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ABSTRACT
Although proposals were made three decades ago to build
static analysis tools to either assist software security eval-
uations or to find security flaws, it is only recently that
static analysis and model checking technology has reached
the point where such tooling has become feasible. In or-
der to target their technology on a rational basis, it would
be useful for tool-builders to have available a taxonomy of
software security flaws organizing the problem space. Un-
fortunately, the only existing suitable taxonomies are sadly
out-of-date, and do not adequately represent security flaws
that are found in modern software.

In our work, we have coalesced previous efforts to catego-
rize security problems as well as incident reports in order to
create a security flaw taxonomy. We correlate this taxon-
omy with available information about current high-priority
security threats, and make observations regarding the re-
sults. We suggest that this taxonomy is suitable for tool
developers and to outline possible areas of future research.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation

General Terms
Security, Verification

Keywords
security taxonomies, static analysis, testing, security flaws,
argument validation, buffer overflows, asynchronous attacks

1. INTRODUCTION
Although efforts for building tools to detect software secu-

rity flaws were started as early as 1973 [9], only recently has
such tooling received significant attention. The increased
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awareness of the importance of security, combined with the
advancement of static analysis and model checking tech-
niques, has meant that such tooling is not only technologi-
cally feasible but of practical importance. For example, a re-
cent United States Department of Defense report [31] states
that such tooling is “important for researchers and develop-
ers to pursue, and for the government to co-sponsor.”

When starting work on a software security tooling effort,
we wanted to determine, in a methodological manner, what
kinds of security flaws existed, their relative susceptibility
to currently-known techniques, and have some idea of their
relative importance. In order to do so we wanted to have a
taxonomy – an ordered system that indicates natural rela-
tionships – of security flaws. Unfortunately, existing work
either organized flaws by characteristics that were not useful
for our purposes, or were out-of-date.

In the following paper, we first describe the previous work
in this area, then describe the methodology that we followed
and the resulting taxonomy. We then correlate our taxon-
omy with available information about prevalent system at-
tacks, and finally describe our planned further work.

1.1 Taxonomy Types and Related work
During the previous three decades, many lists and tax-

onomies of security problems have been developed for var-
ious purposes. Although space limitations prevent us from
providing a detailed survey of this material, we will provide
an overall view of the entire field and then carefully examine
the work that more closely relates to ours.

Many published lists and taxonomies, such as [5, 24, 16],
concern themselves with either vulnerabilities or attacks.1 A
vulnerability, as we will use the term, is a means whereby
a hostile entity can successfully violate a system’s security.
For example, a web application might be vulnerable to a
“poisoned cookie” (a maliciously altered cookie, which the
web app will trust without verification). An “attack” refers
to the tool or technique with which an attacker will attempt
to detect and exploit a vulnerability.

Other taxonomies and lists, such as [8, 7, 9, 23, 1], are
concerned with flaws. A flaw is a defect in a system which
can result in a security violation. Every vulnerability must
be due to at least one flaw, but it is possible for a flaw
not to cause any vulnerability: the flaw might be masked

1The terms “attacks”, “vulnerabilities” and “flaws” are not
used with consistent meaning in the literature. We have
attempted to use terminology that is minimally confusing
and which is consistent with as much prior art as possible.
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by another part of the system. Additionally, different flaws
might result in the same vulnerability.

Attack and vulnerability taxonomies are quite useful to
system administrators and testers, who want to know how
their system might be attacked and need assistance to de-
fend themselves. However, the weak association between
flaws and vulnerabilities means that flaw taxonomies are
more relevant to code inspection tool designers, such as our-
selves. The fact that flaws might be masked, and there-
fore not exploitable, whereas vulnerabilities are, by defini-
tion, always exploitable, is not necessarily a drawback to
flaw-detection. Developers of high-assurance systems are
concerned about the possibility of system updates revealing
previously hidden flaws, especially since the results can be
appear in components far removed from the update. There-
fore, such developers consider it important to detect flaws,
regardless of whether or not they are currently exploitable.
Flaw, rather than vulnerability or attack taxonomies, are
therefore what we are concentrating on.

