
===
PLOVER - Preliminary List Of Vulnerability Examples for Researchers
===

[*] Author: Steve Christey (coley@mitre.org)
[*] Date: Match 15, 2006
[*] Document Version: 0.24

Disclaimer: This is a DRAFT document that does not represent an
official position of The MITRE Corporation. This document has been
created to spur progress in vulnerability classification and
vulnerability research.

===
SECTION.1. [INTRO] Introduction
===

Recently, there has been renewed interest in the classification and
categorization of vulnerabilities, attacks, faults, and other
concepts. Past efforts have largely focused on high-level theories,
taxonomies, or schemes that do not sufficiently cover the wide variety
of security issues that are found in today's products.

PLOVER - the Preliminary List Of Vulnerability Examples for
Researchers - is a working document that lists over 1400 diverse,
real-world examples of vulnerabilities, identified by their CVE
number. The vulnerabilities are organized within a novel, detailed
conceptual framework. The framework does not solve the entire
classification problem, but it provides useful discussion points and
an effective vocabulary for describing vulnerabilities at a low level
of detail.

PLOVER defines a set of terms and concepts that could help in
communicating about vulnerabilities at an abstract level.

PLOVER is intended for use by parties who are interested in
vulnerability research and classification, including academic
researchers, code auditing tool developers, secure programming
researchers, and others. It is a resource for knowledgeable and
skilled vulnerability analysts and may be of less use to the general
public.

PLOVER includes:

 [*] Vulnerability Theory: a conceptual framework for describing and

 discussing several aspects of vulnerabilities at a low level

 [*] High-level and low-level vulnerability types and definitions, the
 relevant attributes, and the inter-relationships between those
 types, for a current total of 290 types

 [*] Over 1400 real-world examples of vulnerabilities, identified by
 their CVE name

 [*] Discussion of current terminology and its limitations

 [*] Research gaps

PLOVER is an extension and improvement of the "Vulnerability Auditing
Checklist," which was posted to various security mailing lists between
2002 and 2004. That checklist has been retired, although PLOVER can
still be used as a checklist.

After review and revision, it is hoped that PLOVER can become a
concise, well-defined, commonly used set of terms and concepts that
will improve communications regarding vulnerabilities, support the
development and evaluation of code analysis tools, and provide a rich
environment for academic research.

PLOVER will be used by the CVE project to (1) define terms used in CVE
descriptions, (2) provide clarity in distinguishing between different
bug types when applying CVE content decisions, and (3) perform more
precise vulnerability trend analysis.

It must be emphasized that PLOVER, while extensive, is a working
document that may contain errors or omissions. It has not been
closely validated or compared with past efforts. However, due to the
increased interest in vulnerability classification, the author
believes that PLOVER can be a useful resource for advancing
vulnerability theory within the security community.

===
SECTION.2. [TOC] Table of Contents
===

SECTION.1. [INTRO] Introduction
SECTION.2. [TOC] Table of Contents
SECTION.3. [DEFS] Terms and Definitions
SECTION.4. [VC] Additional Vulnerability Concepts
SECTION.5. [TERMPROB] Problems with Existing Terminology

