" would be removed from the original string, but the remaining characters would
still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-0160 The administration function in Access Control Server allows remote attackers
to read HTML, Java class, and image files outside the web root via a "..\.."
sequence in the URL to port 2002.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0160

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER 8 - 'directory\..\..\filename
Software Fault Patterns SFP16 Path Traversal
References

61

.Jlesianel] yred :T€-IMD

SWEBUS[IN"\"\JIP,



..' (Triple Dot)

CWE-32; Path Traversal:

CWE Version 3.4
CWE-32: Path Traversal: "..." (Triple Dot)

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-32: Path Traversal: "..." (Triple Dot)

Weakness ID : 32 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '..." (triple dot) sequences that can resolve to a location
that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The '..." manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\.." and might bypass checks that assume only two dots

are valid. Incomplete filtering, such as removal of "./" sequences, can ultimately produce valid "..
sequences due to a collapse into unsafe value (CWE-182).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 23 Relative Path Traversal 41
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf B 23 Relative Path Traversal 41

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related

62



CWE Version 3.4
CWE-32: Path Traversal: "..." (Triple Dot)

fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright. When validating filenames, use stringent whitelists that limit the character set to be
used. If feasible, only allow a single "." character in the filename to avoid weaknesses such

as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of
allowable file extensions, which will help to avoid CWE-434. Do not rely exclusively on a filtering
mechanism that removes potentially dangerous characters. This is equivalent to a blacklist,
which may be incomplete (CWE-184). For example, filtering "/" is insufficient protection if the
filesystem also supports the use of "\" as a directory separator. Another possible error could
occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For
example, if "../" sequences are removed from the ".../.../[" string in a sequential fashion, two
instances of "../" would be removed from the original string, but the remaining characters would
still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2001-0467  "\..."in web server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0467

CVE-2001-0615 ".."or"...."in chat server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0615
CVE-2001-0963 "..."in cd command in FTP server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0963
CVE-2001-1193 "..."in cd command in FTP server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1193
CVE-2001-1131 "..."in cd command in FTP server

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1131

CVE-2001-0480 read of arbitrary files and directories using GET or CD with "..." in Windows-
based FTP server.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0480

CVE-2002-0288 read files using "." and Unicode-encoded "/" or "\" characters in the URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0288

CVE-2003-0313  Directory listing of web server using "..."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0313

CVE-2005-1658  Triple dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1658

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850

63

.Jlesianel] yred :2e-amMo

(rog eiduy)



.... (Multiple Dot)

CWE-33: Path Traversal:

CWE Version 3.4
CWE-33: Path Traversal: "...." (Multiple Dot)

Notes
Maintenance

This manipulation-focused entry is currently hiding two distinct weaknesses, so it might need
to be split. The manipulation is effective in two different contexts: it is equivalent to "..\.." on
Windows, or it can take advantage of incomplete filtering, e.g. if the programmer does a single-
pass removal of "./" in a string (collapse of data into unsafe value, CWE-182).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER "..." (triple dot)
Software Fault Patterns SFP16 Path Traversal
CWE-33: Path Traversal: '...." (Multiple Dot)
Weakness ID : 33 Status: Incomplete

Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '...." (multiple dot) sequences that can resolve to a
location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The '...." manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\..\.." and might bypass checks that assume only two dots
are valid. Incomplete filtering, such as removal of "./" sequences, can ultimately produce valid ".."
sequences due to a collapse into unsafe value (CWE-182).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf E] 23 Relative Path Traversal 41
CanFollow E] 182  Collapse of Data into Unsafe Value 431
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf ] 23 Relative Path Traversal 41

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories

64



CWE Version 3.4
CWE-33: Path Traversal: "...." (Multiple Dot)

Scope
Integrity

Potential Mitigations

Impact Likelihood
Modify Files or Directories

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright. When validating filenames, use stringent whitelists that limit the character set to be
used. If feasible, only allow a single "." character in the filename to avoid weaknesses such

as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of
allowable file extensions, which will help to avoid CWE-434. Do not rely exclusively on a filtering
mechanism that removes potentially dangerous characters. This is equivalent to a blacklist,
which may be incomplete (CWE-184). For example, filtering "/" is insufficient protection if the
filesystem also supports the use of "\" as a directory separator. Another possible error could
occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For
example, if "../" sequences are removed from the ".../.../[" string in a sequential fashion, two
instances of "../" would be removed from the original string, but the remaining characters would
still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2000-0240 read files via "/.......... /" in URL

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0240

CVE-2000-0773 read files via "...." in web server

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0773

CVE-1999-1082 read files via "......" in web server (doubled triple dot?)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1082

CVE-2004-2121 read files via "......" in web server (doubled triple dot?)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2121

CVE-2001-0491  multiple attacks using "..", "...", and "...." in different commands

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0491

CVE-2001-0615 ".."or"..."in chat server

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0615

MemberOf Relationships

65

|lesianel] yred :€€-ImMD

(o@ aydnininy)



Al

CWE-34: Path Traversal:

CWE Version 3.4
CWE-34: Path Traversal: "..../I"

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Notes

Maintenance

Like the triple-dot CWE-32, this manipulation probably hides multiple weaknesses that should be
made more explicit.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER "...." (multiple dot)
Software Fault Patterns SFP16 Path Traversal

CWE-34: Path Traversal: '..../I'

Weakness ID : 34 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '....//' (doubled dot dot slash) sequences that can
resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The "..../I' manipulation is useful for bypassing some path traversal protection schemes. If "../"

is filtered in a sequential fashion, as done by some regular expression engines, then "....//" can
collapse into the "../" unsafe value (CWE-182). It could also be useful when ".." is removed, if the
operating system treats "//" and "/" as equivalent.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 41
CanFollow Q 182  Collapse of Data into Unsafe Value 431
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf o 23 Relative Path Traversal 41

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

66



CWE Version 3.4
CWE-34: Path Traversal: "..../I"

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Detection Methods
Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial
Architecture or Desigh Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction

Effectiveness = High
Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for

malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright. When validating filenames, use stringent whitelists that limit the character set to be
used. If feasible, only allow a single "." character in the filename to avoid weaknesses such

as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of
allowable file extensions, which will help to avoid CWE-434. Do not rely exclusively on a filtering
mechanism that removes potentially dangerous characters. This is equivalent to a blacklist,
which may be incomplete (CWE-184). For example, filtering "/" is insufficient protection if the
filesystem also supports the use of "\" as a directory separator. Another possible error could
occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For
example, if "../" sequences are removed from the ".../.../[" string in a sequential fashion, two
instances of "../" would be removed from the original string, but the remaining characters would
still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

67

.[esianel] yred v£-ImMOD

T



A

CWE-35:; Path Traversal:

CWE Version 3.4
CWE-35: Path Traversal: "...[.../I"

Reference Description

CVE-2004-1670  Mail server allows remote attackers to create arbitrary directories via a ".." or
rename arbitrary files via a "..../I" in user supplied parameters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1670

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Notes

Relationship
This could occur due to a cleansing error that removes a single "../" from "..../["

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER "..../I' (doubled dot dot slash)
Software Fault Patterns SFP16 Path Traversal

CWE-35: Path Traversal: '.../...II"

Weakness ID : 35 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '.../.../I' (doubled triple dot slash) sequences that can
resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The ".../.../I' manipulation is useful for bypassing some path traversal protection schemes. If "../"

is filtered in a sequential fashion, as done by some regular expression engines, then ".../.../[" can
collapse into the "../" unsafe value (CWE-182). Removing the first "../" yields "..../["; the second
removal yields "../". Depending on the algorithm, the software could be susceptible to CWE-34 but
not CWE-35, or vice versa.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 23 Relative Path Traversal 41
CanFollow E] 182  Collapse of Data into Unsafe Value 431

Relevant to the view "Development Concepts" (CWE-699)

68



CWE Version 3.4
CWE-35: Path Traversal: ".../.../I"

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 41

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright. When validating filenames, use stringent whitelists that limit the character set to be
used. If feasible, only allow a single "." character in the filename to avoid weaknesses such

as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of
allowable file extensions, which will help to avoid CWE-434. Do not rely exclusively on a filtering

mechanism that removes potentially dangerous characters. This is equivalent to a blacklist,
which may be incomplete (CWE-184). For example, filtering "/* is insufficient protection if the
filesystem also supports the use of "\" as a directory separator. Another possible error could
occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For

.[esianel] yred :Ge-IMOD

e

Il

example, if "../" sequences are removed from the ".../.../[" string in a sequential fashion, two
instances of "../" would be removed from the original string, but the remaining characters would
still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2005-2169 chain: ".../.../[" bypasses protection mechanism using regexp's that remove "../"
resulting in collapse into an unsafe value "../" (CWE-182) and resultant path

traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2169
CVE-2005-0202  ".../....[II" bypasses regexp's that remove "./" and "../"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0202

69



CWE-36: Absolute Path Traversal

CWE Version 3.4
CWE-36: Absolute Path Traversal

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER LA

Software Fault Patterns SFP16 Path Traversal

CWE-36: Absolute Path Traversal

Weakness ID : 36 Status: Draft
Structure : Simple
Abstraction : Base

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize absolute path sequences such as "/abs/path" that can
resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf (B] 22 Improper Limitation of a Pathname to a Restricted Directory 31
(‘Path Traversal’)

ParentOf V] 37 Path Traversal: '/absolute/pathname/here' 74

ParentOf V] 38 Path Traversal: \absolute\pathname\here' 76

ParentOf V] 39 Path Traversal: 'C:dirname’ 77

ParentOf V] 40 Path Traversal: \UNC\share\name\' (Windows UNC Share) 80

Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page

ChildOf (B] 22 Improper Limitation of a Pathname to a Restricted Directory 31
(‘Path Traversal’)

ParentOf V] 37 Path Traversal: '/absolute/pathname/here' 74

ParentOf (V] 38 Path Traversal: \absolute\pathname\here' 76

ParentOf (V] 39 Path Traversal: 'C:dirname’ 77

ParentOf (V] 40 Path Traversal: WUNC\share\name\' (Windows UNC Share) 80
Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

70



CWE Version 3.4
CWE-36: Absolute Path Traversal

Common Consequences

Scope Impact Likelihood
Integrity Execute Unauthorized Code or Commands
Confidentiality

- The attacker may be able to create or overwrite critical
Availability

files that are used to execute code, such as programs or
libraries.
Integrity Modify Files or Directories

The attacker may be able to overwrite or create critical
files, such as programs, libraries, or important data. If
the targeted file is used for a security mechanism, then
the attacker may be able to bypass that mechanism.
For example, appending a new account at the end
of a password file may allow an attacker to bypass
authentication.

Confidentiality Read Files or Directories

The attacker may be able read the contents of unexpected
files and expose sensitive data. If the targeted file is used
for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, by reading a
password file, the attacker could conduct brute force
password guessing attacks in order to break into an
account on the system.

Availability DoS: Crash, Exit, or Restart

The attacker may be able to overwrite, delete, or corrupt
unexpected critical files such as programs, libraries,

or important data. This may prevent the software from
working at all and in the case of a protection mechanisms
such as authentication, it has the potential to lockout every
user of the software.

Demonstrative Examples
Example 1:
In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object.
Example Language: Java (bad)

String filename = System.getProperty(“com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);

However, the path is not validated or modified to prevent it from containing absolute path
sequences before creating the File object. This allows anyone who can control the system property
to determine what file is used. Ideally, the path should be resolved relative to some kind of
application or user home directory.

Example 2:

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The action attribute of an HTML form is sending the upload file request to the
Java servlet.

Example Language: HTML (good)

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:
<input type="file" name="filename"/>

71

[esiaAel] ylred ain|osqy :9¢-IMD



CWE-36: Absolute Path Traversal

CWE Version 3.4
CWE-36: Absolute Path Traversal

<br/>
<input type="submit" nhame="submit" value="Submit"/>
</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

Example Language: Java (bad)

public class FileUploadServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException {
response.setContentType(“text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
/I the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
/I verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data”) !=-1) {
/I extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getinputStream()));

pLine = br.readLine();
String filename = pLine.substring(pLine.lastindexOf("\\"), pLine.lastindexOf("\""));

/I output the file to the local upload directory
try {
BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null; ) {
if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

}
} /lend of for loop
bw.close();
} catch (IOException ex) {...}
/I output successful upload response HTML page

}
/I output unsuccessful upload response HTML page
else

{3

As with the previous example this code does not perform a check on the type of the file being
uploaded. This could allow an attacker to upload any executable file or other file with malicious
code.

Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-22,
CWE-23). Depending on the executing environment, the attacker may be able to specify arbitrary
files to write to, leading to a wide variety of consequences, from code execution, XSS (CWE-79), or
system crash.

Observed Examples

Reference Description
CVE-2002-1345  Multiple FTP clients write arbitrary files via absolute paths in server responses
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1345

72



CWE Version 3.4
CWE-36: Absolute Path Traversal

Reference
CVE-2001-1269

CVE-2002-1818

CVE-2002-1913

CVE-2005-2147

CVE-2000-0614

CVE-1999-1263

CVE-2003-0753

CVE-2002-1525

CVE-2001-0038

CVE-2001-0255

CVE-2001-0933

CVE-2002-0466

CVE-2002-1483

CVE-2004-2488

CVE-2001-0687

Description

ZIP file extractor allows full path
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1269

Path traversal using absolute pathname
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1818

Path traversal using absolute pathname
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1913

Path traversal using absolute pathname
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2147

Arbitrary files may be overwritten via compressed attachments that specify
absolute path names for the decompressed output.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0614

Mail client allows remote attackers to overwrite arbitrary files via an e-mail
message containing a uuencoded attachment that specifies the full pathname
for the file to be modified.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1263

Remote attackers can read arbitrary files via a full pathname to the target file in
config parameter.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0753

Remote attackers can read arbitrary files via an absolute pathname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1525

Remote attackers can read arbitrary files by specifying the drive letter in the
requested URL.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0038

FTP server allows remote attackers to list arbitrary directories by using the
"Is" command and including the drive letter name (e.g. C:) in the requested
pathname.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0255

FTP server allows remote attackers to list the contents of arbitrary drives via a
Is command that includes the drive letter as an argument.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0933

Server allows remote attackers to browse arbitrary directories via a full
pathname in the arguments to certain dynamic pages.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0466

Remote attackers can read arbitrary files via an HTTP request whose
argument is a filename of the form "C:" (Drive letter), "//absolute/path”, or ".." .
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1483

FTP server read/access arbitrary files using "C:\" filenames
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2488

FTP server allows a remote attacker to retrieve privileged web server system
information by specifying arbitrary paths in the UNC format (\\computername
\sharename).

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0687

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature
MemberOf
MemberOf

Type

ID Name Page
884 CWE Cross-section 884 1924
981 SFP Secondary Cluster: Path Traversal 888 1850

Taxonomy Mappings

73

[esiaAel] ylred ain|osqy :9¢-IMD



CWE-37: Path Traversal: '/absolute/pathname/here’

CWE Version 3.4
CWE-37: Path Traversal: '/absolute/pathname/here'

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Absolute Path Traversal
Software Fault Patterns SFP16 Path Traversal

Related Attack Patterns

CAPEC-ID Attack Pattern Name
597 Absolute Path Traversal

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. 1st Edition. 2006. Addison Wesley.

CWE-37: Path Traversal: '/absolute/pathname/here'

Weakness ID : 37 Status: Draft
Structure : Simple
Abstraction : Variant

Description

A software system that accepts input in the form of a slash absolute path ('/absolute/pathname/
here") without appropriate validation can allow an attacker to traverse the file system to unintended
locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 160  Improper Neutralization of Leading Special Elements 389
ChildOf (] 36 Absolute Path Traversal 70
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf Q@ 36 Absolute Path Traversal 70

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related

74




CWE Version 3.4
CWE-37: Path Traversal: '/absolute/pathname/here'

fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright. When validating filenames, use stringent whitelists that limit the character set to be
used. If feasible, only allow a single "." character in the filename to avoid weaknesses such

as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of
allowable file extensions, which will help to avoid CWE-434. Do not rely exclusively on a filtering
mechanism that removes potentially dangerous characters. This is equivalent to a blacklist,
which may be incomplete (CWE-184). For example, filtering "/" is insufficient protection if the
filesystem also supports the use of "\" as a directory separator. Another possible error could
occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For
example, if "../" sequences are removed from the ".../.../[" string in a sequential fashion, two
instances of "../" would be removed from the original string, but the remaining characters would
still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-1345  Multiple FTP clients write arbitrary files via absolute paths in server responses
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1345
CVE-2001-1269  ZIP file extractor allows full path
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1269
CVE-2002-1818 Path traversal using absolute pathname
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1818
CVE-2002-1913  Path traversal using absolute pathname
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1913
CVE-2005-2147  Path traversal using absolute pathname
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2147
CVE-2000-0614  Arbitrary files may be overwritten via compressed attachments that specify
absolute path names for the decompressed output.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0614

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 743  CERT C Secure Coding Standard (2008) Chapter 10 - 734 1789
Input Output (FIO)

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 1819
(FIO)

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850

Taxonomy Mappings

75

,eJeu/eweuumd/em|osqe/, .lesianel] ylred :.&-aMND



CWE-38: Path Traversal: \absolute\pathname\here'

CWE Version 3.4
CWE-38: Path Traversal: \absolute\pathname\here'

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER /absolute/pathname/here

CERT C Secure Coding FIO05-C Identify files using multiple file attributes
Software Fault Patterns SFP16 Path Traversal

CWE-38: Path Traversal: "\absolute\pathname\here'

Weakness ID : 38 Status: Draft
Structure : Simple
Abstraction : Variant

Description

A software system that accepts input in the form of a backslash absolute path (\absolute\pathname
\here') without appropriate validation can allow an attacker to traverse the file system to unintended
locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf B 36 Absolute Path Traversal 70
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (B 36 Absolute Path Traversal 70

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue.” Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright. When validating filenames, use stringent whitelists that limit the character set to be

76




CWE Version 3.4
CWE-39: Path Traversal: 'C:dirname’

used. If feasible, only allow a single "." character in the filename to avoid weaknesses such

as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of
allowable file extensions, which will help to avoid CWE-434. Do not rely exclusively on a filtering
mechanism that removes potentially dangerous characters. This is equivalent to a blacklist,
which may be incomplete (CWE-184). For example, filtering "/" is insufficient protection if the
filesystem also supports the use of "\" as a directory separator. Another possible error could
occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For
example, if "../" sequences are removed from the ".../.../[" string in a sequential fashion, two
instances of "../" would be removed from the original string, but the remaining characters would

still form the "../" string.
Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-1999-1263  Mail client allows remote attackers to overwrite arbitrary files via an e-mail
message containing a uuencoded attachment that specifies the full pathname

for the file to be modified.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1263
CVE-2003-0753 Remote attackers can read arbitrary files via a full pathname to the target file in

config parameter.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0753
CVE-2002-1525 Remote attackers can read arbitrary files via an absolute pathname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1525

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits

within the context of external information sources.

