
Being Explicit About
Weaknesses

Robert A. Martin - MITRE
Sean Barnum - Cigital

Steve Christey - MITRE

1 March 2007

Software Security
Assurance

Software Assurance

OSDOSD

DHSDHS NISTNIST
NSANSA

MITRE © 2007 Slide 4

NIST SAMATE
Workshop:
Defining the State of
the Art in Software
Assurance Tools (10-
11 Aug 2005)

MITRE © 2007 Slide 5

MITRE © 2007 Slide 6

Goal of the Common Weakness
Enumeration Initiative

To improve the quality of software with respect to
known security issues within source code

− define a unified measurable set of weaknesses

− enable more effective discussion, description,
selection and use of software security tools and
services that can find these weaknesses

MITRE © 2007 Slide 7

Clarifying software weaknesses:
Enabling communication (1 of 2)

Systems Development Manager Issue Areas:
− What are the software weaknesses I need to protect against

Architecture, design, code
− Can I look through the issues by technologies, risks, severity
− What have the pieces of my system been vetted for?

COTS packages, organic development, open source
− Identify tools to vet code based on tool coverage

How effective are the tools?

Assessment Tool Vendors Issue Areas:
− Express what my tool does
− Succinctly identify areas I should expand coverage

MITRE © 2007 Slide 8

Clarifying software weaknesses:
Enabling communication (2 of 2)

COTS Product Vendor Issue Areas:
− What have I vetted my applications for?
− What do my customers want me to vet for?

Researcher Issue Areas:
− Quickly understand what is known
− Easily identify areas to contribute/refine/correct

Educator Issue Areas:
− Train students with the same concepts they’ll use in practice

Operations Manager Issue Areas:
− What issues have my applications been vetted for?

(COTS/Organic/OS)
− What types of issues are more critical for my technology?
− What types of issues are more likely to be successfully

exploited?

MITRE © 2007 Slide 9

CWE Launched March 2006 with draft 1, now at draft 5

[cwe.mitre.org]

Previously Published
Vulnerability Taxonomy

Work
Secure

Software’s
John

Viega’s
CLASP and
Taxonomy

Cigital’s
Gary

McGraw’s
Work and
Taxonomy

Microsoft’s
Mike

Howard’s
Work and
Taxonomy

OWASP’s
Checklist

and
Taxonomy

CVE-based
PLOVER Work

Fortify’s
Brian

Chess’s
Work and
Taxonomy

Dictionary

Common Weakness
Enumeration (CWE)

--

- call & count the same
 ● enable metrics

Klocwork’s
Checklist

and
Taxonomy

Ounce
Lab’s

Taxonomy

Gramma
Tech’s

Checklist
and

Taxonomy

Kestrel Technology

NSA/CTC

Watchfire

Stanford

MIT LL

SEI
Purdue

GMU
IBM

Oracle

JMU

UC Berkeley

KDM Analytics
Unisys

UMD NCSU

Core Security
Coverity

Cenzic

SPI Dynamics

Parasoft

VERACODE

Security Institute

Building
Consensus
About A Common
Enumeration

Status
(as of Feb 1, 2007)
• 21,990 unique CVE names

CVE Growth

Unique CVE Names

Vulnerability Type Trends:
A Look at the CVE List (2001 - 2006)

•15%
“other”

MITRE © 2007 Slide 13

But…

What about the 15% “Other” in 2006?
− What is up-and-coming? What’s important but below the

radar?
Variants matter in evaluating software quality

− Example: obvious XSS vs. non-standard browser
behaviors that bypass filters

Bug X might be “resultant from” or “primary to” Bug Y, yet
both are thought of as vulnerabilities
− E.g. integer overflows leading to buffer overflows
− How can we tell if things are improving?