SECTION.6. [DIAG] Diagnostic Errors and Challenges
SECTION.7. [HOT] Hypotheses, Observations, and Theories
SECTION.8. [GENESIS] Genesis of Vulnerabilities
SECTION.9. [WIFF] WIFFs: Weaknesses, Idiosyncrasies, Faults, Flaws
SECTION.9.1. [BUFF] Buffer overflows, format strings, etc.
SECTION.9.2. [SVM] Structure and Validity Problems
SECTION.9.3. [SPEC] Special Elements (Characters or Reserved Words)
SECTION.9.4. [SPECM] Common Special Element Manipulations
SECTION.9.5. [SPECTS] Technology-Specific Special Elements
SECTION.9.6. [PATH] Path Traversal and Equivalence Errors
SECTION.9.7. [CP] Channel and Path Errors
SECTION.9.8. [CCC] Cleansing, Canonicalization, and Comparison Errors
SECTION.9.9. [INFO] Information Management Errors
SECTION.9.10. [RACE] Race Conditions
SECTION.9.11. [PPA] Permissions, Privileges, and ACLs
SECTION.9.12. [HAND] Handler Errors
SECTION.9.13. [UI] User Interface Errors
SECTION.9.14. [INT] Interaction Errors
SECTION.9.15. [INIT] Initialization and Cleanup Errors
SECTION.9.16. [RES] Resource Management Errors
SECTION.9.17. [NUM] Numeric Errors
SECTION.9.18. [AUTHENT] Authentication Error
SECTION.9.19. [CRYPTO] Cryptographic errors
SECTION.9.20. [RAND] Randomness and Predictability
SECTION.9.21. [CODE] Code Evaluation and Injection
SECTION.9.22. [ERS] Error Conditions, Return Values, Status Codes
SECTION.9.23. [VER] Insufficient Verification of Data
SECTION.9.24. [MAID] Modification of Assumed-Immutable Data
SECTION.9.25. [MAL] Product-Embedded Malicious Code
SECTION.9.26. [ATTMIT] Common Attack Mitigation Failures
SECTION.9.27. [CONT] Containment errors (container errors)
SECTION.9.28. [MISC] Miscellaneous WIFFs
SECTION.10. Additional Examples
SECTION.10.1. [ALT] Alternate Elements Examples
SECTION.10.2. [MAN] Manipulations Examples
SECTION.10.3. [ACON] Atomic Consequences - Examples
SECTION.10.4. [CAT] Additional Categorized Examples
SECTION.10.5. [UNCAT] Additional Uncategorized Examples
SECTION.11. References
SECTION.12. Contributors / Acknowledgements
SECTION.13. Change Log

==
SECTION.3. [DEFS] Terms and Definitions
==

This section identifies the most critical terms, definitions, and
concepts that are used in PLOVER. They are used throughout the rest
of the document.

Use of these terms and concepts may improve communication about
vulnerability theory.

===
DEFS.CDEFS. Core Definitions

PROPERTY: A characteristic of data or an action (step) that is
 relevant to the security of a product. Examples: Is the data
 well-formed? Is the step allowed given the previous step?

ATTACKER: A person or independently executing program that intends to
 compromise the confidentiality, integrity, or availability of a
 product.

MANIPULATION: A modification by an ATTACKER of a data element, group
 of elements, action, or group of actions based on one or more
 PROPERTIES. Examples: modify the input by removing a required
 argument; perform steps out of order.

WIFF: Weakness, Idiosyncrasy, Flaw, or Fault. An algorithm, sequence
 of code, or a configuration in the product, whether it arises from
 implementation, design, or other processes, that can cross data or
 object boundaries that could not be crossed during normal operation
 of the product.

CONSEQUENCE: An action performed by the product after a data or object
 boundary has been crossed, which could not have occurred otherwise.

CHANNEL: A communications channel, or an interface, between two
 entities.

ATTACK VECTOR: The minimal set of MANIPULATIONS, CHANNELs, and
 operational constraints, by the attacker or the product, that are
 required to cause the product to reach a WIFF through one or more
 CHANNELs.

ATTACK CHANNEL: A CHANNEL in an ATTACK VECTOR that must be controlled
 or influenced by an ATTACKER for the attack to succeed.

VULNERABILITY: A WIFF in a specific product, or a design intended for
 a class of products that provide the same functionality, that has
 at least one ATTACK VECTOR.

ATTACK: The set of actions by which an ATTACKER follows an ATTACK
 VECTOR to exploit a VULNERABILITY to achieve a desired CONSEQUENCE.

===
DEFS.ODEFS. Other definitions

RESULTANT: Only existing as a result of another WIFF, VULNERABILITY,
 or CONSEQUENCE.

PRIMARY: Existing independently of another WIFF, VULNERABILITY, or
 CONSEQUENCE.

MULTI-FACTOR VULNERABILITY (MFV): A vulnerability that contains two or
 more WIFFs, two or more manipulations, or two or more attack
 channels.