Nature Type ID Name

Page

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 1789

Input Output (FIO)

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 1819

(FIO)

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit
PLOVER

CERT C Secure Coding FIO05-C
Software Fault Patterns SFP16

Mapped Node Name
\absolute\pathname\here (‘backslash
absolute path’)

Identify files using multiple file attributes
Path Traversal

CWE-39: Path Traversal: 'C:dirname'

Weakness ID : 39
Structure : Simple
Abstraction : Variant

Status: Draft

77

.[esianel] yred :6£-IMD

2weulp:D,



'C:dirname’

CWE-39: Path Traversal:

CWE Version 3.4
CWE-39: Path Traversal: 'C:dirname’

Description

An attacker can inject a drive letter or Windows volume letter ('C:dirname’) into a software system

to potentially redirect access to an unintended location or arbitrary file.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name

ChildOf (E] 36 Absolute Path Traversal
Relevant to the view "Development Concepts" (CWE-699)
Nature Type ID Name

ChildOf (B 36 Absolute Path Traversal

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact
Integrity Execute Unauthorized Code or Commands
Confidentiality

The attacker may be able to create or overwrite critical
files that are used to execute code, such as programs or
libraries.

Integrity Modify Files or Directories

Availability

The attacker may be able to overwrite or create critical
files, such as programs, libraries, or important data. If
the targeted file is used for a security mechanism, then
the attacker may be able to bypass that mechanism.
For example, appending a new account at the end
of a password file may allow an attacker to bypass
authentication.

Confidentiality Read Files or Directories

The attacker may be able read the contents of unexpected

files and expose sensitive data. If the targeted file is used
for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, by reading a
password file, the attacker could conduct brute force
password guessing attacks in order to break into an
account on the system.

Availability DoS: Crash, Exit, or Restart

The attacker may be able to overwrite, delete, or corrupt
unexpected critical files such as programs, libraries,

or important data. This may prevent the software from
working at all and in the case of a protection mechanisms

such as authentication, it has the potential to lockout every

user of the software.
Potential Mitigations

Phase: Implementation

Page
70

Page
70

Likelihood

78



CWE Version 3.4
CWE-39: Path Traversal: 'C:dirname’

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright. When validating filenames, use stringent whitelists that limit the character set to be

used. If feasible, only allow a single "." character in the filename to avoid weaknesses such

as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of
allowable file extensions, which will help to avoid CWE-434. Do not rely exclusively on a filtering
mechanism that removes potentially dangerous characters. This is equivalent to a blacklist,
which may be incomplete (CWE-184). For example, filtering "/" is insufficient protection if the
filesystem also supports the use of "\" as a directory separator. Another possible error could
occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For
example, if "../" sequences are removed from the ".../.../[" string in a sequential fashion, two
instances of "../" would be removed from the original string, but the remaining characters would
still form the "../" string.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference
CVE-2001-0038

CVE-2001-0255

CVE-2001-0687

CVE-2001-0933

CVE-2002-0466

CVE-2002-1483

CVE-2004-2488

Description

Remote attackers can read arbitrary files by specifying the drive letter in the
requested URL.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0038

FTP server allows remote attackers to list arbitrary directories by using the
"Is" command and including the drive letter name (e.g. C:) in the requested
pathname.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0255

FTP server allows a remote attacker to retrieve privileged system information
by specifying arbitrary paths.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0687

FTP server allows remote attackers to list the contents of arbitrary drives via a
Is command that includes the drive letter as an argument.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0933

Server allows remote attackers to browse arbitrary directories via a full
pathname in the arguments to certain dynamic pages.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0466

Remote attackers can read arbitrary files via an HTTP request whose
argument is a filename of the form "C:" (Drive letter), "//absolute/path”, or ".." .
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1483

FTP server read/access arbitrary files using "C:\" filenames

79

.[esianel] yred :6£-IMD

2weulp:D,



CWE-40: Path Traversal: "WUNC\share\name\' (Windows UNC Share)

CWE Version 3.4
CWE-40: Path Traversal: \UNC\share\name\' (Windows UNC Share)

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2488

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 1789
Input Output (FIO)

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 1819

(FIO)
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER '‘C:dirname’ or C: (Windows volume or
‘drive letter’)
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
Software Fault Patterns SFP16 Path Traversal

CWE-40: Path Traversal: \\UNC\share\name\' (Windows UNC Share)

Weakness ID : 40 Status: Draft
Structure : Simple
Abstraction : Variant

Description

An attacker can inject a Windows UNC share (\\UNC\share\name') into a software system to
potentially redirect access to an unintended location or arbitrary file.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 36 Absolute Path Traversal 70
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf B} 36 Absolute Path Traversal 70

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations

80



CWE Version 3.4
CWE-40: Path Traversal: \UNC\share\name\' (Windows UNC Share)

Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue.” Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright. When validating filenames, use stringent whitelists that limit the character set to be
used. If feasible, only allow a single "." character in the filename to avoid weaknesses such

as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of
allowable file extensions, which will help to avoid CWE-434. Do not rely exclusively on a filtering
mechanism that removes potentially dangerous characters. This is equivalent to a blacklist,
which may be incomplete (CWE-184). For example, filtering /" is insufficient protection if the
filesystem also supports the use of "\" as a directory separator. Another possible error could
occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For
example, if "../" sequences are removed from the ".../.../[" string in a sequential fashion, two
instances of "../" would be removed from the original string, but the remaining characters would
still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2001-0687  FTP server allows a remote attacker to retrieve privileged web server system
information by specifying arbitrary paths in the UNC format (\\computername
\sharename).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0687

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER "WUNC\share\name\' (Windows UNC
share)
Software Fault Patterns SFP16 Path Traversal
References

81

(812YyS DNN SMOPUIAN) \aweu\ateys\ONN\\, :[esianell yred :0t-3MD



CWE-41: Improper Resolution of Path Equivalence

CWE Version 3.4
CWE-41: Improper Resolution of Path Equivalence

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-41: Improper Resolution of Path Equivalence

Weakness ID : 41 Status: Incomplete
Structure : Simple
Abstraction : Base

Description

The system or application is vulnerable to file system contents disclosure through path
equivalence. Path equivalence involves the use of special characters in file and directory names.
The associated manipulations are intended to generate multiple names for the same object.

Extended Description

Path equivalence is usually employed in order to circumvent access controls expressed using
an incomplete set of file name or file path representations. This is different from path traversal,
wherein the manipulations are performed to generate a name for a different object.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (C] 706  Use of Incorrectly-Resolved Name or Reference 1373
ParentOf V] 42 Path Equivalence: ‘filename.' (Trailing Dot) 88
ParentOf (V] 44 Path Equivalence: ‘'file.name' (Internal Dot) 90
ParentOf V] 46 Path Equivalence: ‘filename ' (Trailing Space) 92
ParentOf (V] 47 Path Equivalence: ' filename' (Leading Space) 93
ParentOf V] 48 Path Equivalence: 'file name' (Internal Whitespace) 94
ParentOf (V] 49 Path Equivalence: ‘filename/' (Trailing Slash) 95
ParentOf V] 50 Path Equivalence: '//multiple/leading/slash’ 96
ParentOf (V] 51 Path Equivalence: ‘/multiple//internal/slash’ 98
ParentOf V] 52 Path Equivalence: '/multiple/trailing/slash//' 929
ParentOf (V] 53 Path Equivalence: \multiple\\internal\backslash' 100
ParentOf V] 54 Path Equivalence: 'filedir\' (Trailing Backslash) 101
ParentOf (V] 55 Path Equivalence: '/./' (Single Dot Directory) 102
ParentOf V] 56 Path Equivalence: 'filedir*' (Wildcard) 104
ParentOf (V] 57 Path Equivalence: ‘fakedir/../realdir/filename’ 105
ParentOf V] 58 Path Equivalence: Windows 8.3 Filename 106
CanFollow (C] 20 Improper Input Validation 18
CanFollow (C) 73 External Control of File Name or Path 128
CanFollow (C] 172 Encoding Error 408
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
MemberOf 21 Pathname Traversal and Equivalence Errors 1749
ParentOf V] 42 Path Equivalence: ‘filename.' (Trailing Dot) 88
ParentOf V] 44 Path Equivalence: 'file.name’ (Internal Dot) 90

82



CWE Version 3.4

CWE-41: Improper Resolution of Path Equivalence

Nature Type ID
ParentOf O 46
ParentOf O 47
ParentOf O 48
ParentOf O 49
ParentOf (V] 50
ParentOf O 51
ParentOf O 52
ParentOf O 53
ParentOf O 54
ParentOf O 55
ParentOf (V] 56
ParentOf O 57
ParentOf (V] 58

Applicable Platforms

Name

Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope
Confidentiality
Integrity
Access Control

Detection Methods

Impact

Read Files or Directories
Modify Files or Directories
Bypass Protection Mechanism

Page
‘filename ' (Trailing Space) 92
' filename' (Leading Space) 93
'file name' (Internal Whitespace) 94
‘filename/' (Trailing Slash) 95
'l/multiple/leading/slash’ 96
‘multiple//internal/slash’ 98
'Imultiple/trailing/slash//" 99
\multiple\\internal\backslash' 100
filedir\' (Trailing Backslash) 101
'I.I' (Single Dot Directory) 102
filedir* (Wildcard) 104
‘fakedir/../realdir/filename’ 105
Windows 8.3 Filename 106
Likelihood

An attacker may be able to traverse the file system to
unintended locations and read or overwrite the contents
of unexpected files. If the files are used for a security
mechanism than an attacker may be able to bypass the
mechanism.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness

analysis

Effectiveness = SOAR Partial
Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &

anomalies

Effectiveness = SOAR Patrtial
Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial

coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial
Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Patrtial
Manual Static Analysis - Source Code

83

9ouajeAlnb3 yred Jo uonnjosay Jadoisdw| :Ty-IMD



CWE-41: Improper Resolution of Path Equivalence

CWE Version 3.4
CWE-41: Improper Resolution of Path Equivalence

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial

Architecture or Desigh Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright.

Phase: Implementation

Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that

is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either

by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

84



CWE Version 3.4
CWE-41: Improper Resolution of Path Equivalence

Reference
CVE-2000-1114

CVE-2002-1986,
CVE-2004-2213
CVE-2005-3293
CVE-2004-0061
CVE-2000-1133
CVE-2001-1386
CVE-2001-0693
CVE-2001-0778
CVE-2001-1248
CVE-2004-0280
CVE-2005-0622
CVE-2005-1656
CVE-2002-1603

CVE-2001-0054

CVE-2002-1451

CVE-2000-0293

CVE-2001-1567

CVE-2002-0253

CVE-2001-0446

CVE-2004-0334
CVE-2001-0893

CVE-2001-0892

Description

Source code disclosure using trailing dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1114

Source code disclosure using trailing dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1986,

Source code disclosure using trailing dot or trailing encoding space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2213

Source code disclosure using trailing dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3293

Bypass directory access restrictions using trailing dot in URL
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0061

Bypass directory access restrictions using trailing dot in URL
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1133

Bypass check for ".Ink" extension using ".Ink."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1386

Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0693

Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0778

Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1248

Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0280

Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0622

Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1656

Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1603

Multi-Factor Vulnerability (MVF). directory traversal and other issues in FTP
server using Web encodings such as "%20"; certain manipulations have
unusual side effects.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0054

Trailing space ("+" in query string) leads to source code disclosure.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1451

Filenames with spaces allow arbitrary file deletion when the product does not
properly quote them; some overlap with path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0293

"+" characters in query string converted to spaces before sensitive file/
extension (internal space), leading to bypass of access restrictions to the file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1567

Overlaps infoleak
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0253

Application server allows remote attackers to read source code for .jsp files by
appending a / to the requested URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0446

Bypass Basic Authentication for files using trailing /"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0334

Read sensitive files with trailing "/"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0893

Web server allows remote attackers to view sensitive files under the document
root (such as .htpasswd) via a GET request with a trailing /.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0892

85

9ouajeAlnb3 yred Jo uonnjosay Jadoisdw| :Ty-IMD



CWE-41: Improper Resolution of Path Equivalence

CWE Version 3.4
CWE-41: Improper Resolution of Path Equivalence

Reference
CVE-2004-1814

BID:3518

CVE-2002-1483

CVE-1999-1456

CVE-2004-0578

CVE-2002-0275

CVE-2004-1032

CVE-2002-1238

CVE-2004-1878

CVE-2005-1365

CVE-2000-1050

CVE-2001-1072

CVE-2004-0235

CVE-2002-1078

CVE-2004-0847

CVE-2000-0004

CVE-2002-0304

BID:6042

CVE-1999-1083

Description

Directory traversal vulnerability in server allows remote attackers to read
protected files via .. (dot dot) sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1814

Source code disclosure

http://www.securityfocus.com/bid/3518

Read files with full pathname using multiple internal slash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1483

Server allows remote attackers to read arbitrary files via a GET request with
more than one leading / (slash) character in the filename.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1456

Server allows remote attackers to read arbitrary files via leading slash (//)
characters in a URL request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0578

Server allows remote attackers to bypass authentication and read restricted
files via an extra / (slash) in the requested URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0275

Product allows local users to delete arbitrary files or create arbitrary empty files
via a target filename with a large number of leading slash (/) characters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1032

Server allows remote attackers to bypass access restrictions for files via an
HTTP request with a sequence of multiple / (slash) characters such as http://
www.example.com///file/.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1238

Product allows remote attackers to bypass authentication, obtain sensitive
information, or gain access via a direct request to admin/user.pl preceded by //
(double leading slash).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1878

Server allows remote attackers to execute arbitrary commands via a URL with
multiple leading "/" (slash) characters and ".." sequences.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1365

Access directory using multiple leading slash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1050

Bypass access restrictions via multiple leading slash, which causes a regular
expression to fail.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1072

Archive extracts to arbitrary files using multiple leading slash in filenames in
the archive.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0235

Directory listings in web server using multiple trailing slash
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1078

ASP.NET allows remote attackers to bypass authentication for .aspx files

in restricted directories via a request containing a (1) "\" (backslash) or (2)
"%5C" (encoded backslash), aka "Path Validation Vulnerability."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0847

Server allows remote attackers to read source code for executable files by
inserting a . (dot) into the URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0004

Server allows remote attackers to read password-protected files via a /./ in the
HTTP request.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0304

Input Validation error

http://www.securityfocus.com/bid/6042

Possibly (could be a cleansing error)

86



CWE Version 3.4
CWE-41: Improper Resolution of Path Equivalence

Reference
CVE-2004-0815

CVE-2002-0112

CVE-2004-0696
CVE-2002-0433

CVE-2001-1152

CVE-2000-0191
CVE-2005-1366

CVE-1999-0012

CVE-2001-0795

CVE-2005-0471

Affected Resources

 File or Directory

Description

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1083

"I.llllletc" cleansed to ".///etc" then "/etc"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0815

Server allows remote attackers to view password protected files via /./ in the
URL.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0112

List directories using desired path and "*"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0696

List files in web server using "*.ext"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0433

Proxy allows remote attackers to bypass blacklist restrictions and connect to
unauthorized web servers by modifying the requested URL, including (1) a //
(double slash), (2) a /SUBDIR/.. where the desired file is in the parentdir, (3)
al.l, or (4) URL-encoded characters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1152

application check access for restricted URL before canonicalization
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0191

CGl source disclosure using "dirname/../cgi-bin"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1366

Multiple web servers allow restriction bypass using 8.3 names instead of long
names

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0012

Source code disclosure using 8.3 file name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0795

Multi-Factor Vulnerability. Product generates temporary filenames using long
filenames, which become predictable in 8.3 format.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0471

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type
MemberOf

MemberOf

MemberOf

MemberOf

MemberOf
Notes

Relationship

ID Name Page
723 OWASP Top Ten 2004 Category A2 - Broken Access 711 1777
Control

743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 1789
Input Output (FIO)
877 CERT C++ Secure Coding Section 09 - Input Output 868 1819

(FIO)
884 CWE Cross-section 884 1924
981 SFP Secondary Cluster; Path Traversal 888 1850

Some of these manipulations could be effective in path traversal issues, too.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER

Path Equivalence

87

9ouajeAlnb3 yred Jo uonnjosay Jadoisdw| :Ty-IMD



CWE-42: Path Equivalence: 'filename.' (Trailing Dot)

CWE Version 3.4
CWE-42: Path Equivalence: filename.' (Trailing Dot)

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding FI1002-C Canonicalize path names originating
from untrusted sources

Related Attack Patterns

CAPEC-ID Attack Pattern Name
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters

CWE-42: Path Equivalence: 'filename.’ (Trailing Dot)

Weakness ID : 42 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of trailing dot (filedir.") without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 162  Improper Neutralization of Trailing Special Elements 393
ChildOf (E] 41 Improper Resolution of Path Equivalence 82
ParentOf V] 43 Path Equivalence: ‘filename...." (Multiple Trailing Dot) 89
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 82
ParentOf V] 43 Path Equivalence: 'filename...." (Multiple Trailing Dot) 89

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Observed Examples

Reference Description

CVE-2000-1114  Source code disclosure using trailing dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1114

CVE-2002-1986, Source code disclosure using trailing dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1986,

CVE-2004-2213  Source code disclosure using trailing dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2213

CVE-2005-3293  Source code disclosure using trailing dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3293

CVE-2004-0061 Bypass directory access restrictions using trailing dot in URL

88



CWE Version 3.4
CWE-43: Path Equivalence: filename...." (Multiple Trailing Dot)

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0061

CVE-2000-1133  Bypass directory access restrictions using trailing dot in URL
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1133

CVE-2001-1386 Bypass check for ".Ink" extension using ".Ink."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1386

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Trailing Dot - *filedir.'