Two flaw taxonomies produced in the 1970’s were the re-
sult of the RISOS project[1] and the Protection Analysis
project[9]. The former classified operating system flaws into
seven categories. The latter produced four types of flaws
and subdivided these general types into ten categories. Both
pieces of work have received some criticism for ambiguity (as
in [10]), perhaps unfairly, but their categories are generally
a subset of those found in more modern work.

The Protection Analysis project deserves further mention
because its intended aim was the same as ours: to pro-
duce flaw-detection tools. They sketched algorithms for such
tools, but the static analysis technology available at the time
was not sufficient to realize them.

Landwehr et al. [23] classified security flaws in three di-
mensions: genesis (how it was introduced into the system),
time of introduction (when in the development cycle it orig-
inated), and location (in which component it exists). The
‘genesis’ classification is the most pertinent to us. This clas-
sification starts by dividing flaws into those that are “in-
tentional” or “inadvertent”, where intentional flaws are fur-
ther subdivided into those that are deliberately inserted into
the system (“malicious”), versus being the unintended but
direct result of design features (“non-malicious”). Further
refinements yield thirteen ultimate categories.

As Howard points out [16], Landwehr et al’s inclusion of
Trojan Horses and viruses into their taxonomy is incorrect:
if there is a virus in a system, the flaw is not the virus
itself, but rather whatever defect allowed the virus to be
injected. From our point of view, the major problem with
this taxonomy is that it is not fine enough and somewhat
outdated: flaws that are now common are grouped into
categories along with others that seem distinctly different
or which lend themselves to different detection techniques.
However, this work is well-thought-out enough to serve as
our starting point.

Aslam [7] created a flaw taxonomy whose primary purpose
was to serve as an organizational method for databases of
flaws and to assist in static analysis efforts.

One of Aslam’s criticisms of Landwehr’s work, which also
strongly influenced his taxonomy, was that Landwehr’s clas-
sification of intentional flaws as either “malicious” or “non-
malicious” was inappropriate, because it requires a decision
as to the motives of the programmer, which can be hard to
determine. Although we agree that for Aslam’s main pur-

pose, database classification, decisions about people’s mo-
tives are problematical, we strongly disagree with this with
regards to static analysis efforts. For example, Ashcraft and
Engler [6] describe how they’ve found many security flaws
in code by means of a static analysis which verified whether
user-supplied integers were range-checked against some val-
ues, not necessarily the correct ones. Clearly this tool can
be trivially defeated by a programmer intent on inserting a
Trojan Horse into the system, but has proven to be effective
at finding accidental security flaws. This example demon-
strates that the programmer’s intent, even if impossible to
determine ex post facto, is a strong determinator of what
flaw detection techniques are applicable.

Aslam’s taxonomy reflects this decision to omit intent
from consideration, and suffers thereby. The main defect
in this taxonomy, however, is that its divisions are not use-
ful for our purposes. For example, “interaction errors be-
tween functionally correct modules”, misunderstood excep-
tion handling and errors created by faulty compilers are all
assigned to the same category, and the taxonomy admits of
no coding faults that are neither synchronization errors nor
condition validation errors.

Aslam uses his taxonomy to state which flaws might be
detected using static analysis. Unfortunately, this work has
not aged well: both input validation errors and synchroniza-
tion errors are now fruitful lines of static analysis research,
even though Aslam stated that these are both “not viable.”

Lastly, we must take into account Bishop and Bailey’s [10]
criticisms of taxonomies, especially because these criticisms
could be applied to ours. Their major principle is that each
item should be unambiguously assignable into exactly one
taxonomy category. They point out two reasons why tax-
onomies fail to achieve this. First, a given flaw or vulnera-
bility might have different causes depending upon whether
one’s viewpoint is that of an attacker, the flawed process, or
the operating system. This criticism is not pertinent to our
work: we always take the viewpoint of the flawed system,
not the attacker, and we consider an operating system to be
simply a low-level subcomponent of the system as a whole.

Bishop and Bailey’s second general observation raises
more serious issues. They observe that systems have var-
ious levels of abstraction, and that a single flaw might have
different classifications, depending upon which abstraction
level’s viewpoint is taken. Although we agree with this ob-
servation, we disagree that this should be necessarily viewed
as a problem with a taxonomy.