MULTI-CHANNEL VULNERABILITY: A vulnerability whose attack vector
 contains two or more attack channels that must be controlled by the
 attacker.

MULTI-CHANNEL ATTACK: An ATTACK on a multi-channel vulnerability.

MULTI-MANIPULATION ATTACK: An ATTACK that requires two or more
 "trigger" manipulations.

ATOMIC CONSEQUENCE: The first low-level product action that crosses
 data or object boundaries. Examples: read or write data past
 boundary, perform operation on wrong object.

FUNCTIONAL CONSEQUENCE: A higher-level action whose security
 implications can only be described at the functional level of the
 product. Examples: source code disclosure, authentication bypass,
 code execution.

DIAGNOSIS: The process by which a person analyzes the product in order
 to identify the underlying WIFFs, CONSEQUENCES, MANIPULATIONS, or
 ATTACK VECTORS of a VULNERABILITY.

===
DEFS.DPROP. Data Properties

There are several properties of data that are relevant to
vulnerabilities.

STRUCTURE: The Data is either well-formed or malformed.

VALIDITY: Data is either valid or invalid. Invalid data includes (1)
 data of the wrong type (e.g. an alphabetic string when a number is
 expected), (2) an out-of-range numeric value, or (3) an undefined
 value (e.g. "Maybe" when the expected answers are either "Yes" or
 "No").

CONSISTENCY: The relationships between data elements or steps are
 either consistent or inconsistent. Examples: when the boundary
 string specified in a multipart MIME header is used in the body
 (consistent), or when the length field for an input does not match
 the actual length of the input.

EQUIVALENCE: Equivalence determines whether multiple identifiers or
 references can exist for the same entity within a particular
 context. The data can be "equivalent" or "exclusive." An example
 of exclusive data is a primary record key in a database. In a data
 entry application, "F" and "Female" and "f" might all be treated as
 equivalent when entered by the user.

ENCODING: There may be multiple encodings or representations that are
 supported for the data. For example, a web application might
 accept straight ASCII text, URL encoding sequences such as "%20",
 or Unicode.

MUTABILITY: This specifies whether the data is expected to vary as the
 product executes. For example, a search query, a subject line in a
 forum post, or the name of a new user in a registration form might
 all be mutable; an internal buffer for storing the
 administrator's e-mail address might be immutable.

Note that vulnerabilities can arise from violations of expected
properties of data. Frequently, data can be manipulated in ways that
violate the developer's assumptions. Each of the above properties
might be an assumed property by the programmer, which could lead to
WIFFs. It might be useful to discuss certain data elements in these
terms, e.g. "assumed-immutable", "assumed-consistent", or
"assumed-exclusive."

For example, a PHP file include vulnerability might allow direct

requests to support scripts (assumed-valid access) that can facilitate
modification of global variables (assumed-immutable).

===
DEFS.ALT. Alternate Elements

Alternate elements are elements that have more than one identifier,
reference, object, or method of access. They are important factors in
many vulnerabilities, so they are briefly described here. More
specific examples are provided in other sections.

ALTERNATE CHANNEL: A specific action or data in a product is
 accessible through one channel, but another channel exists.
 Example: a web server opens up another listening port on TCP/8080.

ALTERNATE NAME: ("alias"). An entity has a name or identifier that is
 typically used, but there are other names/identifiers that identify
 the same entity. Example: "abc/def.txt" and "ghi/../abc/def.txt"
 are alternate names for the same file.

ALTERNATE PATH: Within a single channel, the product has one typical
 "path" of steps that the user must follow to reach a certain
 functionality, but there are other paths that reach the same
 functionality. Example: "admin.php" is assumed to be reachable
 only from links within "index.php", but the attacker can directly
 access "admin.php".

DEFS.ALT.NAMES. Examples of Alternate Names

 Some alternate names include:

 [*] symbolic links
 [*] hard links
 [*] ".." in a path
 [*] absolute path
 [*] relative path
 [*] "C:" drive letter (Windows)
 [*] 8.3 filenames
 [*] CLSID

 NOTE: the current list includes mostly filenames, but there are
 other examples.