Software Fault Patterns SFP16 Path Traversal

CWE-43: Path Equivalence: ‘filename...." (Multiple Trailing Dot)

Weakness ID : 43 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of multiple trailing dot (‘filedir....") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 163  Improper Neutralization of Multiple Trailing Special Elements 394
ChildOf (V] 42 Path Equivalence: 'filename.' (Trailing Dot) 88
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf V] 42 Path Equivalence: ‘filename.' (Trailing Dot) 88

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Observed Examples

89

‘awreua|ly, :@ouafeAinbg yred -3

(yo@ Buijreay sidniny)



CWE-44: Path Equivalence: 'file.name' (Internal Dot)

CWE Version 3.4
CWE-44: Path Equivalence: file.name' (Internal Dot)

Reference Description

BUGTRAQ:2004028pache + Resin Reveals JSP Source Code ...
http://marc.info/?I=bugtrag&m=107605633904122&w=2

CVE-2004-0281  Multiple trailing dot allows directory listing
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0281

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Multiple Trailing Dot - ‘filedir...."

Software Fault Patterns SFP16 Path Traversal

CWE-44: Path Equivalence: 'file.name' (Internal Dot)

Weakness ID : 44 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of internal dot (file.ordir") without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B) 41 Improper Resolution of Path Equivalence 82
ParentOf V] 45 Path Equivalence: file...name' (Multiple Internal Dot) 91
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (E] 41 Improper Resolution of Path Equivalence 82
ParentOf V] 45 Path Equivalence: 'file...name' (Multiple Internal Dot) 91

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

MemberOf Relationships

90



CWE Version 3.4
CWE-45: Path Equivalence: 'file...name' (Multiple Internal Dot)

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Notes

Relationship

An improper attempt to remove the internal dots from the string could lead to CWE-181 (Incorrect
Behavior Order: Validate Before Filter).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Internal Dot - ‘file.ordir’
Software Fault Patterns SFP16 Path Traversal

CWE-45: Path Equivalence: 'file...name' (Multiple Internal Dot)

Weakness ID : 45 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of multiple internal dot (‘file...dir") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 165 Improper Neutralization of Multiple Internal Special Elements 398
ChildOf V] 44 Path Equivalence: 'file.name’ (Internal Dot) 90
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf V] 44 Path Equivalence: 'file.name' (Internal Dot) 90

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

91

(10@ reussiul a|dinN) ,sweua|ly, :8ousfeAinb3 yred :Gy-3MO



CWE-46: Path Equivalence: 'filename ' (Trailing Space)

CWE Version 3.4
CWE-46: Path Equivalence: filename ' (Trailing Space)

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Notes

Relationship

An improper attempt to remove the internal dots from the string could lead to CWE-181 (Incorrect
Behavior Order: Validate Before Filter).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Multiple Internal Dot - file...dir'
Software Fault Patterns SFP16 Path Traversal

CWE-46: Path Equivalence: 'filename ' (Trailing Space)

Weakness ID : 46 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of trailing space (filedir *) without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 162  Improper Neutralization of Trailing Special Elements 393
ChildOf Q 41 Improper Resolution of Path Equivalence 82
CanPrecede © 289  Authentication Bypass by Alternate Name 645
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (B) 41 Improper Resolution of Path Equivalence 82

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Observed Examples

Reference Description

CVE-2001-0693  Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0693

CVE-2001-0778  Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0778

92



CWE Version 3.4
CWE-47: Path Equivalence: ' filename' (Leading Space)

Reference Description
CVE-2001-1248  Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1248
CVE-2004-0280  Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0280
CVE-2004-2213  Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2213
CVE-2005-0622  Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0622
CVE-2005-1656  Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1656
CVE-2002-1603  Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1603
CVE-2001-0054  Multi-Factor Vulnerability (MVF). directory traversal and other issues in FTP
server using Web encodings such as "%20"; certain manipulations have
unusual side effects.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0054
CVE-2002-1451  Trailing space ("+" in query string) leads to source code disclosure.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1451

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Trailing Space - ‘filedir '

Software Fault Patterns SFP16 Path Traversal

Related Attack Patterns

CAPEC-ID Attack Pattern Name
649 Adding a Space to a File Extension

CWE-47: Path Equivalence: ' filename' (Leading Space)

Weakness ID : 47 Status: Incomplete
Structure : Simple

Abstraction : Variant

Description

A software system that accepts path input in the form of leading space (' filedir") without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

93

(eoedsg Bulpea) ,oweus|ly , :@2uaeAinb3 yred :Z#-3MD



CWE-48: Path Equivalence: 'file name' (Internal Whitespace)

CWE Version 3.4
CWE-48: Path Equivalence: file name' (Internal Whitespace)

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 82
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (E] 41 Improper Resolution of Path Equivalence 82

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Leading Space - ' filedir'

Software Fault Patterns SFP16 Path Traversal

CWE-48: Path Equivalence: 'file name' (Internal Whitespace)

Weakness ID : 48 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of internal space (‘file(SPACE)name') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf E] 41 Improper Resolution of Path Equivalence 82
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf o 41 Improper Resolution of Path Equivalence 82

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

94



CWE Version 3.4
CWE-49: Path Equivalence: filename/' (Trailing Slash)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Observed Examples

Reference Description

CVE-2000-0293 Filenames with spaces allow arbitrary file deletion when the product does not
properly quote them; some overlap with path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0293

CVE-2001-1567  "+" characters in query string converted to spaces before sensitive file/
extension (internal space), leading to bypass of access restrictions to the file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1567

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Notes

Relationship

This weakness is likely to overlap quoting problems, e.g. the "Program Files" unquoted search
path (CWE-428). It also could be an equivalence issue if filtering removes all extraneous spaces.

Relationship

Whitespace can be a factor in other weaknesses not directly related to equivalence. It can also
be used to spoof icons or hide files with dangerous names (see icon manipulation and visual
truncation in CWE-451).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER file(SPACE)name (internal space)
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service

Software Fault Patterns SFP16 Path Traversal

CWE-49: Path Equivalence: 'filename/' (Trailing Slash)

Weakness ID : 49 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of trailing slash (‘filedir/") without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

95

(yse|s Buijrel]) /owreus|ly, :dousfeAlinb3 yred :6-3MO



CWE-50: Path Equivalence: '//multiple/leading/slash’

CWE Version 3.4
CWE-50: Path Equivalence: '//multiple/leading/slash’

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 162  Improper Neutralization of Trailing Special Elements 393
ChildOf (E] 41 Improper Resolution of Path Equivalence 82
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf Q 41 Improper Resolution of Path Equivalence 82

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Observed Examples

Reference Description

CVE-2002-0253  Overlaps infoleak
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0253

CVE-2001-0446  Application server allows remote attackers to read source code for .jsp files by
appending a / to the requested URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0446

CVE-2004-0334  Bypass Basic Authentication for files using trailing "/"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0334

CVE-2001-0893 Read sensitive files with trailing "/"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0893

CVE-2001-0892  Web server allows remote attackers to view sensitive files under the document
root (such as .htpasswd) via a GET request with a trailing /.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0892

CVE-2004-1814  Directory traversal vulnerability in server allows remote attackers to read
protected files via .. (dot dot) sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1814

BID:3518 Source code disclosure
http://www.securityfocus.com/bid/3518

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER filedir/ (trailing slash, trailing /)

Software Fault Patterns SFP16 Path Traversal

CWE-50: Path Equivalence: '//multiple/leading/slash’

Weakness ID : 50 Status: Incomplete
Structure : Simple

96




CWE Version 3.4
CWE-50: Path Equivalence: '//multiple/leading/slash’

Abstraction : Variant

Description

A software system that accepts path input in the form of multiple leading slash (‘//multiple/leading/
slash') without appropriate validation can lead to ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf V] 161  Improper Neutralization of Multiple Leading Special 391
Elements

ChildOf E] 41 Improper Resolution of Path Equivalence 82

Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page

ChildOf o 41 Improper Resolution of Path Equivalence 82

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope
Confidentiality
Integrity

Observed Examples

Reference

CVE-2002-1483

CVE-1999-1456

CVE-2004-0578

CVE-2002-0275

CVE-2004-1032

CVE-2002-1238

CVE-2004-1878

Impact Likelihood
Read Files or Directories
Modify Files or Directories

Description

Read files with full pathname using multiple internal slash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1483

Server allows remote attackers to read arbitrary files via a GET request with
more than one leading / (slash) character in the filename.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1456

Server allows remote attackers to read arbitrary files via leading slash (//)
characters in a URL request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0578

Server allows remote attackers to bypass authentication and read restricted
files via an extra / (slash) in the requested URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0275

Product allows local users to delete arbitrary files or create arbitrary empty files
via a target filename with a large number of leading slash (/) characters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1032

Server allows remote attackers to bypass access restrictions for files via an
HTTP request with a sequence of multiple / (slash) characters such as http://
www.example.com///file/.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1238

Product allows remote attackers to bypass authentication, obtain sensitive
information, or gain access via a direct request to admin/user.pl preceded by //
(double leading slash).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1878

97

.yse|s/buipesj/e|dninwy/, :2ouafeAinb3 yred :05-3MD



CWE-51: Path Equivalence: '/'multiple//internal/slash’

CWE Version 3.4
CWE-51: Path Equivalence: ''multiple//internal/slash’

Reference Description

CVE-2005-1365  Server allows remote attackers to execute arbitrary commands via a URL with
multiple leading "/" (slash) characters and ".." sequences.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1365

CVE-2000-1050  Access directory using multiple leading slash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1050

CVE-2001-1072  Bypass access restrictions via multiple leading slash, which causes a regular
expression to fail.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1072

CVE-2004-0235 Archive extracts to arbitrary files using multiple leading slash in filenames in
the archive.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0235

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER /Imultiple/leading/slash (‘multiple
leading slash’)
Software Fault Patterns SFP16 Path Traversal

CWE-51: Path Equivalence: '/multiple//internal/slash’

Weakness ID : 51 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of multiple internal slash (‘/multiple//internal/
slash/") without appropriate validation can lead to ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 41 Improper Resolution of Path Equivalence 82
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 82

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)
Common Consequences
98




CWE Version 3.4
CWE-52: Path Equivalence: '/multiple/trailing/slash//'

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-1483 Read files with full pathname using multiple internal slash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1483

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER /multiple//internal/slash ('multiple
internal slash’)
Software Fault Patterns SFP16 Path Traversal

CWE-52: Path Equivalence: '/'multiple/trailing/slash//'

Weakness ID : 52 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of multiple trailing slash (‘/multiple/trailing/
slash//") without appropriate validation can lead to ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 163  Improper Neutralization of Multiple Trailing Special Elements 394
ChildOf (B] 41 Improper Resolution of Path Equivalence 82
CanPrecede © 289  Authentication Bypass by Alternate Name 645

99

Jiysej|s/butjrenyadinnwy, :@ousfeainb3 yred :25-3IM9



CWE-53: Path Equivalence: \multiple\\internal\backslash'

CWE Version 3.4
CWE-53: Path Equivalence: \multiple\\internal\backslash'

Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf E] 41 Improper Resolution of Path Equivalence 82

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-1078  Directory listings in web server using multiple trailing slash
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1078

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER /multiple/trailing/slash// ('multiple trailing
slash’)
Software Fault Patterns SFP16 Path Traversal

CWE-53: Path Equivalence: \multiple\\internal\backslash'

Weakness ID : 53 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of multiple internal backslash (\multiple
\trailing\\slash') without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

100



CWE Version 3.4
CWE-54: Path Equivalence: filedir\' (Trailing Backslash)

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 165  Improper Neutralization of Multiple Internal Special Elements 398
ChildOf (B] 41 Improper Resolution of Path Equivalence 82
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf E] 41 Improper Resolution of Path Equivalence 82

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER \multiple\\internal\backslash

Software Fault Patterns SFP16 Path Traversal

CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash)

Weakness ID : 54 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of trailing backslash (filedir\') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Relationships

101

(yse|sxoeg buljrel]) \1pajly, :@dusfeAIinbl yled #S-aMD



CWE-55: Path Equivalence: '/.I' (Single Dot Directory)

CWE Version 3.4
CWE-55: Path Equivalence: '/./' (Single Dot Directory)

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 162  Improper Neutralization of Trailing Special Elements 393
ChildOf (B] 41 Improper Resolution of Path Equivalence 82
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf E] 41 Improper Resolution of Path Equivalence 82

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2004-0847  ASP.NET allows remote attackers to bypass authentication for .aspx files
in restricted directories via a request containing a (1) "\" (backslash) or (2)
"%5C" (encoded backslash), aka "Path Validation Vulnerability."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0847

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER filedir\ (trailing backslash)

Software Fault Patterns SFP16 Path Traversal

CWE-55: Path Equivalence: '/./' (Single Dot Directory)

Weakness ID : 55 Status: Incomplete
Structure : Simple

102



CWE Version 3.4
CWE-55: Path Equivalence: '/./' (Single Dot Directory)

Abstraction : Variant

Description

A software system that accepts path input in the form of single dot directory exploit ('/./') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the

file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name

ChildOf (E] 41 Improper Resolution of Path Equivalence
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name

ChildOf Q 41 Improper Resolution of Path Equivalence

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Likelihood

Page
82

Page
82

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by

introducing dangerous inputs after they have been checked.
Observed Examples

Reference Description

CVE-2000-0004  Server allows remote attackers to read source code for executable files by

inserting a . (dot) into the URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0004

CVE-2002-0304  Server allows remote attackers to read password-protected files via a /./ in the

HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0304
BID:6042 Input Validation error
http://www.securityfocus.com/bid/6042
CVE-1999-1083  Possibly (could be a cleansing error)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1083
CVE-2004-0815  "/./lllletc" cleansed to ".///etc" then "/etc"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0815

CVE-2002-0112  Server allows remote attackers to view password protected files via /./ in the

URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0112

103

(A1010341@ 10@ 916UIS) //, :@IUBRAINDT Yred :GG-IMD



CWE-56: Path Equivalence: 'filedir* (Wildcard)

CWE Version 3.4
CWE-56: Path Equivalence: filedir* (Wildcard)

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER 1./ (single dot directory)

Software Fault Patterns SFP16 Path Traversal

CWE-56: Path Equivalence: 'filedir* (Wildcard)

Weakness ID : 56 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of asterisk wildcard (‘filedir*") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 155  Improper Neutralization of Wildcards or Matching Symbols 379
ChildOf (B] 41 Improper Resolution of Path Equivalence 82
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 82

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

104




CWE Version 3.4
CWE-57: Path Equivalence: 'fakedir/../realdir/filename’

Observed Examples

Reference Description

CVE-2004-0696  List directories using desired path and "*"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0696

CVE-2002-0433  List files in web server using "*.ext"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0433

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER filedir* (asterisk / wildcard)

Software Fault Patterns SFP16 Path Traversal

CWE-57: Path Equivalence: 'fakedir/../realdir/filename’

Weakness ID : 57 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software contains protection mechanisms to restrict access to 'realdir/filename’, but it
constructs pathnames using external input in the form of ‘fakedir/../realdir/filename’ that are not
handled by those mechanisms. This allows attackers to perform unauthorized actions against the
targeted file.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 41 Improper Resolution of Path Equivalence 82
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf Q 41 Improper Resolution of Path Equivalence 82

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations

105

DUIRUS|IY/IIp[eal/ /1Ipase), :9oudfeAInbl yred :/G-IMO



CWE-58: Path Equivalence: Windows 8.3 Filename

CWE Version 3.4
CWE-58: Path Equivalence: Windows 8.3 Filename

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2001-1152  Proxy allows remote attackers to bypass blacklist restrictions and connect to
unauthorized web servers by modifying the requested URL, including (1) a //
(double slash), (2) a /SUBDIR/.. where the desired file is in the parentdir, (3)
al.l, or (4) URL-encoded characters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1152

CVE-2000-0191  application check access for restricted URL before canonicalization
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0191

CVE-2005-1366  CGl source disclosure using "dirname/../cgi-bin"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1366

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Notes

Theoretical

This is a manipulation that uses an injection for one consequence (containment violation using
relative path) to achieve a different consequence (equivalence by alternate name).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER dirname/fakechild/../realchild/filename
Software Fault Patterns SFP16 Path Traversal

CWE-58: Path Equivalence: Windows 8.3 Filename

Weakness ID : 58 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software contains a protection mechanism that restricts access to a long filename on a
Windows operating system, but the software does not properly restrict access to the equivalent
short "8.3" filename.

