
A Status Update: The Common Weaknesses Enumeration
Robert A. Martin
MITRE Corporation
202 Burlington Road
Bedford, MA 01730

1-781-271-3001

ramartin@mitre.org

Sean Barnum
Cigital, Inc.

21351 Ridgetop Circle, Suite 400
Sterling, VA 20166

1-703-404-5762
sbarnum@cigital.com

ABSTRACT
This paper is a status update on the Common Weaknesses
Enumeration (CWE) initiative, one of the efforts focused on
improving the utility and effectiveness of code-based security
assessment technology. It is hoped that the CWE initiative will
help to dramatically accelerate the use of tool-based assurance
arguments in reviewing software systems for security issues.

1. INTRODUCTION
More and more organizations want assurance that the software
products they acquire and develop are free of known types of
security weaknesses. High quality tools and services for finding
security weaknesses in code are new. The question of which
tool/service is appropriate/better for a particular job is hard to
answer given the lack of structure and definition in the software
product assessment industry.

There are several efforts currently ongoing to begin to resolve
some of these shortcomings including the Department of
Homeland Security (DHS) National Cyber Security Division
(NCSD) sponsored Software Assurance Metrics and Tool
Evaluation (SAMATE) project [1] being led by the National
Institute of Standards and Technology (NIST), and the Object
Management Group (OMG) Software Assurance (SwA) Special
Interest Group (SIG) [2], among others. While these efforts are
well placed, timely in their objectives and will surely yield high
value in the end, they both require a common description of the
underlying security weaknesses that can lead to exploitable
vulnerabilities in software that they are targeted to resolve.
Without such a common description, many of these efforts cannot
move forward in a meaningful fashion or be aligned and
integrated with each other to provide strategic value.

As part of their participation in the SAMATE project, MITRE has
helped lead the creation of a community of partners from industry,
academia, and government to develop, review, use, and support a
common weaknesses dictionary/encyclopedia that can be used by
those looking for weaknesses in code, design, or architecture as
well as those teaching and training software developers about the
code, design, or architecture weaknesses that they should avoid
due to the security problems they can have on applications,
systems, and networks.

2. FIRST STEPS
The initial steps of the CWE work entailed collecting and re-
viewing past efforts in organizing and itemizing security weak-
nesses and identifying those concepts, constructs and lessons that
could be used to create the CWE dictionary. Lauren Davis, from
the Johns Hopkins University Applied Physics Laboratory, facili-
tated this work. At the same time we started establishing the foun-

dations of a web site design to hold the materials, ideas, and
documents that would come out of the CWE initiative. An im-
portant element of the CWE initiative is to be transparent to all on
what we are doing, how we are doing it, and what we used to
develop the CWE List. We believe this transparency is important
both during the initial creation of the CWE List so that all of the
participants in the CWE Community will feel comfortable with
the end result and won’t be hesitant about incorporating CWE into
what they do. However, the transparency must also include those
that will come after the CWE creation activities are complete and
should be provided the opportunity to review and learn about how
the CWE List was created. To this end we will be making sure
that copies of all of the source documents of publicly available
information used in creating CWE List are available on the web
site [3].

3. PRIMING THE PUMP
To start the creation of the CWE List we brought together as
much public content as possible, using three primary sources:

• the Preliminary List of Vulnerability Examples for
Researchers (PLOVER) collection [4] which identified
over 300 weakness types created by determining the
root issues behind 1,400 of the vulnerabilities in
Common Vulnerabilities and Exposures (CVE) List [5];

• the Comprehensive, Lightweight Application Security
Process (CLASP) from Secure Software. which yielded
over 90 weakness concepts [6], and

• the issues contained in Fortify’s Seven Pernicious
Kingdoms papers, which contributed over 110 weakness
concepts [7]

Working from these collections as well as those contained in the
other thirteen information sources listed on the CWE web site
“Sources” page we developed the current draft of the CWE List,
which entails almost 500 separate weaknesses.

The CWE List content is provided in several formats and will
have additional formats and views into its contents added as the
CWE initiative proceeds. Currently one pane of the main CWE
page contains an expanding/contracting hierarchical
“taxonometric” view along with an alphabetic dictionary pane.
The end items in the hierarchical view are hyper-linked to their
respective dictionary entries in the second pane. Graphical
depictions of CWE content, as well as the contributing sources,
are also available on the site. Finally, the xml and xsd for the
CWE List are provided for those who wish to do their own
analysis/review with other tools. Dot notation representations of
this material will be added in the future.