===
DEFS.MANIPS. Manipulations

There are two main classes of manipulations:

 Data manipulation: data is modified

 Step manipulation: steps are modified

Data manipulations may include, but are not limited to:

 [*] providing more or less input than expected
 [*] inject special character
 [*] use invalid syntax
 [*] using an alternate encoding
 [*] omitting a required value
 [*] providing data of the wrong type
 [*] modifying one item so that it is inconsistent with another item

Step manipulations may include, but are not limited to:

 [*] skip first step
 [*] skip a required step
 [*] perform steps out of order
 [*] perform repeated steps
 [*] do not finish step
 [*] interrupt step

NOTE: more specific examples are provided in another section.

Some examples of manipulations at the product level include:

 [*] well-formed data with an invalid value, e.g. a web command:
 GETTT / HTTP/1.0
 http://www.example.com/

 [*] malformed data with valid value
 - GET /
 - "GET" is a valid command and "/" is a valid URI, but there's
 no version specifier, so the input is malformed

 [*] well-formed data with valid value:
 - ABCDEF~1.DAT (equivalent filename for "ABCDEFGHIJ.DAT")

 [*] well-formed data with inconsistent value
 - $String = "Hello World!"; $StringLength = 2;

 [*] log into FTP server and send PASS command before USER

 [*] connect to telnet server but don't send any data

 [*] exit connection while server is still sending data

 [*] press "Escape" key instead of entering screensaver password

The same manipulation may have different data properties depending on
the context. For example, the string "O'Neill" is valid in a text
file but not a SQL query. "i < 3" is a well-formed expression in
Javascript, but it is syntactically incorrect in HTML. This is a
strong argument for performing canonicalization ONLY at data borders -
as soon as it comes in, and just before it goes out.

Manipulations serve different roles to an attacker.

TRIGGER: specifically intended to exploit a WIFF.

ESSENTIAL: must be performed to properly interact with the product.
 Examples: a parameter in a CGI script must be base64-encoded; or,
 the attacker must log in and navigate to a specific menu. These
 manipulations are, by definition, valid and well-formed.

FACILITATOR: must be performed to work within the constraints of
 product execution. Examples: shellcode for a buffer overflow
 exploit must be less than 100 bytes and cannot contain any null
 characters; an XSS issue requires a ">" before the malicious string
 in order to terminate an open HTML tag being generated by the
 product.

Note that PLOVER only covers Trigger manipulations.

===
DEFS.CON. Consequences

As defined above, there are two types of consequences, atomic and
functional.

Note that functional consequences can be primary or resultant. For
example, a SQL injection issue might have a primary functional
consequence of modifying a database; if the database is used for
authentication, then the resultant consequence is modification or
theft of authentication credentials. A primary disk consumption could
result in resultant CPU consumption as the processor does more
bookkeeping work than normally needed.

Note that a "bypass" Consequence can occur as a result of
manipulations of different alternate entity properties such as
alternate name and alternate channel.

DEFS.CON.ATOM. Atomic Consequences

These are informal categories that may partially overlap. They are
intended to demonstrate the concept rather than precisely define it.

 [*] out-of-bounds write (buffer overflow or underflow)
 [*] out-of-bounds read
 [*] execute code
 [*] operation on wrong entity
 [*] wrong operation on entity
 [*] numeric overflow
 [*] undefined mathematical operation (e.g. divide-by-zero)
 [*] invalid pointer dereference, including null dereference
 [*] infinite loop
 [*] long loop
 [*] infinite recursion
 [*] deep recursion
 [*] deadlock
 [*] access of stale identifier
 [*] access of previously freed memory, including double-free
 [*] access of uninitialized memory

DEFS.CON.FUNC. Functional Consequences

These are informal categories that may partially overlap. They are
intended to demonstrate the concept rather than precisely define it.