Extended Description

On later Windows operating systems, a file can have a "long name" and a short name that

is compatible with older Windows file systems, with up to 8 characters in the filename and 3
characters for the extension. These "8.3" filenames, therefore, act as an alternate name for files
with long names, so they are useful pathname equivalence manipulations.

Relationships
106




CWE Version 3.4
CWE-58: Path Equivalence: Windows 8.3 Filename

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 41 Improper Resolution of Path Equivalence 82
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 82

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: System Configuration

Disable Windows from supporting 8.3 filenames by editing the Windows registry. Preventing 8.3
filenames will not remove previously generated 8.3 filenames.

Observed Examples

Reference Description
CVE-1999-0012  Multiple web servers allow restriction bypass using 8.3 names instead of long
names

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0012

CVE-2001-0795  Source code disclosure using 8.3 file name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0795

CVE-2005-0471  Multi-Factor Vulnerability. Product generates temporary filenames using long
filenames, which become predictable in 8.3 format.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0471

Functional Areas
 File Processing

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this

weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Notes

Research Gap
Probably under-studied
Taxonomy Mappings

107

aweua|l4 £'8 SMOPUIAA :92usfeAInbg yred :85-IMD



CWE-59: Improper Link Resolution Before File Access ('Link Following")

CWE Version 3.4
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Windows 8.3 Filename

Software Fault Patterns SFP16 Path Traversal
References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. 1st Edition. 2006. Addison Wesley.

CWE-59: Improper Link Resolution Before File Access ('Link Following')

Weakness ID : 59 Status: Draft
Structure : Simple
Abstraction : Base

Description

The software attempts to access a file based on the filename, but it does not properly prevent that
filename from identifying a link or shortcut that resolves to an unintended resource.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf C] 706  Use of Incorrectly-Resolved Name or Reference 1373
ParentOf & 61 UNIX Symbolic Link (Symlink) Following 113
ParentOf V] 62 UNIX Hard Link 115
ParentOf V] 64 Windows Shortcut Following (.LNK) 117
ParentOf V] 65 Windows Hard Link 119
CanFollow C] 73 External Control of File Name or Path 128
CanFollow ] 363  Race Condition Enabling Link Following 809

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf @ 706  Use of Incorrectly-Resolved Name or Reference 1373
Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 1872
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
MemberOf 21 Pathname Traversal and Equivalence Errors 1749
ParentOf & 61 UNIX Symbolic Link (Symlink) Following 113
ParentOf V] 62 UNIX Hard Link 115
ParentOf V] 64 Windows Shortcut Following (.LNK) 117
ParentOf V] 65 Windows Hard Link 119

108



CWE Version 3.4
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

Weakness Ordinalities
Resultant :
Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Sometimes)
Operating_System : Unix (Prevalence = Often)
Background Details
Soft links are a UNIX term that is synonymous with simple shortcuts on windows based platforms.
Alternate Terms

insecure temporary file : Some people use the phrase "insecure temporary file" when referring to
a link following weakness, but other weaknesses can produce insecure temporary files without any
symlink involvement at all.

Likelihood Of Exploit
Medium

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories

Integrity Modify Files or Directories

Access Control Bypass Protection Mechanism

An attacker may be able to traverse the file system to
unintended locations and read or overwrite the contents
of unexpected files. If the files are used for a security
mechanism then an attacker may be able to bypass the
mechanism.

Other Execute Unauthorized Code or Commands

Windows simple shortcuts, sometimes referred to as soft
links, can be exploited remotely since a ".LNK" file can
be uploaded like a normal file. This can enable remote
execution.

Detection Methods
Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis

Effectiveness = SOAR Partial
Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial
Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial

109

(,6uimol|o4 3ulq,) SS8290V 9|I4 8l10jag uolnjosay Juiq Jadoidw] :65-IMD



CWE-59: Improper Link Resolution Before File Access ('Link Following")

CWE Version 3.4
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Patrtial
Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High
Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Patrtial
Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High
Potential Mitigations
Phase: Architecture and Design
Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system. Denying access to a file can prevent an attacker from replacing that file with a link to a
sensitive file. Ensure good compartmentalization in the system to provide protected areas that
can be trusted.

Observed Examples

Reference Description

CVE-1999-1386  Some versions of Perl follows symbolic links when running with the -e option,
which allows local users to overwrite arbitrary files via a symlink attack.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1386

CVE-2000-1178  Text editor follows symbolic links when creating a rescue copy during an
abnormal exit, which allows local users to overwrite the files of other users.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1178

CVE-2004-0217  Antivirus update allows local users to create or append to arbitrary files via a
symlink attack on a logdfile.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0217

CVE-2003-0517  Symlink attack allows local users to overwrite files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0517

CVE-2004-0689  Window manager does not properly handle when certain symbolic links point
to "stale" locations, which could allow local users to create or truncate arbitrary
files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0689

CVE-2005-1879  Second-order symlink vulnerabilities
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1879

CVE-2005-1880  Second-order symlink vulnerabilities
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1880

CVE-2005-1916  Symlink in Python program

110



CWE Version 3.4
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

Reference

CVE-2000-0972

CVE-2005-0824

CVE-2001-1494

CVE-2002-0793

CVE-2003-0578

CVE-1999-0783

CVE-2004-1603

CVE-2004-1901

CVE-2005-1111

CVE-2000-0342

CVE-2001-1042

CVE-2001-1043

CVE-2005-0587

CVE-2001-1386

CVE-2003-1233

CVE-2002-0725

CVE-2003-0844

Functional Areas

Description

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1916

Setuid product allows file reading by replacing a file being edited with a symlink
to the targeted file, leaking the result in error messages when parsing fails.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0972

Signal causes a dump that follows symlinks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0824

Hard link attack, file overwrite; interesting because program checks against
soft links

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1494

Hard link and possibly symbolic link following vulnerabilities in embedded
operating system allow local users to overwrite arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0793

Server creates hard links and unlinks files as root, which allows local users to
gain privileges by deleting and overwriting arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0578

Operating system allows local users to conduct a denial of service by creating
a hard link from a device special file to a file on an NFS file system.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0783

Web hosting manager follows hard links, which allows local users to read or
modify arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1603

Package listing system allows local users to overwrite arbitrary files via a hard
link attack on the lockfiles.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1901

Hard link race condition
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1111

Mail client allows remote attackers to bypass the user warning for executable
attachments such as .exe, .com, and .bat by using a .Ink file that refers to the
attachment, aka "Stealth Attachment.”
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0342

FTP server allows remote attackers to read arbitrary files and directories by
uploading a .Ink (link) file that points to the target file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1042

FTP server allows remote attackers to read arbitrary files and directories by
uploading a .Ink (link) file that points to the target file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1043

Browser allows remote malicious web sites to overwrite arbitrary files by
tricking the user into downloading a .LNK (link) file twice, which overwrites the
file that was referenced in the first .LNK file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0587

".LNK." - .LNK with trailing dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1386

Rootkits can bypass file access restrictions to Windows kernel directories
using NtCreateSymbolicLinkObject function to create symbolic link
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1233

File system allows local attackers to hide file usage activities via a hard link to
the target file, which causes the link to be recorded in the audit trail instead of
the target file.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0725

Web server plugin allows local users to overwrite arbitrary files via a symlink
attack on predictable temporary filenames.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0844

111

(,6uimol|o4 3ulq,) SS8290V 9|I4 8l10jag uolnjosay Juiq Jadoidw] :65-IMD



CWE-59: Improper Link Resolution Before File Access ('Link Following")

CWE Version 3.4
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

 File Processing

Affected Resources

 File or Directory

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature
MemberOf
MemberOf

MemberOf

MemberOf
MemberOf

MemberOf
MemberOf

Notes

Type ID Name Page
635 Weaknesses Originally Used by NVD from 2008 to 2016 635 1909
743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 1789

Input Output (FIO)

748 CERT C Secure Coding Standard (2008) Appendix - 734 1793
POSIX (POS)

808 2010 Top 25 - Weaknesses On the Cusp 800 1797

877 CERT C++ Secure Coding Section 09 - Input Output 868 1819
(FIO)

884 CWE Cross-section 884 1924

980 SFP Secondary Cluster: Link in Resource Name 888 1849
Resolution

Relationship

Link following vulnerabilities are Multi-factor Vulnerabilities (MFV). They are the combination

of multiple elements: file or directory permissions, filename predictability, race conditions, and
in some cases, a design limitation in which there is no mechanism for performing atomic file
creation operations. Some potential factors are race conditions, permissions, and predictability.

Research Gap

UNIX hard links, and Windows hard/soft links are under-studied and under-reported.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER

CERT C Secure Coding FIO02-C

CERT C Secure Coding POSO01-

Link Following

Canonicalize path names originating
from untrusted sources

Check for the existence of links when

C dealing with files
SEI CERT Perl Coding FIO01- CWE More Specific Do not operate on files that can be
Standard PL modified by untrusted users
Software Fault Patterns SFP18 Link in resource name resolution

Related Attack Patterns

CAPEC-ID
17

35

76

132

References

Attack Pattern Name

Using Malicious Files

Leverage Executable Code in Non-Executable Files
Manipulating Web Input to File System Calls
Symlink Attack

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment"”. 1st Edition. 2006. Addison Wesley.

112



CWE Version 3.4
CWE-61: UNIX Symbolic Link (Symlink) Following

CWE-61: UNIX Symbolic Link (Symlink) Following

Weakness ID : 61 Status: Incomplete
Structure : Composite
Abstraction : Compound

Description

The software, when opening a file or directory, does not sufficiently account for when the file is a
symbolic link that resolves to a target outside of the intended control sphere. This could allow an
attacker to cause the software to operate on unauthorized files.

Composite Components

Nature Type ID Name Page

Requires C) 362  Concurrent Execution using Shared Resource with Improper 801
Synchronization ('Race Condition")

Requires (C]) 340  Predictability Problems 760

Requires C] 216  Containment Errors (Container Errors) 515

Requires (] 386  Symbolic Name not Mapping to Correct Object 852

Requires C] 732  Incorrect Permission Assignment for Critical Resource 1380

Extended Description

A software system that allows UNIX symbolic links (symlink) as part of paths whether in internal
code or through user input can allow an attacker to spoof the symbolic link and traverse the file
system to unintended locations or access arbitrary files. The symbolic link can permit an attacker to
read/write/corrupt a file that they originally did not have permissions to access.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf ] 59 Improper Link Resolution Before File Access ('Link 108
Following')

Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf E] 59 Improper Link Resolution Before File Access ('Link 108
Following')

Weakness Ordinalities
Resultant :
Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Alternate Terms
Symlink following :
symlink vulnerability :
Likelihood Of Exploit
High
Common Consequences

113

Buimo|jo4 (uijwAS) Yul] dIjoqwAS XINN T9-IMD



CWE-61: UNIX Symbolic Link (Symlink) Following

CWE Version 3.4

CWE-61: UNIX Symbolic Link (Symlink) Following

Scope
Confidentiality
Integrity

Potential Mitigations

Impact Likelihood
Read Files or Directories
Modify Files or Directories

Phase: Implementation

Symbolic link attacks often occur when a program creates a tmp directory that stores files/
links. Access to the directory should be restricted to the program as to prevent attackers from
manipulating the files.

Phase: Architectur

e and Design

Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system. Denying access to a file can prevent an attacker from replacing that file with a link to a
sensitive file. Ensure good compartmentalization in the system to provide protected areas that

can be trusted.
Observed Examples

Reference
CVE-1999-1386

CVE-2000-1178

CVE-2004-0217

CVE-2003-0517
CVE-2004-0689
CVE-2005-1879
CVE-2005-1880
CVE-2005-1916

CVE-2000-0972

CVE-2005-0824

Notes
Research Gap
Symlink vulnerabi

Description

Some versions of Perl follows symbolic links when running with the -e option,
which allows local users to overwrite arbitrary files via a symlink attack.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1386

Text editor follows symbolic links when creating a rescue copy during an
abnormal exit, which allows local users to overwrite the files of other users.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1178

Antivirus update allows local users to create or append to arbitrary files via a
symlink attack on a lodfile.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0217

Symlink attack allows local users to overwrite files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0517

Possible interesting example
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0689

Second-order symlink vulnerabilities
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1879

Second-order symlink vulnerabilities
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1880

Symlink in Python program
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1916

Setuid product allows file reading by replacing a file being edited with a symlink
to the targeted file, leaking the result in error messages when parsing fails.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0972

Signal causes a dump that follows symlinks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0824

lities are regularly found in C and shell programs, but all programming

languages can have this problem. Even shell programs are probably under-reported. "Second-
order symlink vulnerabilities" may exist in programs that invoke other programs that follow
symlinks. They are rarely reported but are likely to be fairly common when process invocation is

used. Reference:

Taxonomy Mappings

[Christey2005]

114



CWE Version 3.4
CWE-62: UNIX Hard Link

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER UNIX symbolic link following

Related Attack Patterns

CAPEC-ID Attack Pattern Name
27 Leveraging Race Conditions via Symbolic Links

References

[REF-493]Steve Christey. "Second-Order Symlink Vulnerabilities". Bugtrag. 2005 June 7. < http://
www.securityfocus.com/archive/1/401682 >.

[REF-494]Shaun Colley. "Crafting Symlinks for Fun and Profit". Infosec Writers Text Library. 2004
April 2. < http://www.infosecwriters.com/texts.php?op=display&id=159 >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment"”. 1st Edition. 2006. Addison Wesley.

CWE-62: UNIX Hard Link

Weakness ID : 62 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software, when opening a file or directory, does not sufficiently account for when the name
is associated with a hard link to a target that is outside of the intended control sphere. This could
allow an attacker to cause the software to operate on unauthorized files.

Extended Description

Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. /etc/passwd). When the process opens the file, the
attacker can assume the privileges of that process.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf Q@ 59 Improper Link Resolution Before File Access ('Link 108
Following’)

Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf o 59 Improper Link Resolution Before File Access ('Link 108
Following')

Weakness Ordinalities
Resultant :
Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Operating_System : Unix (Prevalence = Undetermined)

115

AUIT pleH XINN :¢9-aMO



CWE-62: UNIX Hard Link

CWE Version 3.4
CWE-62: UNIX Hard Link

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Architecture and Design
Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system. Denying access to a file can prevent an attacker from replacing that file with a link to a
sensitive file. Ensure good compartmentalization in the system to provide protected areas that
can be trusted.

Observed Examples

Reference Description
CVE-2001-1494  Hard link attack, file overwrite; interesting because program checks against
soft links

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1494

CVE-2002-0793  Hard link and possibly symbolic link following vulnerabilities in embedded
operating system allow local users to overwrite arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0793

CVE-2003-0578  Server creates hard links and unlinks files as root, which allows local users to
gain privileges by deleting and overwriting arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0578

CVE-1999-0783  Operating system allows local users to conduct a denial of service by creating
a hard link from a device special file to a file on an NFS file system.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0783

CVE-2004-1603  Web hosting manager follows hard links, which allows local users to read or
modify arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1603

CVE-2004-1901  Package listing system allows local users to overwrite arbitrary files via a hard
link attack on the lockfiles.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1901

CVE-2005-0342 The Finder in Mac OS X and earlier allows local users to overwrite arbitrary
files and gain privileges by creating a hard link from the .DS_ Store file to an
arbitrary file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0342

CVE-2005-1111  Hard link race condition
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1111

BUGTRAQ:200302@%enBSD chpass/chfn/chsh file content leak

ASA-0001 http://www.securityfocus.com/archive/1/309962

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 743  CERT C Secure Coding Standard (2008) Chapter 10 - 734 1789
Input Output (FIO)

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 1819
(FIO)

MemberOf 980 SFP Secondary Cluster: Link in Resource Name 888 1849
Resolution

116



CWE Version 3.4
CWE-64: Windows Shortcut Following (.LNK)

Notes
Research Gap

Under-studied. It is likely that programs that check for symbolic links could be vulnerable to hard
links.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER UNIX hard link

CERT C Secure Coding FIO05-C Identify files using multiple file attributes

Software Fault Patterns SFP18 Link in resource name resolution
References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment"”. 1st Edition. 2006. Addison Wesley.

CWE-64: Windows Shortcut Following (.LNK)

Weakness ID : 64 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software, when opening a file or directory, does not sufficiently handle when the file is a
Windows shortcut (.LNK) whose target is outside of the intended control sphere. This could allow
an attacker to cause the software to operate on unauthorized files.