Maybe some issues are symptoms of deeper problems
− Error: Couldn’t open file “lang-

<SCRIPT>alert(‘XSS’)</SCRIPT>.txt”

Removing and Preventing the Vulnerabilities
Requires More Specific Definitions…

Cross-site scripting (XSS):
• Basic XSS
• XSS in error pages
• Script in IMG tags
• XSS using Script in Attributes
• XSS using Script Via Encoded URI Schemes
• Doubled character XSS manipulations, e.g. '<<script’
• Invalid Characters in Identifiers
• Alternate XSS syntax

Buffer Errors
• Unbounded Transfer ('classic overflow')
• Write-what-where condition
• Boundary beginning violation ('buffer underwrite')
• Out-of-bounds Read
• Wrap-around error
• Unchecked array indexing
• Length Parameter Inconsistency
• Other length calculation error
• Miscalculated null termination
• String Errors

Relative Path Traversal
• Path Issue - dot dot slash - '../filedir'
• Path Issue - leading dot dot slash - '/../filedir'
• Path Issue - leading directory dot dot slash - '/directory/../filename'
• Path Issue - directory doubled dot dot slash - 'directory/../../filename'
• Path Issue - dot dot backslash - '..\filename'
• Path Issue - leading dot dot backslash - '\..\filename'
• Path Issue - leading directory dot dot backslash - '\directory\..\filename'
• Path Issue - directory doubled dot dot backslash - 'directory\..\..\filename'
• Path Issue - triple dot - '...'
• Path Issue - multiple dot - '....'
• Path Issue - doubled dot dot slash - '....//'
• Path Issue - doubled triple dot slash - '.../...//'

MITRE © 2007 Slide 15

… which led to the Preliminary List of Vulnerability
Examples for Researchers (PLOVER)

Initial goal: extend vulnerability auditing checklist
Collected extensive CVE examples

− Emphasis on 2005 and 2006
− Reviewed all issues flagged "other“

300 weakness types, 1500 real-world CVE examples
Identified classification difficulties

− Primary vs. resultant vulns
− Multi-factor issues
− Uncategorized examples
− Tried to separate attacks from vulnerabilities

Beginning vulnerability theory
− Properties
− Manipulations
− Consequences

One of the 3 major sources of CWE

[BUFF] Buffer overflows, format strings, etc. 10 types
[SVM] Structure and Validity Problems 10 types
[SPEC] Special Elements (Characters or Reserved Words) 19 types
[SPECM] Common Special Element Manipulations 11 types
[SPECTS] Technology-Specific Special Elements 17 types
[PATH] Pathname Traversal and Equivalence Errors 47 types
[CP] Channel and Path Errors 13 types
[CCC] Cleansing, Canonicalization, and Comparison Errors 16 types
[INFO] Information Management Errors 19 types
[RACE] Race Conditions 6 types
[PPA] Permissions, Privileges, and ACLs 20 types
[HAND] Handler Errors 4 types
[UI] User Interface Errors 7 types
[INT] Interaction Errors 7 types
[INIT] Initialization and Cleanup Errors 6 types
[RES] Resource Management Errors 11 types
[NUM] Numeric Errors 6 types
[AUTHENT] Authentication Error 12 types
[CRYPTO] Cryptographic errors 13 types
[RAND] Randomness and Predictability 9 types
[CODE] Code Evaluation and Injection 4 types
[ERS] Error Conditions, Return Values, Status Codes 4 types
[VER] Insufficient Verification of Data 7 types
[MAID] Modification of Assumed-Immutable Data 2 types
[MAL] Product-Embedded Malicious Code 7 types
[ATTMIT] Common Attack Mitigation Failures 3 types
[CONT] Containment errors (container errors) 3 types
[MISC] Miscellaneous WIFFs 7 types

PLOVER:
300 “types”of Weaknesses, 1500 real-world CVE examples

MITRE © 2007 Slide 17

Vulnerability Theory:
Problem Statement and Rationale

With 600+ variants, what are the main themes?
Why is it so hard to classify vulnerabilities cleanly?

− CWE, Pernicious Kingdoms, OWASP, others have had similar
difficulties

Same terminology used in multiple dimensions
− Frequent mix of attacks, threats, weaknesses/faults, consequences
− E.g. buffer overflows, directory traversal

Goal: Increase understanding of vulnerabilities
− Vocabulary for more precise discussion
− Label current inconsistencies in terminology and taxonomy
− Codify some of the researchers’ instinct

One possible application: gap analysis, defense, and design
recommendations
− “Algorithms X and Y both assume input has property P. Attack pattern

A manipulates P to compromise X. Would A succeed against Y?”
− “Technology Z has properties P1 and P2. What vulnerability classes

are most likely to be present?”
− “Why is XSS so obvious but so hard to eradicate?”