 [*] path traversal
 [*] code execution
 [*] command execution
 [*] path disclosure
 [*] information leak
 [*] username enumeration
 [*] source code disclosure
 [*] authentication bypass
 [*] filter bypass
 [*] detection evasion / information hiding
 [*] wrong operation on object
 [*] operation on wrong object
 [*] hang or freeze
 [*] corrupt memory
 [*] refuse new connections
 [*] drop existing connections
 [*] memory consumption or exhaustion
 [*] CPU consumption or exhaustion
 [*] disk consumption or exhaustion
 [*] resource consumption or exhaustion
 [*] inability to restart
 [*] lockout
 [*] network amplification (e.g. storm)
 [*] data amplification
 [*] authentication credentials disclosure
 [*] obtain meta-data
 [*] decrypt data
 [*] determine filename existence
 [*] hide activities
 [*] hide attack source
 [*] disabled or weakened security feature
 [*] gain additional privileges, rights, roles, etc.
 [*] modify permissions or ACLs

Each of these operations can be controlled (attacker has full control
over the operation on the object), partially controlled, or
uncontrolled. For an uncontrolled consequence, the attacker has no
role except to take advantage of the consequence whenever it occurs.

===
DEFS.CHANNELS. Channels

Here are some examples of channels. Note that any channel can be an
attack channel for some vulnerability.

DEFS.CHANNELS.REM. Remote Channels

Remote channels include:

 [*] user-to-server
 [*] server-to-consultant - e.g. RADIUS, DNS server lookups
 [*] user-to-intermediary
DEFS.CHANNELS.LOCAL. Local Channels

Local Channels include:

 [*] command line
 [*] process invocation
 [*] data file or object
 [*] file or directory name
 [*] file descriptor
 [*] profile (e.g. user name, GECOS field)
 [*] environment variable
 [*] signal or semaphore
 [*] registry
 [*] configuration file
 [*] keyboard device
 [*] mouse device
 [*] GUI API
 [*] alternate data stream
 [*] shared memory
 [*] mapped memory
 [*] Windows named pipe

DEFS.CHANNELS.PHYS. Physical Channels

Physical channels include:

 [*] serial port
 [*] keyboard
 [*] mouse
 [*] floppy disk
 [*] CD drive
 [*] USB device

===
DEFS.ENDPOINTS. Endpoints

Channels exist between two entities, which are called endpoints.

The attacker must perform actions as one (or more) of these endpoints
in order to exploit a vulnerability.

USER: user of the product, possibly an administrator

SERVICE: (or server). A networked or local service.

OUTSIDER: an entity that may perform actions outside of the context of
 the product. For example, an attacker who sends a malicious URL
 via e-mail to exploit a web application vulnerability, is acting as
 an outsider. An attack that requires social engineering may
 involve an outsider.

CONSULTANT: a separate entity that is used by a product to provide
 information that affects how the product operates. For example, a
 product uses a DNS server as a consultant in order to look up the
 IP address of a given hostname; a product that performs
 authentication might use a RADIUS or LDAP server as a consultant to
 verify that the provided credentials are correct.

INTERMEDIARY: an entity that controls the channels between endpoints,
 possibly limiting the kinds of interactions that are allowed within
 accepted channels. Examples include a firewall, anti-virus
 product, proxy. Effectively, an intermediary splits a single
 channel between A and B into two channels - A to the intermediary,
 and the intermediary to B.

MONITOR: a monitor observes the data or actions that are used within
 the channel, but it is a passive observer. Examples include a
 sniffer, log file monitor, or intrusion detection system.

===
SECTION.4. [VC] Additional Vulnerability Concepts
===

VC.DIRLOC. Direction and Location of Channels

Note: this is a new concept that is still being refined.

Vulnerabilities that require complicated attack chains, especially
those that involve more than two endpoints, can be further described
in terms of the "direction" and "location" of the channels that are
involved.

LOCATION: The LOCATION of a channel is relative to a particular
endpoint and to the nature of the interaction when a vulnerable
condition is being entered.