Extended Description

The shortcut (file with the .Ink extension) can permit an attacker to read/write a file that they
originally did not have permissions to access.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf Q@ 59 Improper Link Resolution Before File Access ('Link 108
Following’)

Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf o 59 Improper Link Resolution Before File Access ('Link 108
Following')

Weakness Ordinalities
Resultant :
Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)
Alternate Terms

117

(MNT) Buimojjo4 1N2110YS SMOPUIM #9-IMD



CWE-64: Windows Shortcut Following (.LNK)

CWE Version 3.4
CWE-64: Windows Shortcut Following (.LNK)

Windows symbolic link following :
symlink :

Likelihood Of Exploit
Low

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Architecture and Design
Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system. Denying access to a file can prevent an attacker from replacing that file with a link to a
sensitive file. Ensure good compartmentalization in the system to provide protected areas that
can be trusted.

Observed Examples

Reference Description

CVE-2000-0342  Mail client allows remote attackers to bypass the user warning for executable
attachments such as .exe, .com, and .bat by using a .Ink file that refers to the
attachment, aka "Stealth Attachment."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0342

CVE-2001-1042  FTP server allows remote attackers to read arbitrary files and directories by
uploading a .Ink (link) file that points to the target file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1042

CVE-2001-1043  FTP server allows remote attackers to read arbitrary files and directories by
uploading a .Ink (link) file that points to the target file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1043

CVE-2005-0587  Browser allows remote malicious web sites to overwrite arbitrary files by
tricking the user into downloading a .LNK (link) file twice, which overwrites the
file that was referenced in the first .LNK file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0587

CVE-2001-1386  ".LNK."-.LNK with trailing dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1386

CVE-2003-1233  Rootkits can bypass file access restrictions to Windows kernel directories
using NtCreateSymbolicLinkObject function to create symbolic link
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1233

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 743  CERT C Secure Coding Standard (2008) Chapter 10 - 734 1789
Input Output (FIO)

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 1819
(FIO)

MemberOf 980 SFP Secondary Cluster: Link in Resource Name 888 1849
Resolution

Notes

118



CWE Version 3.4
CWE-65: Windows Hard Link

Research Gap

Under-studied. Windows .LNK files are more "portable” than Unix symlinks and have been used
in remote exploits. Some Windows API's will access LNK's as if they are regular files, so one
would expect that they would be reported more frequently.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Windows Shortcut Following (.LNK)
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
Software Fault Patterns SFP18 Link in resource name resolution

CWE-65: Windows Hard Link

Weakness ID : 65 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software, when opening a file or directory, does not sufficiently handle when the name is
associated with a hard link to a target that is outside of the intended control sphere. This could
allow an attacker to cause the software to operate on unauthorized files.

Extended Description

Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. AUTOEXEC.BAT). When the process opens the
file, the attacker can assume the privileges of that process, or prevent the program from accurately
processing data.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 59 Improper Link Resolution Before File Access ('Link 108
Following")

Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf ] 59 Improper Link Resolution Before File Access ('Link 108
Following')

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

119

AUl pleH SMOPUIM :§9-4MO



CWE-66: Improper Handling of File Names that Identify Virtual Resources

CWE Version 3.4
CWE-66: Improper Handling of File Names that Identify Virtual Resources

Potential Mitigations
Phase: Architecture and Design
Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system. Denying access to a file can prevent an attacker from replacing that file with a link to a
sensitive file. Ensure good compartmentalization in the system to provide protected areas that
can be trusted.

Observed Examples

Reference Description

CVE-2002-0725 File system allows local attackers to hide file usage activities via a hard link to
the target file, which causes the link to be recorded in the audit trail instead of
the target file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0725

CVE-2003-0844  Web server plugin allows local users to overwrite arbitrary files via a symlink
attack on predictable temporary filenames.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0844

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 1789
Input Output (FIO)

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 1819

(FIO)
MemberOf 980 SFP Secondary Cluster: Link in Resource Name 888 1849
Resolution
Notes
Research Gap
Under-studied
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Windows hard link
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
Software Fault Patterns SFP18 Link in resource name resolution

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. 1st Edition. 2006. Addison Wesley.

CWE-66: Improper Handling of File Names that Identify Virtual Resources

Weakness ID : 66 Status: Draft
Structure : Simple
Abstraction : Base

Description

120



CWE Version 3.4
CWE-66: Improper Handling of File Names that Identify Virtual Resources

The product does not handle or incorrectly handles a file name that identifies a "virtual" resource
that is not directly specified within the directory that is associated with the file name, causing the
product to perform file-based operations on a resource that is not a file.

Extended Description

Virtual file names are represented like normal file names, but they are effectively aliases for other
resources that do not behave like normal files. Depending on their functionality, they could be
alternate entities. They are not necessarily listed in directories.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf (C) 706  Use of Incorrectly-Resolved Name or Reference 1373

ParentOf (V] 67 Improper Handling of Windows Device Names 122

ParentOf (V] 69 Improper Handling of Windows ::DATA Alternate Data 125
Stream

ParentOf (V] 72 Improper Handling of Apple HFS+ Alternate Data Stream 127
Path

Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page

MemberOf 21 Pathname Traversal and Equivalence Errors 1749

ParentOf V] 67 Improper Handling of Windows Device Names 122

ParentOf (V] 69 Improper Handling of Windows ::DATA Alternate Data 125
Stream

ParentOf (V] 72 Improper Handling of Apple HFS+ Alternate Data Stream 127
Path

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Common Consequences
Scope Impact Likelihood
Other Other
Detection Methods
Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis

Effectiveness = SOAR Patrtial
Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial
Dynamic Analysis with Automated Results Interpretation

121

$S92IN0SaY [enUIA Ajnuap| reyl sswep 3|4 o BulpueH Jadoidw) :99-JMMD



CWE-67: Improper Handling of Windows Device Names

CWE Version 3.4
CWE-67: Improper Handling of Windows Device Names

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Patrtial
Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial
Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High
Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial
Architecture or Desigh Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High
Functional Areas
 File Processing
Affected Resources
* File or Directory
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Virtual Files

CWE-67: Improper Handling of Windows Device Names

Weakness ID : 67 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software constructs pathnames from user input, but it does not handle or incorrectly handles a
pathname containing a Windows device name such as AUX or CON. This typically leads to denial

122




CWE Version 3.4
CWE-67: Improper Handling of Windows Device Names

of service or an information exposure when the application attempts to process the pathname as a
regular file.

Extended Description

Not properly handling virtual filenames (e.g. AUX, CON, PRN, COM1, LPT1) can result in different
types of vulnerabilities. In some cases an attacker can request a device via injection of a virtual
filename in a URL, which may cause an error that leads to a denial of service or an error page that
reveals sensitive information. A software system that allows device names to bypass filtering runs
the risk of an attacker injecting malicious code in a file with the name of a device.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf E] 66 Improper Handling of File Names that Identify Virtual 120
Resources

Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf E] 66 Improper Handling of File Names that Identify Virtual 120
Resources

Weakness Ordinalities
Resultant :
Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)
Background Details

Historically, there was a bug in the Windows operating system that caused a blue screen of death.
Even after that issue was fixed DOS device nhames continue to be a factor.

Likelihood Of Exploit
High

Common Consequences

Scope Impact Likelihood
Availability DoS: Crash, Exit, or Restart

Confidentiality Read Application Data

Other Other

Potential Mitigations
Phase: Implementation

Be familiar with the device names in the operating system where your system is deployed. Check
input for these device names.

Observed Examples

Reference Description
CVE-2002-0106  Server allows remote attackers to cause a denial of service via a series of
requests to .JSP files that contain an MS-DOS device name.

123

SaweN 991Aag SMOpPUIA Jo BuljpueH Jadoidwy) :29-MD



CWE Version 3.4
CWE-67: Improper Ha

ndling of Windows Device Names

Reference

CVE-2002-0200

CVE-2002-1052

CVE-2001-0493

CVE-2001-0558

CVE-2000-0168

CVE-2001-0492

CVE-2004-0552

CVE-2005-2195

Affected Resources

 File or Directory

within the context of

CWE-67: Improper Handling of Windows Device Names

Nature Type
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf

Taxonomy Mappings

Description

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0106

Server allows remote attackers to cause a denial of service via an HTTP
request for an MS-DOS device name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0200

Product allows remote attackers to use MS-DOS device names in HTTP
reguests to cause a denial of service or obtain the physical path of the server.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1052

Server allows remote attackers to cause a denial of service via a URL that
contains an MS-DOS device name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0493

Server allows a remote attacker to create a denial of service via a URL request
which includes a MS-DOS device name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0558

Microsoft Windows 9x operating systems allow an attacker to cause a denial of
service via a pathname that includes file device names, aka the "DOS Device
in Path Name" vulnerability.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0168

Server allows remote attackers to determine the physical path of the server via
a URL containing MS-DOS device names.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0492

Product does not properly handle files whose names contain reserved MS-
DOS device names, which can allow malicious code to bypass detection when
it is installed, copied, or executed.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0552

Server allows remote attackers to cause a denial of service (application crash)
via a URL with a filename containing a .cgi extension and an MS-DOS device
name.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2195

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits

external information sources.

ID Name Page

743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 1789
Input Output (FIO)

857 The CERT Oracle Secure Coding Standard for Java 844 1809
(2011) Chapter 14 - Input Output (FIO)

877 CERT C++ Secure Coding Section 09 - Input Output 868 1819
(FIO)

981 SFP Secondary Cluster: Path Traversal 888 1850

1147 SEI CERT Oracle Secure Coding Standard for Java- 1133 1890
Guidelines 13. Input Output (FIO)

1163 SEI CERT C Coding Standard - Guidelines 09. Input 1154 1899
Output (FIO)

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER

Windows MS-DOS device names

124



CWE Version 3.4
CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C Secure Coding FIO32-C CWE More Specific Do not perform operations on devices
that are only appropriate for files

The CERT Oracle Secure  FIO00-J Do not operate on files in shared
Coding Standard for Java directories
(2011)
Software Fault Patterns SFP16 Path Traversal
References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. 1st Edition. 2006. Addison Wesley.

CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream

Weakness ID : 69 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description
The software does not properly prevent access to, or detect usage of, alternate data streams
(ADS).

Extended Description
An attacker can use an ADS to hide information about a file (e.g. size, the name of the process)
from a system or file browser tools such as Windows Explorer and 'dir' at the command line utility.

Alternately, the attacker might be able to bypass intended access restrictions for the associated
data fork.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 66 Improper Handling of File Names that Identify Virtual 120
Resources

Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf ] 66 Improper Handling of File Names that Identify Virtual 120
Resources

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)
Background Details

Alternate data streams (ADS) were first implemented in the Windows NT operating system
to provide compatibility between NTFS and the Macintosh Hierarchical File System (HFS). In

125

Wwealls ereq areulsl|y V.vAa:: SMOpUIA Jo BuljpueH Jadosdw| :69-9MD



CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream

CWE Version 3.4
CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream

HFS, data and resource forks are used to store information about a file. The data fork provides
information about the contents of the file while the resource fork stores metadata such as file type.

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Non-Repudiation  Hide Activities

Other Other

Potential Mitigations
Phase: Testing
Software tools are capable of finding ADSs on your system.
Phase: Implementation
Ensure that the source code correctly parses the filename to read or write to the correct stream.
Observed Examples

Reference Description

CVE-1999-0278 In IIS, remote attackers can obtain source code for ASP files by appending "::
$DATA" to the URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0278

CVE-2000-0927  Product does not properly record file sizes if they are stored in alternative data
streams, which allows users to bypass quota restrictions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0927

Affected Resources
e System Process
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 904 SFP Primary Cluster: Malware 888 1828
Notes

Theoretical

This and similar problems exist because the same resource can have multiple identifiers that
dictate which behavior can be performed on the resource.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Windows ::DATA alternate data stream

Related Attack Patterns

CAPEC-ID Attack Pattern Name
168 Windows ::DATA Alternate Data Stream

References

[REF-562]Don Parker. "Windows NTFS Alternate Data Streams". 2005 February 6. < http://
www.securityfocus.com/infocus/1822 >.

126



CWE Version 3.4
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

Weakness ID : 72 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software does not properly handle special paths that may identify the data or resource fork of a
file on the HFS+ file system.

Extended Description

If the software chooses actions to take based on the file name, then if an attacker provides the
data or resource fork, the software may take unexpected actions. Further, if the software intends to
restrict access to a file, then an attacker might still be able to bypass intended access restrictions
by requesting the data or resource fork for that file.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B) 66 Improper Handling of File Names that Identify Virtual 120
Resources

Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (E] 66 Improper Handling of File Names that Identify Virtual 120
Resources

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : macOS (Prevalence = Undetermined)
Background Details
The Apple HFS+ file system permits files to have multiple data input streams, accessible through

special paths. The Mac OS X operating system provides a way to access the different data input
streams through special paths and as an extended attribute:

- Resource fork: file/..namedfork/rsrc, file/rsrc (deprecated), xattr:com.apple.ResourceFork
- Data fork: file/..namedfork/data (only versions prior to Mac OS X v10.5)

Additionally, on filesystems that lack native support for multiple streams, the resource fork and file
metadata may be stored in a file with "._" prepended to the name.

Forks can also be accessed through non-portable APIs.

Forks inherit the file system access controls of the file they belong to.

127

yred weains eleq aleulal|v +S4H 9|ddy Jo BuljpueH Jadoadwy :2/-3MD



CWE-73: External Control of File Name or Path

CWE Version 3.4
CWE-73: External Control of File Name or Path

Programs need to control access to these paths, if the processing of a file system object is
dependent on the structure of its path.

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Demonstrative Examples
Example 1:

A web server that interprets FILE.cgi as processing instructions could disclose the source code
for FILE.cgi by requesting FILE.cgi/..namedfork/data. This might occur because the web server
invokes the default handler which may return the contents of the file.

Observed Examples

Reference Description

CVE-2004-1084  Server allows remote attackers to read files and resource fork content via
HTTP requests to certain special file names related to multiple data streams in
HFS+.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1084

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850
Notes

Theoretical

This and similar problems exist because the same resource can have multiple identifiers that
dictate which behavior can be performed on the resource.

Research Gap
Under-studied
References

[REF-578]NetSec. "NetSec Security Advisory: Multiple Vulnerabilities Resulting From Use Of Apple
OSX HFS+". BugTraq. 2005 February 6. < http://seclists.org/bugtraq/2005/Feb/309 >.

CWE-73: External Control of File Name or Path

Weakness ID : 73 Status: Draft
Structure : Simple
Abstraction : Class

Description

The software allows user input to control or influence paths or file names that are used in filesystem
operations.

Extended Description

This could allow an attacker to access or modify system files or other files that are critical to the
application.

128



CWE Version 3.4
CWE-73: External Control of File Name or Path

Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the filesystem.
2. By specifying the resource, the attacker gains a capability that would not otherwise be
permitted.

For example, the program may give the attacker the ability to overwrite the specified file or run with
a configuration controlled by the attacker.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf (C] 610  Externally Controlled Reference to a Resource in Another 1223
Sphere

ChildOf C] 642  External Control of Critical State Data 1268

CanPrecede @ 22 Improper Limitation of a Pathname to a Restricted Directory 31
(‘Path Traversal')

CanPrecede @ 41 Improper Resolution of Path Equivalence 82

CanPrecede @ 59 Improper Link Resolution Before File Access ('Link 108
Following')

CanPrecede © 98 Improper Control of Filename for Include/Require Statement 223
in PHP Program ('PHP Remote File Inclusion’)

CanPrecede @ 434  Unrestricted Upload of File with Dangerous Type 944

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page

MemberOf 1015 Limit Access 1870

Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf @ 20 Improper Input Validation 18
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf C] 20 Improper Input Validation 18

Weakness Ordinalities
Primary :

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Unix (Prevalence = Often)
Operating_System : Windows (Prevalence = Often)
Operating_System : macOS (Prevalence = Often)

Likelihood Of Exploit
High

Common Consequences

129

yyed 40 SWeN 3|14 40 [043U0D [eUIBIXT €2-IMD



CWE-73: External Control of File Name or Path

CWE Version 3.4
CWE-73: External Control of File Name or Path

Scope Impact Likelihood
Integrity Read Files or Directories
Confidentiality Modify Files or Directories

The application can operate on unexpected files.
Confidentiality is violated when the targeted filename is not
directly readable by the attacker.

Integrity Modify Files or Directories
Confidentiality Execute Unauthorized Code or Commands
Availability

The application can operate on unexpected files. This
may violate integrity if the filename is written to, or if the
filename is for a program or other form of executable code.

Availability DoS: Crash, Exit, or Restart

DoS: Resource Consumption (Other)

The application can operate on unexpected files.
Availability can be violated if the attacker specifies an
unexpected file that the application modifies. Availability
can also be affected if the attacker specifies a filename for
a large file, or points to a special device or a file that does
not have the format that the application expects.

Detection Methods

Automated Static Analysis

The external control or influence of flenames can often be detected using automated static
analysis that models data flow within the software. Automated static analysis might not be able
to recognize when proper input validation is being performed, leading to false positives - i.e.,
warnings that do not have any security consequences or require any code changes.

Potential Mitigations

Phase: Architecture and Design

When the set of filenames is limited or known, create a mapping from a set of fixed input values
(such as numeric IDs) to the actual filenames, and reject all other inputs. For example, ID

1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as the ESAPI
AccessReferenceMap provide this capability.