MITRE © 2007 Slide 18

Some Basic Concepts, By Example

Role:AttackerRole:Attacker
Actor: ConsultantActor: Consultant

Role: VictimRole: Victim
Actor: ServiceActor: Service

Role: AttackerRole: Attacker
Actor: UserActor: User

TelnetTelnet DNSDNS

11

22

Buffer overflow using long DNS responseBuffer overflow using long DNS response

33
1)1) Attacker (as Attacker (as useruser) sends) sends

directivedirective over Telnet over Telnet channelchannel::
““Log me inLog me in””

2)2) Server (the Server (the targettarget) sends) sends
directivedirective over DNS over DNS channelchannel::
““Tell me IPTell me IP’’s hostnames hostname””

3)3) DNS DNS consultantconsultant (controlled by (controlled by
attacker) returns hostnameattacker) returns hostname
with with propertyproperty ““>300 BYTES>300 BYTES””

4)4) Buffer overflow activatedBuffer overflow activated

MITRE © 2007 Slide 19

Artifact Labels

Interaction Point
− A relevant point within the product where a user interacts

with the product
Intermediate Fault

− A behavior by the product that has not yet affected
correctness, but will

Control Transfer Point
− The point where the program’s behavior changes from

correct to incorrect
Activation Point

− The point where the “payload” is activated and performs
the actions intended by the attacker

Resultant Fault
− A fault after a “Primary” fault that is also where incorrect

behavior occurs

MITRE © 2007 Slide 20

Artifact Labels - Example

11 print print HTTPresponseHeaderHTTPresponseHeader;;

22 print print ““<title>Hello World</title><title>Hello World</title>””;;

33 ftype ftype = = HTTP_Query_ParamHTTP_Query_Param((““typetype””););

44 str str = = ““/tmp/tmp””;;

55 strcatstrcat((strstr, , ftypeftype);); strcatstrcat((strstr, , ““..datdat””););

66 handle = handle = fileOpenfileOpen((strstr, , ””readread””););

77 while((while((line=readFileline=readFile(handle)))(handle)))

88 {{

99 line=stripTagsline=stripTags(line, (line, ““scriptscript””););

1010 print line; print line;

1111 print print ““<<brbr>\n>\n””;;

1212 }}

1313 close(handle);close(handle);

InteractionInteraction

ActivationActivation
(External(External
Process)Process)

Control TransferControl Transfer

Intermediate FaultIntermediate Fault

XSSXSS DirectoryDirectory
TraversalTraversal

BufferBuffer
OverflowOverflow

InteractionInteraction InteractionInteraction InteractionInteraction

Control TransferControl Transfer

ActivationActivation
(return from(return from
function)function)

Control TransferControl Transfer

ActivationActivation

XSS XSS ––
WrongWrong
protectionprotection

BufBuf ––
MissingMissing
protectionprotection

TravTrav ––
MissingMissing
protectionprotection

Manipulation:Manipulation:
Code into DataCode into Data

Manipulation:Manipulation:
EquivalenceEquivalence

Manipulation:Manipulation:
Excess lengthExcess length

Manipulation:Manipulation:
Reference ControlledReference Controlled
ResourceResource

Previously Published
Vulnerability Taxonomy

Work
Secure

Software’s
John

Viega’s
CLASP and
Taxonomy

Cigital’s
Gary

McGraw’s
Work and
Taxonomy

Microsoft’s
Mike

Howard’s
Work and
Taxonomy

OWASP’s
Checklist

and
Taxonomy

CVE-based
PLOVER Work

Fortify’s
Brian

Chess’s
Work and
Taxonomy

Dictionary

Common Weakness
Enumeration (CWE)

--

- call & count the same
 ● enable metrics

Klocwork’s
Checklist

and
Taxonomy

Ounce
Lab’s

Taxonomy

Gramma
Tech’s

Checklist
and

Taxonomy

Kestrel Technology

NSA/CTC

Watchfire

Stanford

MIT LL

SEI
Purdue

GMU
IBM

Oracle

JMU

UC Berkeley

KDM Analytics
Unisys

UMD NCSU

Core Security
Coverity

Cenzic

SPI Dynamics

Parasoft

VERACODE

Security Institute

Building
Consensus
About A Common
Enumeration

MITRE © 2007 Slide 22

Where Did We Start?