The channel's location can be:

EXTERNAL: out of the control of the endpoint, but involving data or
 steps that are relevant to the endpoint

INTERNAL: involving the endpoint

DIRECTION: The DIRECTION of a channel is also relative to a particular
endpoint and to the nature of the interaction when a vulnerable
condition is being entered.

The channel's direction can be:

INCOMING: at the particular time, the interaction is being driven
 by the other end of the channel

OUTGOING: at the particular time, the interaction is being driven
 by the endpoint itself.

TRANSIENT: the endpoint is a MONITOR and the interaction is
 occurring between two other endpoints.

Note that the direction and locality changes with respect to the
endpoint.

Consider an attack that involves a client exploiting a WIFF on a
server.

 For the attacker, the channel would be OUTGOING and INTERNAL.

 For the server, the channel would be INCOMING and INTERNAL.

Consider an attack in which an FTP server exploits a buffer overflow
by sending a long response to a request. The channel would be
OUTGOING/INTERNAL for the server and INCOMING/INTERNAL for the victim.

Consider another case in which the attacker manipulates network
traffic in a way that exploits a vulnerability in a sniffer. For the
sniffer, the channel would be EXTERNAL/TRANSIENT as Monitor; for the
attacker, the channel would be INTERNAL/OUTGOING as Outsider.

===
VC.MULTCHAN. Multi-Channel Attacks

Vulnerabilities can be viewed in terms of the channels and endpoints
that are involved.

Most vulnerabilities involve one channel - user-to-server over a
network connection in remote cases, or user-to-user via a program
execution in local cases.

Other vulnerabilities, or their associated attacks, are multi-channel.

Consider a buffer overflow involving reverse DNS. The attacker
connects to a target web server from a particular IP address, then has
a DNS server send a long response when the target performs reverse
resolution to get the domain name for the IP address.

Step 1, Channel 1: attacker-as-user to service; INTERNAL/OUTGOING.

Step 2, Channel 2: service to attacker-as-consultant: INTERNAL/OUTGOING.

Step 3, Channel 2: attacker-as-consultant to service: INTERNAL/OUTGOING.

Consider a more complicated example involving cross-site scripting.
XSS can involve two or three channels, with 3 endpoints.

Suppose there is a WIFF in which the attacker uses a web service to
inject HTML onto a page that is then viewed by all users of that
application.

The channels are:

 [*] (1) attacker-as-user to service
 [*] (2) service-to-user

When analyzing the service, the channels and attack steps are:

 [*] 1. Channel 1: attacker-as-user to service: INCOMING/INTERNAL
 [*] 2. Channel 2: service to user: OUTGOING/INTERNAL

When analyzing the user, the channels and attack steps are:

 [*] 1. Channel 2: service to user: INCOMING/INTERNAL

When analyzing the attacker, the channels and attack steps are:

 [*] 1. Channel 1: attacker-as-user to service: OUTGOING/INTERNAL

No other channels or steps are needed for the attacker before the WIFF
is exploited.

Using the direction/locale model, one can see one reason why XSS is
common: it is easy for the attacker to exploit, being single step and
single channel, but on the server side, there are two separate
channels involved.

Now, consider the classic cross-site scripting issue in which the
attacker must force a user to click on a link while the user is
interacting with the product. There are still two channels:

 (1) attacker-as-outsider to user

 (2) user-to-server

However, the number of steps, and the directionality or location,
differ.

When analyzing the service, the channels and attack steps are:

 [*] 1. Channel 2: user to service: INCOMING/INTERNAL
 [*] 2. Channel 2: service to user: OUTGOING/INTERNAL

When analyzing the user, the channels and attack steps are:

 [*] 1. Channel 1: attacker-as-outsider to user: INCOMING/EXTERNAL
 [*] 2. Channel 2: user to service: OUTGOING/INTERNAL
 [*] 3. Channel 2: service to user: INCOMING/INTERNAL

When analyzing the attacker, the channels and attack steps are:

 [*] 1. Channel 1: attacker-as-outsider to user: OUTGOING/EXTERNAL

There are some interesting observations here. First, the XSS attack
is effectively launched by the user, in a trusted channel between the
user and the server. This makes it more understandable why a
programmer might allow an XSS problem in this context - users are not
expected to attack themselves. Secondly, the attacker requires less
interaction than any endpoint, and the attacker doesn't even need to
use an internal channel with the product. This is another explanation
for why XSS appears so frequently.