We maintain that the ultimate purpose of a taxonomy is
that it be useful for its intended purposes. It is not uncom-
mon for a poorly specified component API to cause a mis-
understanding between the component’s implementor and
user, and this misunderstanding, in turn, to result in a secu-
rity problem. As the API was not specified properly, there
is necessarily an ambiguity, depending upon what level of
the system one considers responsible – exactly the situation
that Bishop and Bailey consider problematical. Although
we could simply define away this issue by declaring that the
flaw is a design error (perhaps “insufficient API specifica-
tion”) and therefore out-of-scope, by doing so we wouldn’t
be able to discuss a frequently occurring source of security
issues. We do not wish to reduce the usefulness of our work
because of semantic quibbles. Therefore, instead of demand-
ing that each flaw be uniquely classified, we maintain that if
a flaw can be classified under multiple categories, that this
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circumstance be the result of the characteristics of the flaw
itself. In particular, the fact that a flaw arising out of an
underspecified API can often be classified multiple ways ac-
curately reflects the fact that such a flaw can be detected
and fixed in multiple ways.

2. TAXONOMY

2.1 Methodology
In this section we discuss the methodology we used to

arrive at our taxonomy.
We started by reviewing the security literature. As de-

scribed above, we selected Landwehr’s work as a suitable
starting point, modifying it in response to its critics. In
a second pass we reviewed current descriptions of vulner-
abilities and threats, and interviewed practitioners in the
field, in order to ensure that newer flaws were being repre-
sented. Finally, in order to determine what characteristics
were pertinent to static analysis, we studied the static anal-
ysis literature.

One major design choice was that flaw categories should
be defined positively, not negatively. In other words, cat-
egories like “Other concurrency flaws” should be avoided.
Negatively-defined categories provide little to no informa-
tion to assist tool designers and thus served no purpose in
our work. The only exceptions were the application-specific
security flaws, which, by definition, are too application de-
pendent to be classified in any other fashion.

Another design decision revolved around which flaws we
were considering to be out-of-scope. Since the purpose of our
work is to aid designers of code analysis tools, clearly config-
uration errors are not relevant – these errors are not visible
at the code level. The question of design errors is more diffi-
cult, however, since every design decision is reflected in the
code, but not necessarily in a convenient form. The deci-
sion we reached was that our taxonomy would include only
those design flaws which are more easily detectable through
code inspection than through other methods. For example,
although improper use of cryptography is a serious security
issue, it is much easier to detect this problem by inspect-
ing the design documents than by code analysis techniques.
Conversely, even though it is possible to discover underspec-
ified APIs by reviewing documentation, in practice ambigu-
ities are often discovered by finding that programmers have
contradicted each other.

2.2 Taxonomy
Our taxonomy is in Table 1. This section describes each

category and includes references to specific incidents.
As in Landwehr, the major division in our organization is

between “inadvertent” and “intentional” flaws. The former
essentially are bugs. The latter consists of both “malicious”
flaws, which were deliberately inserted, and “non-malicious”
flaws that are side-effects of features that were deliberately
added to the system. (Usually, the system designers are not
aware of non-malicious flaws, but we call them intentional
because they were designed into the system.)

The malicious flaws consist of trapdoors (code which al-
lows someone to gain illicit access to the system), and time
and logic bombs (code which is designed to disrupt the sys-
tem when certain conditions happen).

A covert channel is a means whereby two entities (nor-
mally a Trojan horse sender and a cooperating evil receiver)

Intentional

Malicious
Trapdoor
Logic/Time Bomb

Non-malicious

Covert Storage
Channel Timing
Inconsistent
access paths

Inadvertent

Addressing error
Poor parameter
value check

Validation Incorrect check
Error positioning

Identification/
Authentication
Inadequate

Abstraction Object Reuse
Error Exposed Internal

Representation
Concurrency

Asynchronous (including
flaws TOCTTOU)