Phase: Architecture and Design

Phase: Operation

Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict all access to files within a
particular directory. Examples include the Unix chroot jail and AppArmor. In general, managed
code may provide some protection. This may not be a feasible solution, and it only limits the
impact to the operating system; the rest of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Implementation

Strategy = Input Validation

130



CWE Version 3.4
CWE-73: External Control of File Name or Path

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright. When validating filenames, use stringent whitelists that limit the character set to be
used. If feasible, only allow a single "." character in the filename to avoid weaknesses such

as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of
allowable file extensions, which will help to avoid CWE-434. Do not rely exclusively on a filtering
mechanism that removes potentially dangerous characters. This is equivalent to a blacklist,
which may be incomplete (CWE-184). For example, filtering "/" is insufficient protection if the
filesystem also supports the use of "\" as a directory separator. Another possible error could
occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For
example, if "../" sequences are removed from the ".../.../[" string in a sequential fashion, two
instances of "../" would be removed from the original string, but the remaining characters would
still form the "../" string.

Phase: Implementation

Use a built-in path canonicalization function (such as realpath() in C) that produces the canonical

version of the pathname, which effectively removes ".." sequences and symbolic links (CWE-23,
CWE-59).

Phase: Installation
Phase: Operation

Use OS-level permissions and run as a low-privileged user to limit the scope of any successful
attack.

Phase: Operation
Phase: Implementation

If you are using PHP, configure your application so that it does not use register_globals. During
implementation, develop your application so that it does not rely on this feature, but be wary

of implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Phase: Testing

Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Phase: Testing

Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Phase: Testing

Use tools and techniques that require manual (human) analysis, such as penetration testing,
threat modeling, and interactive tools that allow the tester to record and modify an active session.

131

yyed 40 SWeN 3|14 40 [043U0D [eUIBIXT €2-IMD



CWE-73: External Control of File Name or Path

CWE Version 3.4
CWE-73: External Control of File Name or Path

These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Demonstrative Examples
Example 1:

The following code uses input from an HTTP request to create a file name. The programmer has
not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/
server.xml", which causes the application to delete one of its own configuration files (CWE-22).

Example Language: Java (bad)

String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);

.r.léile.delete();

Example 2:

The following code uses input from a configuration file to determine which file to open and
echo back to the user. If the program runs with privileges and malicious users can change the
configuration file, they can use the program to read any file on the system that ends with the
extension .txt.

Example Language: Java (bad)

fis = new FilelnputStream(cfg.getProperty("sub")+".txt");
amt = fis.read(arr);
out.println(arr);

Observed Examples

Reference Description

CVE-2008-5748 Chain: external control of values for user's desired language and theme
enables path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5748

CVE-2008-5764  Chain: external control of user's target language enables remote file inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5764

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access 711 1777
Control

MemberOf 752 2009 Top 25 - Risky Resource Management 750 1794

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 1819
(FIO)

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 1850

Notes

Relationship

The external control of filenames can be the primary link in chains with other file-related
weaknesses, as seen in the CanPrecede relationships. This is because software systems use
files for many different purposes: to execute programs, load code libraries, to store application
data, to store configuration settings, record temporary data, act as signals or semaphores to
other processes, etc. However, those weaknesses do not always require external control. For

132



CWE Version 3.4

CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

('Injection’)

example, link-following weaknesses (CWE-59) often involve pathnames that are not controllable
by the attacker at all. The external control can be resultant from other issues. For example, in
PHP applications, the register_globals setting can allow an attacker to modify variables that

the programmer thought were immutable, enabling file inclusion (CWE-98) and path traversal
(CWE-22). Operating with excessive privileges (CWE-250) might allow an attacker to specify

an input filename that is not directly readable by the attacker, but is accessible to the privileged
program. A buffer overflow (CWE-119) might give an attacker control over nearby memory
locations that are related to pathnames, but were not directly modifiable by the attacker.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Path Manipulation
Software Fault Patterns SFP16 Path Traversal

Related Attack Patterns

CAPEC-ID Attack Pattern Name

13
64
72
76
78
79
80
267

References

[REF-45]0WASP. "OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

Subverting Environment Variable Values

Using Slashes and URL Encoding Combined to Bypass Validation Logic
URL Encoding

Manipulating Web Input to File System Calls

Using Escaped Slashes in Alternate Encoding

Using Slashes in Alternate Encoding

Using UTF-8 Encoding to Bypass Validation Logic

Leverage Alternate Encoding

CWE-74: Improper Neutralization of Special Elements in Output Used by a
Downstream Component ('Injection’)

Weakness ID :
Structure : Simple
Abstraction : Class

Description

The software constructs all or part of a command, data structure, or record using externally-
influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes
special elements that could modify how it is parsed or interpreted when it is sent to a downstream

component.

74 Status: Incomplete

(,uonoalu],) Jusuodwo) weansumoq e Ag pasn indino
ul syjuswa|3 eroads Jo uonezifeainaN Jadoidwi /-IMD

Extended Description

Software has certain assumptions about what constitutes data and control respectively. It is the
lack of verification of these assumptions for user-controlled input that leads to injection problems.
Injection problems encompass a wide variety of issues -- all mitigated in very different ways

and usually attempted in order to alter the control flow of the process. For this reason, the most
effective way to discuss these weaknesses is to note the distinct features which classify them as
injection weaknesses. The most important issue to note is that all injection problems share one
thing in common -- i.e., they allow for the injection of control plane data into the user-controlled data
plane. This means that the execution of the process may be altered by sending code in through
legitimate data channels, using no other mechanism. While buffer overflows, and many other flaws,
involve the use of some further issue to gain execution, injection problems need only for the data

133



CWE-74. Improper Neutralization of Special Elements in
Output Used by a Downstream Component (‘Injection’)

CWE Version 3.4
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection”)

to be parsed. The most classic instantiations of this category of weakness are SQL injection and
format string vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf @ 707  Improper Enforcement of Message or Data Structure 1375

ParentOf @ 75 Failure to Sanitize Special Elements into a Different Plane 137
(Special Element Injection)

ParentOf @ 77 Improper Neutralization of Special Elements used in a 139
Command (‘Command Injection’)

ParentOf (B] 79 Improper Neutralization of Input During Web Page 156
Generation (‘Cross-site Scripting’)

ParentOf (] 91 XML Injection (aka Blind XPath Injection) 204

ParentOf Q 93 Improper Neutralization of CRLF Sequences ('CRLF 207
Injection’)

ParentOf o 94 Improper Control of Generation of Code ('Code Injection”) 209

ParentOf ] 99 Improper Control of Resource Identifiers ('Resource 230
Injection’)

ParentOf @ 943  Improper Neutralization of Special Elements in Data Query 1641
Logic

CanFollow @ 20 Improper Input Validation 18

CanFollow (C] 116  Improper Encoding or Escaping of Output 265

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page

ParentOf B] 78 Improper Neutralization of Special Elements used in an OS 144
Command ('OS Command Injection’)

ParentOf (B] 79 Improper Neutralization of Input During Web Page 156
Generation (‘Cross-site Scripting’)

ParentOf (E] 88 Improper Delimitation of Arguments in a Command 186
(‘Argument Injection’)

ParentOf (E] 89 Improper Neutralization of Special Elements used in an SQL 191
Command (‘SQL Injection")

ParentOf E] 91 XML Injection (aka Blind XPath Injection) 204

ParentOf (E] 94 Improper Control of Generation of Code ('Code Injection’) 209

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 1872
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf @ 20 Improper Input Validation 18
ChildOf @ 116  Improper Encoding or Escaping of Output 265
ParentOf @ 75 Failure to Sanitize Special Elements into a Different Plane 137

(Special Element Injection)

134



CWE Version 3.4
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

('Injection’)
Nature Type ID Name Page
ParentOf (C) 77 Improper Neutralization of Special Elements used in a 139
Command (‘Command Injection’)
ParentOf (B] 79 Improper Neutralization of Input During Web Page 156
Generation (‘Cross-site Scripting’)
ParentOf ] 91 XML Injection (aka Blind XPath Injection) 204
ParentOf o 93 Improper Neutralization of CRLF Sequences (‘'CRLF 207
Injection’)
ParentOf Q 94 Improper Control of Generation of Code ('Code Injection”) 209
ParentOf (E] 99 Improper Control of Resource Identifiers (‘Resource 230
Injection’)
ParentOf @ 138  Improper Neutralization of Special Elements 348
ParentOf C] 943  Improper Neutralization of Special Elements in Data Query 1641
Logic

Weakness Ordinalities
Primary :
Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Likelihood Of Exploit
High
Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Many injection attacks involve the disclosure of important
information -- in terms of both data sensitivity and
usefulness in further exploitation.

Access Control Bypass Protection Mechanism

In some cases, injectable code controls authentication; this
may lead to a remote vulnerability.
Other Alter Execution Logic

Injection attacks are characterized by the ability to
significantly change the flow of a given process, and in
some cases, to the execution of arbitrary code.
Integrity Other
Other

(,uonoalu],) Jusuodwo) weansumoq e Ag pasn indino
ul syjuswa|3 eroads Jo uonezifeainaN Jadoidwi /-IMD

Data injection attacks lead to loss of data integrity in nearly
all cases as the control-plane data injected is always
incidental to data recall or writing.

Non-Repudiation  Hide Activities

Often the actions performed by injected control code are
unlogged.

Potential Mitigations
Phase: Requirements

Programming languages and supporting technologies might be chosen which are not subject to
these issues.

Phase: Implementation

Utilize an appropriate mix of whitelist and blacklist parsing to filter control-plane syntax from all
input.

135



CWE Version 3.4
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection”)

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 1779
MemberOf 929 OWASP Top Ten 2013 Category Al - Injection 928 1830
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 1854
MemberOf 1003 Weaknesses for Simplified Mapping of Published 1003 1933

Vulnerabilities
Notes
Relationship

In the development view (CWE-699), this is classified as an Input Validation problem (CWE-20)
because many people do not distinguish between the consequence/attack (injection) and

the protection mechanism that prevents the attack from succeeding. In the research view
(CWE-1000), however, input validation is only one potential protection mechanism (output
encoding is another), and there is a chaining relationship between improper input validation
and the improper enforcement of the structure of messages to other components. Other issues
not directly related to input validation, such as race conditions, could similarly impact message
structure.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

CLASP Injection problem (‘data’ used as
something else)

OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws

Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name

3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
6 Argument Injection

7 Blind SQL Injection

8 Buffer Overflow in an API Call

9 Buffer Overflow in Local Command-Line Utilities

CWE-74. Improper Neutralization of Special Elements in
Output Used by a Downstream Component (‘Injection’)

10 Buffer Overflow via Environment Variables
13 Subverting Environment Variable Values

14 Client-side Injection-induced Buffer Overflow
24 Filter Failure through Buffer Overflow

28 Fuzzing

34 HTTP Response Splitting

42 MIME Conversion

43 Exploiting Multiple Input Interpretation Layers
45 Buffer Overflow via Symbolic Links

46 Overflow Variables and Tags

a7 Buffer Overflow via Parameter Expansion

51 Poison Web Service Registry

52 Embedding NULL Bytes

53 Postfix, Null Terminate, and Backslash

64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
66 SQL Injection

67 String Format Overflow in syslog()

136



CWE Version 3.4
CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

CAPEC-ID Attack Pattern Name

71 Using Unicode Encoding to Bypass Validation Logic
72 URL Encoding

76 Manipulating Web Input to File System Calls

78 Using Escaped Slashes in Alternate Encoding

79 Using Slashes in Alternate Encoding

80 Using UTF-8 Encoding to Bypass Validation Logic
83 XPath Injection

84 XQuery Injection

101 Server Side Include (SSI) Injection

108 Command Line Execution through SQL Injection
120 Double Encoding

135 Format String Injection

250 XML Injection

267 Leverage Alternate Encoding

273 HTTP Response Smuggling

CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special

Element Injection)

Weakness ID : 75 Status: Draft

Structure : Simple
Abstraction : Class

Description

The software does not adequately filter user-controlled input for special elements with control

implications.
Relationships
The table(s) below shows the weaknesses and high level categories that are related to this

weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name

ChildOf (C] 74 Improper Neutralization of Special Elements in Output Used
by a Downstream Component (‘Injection’)

ParentOf (E] 76 Improper Neutralization of Equivalent Special Elements

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name

MemberOf 1019 Validate Inputs

Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name

ChildOf @ 74 Improper Neutralization of Special Elements in Output Used
by a Downstream Component (‘Injection’)

ParentOf E] 76 Improper Neutralization of Equivalent Special Elements

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Page
133

138

Page
1872

Page
133

138

137

(uonoalul Juswa|3 e19ads) aue|d 1UaJa}}IQ B 01Ul

sjuawa|3 [e199ds azniues 0} ainjieq :G/-IMD



CWE-76: Improper Neutralization of Equivalent Special Elements

CWE Version 3.4
CWE-76: Improper Neutralization of Equivalent Special Elements

Scope Impact Likelihood
Integrity Modify Application Data

Confidentiality Execute Unauthorized Code or Commands

Availability

Potential Mitigations
Phase: Requirements

Programming languages and supporting technologies might be chosen which are not subject to
these issues.

Phase: Implementation

Utilize an appropriate mix of whitelist and blacklist parsing to filter special element syntax from all
input.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 1854

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Special Element Injection
Related Attack Patterns

CAPEC-ID Attack Pattern Name
81 Web Logs Tampering
93 Log Injection-Tampering-Forging

CWE-76: Improper Neutralization of Equivalent Special Elements

Weakness ID : 76 Status: Draft
Structure : Simple
Abstraction : Base

Description

The software properly neutralizes certain special elements, but it improperly neutralizes equivalent
special elements.

Extended Description

The software may have a fixed list of special characters it believes is complete. However, there
may be alternate encodings, or representations that also have the same meaning. For example, the
software may filter out a leading slash (/) to prevent absolute path names, but does not account for
a tilde (~) followed by a user name, which on some *nix systems could be expanded to an absolute
pathname. Alternately, the software might filter a dangerous "-e" command-line switch when calling
an external program, but it might not account for "--exec" or other switches that have the same
semantics.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

138



CWE Version 3.4
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf @ 75 Failure to Sanitize Special Elements into a Different Plane 137
(Special Element Injection)

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 1872
Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (C] 75 Failure to Sanitize Special Elements into a Different Plane 137

(Special Element Injection)

Weakness Ordinalities

Primary :
Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)
Likelihood Of Exploit

High
Common Consequences

Scope Impact Likelihood

Other Other
Potential Mitigations

Phase: Requirements

Programming languages and supporting technologies might be chosen which are not subject to
these issues.

Phase: Implementation

Utilize an appropriate mix of whitelist and blacklist parsing to filter equivalent special element
syntax from all input.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 1854

(,uonoalu] puewwo),) puerWWOD © Ul Pasn sjusawa|3

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Equivalent Special Element Injection

CWE-77: Improper Neutralization of Special Elements used in a Command
(‘Command Injection’)

Weakness ID : 77 Status: Draft
Structure : Simple
Abstraction : Class

139

[e1oads jo uoneziesnaN Jadoudwy :22-3MD



CWE-77: Improper Neutralization of Special
Elements used in a Command (Command Injection’)

CWE Version 3.4
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

Description

The software constructs all or part of a command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended command when it is sent to a downstream component.

Extended Description

Command injection vulnerabilities typically occur when:

1. Data enters the application from an untrusted source.

2. The data is part of a string that is executed as a command by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the
attacker would not otherwise have.

Command injection is a common problem with wrapper programs.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf (C] 74 Improper Neutralization of Special Elements in Output Used 133
by a Downstream Component (‘Injection’)

ParentOf E] 78 Improper Neutralization of Special Elements used in an OS 144
Command ('OS Command Injection’)

ParentOf Q 88 Improper Delimitation of Arguments in a Command 186
(‘Argument Injection’)

ParentOf (B) 624  Executable Regular Expression Error 1246

ParentOf Q 917  Improper Neutralization of Special Elements used in an 1614
Expression Language Statement ('Expression Language
Injection’)

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page

MemberOf 1019 Validate Inputs 1872

Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page

ChildOf C] 74 Improper Neutralization of Special Elements in Output Used 133
by a Downstream Component (‘'Injection’)

ParentOf Q 78 Improper Neutralization of Special Elements used in an OS 144
Command ('OS Command Injection’)

ParentOf Q@ 88 Improper Delimitation of Arguments in a Command 186
(‘Argument Injection’)

ParentOf (B) 624  Executable Regular Expression Error 1246

ParentOf E] 917  Improper Neutralization of Special Elements used in an 1614
Expression Language Statement ('Expression Language
Injection’)

Weakness Ordinalities

Primary :

Applicable Platforms

140



CWE Version 3.4
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

Language : Language-Independent (Prevalence = Undetermined)
Likelihood Of Exploit
High

Common Consequences

Scope Impact Likelihood
Integrity Execute Unauthorized Code or Commands

Con.ﬁde.r?uahty If a malicious user injects a character (such as a semi-

Availability

colon) that delimits the end of one command and the
beginning of another, it may be possible to then insert an
entirely new and unrelated command that was not intended
to be executed.

Potential Mitigations
Phase: Architecture and Design

If at all possible, use library calls rather than external processes to recreate the desired
functionality.

Phase: Implementation

If possible, ensure that all external commands called from the program are statically created.
Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least
one undesirable input, especially if the code's environment changes. This can give attackers
enough room to bypass the intended validation. However, blacklists can be useful for detecting
potential attacks or determining which inputs are so malformed that they should be rejected
outright.