Objective: To identify, integrate and effectively describe
common software weaknesses known to the industry and
software assurance community

Leveraging taxonometric approach for list integration
− Identify and review dozens of existing taxonomies

Academic and professional (Aslam, RISOS, Landwehr,
Bishop, Protection Analysis, etc)

High level lists
– OWASP Top 10, 19 Deadly Sins, WASC, etc.

In-depth practical
– PLOVER, CLASP, 7 Pernicious Kingdoms

− Create visualizations for effective comparison and analysis
− Integrating taxonomies

Normalizing and deconfliction
Finding a proper balance between breadth & depth

MITRE © 2007 Slide 23

7 Kingdoms

CLASP

Tool A

Microsoft
PLOVER

OWASP
Protection
Analysis

RISOS

Bishop

Landwehr

Aslam

Weber

Tool B
WASC

MITRE © 2007 Slide 24

Formalizing a Schema for Weaknesses

Identifying Information
 CWE ID
 Name

Describing Information
 Description
 Alternate Terms
 Demonstrative Examples
 Observed Examples
 Context Notes
 Source
 References

Scoping & Delimiting Information
 Functional Area
 Likelihood of Exploit
 Common Consequences
 Enabling Factors for Exploitation
 Common Methods of Exploitation
 Applicable Platforms
 Time of Introduction

Prescribing Information
 Potential Mitigations

Enhancing Information
 Weakness Ordinality
 Causal Nature
 Related Weaknesses
 Taxonomy Mapping
 Research Gaps

MITRE © 2007 Slide 25

CWE-79 Cross-site scripting (XSS)
[cwe.mitre.org/data/definition/79.html]

MITRE © 2007 Slide 26

CWE Cross-Section:
20 of the Usual Suspects

 Absolute Path Traversal (CWE-36)
 Cross-site scripting (XSS) (CWE-79)
 Cross-Site Request Forgery (CSRF) (CWE-352)
 CRLF Injection (CWE-93)
 Error Message Information Leaks (CWE-209)
 Format string vulnerability (CWE-134)
 Hard-Coded Password (CWE-259)
 Insecure Default Permissions (CWE-276)
 Integer overflow (wrap or wraparound) (CWE-190)
 OS Command Injection (shell metacharacters) (CWE-78)
 PHP File Inclusion (CWE-98)
 Plaintext password Storage (CWE-256)
 Race condition (CWE-362)
 Relative Path Traversal (CWE-23)
 SQL injection (CWE-89)
 Unbounded Transfer ('classic buffer overflow') (CWE-120)
 UNIX symbolic link (symlink) following (CWE-61)
 Untrusted Search Path (CWE-426)
 Weak Encryption (CWE-326)
 Web Parameter Tampering (CWE-472)

MITRE © 2007 Slide 27

CWE Cross-Section:
22 More Suspects
 Design-Related

− High Algorithmic Complexity (CWE-407)
− Origin Validation Error (CWE-346)
− Small Space of Random Values (CWE-334)
− Timing Discrepancy Information Leak (CWE-208)
− Unprotected Windows Messaging Channel ('Shatter') (CWE-422)
− Inherently Dangerous Functions, e.g. gets (CWE-242)
− Logic/Time Bomb (CWE-511)

 Low-level coding
− Assigning instead of comparing (CWE-481)
− Double Free (CWE-415)
− Null Dereference (CWE-476)
− Unchecked array indexing (CWE-129)
− Unchecked Return Value (CWE-252)
− Path Equivalence - trailing dot - 'file.txt.‘ (CWE-42)

 Newer languages/frameworks
− Deserialization of untrusted data (CWE-502)
− Information leak through class cloning (CWE-498)
− .NET Misconfiguration: Impersonation (CWE-520)
− Passing mutable objects to an untrusted method (CWE-375)

 Security feature failures
− Failure to check for certificate revocation (CWE-299)
− Improperly Implemented Security Check for Standard (CWE-358)
− Failure to check whether privileges were dropped successfully (CWE-273)
− Incomplete Blacklist (CWE-184)
− Use of hard-coded cryptographic key (CWE-321)

… and about
550 more

MITRE © 2007 Slide 28

Where Are We Today?