4. EXPANDING CWE
With the current draft of CWE List as a baseline/reference point,
we are now gathering in the specific details and descriptions of 13
organizations that have agreed to contribute their intellectual
property to the CWE initative. Under Non-Disclosure
Agreements with MITRE, which allow the merged collection of
their individual contributions to be publicly shared in the CWE
List, Cenzec, Core Security, Coverity, Fortify, Interoperability
Clearinghouse, Klocwork, Ounce Labs, Parasoft, proServices
Corporation, Secure Software, SPI Dynamics, Veracode, and
Watchfire are all contributing.

In addition to these sources, we will also leverage the work, ideas,
and contributions of researchers at Carnegie Mellon’s CERT/CC,
IBM, KDM Analytics, Kestrel Technology, MIT Lincoln Labs,
North Carolina State University, Oracle, the Open Web Applica-
tion Security Project (OWASP), Security Institute, UNISYS, the
Web Application Security Consortium (WASC), Whitehat
Security, and any other interested parties that wish to contribute.

We expect the merging and combining of the contributed
materials will take most of the summer and result in an updated
CWE List that will be ready for community comments and
refinement as we move forward. A major part of this will be
refining and defining the required attributes of CWE elements into
a more formal schema defining the metadata structure necessary
to support the various uses of CWE List. This schema will also be
driven by our need to align with and support the SAMATE and
OMG SwA SIG efforts that are developing software metrics,
software security tool metrics, the software security tool survey,
the methodology for validating software security tool claims, and
the reference datasets.

5. CURRENT THOUGHTS ON IMPACT
AND TRANSITION OPPORTUNITIES
As stated in the concept paper that laid out the case for developing
the CWE List [8], the completion of this effort will yield
consequences of three types: direct impact and value, alignment
with and support of other existing efforts, and enabling of new
follow-on efforts to provide value that is not currently being
pursued.

Following is a list of the direct impacts this effort will yield. Each
impact could be the topic of much deeper and ongoing discussion.

1. Provide a common language of discourse for discussing,
finding and dealing with the causes of software security
vulnerabilities as they are manifested in code, design, or
architecture.

2. Allow software security tool vendors and service providers to
make clear and consistent claims of the security weaknesses
that they cover to their potential user communities in terms
of the CWEs that they look for in a particular code language.
Additionally, a new “CWE Compatibility” will be developed
to allow security tool and service providers to publicly
declare their capability's coverage of CWEs.

3. Allow purchasers to compare, evaluate and select software
security tools and services that are most appropriate to their
needs including having some level of assurance of the level
of CWEs that a given tool would find. Software purchasers
would be able to compare coverage of tool and service

offerings against the list of CWEs and the programming
languages that are used in the software they are acquiring.

4. Enable the verification of coverage claims made by software
security tool vendors and service providers (this is supported
through CWE metadata and alignment with the SAMATE
reference dataset).

5. Enable government and industry to leverage this
standardization in the contractual terms and conditions.

Following is a list of alignment opportunities with existing efforts
that are provided by the results of this effort. Again, each of these
items could be the topic of much deeper ongoing discussion.

1. Mapping of CWEs to CVEs. This mapping will help bridge
the gap between the potential sources of vulnerabilities and
examples of their observed instances providing concrete
information for better understanding the CWEs and
providing some validation of the CWEs themselves.

2. Bidirectional alignment between the common weaknesses
enumeration and the SAMATE metrics effort.

3. Any tool/service capability measurement framework that
uses the tests provided by the SAMATE Reference Dataset
would be able to leverage this common weakness dictionary
as the core layer of the framework. This framework effort is
not an explicitly called out item in the SAMATE charter but
is implied as necessary to meet the project’s other objectives.

4. The SAMATE software security tool and services survey
effort would be able to leverage this common weaknesses
dictionary as part of the capability framework to effectively
and unambiguously describe various tools and services in a
consistent apples-to-apples fashion.