Phase: Operation

Run time: Run time policy enforcement may be used in a whitelist fashion to prevent use of any
non-sanctioned commands.

Phase: System Configuration

Assign permissions to the software system that prevents the user from accessing/opening
privileged files.

Demonstrative Examples
Example 1:

The following simple program accepts a filename as a command line argument and displays the
contents of the file back to the user. The program is installed setuid root because it is intended for
use as a learning tool to allow system administrators in-training to inspect privileged system files
without giving them the ability to modify them or damage the system.

141

(,uonoalu] puewwo),) puerWWOD © Ul Pasn sjusawa|3

[e1oads jo uoneziesnaN Jadoudwy :22-3MD



CWE-77: Improper Neutralization of Special
Elements used in a Command (Command Injection’)

CWE Version 3.4
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

Example Language: C (bad)

int main(int argc, char** argv) {
char cmd[CMD_MAX] = "/usr/bin/cat “;
strcat(cmd, argv[1]);
system(cmd);

}

Because the program runs with root privileges, the call to system() also executes with root
privileges. If a user specifies a standard filename, the call works as expected. However, if an
attacker passes a string of the form ";rm -rf /", then the call to system() fails to execute cat due to a
lack of arguments and then plows on to recursively delete the contents of the root partition.

Note that if argv[1] is a very long argument, then this issue might also be subject to a buffer
overflow (CWE-120).

Example 2:

The following code is from an administrative web application designed to allow users to kick

off a backup of an Oracle database using a batch-file wrapper around the rman utility and then
run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single
command line parameter, which specifies what type of backup to perform. Because access to the
database is restricted, the application runs the backup as a privileged user.

Example Language: Java (bad)

String btype = request.getParameter("backuptype");
String cmd = new String(“cmd.exe /K \"

c:\\utiN\rmanDB.bat "

+btype+

"&&c:\\utl\\cleanup.bat\"")
System.Runtime.getRuntime().exec(cmd);

The problem here is that the program does not do any validation on the backuptype parameter
read from the user. Typically the Runtime.exec() function will not execute multiple commands,

but in this case the program first runs the cmd.exe shell in order to run multiple commands with a
single call to Runtime.exec(). Once the shell is invoked, it will happily execute multiple commands
separated by two ampersands. If an attacker passes a string of the form "& del c:\\dbms\\*.*", then
the application will execute this command along with the others specified by the program. Because
of the nature of the application, it runs with the privileges necessary to interact with the database,
which means whatever command the attacker injects will run with those privileges as well.

Example 3:

The following code from a system utility uses the system property APPHOME to determine the
directory in which it is installed and then executes an initialization script based on a relative path
from the specified directory.

Example Language: Java (bad)

String home = System.getProperty("APPHOME");
String cmd = home + INITCMD;
java.lang.Runtime.getRuntime().exec(cmd);

The code above allows an attacker to execute arbitrary commands with the elevated privilege of
the application by modifying the system property APPHOME to point to a different path containing
a malicious version of INITCMD. Because the program does not validate the value read from the

142



CWE Version 3.4
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

environment, if an attacker can control the value of the system property APPHOME, then they can
fool the application into running malicious code and take control of the system.

Example 4:

The following code is a wrapper around the UNIX command cat which prints the contents of a file to
standard out. It is also injectable:

Example Language: C (bad)

#include <stdio.h>

#include <unistd.h>

int main(int argc, char **argv) {
char cat[] = "cat ";
char *command;
size_t commandLength;
commandLength = strlen(cat) + strlen(argv[1]) + 1;
command = (char *) malloc(commandLength);
strncpy(command, cat, commandLength);
strncat(command, argv[1], (commandLength - strlen(cat)) );
system(command);
return (0);

Used normally, the output is simply the contents of the file requested:

Example Language: (informative)

$ ./catWrapper Story.txt
When last we left our heroes...

However, if we add a semicolon and another command to the end of this line, the command is
executed by catWrapper with no complaint:

Example Language: (attack)

$ .JcatWrapper Story.txt; Is
When last we left our heroes...
Story.txt

SensitiveFile.txt
PrivateData.db

a.out*

If catWrapper had been set to have a higher privilege level than the standard user, arbitrary
commands could be executed with that higher privilege.

(,uonoalu] puewwo),) puerWWOD © Ul Pasn sjusawa|3
[e1oads jo uoneziesnaN Jadoudwy :22-3MD

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 1773
MemberOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 1776
MemberOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 1779
MemberOf 929 OWASP Top Ten 2013 Category Al - Injection 928 1830
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 1854
MemberOf 1005 7PK - Input Validation and Representation 700 1862
MemberOf 1027 OWASP Top Ten 2017 Category Al - Injection 1026 1875
Notes

143



CWE Version 3.4
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Terminology

The "command injection" phrase carries different meanings to different people. For some people,
it refers to refers to any type of attack that can allow the attacker to execute commands of

their own choosing, regardless of how those commands are inserted. The command injection
could thus be resultant from another weakness. This usage also includes cases in which the
functionality allows the user to specify an entire command, which is then executed; within CWE,
this situation might be better regarded as an authorization problem (since an attacker should not
be able to specify arbitrary commands.) Another common usage, which includes CWE-77 and
its descendants, involves cases in which the attacker injects separators into the command being
constructed.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms Command Injection

CLASP Command injection

OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws

OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input

OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws

Software Fault Patterns SFP24 Tainted input to command

SEI CERT Perl Coding IDS34- CWE More Specific Do not pass untrusted, unsanitized data
Standard PL to a command interpreter

Related Attack Patterns
CAPEC-ID Attack Pattern Name

15 Command Delimiters
40 Manipulating Writeable Terminal Devices
43 Exploiting Multiple Input Interpretation Layers
75 Manipulating Writeable Configuration Files
76 Manipulating Web Input to File System Calls
136 LDAP Injection
183 IMAP/SMTP Command Injection
248 Command Injection

References

[REF-140]Greg Hoglund and Gary McGraw. "Exploiting Software: How to Break Code". 2004
February 7. Addison-Wesley. < https://www.amazon.com/Exploiting-Software-How-Break-Code/
dp/0201786958 >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-78: Improper Neutralization of Special Elements
used in an OS Command ('OS Command Injection’)

CWE-78: Improper Neutralization of Special Elements used in an OS Command
('OS Command Injection’)

Weakness ID : 78 Status: Stable
Structure : Simple
Abstraction : Base

Description

The software constructs all or part of an OS command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended OS command when it is sent to a downstream component.

Extended Description

144



CWE Version 3.4
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

This could allow attackers to execute unexpected, dangerous commands directly on the operating
system. This weakness can lead to a vulnerability in environments in which the attacker does

not have direct access to the operating system, such as in web applications. Alternately, if the
weakness occurs in a privileged program, it could allow the attacker to specify commands that
normally would not be accessible, or to call alternate commands with privileges that the attacker
does not have. The problem is exacerbated if the compromised process does not follow the
principle of least privilege, because the attacker-controlled commands may run with special system
privileges that increases the amount of damage.

There are at least two subtypes of OS command injection:

1. The application intends to execute a single, fixed program that is under its own control. It
intends to use externally-supplied inputs as arguments to that program. For example, the
program might use system("nslookup [HOSTNAME]") to run nslookup and allow the user to
supply a HOSTNAME, which is used as an argument. Attackers cannot prevent nslookup
from executing. However, if the program does not remove command separators from the
HOSTNAME argument, attackers could place the separators into the arguments, which
allows them to execute their own program after nslookup has finished executing.

2. The application accepts an input that it uses to fully select which program to run, as well
as which commands to use. The application simply redirects this entire command to the
operating system. For example, the program might use "exec([COMMAND])" to execute
the [COMMAND] that was supplied by the user. If the COMMAND is under attacker control,
then the attacker can execute arbitrary commands or programs. If the command is being
executed using functions like exec() and CreateProcess(), the attacker might not be able to
combine multiple commands together in the same line.

From a weakness standpoint, these variants represent distinct programmer errors. In the first
variant, the programmer clearly intends that input from untrusted parties will be part of the
arguments in the command to be executed. In the second variant, the programmer does not intend
for the command to be accessible to any untrusted party, but the programmer probably has not
accounted for alternate ways in which malicious attackers can provide input.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD

Nature Type ID Name Page

ChildOf (C] 77 Improper Neutralization of Special Elements used in a 139
Command ('Command Injection’)

CanAlsoBe @ 88 Improper Delimitation of Arguments in a Command 186
(‘Argument Injection’)

CanFollow (E] 184  Incomplete Blacklist 435

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf C] 74 Improper Neutralization of Special Elements in Output Used 133
by a Downstream Component (‘'Injection’)

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 1872

145



CWE-78: Improper Neutralization of Special Elements

used in an OS Command ('OS Command Injection’)

CWE Version 3.4
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Relevant to the view "Development Concepts" (CWE-699)

Nature Type ID Name Page
ChildOf (C] 77 Improper Neutralization of Special Elements used in a 139
Command ('Command Injection’)

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)
Alternate Terms

Shell injection :

Shell metacharacters :
Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality Execute Unauthorized Code or Commands

Integrity DoS: Crash, Exit, or Restart

Availability Read Files or Directories

Non-Repudiation  Modify Files or Directories
Read Application Data
Modify Application Data
Hide Activities

Attackers could execute unauthorized commands,

which could then be used to disable the software, or

read and modify data for which the attacker does not
have permissions to access directly. Since the targeted
application is directly executing the commands instead of
the attacker, any malicious activities may appear to come
from the application or the application's owner.

Detection Methods
Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or require any code changes. Automated static analysis might not be able to detect the usage of
custom API functions or third-party libraries that indirectly invoke OS commands, leading to false
negatives - especially if the APl/library code is not available for analysis.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Effectiveness = Moderate
Manual Static Analysis

Since this weakness does not typically appear frequently within a single software package,
manual white box techniques may be able to provide sufficient code coverage and reduction
of false positives if all potentially-vulnerable operations can be assessed within limited time
constraints.

146



CWE Version 3.4
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Effectiveness = High
Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Bytecode Weakness Analysis - including disassembler + source code weakness analysis Binary
Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = High
Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial
Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial
Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High
Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High
Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High
Potential Mitigations

Phase: Architecture and Design

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD

If at all possible, use library calls rather than external processes to recreate the desired
functionality.

Phase: Architecture and Design
Phase: Operation
Strategy = Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed
in a particular directory or which commands can be executed by the software. OS-level examples
include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the
software to specify restrictions on file operations. This may not be a feasible solution, and it

only limits the impact to the operating system; the rest of the application may still be subject to
compromise. Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness = Limited

147



CWE Version 3.4
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

The effectiveness of this mitigation depends on the prevention capabilities of the specific
sandbox or jail being used and might only help to reduce the scope of an attack, such as
restricting the attacker to certain system calls or limiting the portion of the file system that can be
accessed.

Phase: Architecture and Design
Strategy = Attack Surface Reduction

For any data that will be used to generate a command to be executed, keep as much of that data
out of external control as possible. For example, in web applications, this may require storing the
data locally in the session's state instead of sending it out to the client in a hidden form field.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Architecture and Design
Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. For example, consider using the
ESAPI Encoding control [REF-45] or a similar tool, library, or framework. These will help the
programmer encode outputs in @ manner less prone to error.

Phase: Implementation
Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict whitelist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

If the program to be executed allows arguments to be specified within an input file or from
standard input, then consider using that mode to pass arguments instead of the command line.

CWE-78: Improper Neutralization of Special Elements
used in an OS Command ('OS Command Injection’)

Phase: Architecture and Design
Strategy = Parameterization

If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding,

and validation automatically, instead of relying on the developer to provide this capability at
every point where output is generated. Some languages offer multiple functions that can be
used to invoke commands. Where possible, identify any function that invokes a command shell
using a single string, and replace it with a function that requires individual arguments. These
functions typically perform appropriate quoting and filtering of arguments. For example, in C, the
system() function accepts a string that contains the entire command to be executed, whereas
execl(), execve(), and others require an array of strings, one for each argument. In Windows,
CreateProcess() only accepts one command at a time. In Perl, if system() is provided with an
array of arguments, then it will quote each of the arguments.

Phase: Implementation

Strategy = Input Validation

148



CWE Version 3.4
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does
not strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to
miss at least one undesirable input, especially if the code's environment changes. This can give
attackers enough room to bypass the intended validation. However, blacklists can be useful for
detecting potential attacks or determining which inputs are so malformed that they should be
rejected outright. When constructing OS command strings, use stringent whitelists that limit the
character set based on the expected value of the parameter in the request. This will indirectly
limit the scope of an attack, but this technique is less important than proper output encoding

and escaping. Note that proper output encoding, escaping, and quoting is the most effective
solution for preventing OS command injection, although input validation may provide some
defense-in-depth. This is because it effectively limits what will appear in output. Input validation
will not always prevent OS command injection, especially if you are required to support free-form
text fields that could contain arbitrary characters. For example, when invoking a mail program,
you might need to allow the subject field to contain otherwise-dangerous inputs like ;" and ">"
characters, which would need to be escaped or otherwise handled. In this case, stripping the
character might reduce the risk of OS command injection, but it would produce incorrect behavior
because the subject field would not be recorded as the user intended. This might seem to be a
minor inconvenience, but it could be more important when the program relies on well-structured
subject lines in order to pass messages to other components. Even if you make a mistake in your
validation (such as forgetting one out of 100 input fields), appropriate encoding is still likely to
protect you from injection-based attacks. As long as it is not done in isolation, input validation is
still a useful technique, since it may significantly reduce your attack surface, allow you to detect
some attacks, and provide other security benefits that proper encoding does not address.

Phase: Architecture and Design
Strategy = Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLS, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLSs,
and reject all other inputs.

Phase: Operation
Strategy = Compilation or Build Hardening

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn

Run the code in an environment that performs automatic taint propagation and prevents any
command execution that uses tainted variables, such as Perl's "-T" switch. This will force the
program to perform validation steps that remove the taint, although you must be careful to
correctly validate your inputs so that you do not accidentally mark dangerous inputs as untainted
(see CWE-183 and CWE-184).

Phase: Operation
Strategy = Environment Hardening

Run the code in an environment that performs automatic taint propagation and prevents any
command execution that uses tainted variables, such as Perl's "-T" switch. This will force the
program to perform validation steps that remove the taint, although you must be careful to
correctly validate your inputs so that you do not accidentally mark dangerous inputs as untainted
(see CWE-183 and CWE-184).

Phase: Implementation

149

sjuawa|3 [e10ads Jo uonezijesinaN Jadoidwi :8/-IMD



CWE-78: Improper Neutralization of Special Elements
used in an OS Command ('OS Command Injection’)

CWE Version 3.4
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Ensure that error messages only contain minimal details that are useful to the intended audience,
and nobody else. The messages need to strike the balance between being too cryptic and

not being cryptic enough. They should not necessarily reveal the methods that were used

to determine the error. Such detailed information can be used to refine the original attack to
increase the chances of success. If errors must be tracked in some detail, capture them in log
messages - but consider what could occur if the log messages can be viewed by attackers.
Avoid recording highly sensitive information such as passwords in any form. Avoid inconsistent
messaging that might accidentally tip off an attacker about internal state, such as whether a
username is valid or not. In the context of OS Command Injection, error information passed
back to the user might reveal whether an OS command is being executed and possibly which
command is being used.

Phase: Operation
Strategy = Sandbox or Jail

Use runtime policy enforcement to create a whitelist of allowable commands, then prevent use
of any command that does not appear in the whitelist. Technologies such as AppArmor are
available to do this.

Phase: Operation
Strategy = Firewall

Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.

Effectiveness = Moderate

An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Phase: Architecture and Design
Phase: Operation
Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Phase: Operation
Phase: Implementation
Strategy = Environment Hardening

When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Demonstrative Examples
Example 1:

This example code intends to take the name of a user and list the contents of that user's home
directory. It is subject to the first variant of OS command injection.

150



CWE Version 3.4
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Example Language: PHP (bad)

$userName = $_POST['user"];
$command ="Is -| /home/' . $userName;
system($command);

The $userName variable is not checked for malicious input. An attacker could set the $userName
variable to an arbitrary OS command such as:
Example Language: (attack)

rm -rf /

Which would result in $command being:

Example Language: (result)

Is -l /home/;rm -rf /

Since the semi-colon is a command separator in Unix, the OS would first execute the Is command,
then the rm command, deleting the entire file system.

Also note that this example code is vulnerable to Path Traversal (CWE-22) and Untrusted Search
Path (CWE-426) attacks.

Example 2:

This example is a web application that intends to perform a DNS lookup of a user-supplied domain
name. It is subject to the first variant of OS command injection.

Example Language: Perl (bad)

use CGI gw(:standard);
$name = param(‘name’);
$nslookup = "/path/to/nslookup™;
print header;
if (open($th, "$nslookup $name|")) {
while (<$fh>) {
print escapeHTML($_);
print "<br>\n";

}
close($fh);
}

Suppose an attacker provides a domain name like this:

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD

Example Language: (attack)

cwe.mitre.org%20%3B%20/bin/Is%20-|

The "%3B" sequence decodes to the ";" character, and the %20 decodes to a space. The open()
statement would then process a string like this:
Example Language: (result)

/path/to/nslookup cwe.mitre.org ; /bin/Is -l

As a result, the attacker executes the "/bin/Is -I" command and gets a list of all the files in the
program's working directory. The input could be replaced with much more dangerous commands,
such as installing a malicious program on the server.