Note that the above scenario also describes Cross-Site Request Forgery
(CSRF) attacks. The user is performing an action which, from the
server perspective, is coming directly from the user.

Further study is needed to determine whether this concept is useful in
identifying more complex vulnerabilities and attack scenarios.

===
VC.MFV. Multi-Factor Vulnerabilities (MFV)

Vulnerabilities are often thought of as atomic entities. It is
believed that there is a single fault in one place in the code (or its
design), which opens one or more vectors for attack.

However, many vulnerabilities are really combinations of multiple
factors or problems, which include WIFFs, attack channels, and
manipulations. Removal of just one of the factors usually results in
the elimination of the vulnerability, or at least a reduction in the
attack surface.

Multi-Factor Vulnerabilities (MFVs) can be more complicated to prevent,
find, and exploit than atomic vulnerabilities. They are also
difficult to classify effectively, since currently available schemes
treat vulnerabilities as if they are atomic. Understanding the role
of multi-factor vulnerabilities is important in making improvements to
existing terminology and classification.

The classic MFV is symbolic link following. Factors may include:

 [*] permissions (the attacker must have access to a directory that
 the victim operates in; the product doesn't check the ownership
 of a file being written to)

 [*] filename predictability (the attacker knows, or can predict, the
 name of the file that will be accessed)
 [*] race condition
 [*] design factor: lack of built-in support for safe temporary file
 creation in most programming languages, lack of atomic
 operations for effectively creating symlinks

Another common MFV is encoded path traversal. Consider the
application that protects itself against "../" strings, but not
against "%2e%2e%2fTARGET" strings.

PHP remote file include vulnerabilities are also multi-factor. The
product allows global variables to be modified, and the attacker must
interact over two separate channels (one to interact directly with the
product, and another to provide a malicious file). Unlike XSS,
however, the attacker must control a Consultant endpoint in order to
provide the malicious PHP file.

==
SECTION.5. [TERMPROB] Problems with Existing Terminology
==

Here are some of the problems with existing terminology in the
vulnerability world. Note: The heavily-discussed subjects like
"attack" versus "threat" versus "vulnerability" are avoided here.

1) The same term can be used to describe a WIFF, a manipulation, a
 vulnerability, or a consequence. "Buffer overflow" is the most
 obvious example. There are many WIFFs that can result in buffer
 overflows, such as format strings, off-by-one errors, integer
 signedness errors, and array index problems, not to mention the
 "classic" variants; however, they are all referred to as buffer
 overflows. At the same time, an attacker manipulation by crafting
 an extremely large input is not necessarily exploiting an overflow,
 although it may be called such. From an operational defensive
 standpoint, this distinction is usually immaterial; but for
 understanding vulnerabilities in terms of WIFFs, it is essential.

 Other multiple-use terms include "directory traversal,"
 "authentication bypass," "path disclosure," and many others.

2) Due to their nature, multi-factor vulnerabilities and multi-channel
 attacks do not usually have a single term. In addition, often a
 single term will be used for a multi-factor vulnerability, which
 obscures the true nature of the issue.

3) The same manipulation could be useful in attacks on multiple WIFFs,
 which can cause people to label it as if it is one WIFF, when it
 could be another. The "buffer overflow" by long input is one
 example; a product may treat a long input as if it is an invalid
 value, but poor error handling could trigger a crash. Another
 example occurs when an attacker provides a "-1" argument that
 causes a crash, it could be due to an integer overflow, a
 signedness error, or other factors. It is likely that overflows
 and signedness errors are frequently reported as the wrong bug
 type.