5. There should be bidirectional alignment between this source
of common weaknesses and the SAMATE reference dataset
effort such that CWEs could reference supporting reference
dataset entries as code examples of that particular CWE for
explanatory purposes and reference dataset entries could
reference the associated CWEs that they are intended to
demonstrate for validation purposes. Further, by working
with industry, an appropriate method could be developed for
collecting, abstracting, and sharing code samples from the
code of the products that the CVE names are assigned to with
the goal of gathering these code samples from industry
researchers and academia so that they could be shared as part
of the reference dataset and aligned with the vulnerability
taxonomy. These samples would then be available as
tailoring and enhancement aides to the developers of
software assessment security tools. We could actively engage
closed source and open source development organizations
that work with the CVE initiative to assign CVE names to
vulnerabilities to identify an approach that would protect the
source of the samples while still allowing us to share them
with others. By using the CVE-based relationships with
these organizations, we should be able to create a high-
quality collection of samples while also improving the
accuracy of the software product security assessment tools
that are available to the software development groups to use
in vetting their own product's code.

6. Any validation framework for tool/service vendor claims,
whether used by the purchasers themselves or through a 3rd

party validation service, would rely heavily on this common
weakness dictionary as its basis of analysis. To support this,
we would work with researchers to define the mechanisms
used to exploit the various CWEs for the purposes of helping
to clarify the CWE groupings and as a possible verification
method for validating the effectiveness of the tools that
identify the presence of CWEs in code by exploring the use
of several testing approaches on the executable version of the
reviewed code. The effectiveness of these test approaches
could be explored with the goal of identifying a method or
methods that are effective and economical to apply to the
validation process.

7. Bidirectional mapping between CWEs and Coding Rules,
such as those deployed as part of the DHS NCSD “Build
Security In” (BSI) website [9], used by tools and in manual
code inspections to identify common weaknesses in software.

8. Leveraging of the OMG technologies to articulate formal,
machine parsable definitions of the CWEs to support analysis
of applications within the OMG standards-based tools and
models.

Following is a list of new, unpursued follow-on opportunities for
creating added value to the software security industry.

1. Expansion of the Coding Rules Catalog on the DHS BSI
website to include full mapping against the CWEs for all
relevant technical domains.

2. Identification and definition of specific domains (language,
platform, functionality, etc.) and relevant protection profiles
based on coverage of CWEs. These domains and profiles
could provide a valuable tool to security testing strategy and
planning efforts.

With this fairly quick research and refinement effort, this work
should be able to help shape and mature this new code security
assessment industry, and dramatically accelerate the use and

utility of these capabilities for organizations and the software
systems they acquire, develop, and use.

6. ACKNOWLEDGMENTS
The work contained in this paper was funded by DHS NCSD.

7. REFERENCES
[1] “The Software Assurance Metrics and Tool Evaluation

(SAMATE) project,” National Institute of Science and
Technology (NIST), (http://samate.nist.gov).

[2] “The OMG Software Assurance (SwA) Special Interest
Group,” (http://swa.omg.org).

[3] “The Common Weaknesses Enumeration (CWE) Initiative,”
MITRE Corporation, (http://cve.mitre.org/cwe/).

[4] “The Preliminary List Of Vulnerability Examples for
Researchers (PLOVER),” MITRE Corporation,
(http://cve.mitre.org/docs/plover/).

[5] “The Common Vulnerabilities and Exposures (CVE)
Initiative,” MITRE Corporation, (http://cve.mitre.org).

[6] Viega, J., The CLASP Application Security Process, Secure
Software, Inc., http://www.securesoftware.com, 2005.

[7] McGraw, G., Chess, B., Tsipenyuk, K., “Seven Pernicious
Kingdoms: A Taxonomy of Software Security Errors”.
“NIST Workshop on Software Security Assurance Tools,
Techniques, and Metrics,” November, 2005 Long Beach,
CA.

[8] Martin, R. A., Christey, S., Jarzombek, J., “The Case for
Common Flaw Enumeration”. “NIST Workshop on Software
Security Assurance Tools, Techniques, and Metrics,”
November, 2005 Long Beach, CA.

[9] Department of Homeland Security National Cyber Security
Division’s “Build Security In” (BSI) web site,
(http://buildsecurityin.us-cert.gov).