Quality
− “Kitchen Sink” – In a good way

Many taxonomies, products, perspectives
Varying levels of abstraction

– Directory traversal, XSS variants
− Mixes attack, behavior, feature, and flaw

Predominant in current research vocabulary, especially web
application security

Complex behaviors don’t have simple terms
New/rare weaknesses don’t have terms

Quantity
− Draft 5 - over 600 entries
− Currently integrating content from top 15 – 20 tool vendors and

security weaknesses “knowledge holders” under NDA

Accessibility
− Website is live with:

Historical materials, papers, alphabetical full enumeration,
taxonomy HTML tree, CWE in XML, ability to URL reference
individual CWEs, etc

MITRE © 2007 Slide 29

Using A Unilateral NDA with MITRE to Bring in Info

Purpose:
 Sharing the proprietary/company confidential information contained in the

underlying Knowledge Repository of the Knowledge Owner’s Capability for the
sole purpose of establishing a public Common Weakness Enumeration (CWE)
dictionary that can be used by vendors, customers, and researchers to
describe software, design, and architecture related weaknesses that have
security ramifications.

 The individual contributions from numerous organizations, based on their
proprietary/company-confidential information, will be combined into a
consolidated collection of weakness descriptions and definitions with the
resultant collection being shared publicly.

 The consolidated collection of knowledge about weaknesses in software,
design, and architecture will make no reference to the source of the
information used to describe, define, and explain the individual weaknesses.

MITRE © 2007 Slide 30

Coverage of CWE

Draft
Draft

MITRE © 2007 Slide 31

Covered CWEs - By Number of Tools

Draft
Draft

MITRE © 2007 Slide 32

 AppSIC
 Cenzic
 CERIAS/Purdue University
 CERT/CC

 CodescanLabs
 Core Security
 Coverity

 Interoperability Clearing House
 JHU/APL
 JMU
 Kestrel Technology
 KDM Analytics

 McAfee/Foundstone
 Microsoft

 NSA
 Oracle

 OWASP
 Palamida
 Parasoft
 PolySpace Technologies
 proServices Corporation
 SecurityInnovation

 Security University
 Semantic Designs
 SofCheck
 SPI Dynamics
 UNISYS
 VERACODE
 Watchfire
 WASC
 Whitehat Security, Inc.

 Cigital

 DHS
 Fortify
 IBM

 Klocwork

 MIT Lincoln Labs
 MITRE
 North Carolina State University
 NIST

 Ounce Labs

 Secure Software

 Tim Newsham

Initial Set of Organizations Volunteering to help
with the Common Flaw Enumeration

To join send e-mail to cwe@mitre.org

Current Community Contributing to the Common
Weakness Enumeration

MITRE © 2007 Slide 33

Planned Improvements - Content

Metadata tagging
− Language, OS, etc.
− Time of Introduction
− Vulnerability theory
− Other ideas?

Content cleanup
− Consistent naming
− Structural refactoring
− Attack-centric wording (align to CAPEC)

Formalization
− SBVR

MITRE © 2007 Slide 34

Planned Improvements - Site Usability

Search
− Select a subset of the catalog using any of the

metadata
− Display results and make available as XML
− Predefined searches

Graphical Visualization
− Dynamic adjustment and navigation
− Alternate taxonomies

Previously Published
Vulnerability Taxonomy

Work
Secure

Software’s
John

Viega’s
CLASP and
Taxonomy

Cigital’s
Gary

McGraw’s
Work and
Taxonomy

Microsoft’s
Mike

Howard’s
Work and
Taxonomy

OWASP’s
Checklist

and
Taxonomy

CVE-based
PLOVER Work

Fortify’s
Brian

Chess’s
Work and
Taxonomy

Dictionary

Common Weakness
Enumeration (CWE)