Aliasing
Subcomponent Resource Leak
misuse/failure Responsibility

Misunderstanding
Functionality Error handling
Error failure

Other security flaw

Table 1: Flaw Taxonomy

are not permitted to communicate according to the security
policy, but are able to do so by means of side-effects of op-
erations they are allowed to do. This can happen either by
means of manipulating storage, or by modulating the time
that various operations take to perform. One subtle example
of a covert channel is the disk-arm elevator algorithm covert
channel, first identified by Schaefer, et. al. [28]. The disk-
arm elevator algorithm is a commonly implemented perfor-
mance optimization in which disk requests are satisfied in
the order in which the disk arm reaches the requested blocks,
rather than first-come-first-served. The Trojan horse sender
can influence the order of disk request completions by con-
trolling in which direction the disk arm is moving. This con-
trol is achieved by the order in which the Trojan horse issues
its own disk requests. Countermeasures to this channel are
discussed by Karger and Wray [20]. These are intentional
but non-malicious flaws because the illegal communication
occurs not due to bugs in the system’s implementation, but
due to the system’s design.

The final category of intentional flaws is “inconsistent ac-
cess paths.” This category describes the flaws in which a
system allows the creation of a given object or state by multi-
ple methods, but with different security checks. These flaws
most frequently are the result of system updates: security
checks are modified in some but not all relevant places, or
an additional mechanism to obtain a given object or state
is added to the system without the designers being aware
of the necessary checks that should be performed. Karger
and Schell [19, Section 3.3.4.2] shows how a change in the
descriptor segment from the original Multics processor (GE
645) to the later Multics processor (HIS 6180) led to an ex-
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ploitable flaw. On the 645, each ring had its own descriptor
segment, while on the 6180, one descriptor segment served
all rings. If a segment was referenced by normal dynamic
linking, then security checks were done properly. However,
all ring 0 segments had a second entry in the descriptor seg-
ment that was left over from the 645 design that allowed
unlimited access. This was safe on the 645, because ring 0
had its own descriptor segment, but on the 6180, a user-ring
process could use one of these left-over entries by explic-
itly coding the correct segment number, rather than relying
on the dynamic linker. Merging all the descriptor segments
resulted in an exploitable inconsistent access path.

The largest subcategory of inadvertent flaws are valida-
tion errors: flaws that result from not checking input suf-
ficiently before acting on it. We subdivide these flaws into
the following categories:

Addressing Error: This category consists of those flaws
whereby a reference to an area of memory or stor-
age is not checked properly. This includes the clas-
sic buffer overflow problem. Good descriptions of the
buffer overflow have been done by Aleph One [2] and
Howard and LeBlanc [17, chapter 5]. Another clas-
sic example is passing a pointer into the kernel, the
target of which the application does not have proper
access rights. Schroeder and Saltzer [29] describe this
problem and its countermeasures very well.

Poor parameter value check: Besides references to stor-
age and memory, other parameters such as file names
usually need to be validated. We separate validation
of address from non-address parameters, both because
addressing errors tend to have more serious security
consequences, and because different model checking
and static analysis techniques have been used in the
literature to address the two classes. A simple exam-
ple of such a poor parameter value check was found
and fixed in the Multics operating system by Robert
Mabee in about 1971. A Multics ring number was re-
quired to be between 0 and 63, and a user-specified
ring number was checked to ensure that it was greater
than or equal to the current ring. Unfortunately, that
check missed the possiblity that setting a ring number
to 64 would be greater than the current ring number,
but when inserted into the bit field, would be truncated
mod 64, and therefore be set to 0, the most privileged
ring in the system.

Incorrect check positioning: Incorrect check positioning
occurs when the programmer validates input parame-
ters, but does the validation checks in the wrong order,
or after the parameter has been used in some fashion.
A simple example from a file system would be to check
whether a file exists or not, before checking whether
the user has access to search the containing directory.
Returning a file does not exist error would reveal in-
formation that the user was not supposed to see.

Identification/Authentication Inadequate: This flaw
occurs when the system does not completely check
whether the caller has sufficient permissions to do the
requested operation, or is the entity that it claims to
be. We separate this class from the other validation er-
rors because usually this requires access to meta-data
or protocol-level information. Landwehr, et. al. [23,

case U4] cites a case where “sendmail” on UNIX al-
lowed the user to specify any file as the configuration
file, even if the user did not have access to the file.