Example 3:

151



CWE-78: Improper Neutralization of Special Elements
used in an OS Command ('OS Command Injection’)

CWE Version 3.4
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

The example below reads the name of a shell script to execute from the system properties. It is
subject to the second variant of OS command injection.

Example Language: Java (bad)

String script = System.getProperty("SCRIPTNAME");
if (script != null)
System.exec(script);

If an attacker has control over this property, then they could modify the property to point to a
dangerous program.

Example 4:

In the example below, a method is used to transform geographic coordinates from latitude and
longitude format to UTM format. The method gets the input coordinates from a user through

a HTTP request and executes a program local to the application server that performs the
transformation. The method passes the latitude and longitude coordinates as a command-line
option to the external program and will perform some processing to retrieve the results of the
transformation and return the resulting UTM coordinates.

Example Language: Java (bad)

public String coordinateTransformLatLonToUTM(String coordinates)

{

String utmCoords = null;

try {
String latlonCoords = coordinates;

Runtime rt = Runtime.getRuntime();

Process exec = rt.exec("cmd.exe /C latlon2utm.exe -" + latlonCoords);
/I process results of coordinate transform

...

catch(Exception e) {...}
return utmCoords;

}

However, the method does not verify that the contents of the coordinates input parameter includes
only correctly-formatted latitude and longitude coordinates. If the input coordinates were not
validated prior to the call to this method, a malicious user could execute another program local to
the application server by appending '&' followed by the command for another program to the end of
the coordinate string. The '&' instructs the Windows operating system to execute another program.

Example 5:

The following code is from an administrative web application designed to allow users to kick

off a backup of an Oracle database using a batch-file wrapper around the rman utility and then
run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single
command line parameter, which specifies what type of backup to perform. Because access to the
database is restricted, the application runs the backup as a privileged user.

Example Language: Java (bad)

String btype = request.getParameter("backuptype"”);
String cmd = new String(“cmd.exe /K \"

c:\\utiN\rmanDB.bat *

+btype+

"&&c:\\utl\\cleanup.bat\"")
System.Runtime.getRuntime().exec(cmd);

152



CWE Version 3.4

CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command

Injection’)

The problem here is that the program does not do any validation on the backuptype parameter
read from the user. Typically the Runtime.exec() function will not execute multiple commands,

but in this case the program first runs the cmd.exe shell in order to run multiple commands with a
single call to Runtime.exec(). Once the shell is invoked, it will happily execute multiple commands
separated by two ampersands. If an attacker passes a string of the form "& del c:\\dbms\\*.*", then
the application will execute this command along with the others specified by the program. Because
of the nature of the application, it runs with the privileges necessary to interact with the database,
which means whatever command the attacker injects will run with those privileges as well.

Observed Examples

Reference
CVE-1999-0067

CVE-2001-1246

CVE-2002-0061

CVE-2003-0041

CVE-2008-2575

CVE-2002-1898

CVE-2008-4304
CVE-2008-4796
CVE-2007-3572

CVE-2012-1988

Functional Areas

Description

Canonical example. CGI program does not neutralize "|" metacharacter when
invoking a phonebook program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0067

Language interpreter's mail function accepts another argument that is
concatenated to a string used in a dangerous popen() call. Since there is no
neutralization of this argument, both OS Command Injection (CWE-78) and
Argument Injection (CWE-88) are possible.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1246

Web server allows command execution using "|" (pipe) character.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0061

FTP client does not filter "|" from filenames returned by the server, allowing for
OS command injection.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0041

Shell metacharacters in a filename in a ZIP archive
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2575

Shell metacharacters in a telnet:// link are not properly handled when the
launching application processes the link.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1898

OS command injection through environment variable.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4304

OS command injection through https:// URLs
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4796

Chain: incomplete blacklist for OS command injection
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3572

Product allows remote users to execute arbitrary commands by creating a file
whose pathname contains shell metacharacters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1988

* Program Invocation

Affected Resources

e System Process

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type
MemberOf
MemberOf

MemberOf

ID Name Page

635 Weaknesses Originally Used by NVD from 2008 to 2016 635 1909

714 OWASP Top Ten 2007 Category A3 - Malicious File 629 1773
Execution

727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 1779

153

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD



CWE Version 3.4
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command

Injection’)

Nature Type ID Name Page

MemberOf 741 CERT C Secure Coding Standard (2008) Chapter 8- 734 1786
Characters and Strings (STR)

MemberOf 744  CERT C Secure Coding Standard (2008) Chapter 11 - 734 1790
Environment (ENV)

MemberOf 751 2009 Top 25 - Insecure Interaction Between 750 1794
Components

MemberOf 801 2010 Top 25 - Insecure Interaction Between 800 1795
Components

MemberOf 810 OWASP Top Ten 2010 Category Al - Injection 809 1798

MemberOf 845 The CERT Oracle Secure Coding Standard for 844 1803
Java (2011) Chapter 2 - Input Validation and Data
Sanitization (IDS)

MemberOf 864 2011 Top 25 - Insecure Interaction Between 900 1812
Components

MemberOf 875 CERT C++ Secure Coding Section 07 - Characters and 868 1817
Strings (STR)

MemberOf 878 CERT C++ Secure Coding Section 10 - Environment 868 1820
(ENV)

MemberOf 884 CWE Cross-section 884 1924

MemberOf 929 OWASP Top Ten 2013 Category Al - Injection 928 1830

MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 1854

MemberOf 1027 OWASP Top Ten 2017 Category Al - Injection 1026 1875

MemberOf 1131 CISQ Quality Measures - Security 1128 1881

MemberOf 1134 SEI CERT Oracle Secure Coding Standard for Java- 1133 1883
Guidelines 00. Input Validation and Data Sanitization
(IDS)

MemberOf 1165 SEI CERT C Coding Standard - Guidelines 10. 1154 1899

Environment (ENV)
MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous 1200 1943
Software Errors

Notes
Terminology

The "OS command injection” phrase carries different meanings to different people. For some
people, it only refers to cases in which the attacker injects command separators into arguments
for an application-controlled program that is being invoked. For some people, it refers to any
type of attack that can allow the attacker to execute OS commands of their own choosing. This
usage could include untrusted search path weaknesses (CWE-426) that cause the application
to find and execute an attacker-controlled program. Further complicating the issue is the case
when argument injection (CWE-88) allows alternate command-line switches or options to be
inserted into the command line, such as an "-exec" switch whose purpose may be to execute the
subsequent argument as a command (this -exec switch exists in the UNIX "find" command, for
example). In this latter case, however, CWE-88 could be regarded as the primary weakness in a
chain with CWE-78.

Research Gap

CWE-78: Improper Neutralization of Special Elements
used in an OS Command ('OS Command Injection’)

More investigation is needed into the distinction between the OS command injection variants,
including the role with argument injection (CWE-88). Equivalent distinctions may exist in other
injection-related problems such as SQL injection.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER OS Command Injection

154



CWE Version 3.4
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command

Injection’)
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws

CERT C Secure Coding ENVO03-C Sanitize the environment when invoking
external programs

CERT C Secure Coding ENV33-C CWE More Specific Do not call system()

CERT C Secure Coding STR02-C Sanitize data passed to complex
subsystems
WASC 31 OS Commanding
The CERT Oracle Secure IDS07-J Do not pass untrusted, unsanitized data
Coding Standard for Java to the Runtime.exec() method
(2011)
Software Fault Patterns SFP24 Tainted input to command
OMG ASCSM ASCSM-
CWE-78

Related Attack Patterns

CAPEC-ID Attack Pattern Name

6 Argument Injection

15 Command Delimiters

43 Exploiting Multiple Input Interpretation Layers

88 OS Command Injection

108 Command Line Execution through SQL Injection
References

[REF-140]Greg Hoglund and Gary McGraw. "Exploiting Software: How to Break Code". 2004
February 7. Addison-Wesley. < https://www.amazon.com/Exploiting-Software-How-Break-Code/
dp/0201786958 >.

[REF-685]Pascal Meunier. "Meta-Character Vulnerabilities". 2008 February 0. < http://
www.cs.purdue.edu/homes/cs390s/slides/week09.pdf >.

[REF-686]Robert Auger. "OS Commanding". 2009 June. < http://projects.webappsec.org/OS-
Commanding >.

[REF-687]Lincoln Stein and John Stewart. "The World Wide Web Security FAQ". 2002 February 4.
< http://www.w3.org/Security/Fag/wwwsf4.html >.

[REF-688]Jordan Dimov, Cigital. "Security Issues in Perl Scripts". < http://www.cgisecurity.com/lib/
sips.html >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-690]Frank Kim. "Top 25 Series - Rank 9 - OS Command Injection”. 2010 February 4. SANS
Software Security Institute. < http://blogs.sans.org/appsecstreetfighter/2010/02/24/top-25-series-
rank-9-os-command-injection/ >.

[REF-45]O0WASP. "OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >,

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

155

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD



CWE-79: Improper Neutralization of Input During

Web Page Generation (‘Cross-site Scripting')

CWE Version 3.4
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

CWE-79: Improper Neutralization of Input During Web Page Generation
(‘'Cross-site Scripting')

Weakness ID : 79 Status: Stable
Structure : Simple
Abstraction : Base

Description

The software does not neutralize or incorrectly neutralizes user-controllable input before it is placed
in output that is used as a web page that is served to other users.

Extended Description

Cross-site scripting (XSS) vulnerabilities occur when:

1. Untrusted data enters a web application, typically from a web request.

2. The web application dynamically generates a web page that contains this untrusted data.
3. During page generation, the application does not prevent the data from containing content
that is executable by a web browser, such as JavaScript, HTML tags, HTML attributes, mouse
events, Flash, ActiveX, etc.

4. A victim visits the generated web page through a web browser, which contains malicious
script that was injected using the untrusted data.

5. Since the script comes from a web page that was sent by the web server, the victim's web
browser executes the malicious script in the context of the web server's domain.

6. This effectively violates the intention of the web browser's same-origin policy, which states
that scripts in one domain should not be able to access resources or run code in a different
domain.

There are three main kinds of XSS:

Type 1: Reflected XSS (or Non-Persistent) - The server reads data directly from the HTTP
request and reflects it back in the HTTP response. Reflected XSS exploits occur when an
attacker causes a victim to supply dangerous content to a vulnerable web application, which
is then reflected back to the victim and executed by the web browser. The most common
mechanism for delivering malicious content is to include it as a parameter in a URL that is
posted publicly or e-mailed directly to the victim. URLs constructed in this manner constitute
the core of many phishing schemes, whereby an attacker convinces a victim to visit a URL
that refers to a vulnerable site. After the site reflects the attacker's content back to the victim,
the content is executed by the victim's browser.

Type 2: Stored XSS (or Persistent) - The application stores dangerous data in a database,
message forum, visitor log, or other trusted data store. At a later time, the dangerous data

is subsequently read back into the application and included in dynamic content. From an
attacker's perspective, the optimal place to inject malicious content is in an area that is
displayed to either many users or particularly interesting users. Interesting users typically
have elevated privileges in the application or interact with sensitive data that is valuable to
the attacker. If one of these users executes malicious content, the attacker may be able to
perform privileged operations on behalf of the user or gain access to sensitive data belonging
to the user. For example, the attacker might inject XSS into a log message, which might not
be handled properly when an administrator views the logs.

Type 0: DOM-Based XSS - In DOM-based XSS, the client performs the injection of XSS into
the page; in the other types, the server performs the injection. DOM-based XSS generally
involves server-controlled, trusted script that is sent to the client, such as Javascript that
performs sanity checks on a form before the user submits it. If the server-supplied script
processes user-supplied data and then injects it back into the web page (such as with
dynamic HTML), then DOM-based XSS is possible.

156



CWE Version 3.4
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

Once the malicious script is injected, the attacker can perform a variety of malicious activities. The
attacker could transfer private information, such as cookies that may include session information,
from the victim's machine to the attacker. The attacker could send malicious requests to a web

site on behalf of the victim, which could be especially dangerous to the site if the victim has
administrator privileges to manage that site. Phishing attacks could be used to emulate trusted web
sites and trick the victim into entering a password, allowing the attacker to compromise the victim's
account on that web site. Finally, the script could exploit a vulnerability in the web browser itself
possibly taking over the victim's machine, sometimes referred to as "drive-by hacking."

In many cases, the attack can be launched without the victim even being aware of it. Even with
careful users, attackers frequently use a variety of methods to encode the malicious portion of the
attack, such as URL encoding or Unicode, so the request looks less suspicious.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (C] 74 Improper Neutralization of Special Elements in Output Used 133
by a Downstream Component (‘Injection’)

ParentOf V] 80 Improper Neutralization of Script-Related HTML Tagsina 169
Web Page (Basic XSS)

ParentOf V] 81 Improper Neutralization of Script in an Error Message Web 171
Page

ParentOf V] 83 Improper Neutralization of Script in Attributes in a Web Page 175

ParentOf V] 84 Improper Neutralization of Encoded URI Schemes in a Web 178
Page

ParentOf V] 85 Doubled Character XSS Manipulations 180

ParentOf V] 86 Improper Neutralization of Invalid Characters in Identifiers in 182
Web Pages

ParentOf V] 87 Improper Neutralization of Alternate XSS Syntax 184

ParentOf co 692  Incomplete Blacklist to Cross-Site Scripting 1356

PeerOf & 352  Cross-Site Request Forgery (CSRF) 782

PeerOf E] 494  Download of Code Without Integrity Check 1062

CanFollow E] 113  Improper Neutralization of CRLF Sequences in HTTP 256
Headers ("HTTP Response Splitting")

CanFollow (B) 184 Incomplete Blacklist 435

CanPrecede @ 494  Download of Code Without Integrity Check 1062

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf @ 74 Improper Neutralization of Special Elements in Output Used 133
by a Downstream Component (‘Injection’)

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 1872

Relevant to the view "Development Concepts" (CWE-699)

157

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD



CWE Version 3.4
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

Nature Type ID Name Page

MemberOf 442  Web Problems 1767

ChildOf (C] 74 Improper Neutralization of Special Elements in Output Used 133
by a Downstream Component ('Injection’)

ParentOf V] 80 Improper Neutralization of Script-Related HTML Tagsina 169
Web Page (Basic XSS)

ParentOf V] 81 Improper Neutralization of Script in an Error Message Web 171
Page

ParentOf V] 83 Improper Neutralization of Script in Attributes in a Web Page 175

ParentOf V] 84 Improper Neutralization of Encoded URI Schemes ina Web 178
Page

ParentOf V] 85 Doubled Character XSS Manipulations 180

ParentOf (V] 86 Improper Neutralization of Invalid Characters in Identifiers in 182
Web Pages

ParentOf V] 87 Improper Neutralization of Alternate XSS Syntax 184

Weakness Ordinalities
Resultant :
Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Paradigm : Web Based (Prevalence = Often)
Technology : Web Server (Prevalence = Often)
Background Details
Same Origin Policy
The same origin policy states that browsers should limit the resources accessible to scripts running
on a given web site, or "origin”, to the resources associated with that web site on the client-side,
and not the client-side resources of any other sites or "origins". The goal is to prevent one site from

being able to modify or read the contents of an unrelated site. Since the World Wide Web involves
interactions between many sites, this policy is important for browsers to enforce.

Domain

The Domain of a website when referring to XSS is roughly equivalent to the resources associated
with that website on the client-side of the connection. That is, the domain can be thought of as all
resources the browser is storing for the user's interactions with this particular site.

CWE-79: Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting')

Alternate Terms
XSS : "XSS" is a common abbreviation for Cross-Site Scripting.
HTML Injection : "HTML injection" is used as a synonym of stored (Type 2) XSS.

CSS : In the early years after initial discovery of XSS, "CSS" was a commonly-used acronym.
However, this would cause confusion with "Cascading Style Sheets," so usage of this acronym has
declined significantly.

Likelihood Of Exploit
High
Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism
Confidentiality Read Application Data

158



CWE Version 3.4

CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

Scope

Integrity
Confidentiality
Availability

Confidentiality
Integrity
Availability
Access Control

Detection Methods

Impact

The most common attack performed with cross-site
scripting involves the disclosure of information stored in
user cookies. Typically, a malicious user will craft a client-
side script, which -- when parsed by a web browser --
performs some activity (such as sending all site cookies to
a given E-mail address). This script will be loaded and run
by each user visiting the web site. Since the site requesting
to run the script has access to the cookies in question, the
malicious script does also.

Execute Unauthorized Code or Commands

In some circumstances it may be possible to run arbitrary
code on a victim's computer when cross-site scripting is
combined with other flaws.

Execute Unauthorized Code or Commands

Bypass Protection Mechanism

Read Application Data

The consequence of an XSS attack is the same regardless
of whether it is stored or reflected. The difference is in how
the payload arrives at the server. XSS can cause a variety
of problems for the end user that range in severity from an
annoyance to complete account compromise. Some cross-
site scripting vulnerabilities can be exploited to manipulate
or steal cookies, create requests that can be mistaken for
those of a valid user, compromise confidential information,
or execute malicious code on the end user systems for

a variety of nefarious purposes. Other damaging attacks
include the disclosure of end user files, installation of
Trojan horse programs, redirecting the user to some other
page or site, running "Active X" controls (under Microsoft
Internet Explorer) from sites that a user perceives as
trustworthy, and modifying presentation of content.

Automated Static Analysis

Likelihood

Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to m