--

- call & count the same
 ● enable metrics

Klocwork’s
Checklist

and
Taxonomy

Ounce
Lab’s

Taxonomy

Gramma
Tech’s

Checklist
and

Taxonomy

Kestrel Technology

NSA/CTC

Watchfire

Stanford

MIT LL

SEI
Purdue

GMU
IBM

Oracle

JMU

UC Berkeley

KDM Analytics
Unisys

UMD NCSU

Core Security
Coverity

Cenzic

SPI Dynamics

Parasoft

VERACODE

Security Institute

Building
Consensus
About A Common
Enumeration

SEI CERT
Secure
Coding
Standards
Effort

OWASP
&

WASC

DHS/NIST
SAMATE

Tool
Assessment Reference

Dataset

Center for
Assured SW

Reference
Dataset

SwA SIG

DHS’s SwA
CBK

Previously Published
Vulnerability Taxonomy

Work
Secure

Software’s
John

Viega’s
CLASP and
Taxonomy

Cigital’s
Gary

McGraw’s
Work and
Taxonomy

Microsoft’s
Mike

Howard’s
Work and
Taxonomy

OWASP’s
Checklist

and
Taxonomy

CVE-based
PLOVER Work

Fortify’s
Brian

Chess’s
Work and
Taxonomy

CWE
Compatibility

List of CWEs
that a

Tool finds

Dictionary

Common Weakness
Enumeration (CWE)

--

- call & count the same
 ● enable metrics

Klocwork’s
Checklist

and
Taxonomy

Ounce
Lab’s

Taxonomy

Gramma
Tech’s

Checklist
and

Taxonomy

DHS’s BSI
Web site

Kestrel Technology

NSA/CTC

Watchfire

Stanford

MIT LL

SEI
Purdue

GMU
IBM

Oracle

JMU

UC Berkeley

KDM Analytics
Unisys

UMD NCSU

Core Security
Coverity

Cenzic

SPI Dynamics

Parasoft

VERACODE

Security Institute

CVE and NVD
using CWEs

Building
Consensus
About A Common
Enumeration

MITRE © 2007 Slide 37

CWE Compatibility and
Effectiveness Program Launched

cwe.mitre.org/compatible/

MITRE © 2007 Slide 38

CWE Compatibility and
Effectiveness Process Posted

cwe.mitre.org/compatible/program.html

MITRE © 2007 Slide 39

CWE Compatibility and
Effectiveness Requirements Posted

cwe.mitre.org/compatible/requirements.html

MITRE © 2007 Slide 40

CWE-Compatible & CWE-Effective

CWE Compatible:
1. CWE-compatible “intent” declared

− vendor with shipping product declares intent to add support for CWE ids
2. CWE-compatible “output and searchable” declared

− vendor declares that their shipping product provides CWE ids and supports searching
3. CWE-compatible “mapping accuracy” compatibility questionnaire posted

− questionnaire for mapping accuracy posted to CWE web site
4. CWE-compatible means it meets the following requirements:

− Can find items by CWE id (CWE searchable)
− Includes CWE id in output for each item (CWE output)
− Explain the CWE functionality in their item’s documentation (CWE documentation)
− Provided MITRE with “weakness” item mappings to validate the accuracy of the product

or services CWE ids
− Makes a good faith effort to keep mappings accurate

CWE-Effective:
1. CWE-effectiveness list posted

− CWE ids that the tool is declaring “effectiveness for” is posted to CWE web site
2. CWE-effectiveness test results posted

− CWE test cases obtained from NIST reference data set generator by tool owner
− Scoring sheet for requested CWE test cases provided to MITRE by NIST
− Tool results from evaluating CWE-based sample applications (CWE test cases) provided

to MITRE for processing and posting

MITRE © 2007 Slide 41

The Road Ahead for the CWE effort

 Finish the strawman dictionary/taxonomy
 Create a web presence
 Get NDAs with knowledgeable organizations
 Merge information from NDA’d sources
 Get agreement on the detailed enumeration
 Dovetail with test cases (NIST/CAS)
 Dovetail with attack patterns (Cigital)
 Dovetail with coding standards (SEI CERT/CC)
 Dovetail with BSI, CBK, OMG SwA SIG, ISO/IEC,...
 Create alternate views into the CWE dictionary
 Establish CWE Editorial Board (roles & members)
 Establish CWE Compatibility Requirements
 Collect CWE Compatible Declarations