In modular systems, each module presents a more-or-less
abstract model to its callers. Abstraction errors (called “do-
main errors” in some security literature) occur when this
model breaks down. There are two kinds of breakdown:
“Object reuse” and “Exposed internal representation.” Al-
most all computer resources, such as memory, disk space,
and database connections, are reused when the allocating
component has finished with them. Object reuse flaws oc-
cur when an allocating component can detect that it has
received a recycled object. Hebbard, et. al. [15] report an
object reuse attack that allowed retrieval of user passwords
in MTS, the Michigan Terminal System. Similar problems
have existed in many other operating systems. In more
modern software, Microsoft Word has suffered from prob-
lems where deleted text was not actually erased from the
file, and document authors have been embarrassed [32] when
text they thought had been deleted was exposed in publi-
cally released documents.

Exposed internal representation flaws can happen when a
caller can discern or manipulate the internal details of the
module’s implementation. Perhaps the best known exposed
internal representation flaw was found in IBM’s OS/360 op-
erating system. Developers of the system in the early 1960s
had strict memory consumption budgets, and so a “clever”
developer reduced his memory consumption by placing a
critical control block in user-space memory, rather than in
the operating system’s memory. However, the user could
then modify that control block to gain supervisor-level priv-
ilege over the entire system. [11, chapter 9, p. 100].

Concurrency flaws include race conditions, livelocks, dead-
locks, and time-of-check to time-of-use (TOCTTOU) errors.
Karger and Schell [19, section 3.3.1] show a TOCTTOU vul-
nerability in the Multics argument validator itself, in which
a parameter was passed with an extra indirect and tally
stage. Each time the CPU referenced the parameter, the
indirect word was incremented by the value of the tally. Be-
cause the Multics argument validator did not consider the
possibility of tally modifiers, the attacker could cause the
validator to see only arguments to which the attacker had
proper access, but after the validator completed its checks,
the indirect pointer was set to point to something that the
attacker did NOT have access.

Other asynchronous flaws are due to aliasing: different
names referring to the same object. For example, if a me-
thod’s input parameter shares a substructure with one of the
method’s output objects, then unpredictable effects might
occur depending upon when the method modifies its out-
put. It should be noted that alias effects occur even in non-
threaded programs, which can surprise programmers. Per-
haps the classic example of such aliasing flaws is the ability
in FORTRAN to change the value of constants by passing
them as parameters to a subroutine. This is discussed in
some detail in Peter Neumann’s RISKS Digest [13].

Resource leaks, where a system allocates some resource
but fails to release it, or releases it late, are one category of
subcomponent misuse flaws. Resource leaks frequently re-
sult in denial of service issues. Dynamic allocation can also
lead to covert channels, because if an attacker can temporar-
ily run the system out of some resource and then release the
resource, then instead of a denial of service, you have a com-
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munications channel. This issue is discussed in [21, p. 1156].
Another important kind of subcomponent misuse is “re-

sponsibility misunderstanding”. Many security problems
are caused by subcomponent interfaces that are either am-
biguous or misunderstood. A good example are the variety
of flaws that have been found when a privileged program
uses printf control strings on the input variables. Because
printf can cause recursive processing of the input string,
an application programmer can easily leave a vulnerability,
such as a buffer overflow, by failing to understand all the
implications of printf [17, pp. 147–152].

Our final subcategory of inadvertent flaws are function-
ality errors – flaws that are directly involved in implement-
ing the system’s functionality. Error handling failures are
a common problem, because system designers often do not
adequately plan how exceptional conditions should be han-
dled. Landwehr, et. al. [23, Case U6] show an example of
the UNIX “su” command allowing a user to gain root priv-
ileges if there were no available file handles left. The flaw
was that the designers of “su” never anticipated an error
trying to open the system password file.

Finally, the system’s intended functionality can be misim-
plemented, causing a security problem. Since these flaws are
by definition system-specific, we are unable to give a more
precise characterization. An example of such a flaw existed
in early versions of the VAX/VMS operating system. The
VAX/VMS file system included a version number in every
file name. The “save” command in the text editor always
created a new version of the file, so that the user did not
lose work. However, if the access permissions on the file were
changed to other than the default, then new versions would
be created with the default permissions, rather than the po-
tentially more restrictive permissions of the previous version
of the tile. Thus, a user could inadvertantly make a private
file publically readable or writeable, simply by editing the
file and making a small change [12, p. 9-15].

2.3 Observations and Rationale
Previously, we have described general principles which dis-

tinguish our taxonomy from the literature and made specific
comments about certain previous works. Although space
limitations preclude a detailed item-by-item description of
how our taxonomy compares with others, especially Land-
wehr’s [23], we do wish to draw the reader’s attention to our
subcomponent misuse category.

By recognizing subcomponent misuse as a specific cate-
gory, we reflect the fact that modern software is composed
of multiple components, which is poorly addressed in pre-
vious work. One result is that we generalize the notion of
“resource leak” to include not only operating system-defined
entities but to entities such as database connections that are
created and managed by subcomponents. More importantly,
we enable useful identification and analysis of certain flaws.

For example, Chen and Wagner [14] created an automata
corresponding to the Unix security model and used model-
checking to discover that in a certain ftp server, there were
errors in how interrupts were handled that enabled an at-
tacker to cause two certain interrupts to occur and thereby
obtain root access. Also, Zhang, Edwards and Jaeger [34]
used a type-based static analysis tool to discover improper
placement of authorization calls in the Linux kernel, which
created an exploitable security hole. Using Landwehr’s tax-
onomy, we would be forced to consider the flaws discovered

in these works as “Other exploitable logic errors”, 2 which is
not useful, and other taxonomies would not fare better. We
recognize that both of these works essentially establish cor-
rectness conditions upon subcomponent APIs, and use this
information to discover flaws. We further observe that it is
often the case that subcomponents are shared between sys-
tems, which allows the API model and correctness condition
generation work to be shared between clients, increasing the
effectiveness of a validation tool.

3. RELATION TO CURRENT CONCERNS
Recently there have been a number of publications listing

or arguing that certain vulnerabilities are currently common
or urgent. Both as a validation method for our taxonomy
and as a topic of interest in its own right, we have attempted
to correlate these vulnerabilities of interest with the under-
lying flaws, as represented in our taxonomy.

Some words of caution should be made about interpret-
ing this work as defining the most important research top-
ics. Lists of the currently most common vulnerabilities or
attacks are useful because system administrators need to
know what they should expect to experience. However, at-
tack techniques are subject to rapid change. Attackers typ-
ically use only the easiest mechanism that is reasonably ef-
fective for their purposes and will quickly change approaches
when that technique becomes adequately defended against.
Researching only the currently experienced issues can leave
one unprepared when attackers change techniques.

It is also important to ensure that deploying a particular
solution to a security problem will actually fix the problem
and not create a new problem. The experience of the analog
cellular telephone industry with tumbling and cloning fraud
is quite relevant here [18]. Originally, the cellular telephone
network did not validate the credentials of a cell phone im-
mediately, when the cell phone customer was roaming out-
side his or her home territory. Because of this, the per-
petrator could randomly create credentials and place a few
calls before they were blacklisted. (This was called “tum-
bling fraud”.) In response to this problem, the cellular tele-
phone industry spent a great deal of money installing pre-
call-validation systems so that, when a call was made, the
credentials were checked immediately. Unfortunately, the
analog cell phones did not encrypt the credentials, and it
was easy to pick up the credentials as they passed through
the air between the phone and the base station. The crimi-
nals quickly realized that they could intercept these creden-
tials and clone a legitimate customer’s phone. The result
was that within a month of deploying pre-call validation in
each region, tumbling fraud went to zero, but cloning fraud
became widespread in that region. The fraud continued at
the same level, but now, instead of just making free calls, the
perpetrators billed free calls to legitimate customers who be-
came unhappy when they received bills for calls they didn’t
make. The result of putting in an expensive security counter
measure but not addressing the whole problem was that the
situation was made worse.

The Open Web Application Security Project (OWASP)
has maintained a list of the ten most critical web application
vulnerabilities ([30]). Each of the vulnerabilities on their list

2Although the flaws found in Chen and Wagner were in
interrupt code, the flaws themselves were not concurrency-
related.
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Flaw Categories OWASP Item
Trapdoor

Logic/Time Bomb
Storage Covert Channel
Timing Covert Channel

Inconsistent access paths

Addressing error 5© 1
Poor parameter value check 1 4
Incorrect check positioning
Authentication Inadequate 2© 3©

Object Reuse
Exposed Internal Representation 1

Concurrency
Aliasing

Resource Leak 9
Responsibility Misunderstanding 6© 1

Error handling failure 7© 4
Other Functionality Error 8

Out of scope: 10© 2 4 8 9

Legend: #© OWASP item # completely in category
# OWASP item # partially in category

Table 2: Taxonomy vs OWASP Top Ten

is described in detail, which has enabled us to associate the
listed vulnerabilities with underlying flaws.

The first item on the OWASP list is “Unvalidated In-
put”. This includes buffer overflows, SQL insertion, format
string attacks, cookie poisoning and hidden field manipu-
lation. Besides the obvious category “Addressing error”,
this vulnerability is also caused by “Poor parameter value
check”, “exposed internal representation”, and “Responsi-
bility misunderstanding” flaws. For instance, format string
attacks are not caused by unvalidated input (after all, in al-
most all cases character strings that include ‘%s’ substrings
should be legal), but are caused by programmers invoking
library routines without realizing that routines like fprintf

reparse their arguments – a “responsibility misunderstand-
ing.” Other items correspond to only one of our flaw cat-
egories, while others are either completely or partially out-
of-scope, being either design or configuration errors.

In Table 2 we list our flaw categories along with which
OWASP vulnerabilities completely or partially map to them.
In order to prevent the vulnerabilities that map to only one
category from being visually overwhelmed by the others, we
encircle the former.

We observe that none of the OWASP items correspond to
intentional flaws. There are several possible causes for this.
Many current exploits can result in total takeover of the
target servers, and it might be that companies consider that
insiders could do no more damage than outside intruders,
and thus defending against the latter should take priority.
Other possibilities are that companies do not wish to disclose
any incidents of insider fraud, or that companies have very
little means of detecting such problems and therefore have
no idea of whether they are affected.

A notorious difficulty with writing and debugging web ap-
plications is dealing with concurrency: web applications are
intrinsically highly threaded and often distributed. Pro-

grammers usually have little experience with locking and
threading, and we see no a priori reason why these problems
should not result in security violations. It is surprising that
they are not represented in a list of major web application
security vulnerabilities. We speculate that deterministic at-
tacks are currently easier to perform and more predicable
than ones that rely on creating race conditions. However,
we predict that as existing vulnerabilities are fixed, these
attacks will increase in frequency.

The SANS organization creates and maintains a list of the
twenty most critical internet security vulnerabilities ([27]).
Unfortunately, this list was not able to be used by us in the
same manner as the OWASP list. The SANS list consists of
vulnerabilities like “Web Browsers” and “Databases”, and
it was not possible to determine specific flaw categories un-
derlying such vulnerabilities.

Anderson, Irvine and Schell argue in [4] that subversion
(that is, insertion of trapdoors, time bombs and logic bombs
into systems) is a pressing concern, citing among other inci-
dents, a case where a logic bomb was deliberately inserted
into natural gas pipeline equipment resulting in “the most
monumental non-nuclear explosion and fire ever seen from
space.” The logic bomb was planted by Gus Weiss of the
CIA [33] and described in more detail by Reed [26, pp. 266-
270]. Other work that makes similar arguments includes [3,
22, 25].

4. CONCLUSIONS AND FUTURE WORK
In light of the current interest in tools that detect soft-

ware security problems, we’ve presented a security flaw tax-
onomy oriented towards such efforts. Additionally, we have
reviewed the literature in the area, and showed how this
taxonomy relates to available information on currently ex-
perienced attacks.

We are presently using our taxonomy to determine the
relative difficulty of applying existing static and dynamic
analysis techniques to various flaw categories. To be pre-
cise, there are a number of techniques which can be used to
approach security problems, each with specific advantages
and disadvantages. Instead of doing a cross-comparison of
each technique against each taxonomy category, which is not
feasible, we are trying to find common factors among sets
of analyses that affect difficulty, and relate these factors to
the taxonomy. We believe that this process will allow us to
decide which techniques are suitable for each kind of flaw,
and illuminate which research directions are feasible.
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