4) The same consequence can result from a broad range of WIFFs, but
 some problems are only described in terms of their consequence.
 The most egregious example, by far, is "denial of service," which
 can be triggered by a wide variety of WIFFs, but the term also
 covers a variety of consequences, some of which may be unimportant
 or irrelevant to a system administrator. For a less obvious
 example, consider a null dereference, which could be the result of
 a parsing error (due to a missing argument), a failed memory
 allocation (due to an integer signedness error), or a state machine
 violation (due to an inability to detect out-of-order steps).

5) Some terms refer to manipulations, but terms do not exist for the
 associated vulnerabilities, WIFFs, or consequences.

6) Some terms are used in different ways for multiple WIFFs. For
 example, the "leak" term can refer to the disclosure of
 information, an error in reclaiming used resources ("memory leak"),
 or inadvertently providing a trusted resource to an untrusted
 entity ("file descriptor leak").

===
SECTION.6. [DIAG] Diagnostic Errors and Challenges
===

Some diagnostic errors and challenges are covered in specific WIFF
entries. Additional comments are below.

** DRAFT DRAFT DRAFT ** NOTE: this section has not been refined yet.

DIAG.PRES. Lack of distinction between primary and resultant errors

 A large percentage of researcher reports focus only on the resultant
 errors form particular manipulations. The researcher does not
 perform sufficient diagnosis to identify the primary factors or to
 ensure that all elements of a multi-factor vulnerability are known
 and understood.

DIAG.MANIP. Role of manipulations in diagnostic errors

 The same manipulation could be used in multiple WIFFs. The same
 WIFF could have multiple manipulations.

 Diagnostic errors are likely to occur with manipulations that can
 trigger different faults. For example, a "long input" could trigger
 a buffer overflow, a null dereference due to an invalid value, an
 unhandled error condition, or other factors.

 There is a diagnostic difficulty in distinguishing between integer
 errors. e.g. a "-1" input could lead to a signedness error or an
 integer overflow, but you can't label it as a signedness error just
 because a -1 was provided as the input. To make matters worse,
 sometimes a signedness error enables an integer overflow.

 Also, manipulations in one data context (e.g. a "<" special
 character for XSS) could produce unrelated, resultant errors in
 another context which, if not diagnosed, do not detect a more
 serious underlying WIFF. For example: a SQL syntax error that's
 generated on a "<" XSS character injection could be an indicator of
 SQL injection.

DIAG.DOS. Insufficient diagnosis in "DoS" vulnerabilities

 Most DoS vulnerabilities are not diagnosed to determine the
 associated WIFFs. The manipulations are often less structured, too.
 Thus, there is not much understanding of the underlying causes of
 DoS (i.e. the WIFFs).

 Many vulnerabilities are described as crashes, which could be the
 result of infinite loops that cause memory allocation that
 eventually lead to an unhandled error condition, a null dereference,
 etc.

 Some vulnerabilities that involve flooding attacks of large numbers

 of connections are reported to cause a crash, but the crash could be
 resultant from overflows in arrays that are used to manage the
 connections.

 The use of fuzzers and fault injection, while powerful technologies,
 make it easier for researchers cause product instability without
 needing to know what manipulations caused it, or why.

DIAG.OBSC. Surface-level diagnosis obscuring the real problem

 Product-external error message infoleaks can be the source of many
 diagnostic errors. They are often simply reported as infoleaks when
 the underlying WIFF is more serious. In addition, a particular data
 manipulation could be directly inserted into the resulting message,
 which leads to a resultant WIFF. For example, an XSS manipulation
 might trigger a SQL syntax error that is product-external, and
 reflected directly back to the user with the XSS intact. This might
 be reported as XSS when it's really an indicator of some SQL
 problem.

 Or, an XSS manipulation might cause a fault because the product
 cannot handle *any* invalid values, not just XSS, but the invalid
 value is used in an external uncontrolled error message and thus
 appears to be primary XSS.

 It is highly suspected by the author that many "XSS" vulnerabilities
 in SQL-friendly PHP applications are actually resultant XSS, from
 resultant infoleaks of SQL injection vulns, where the SQL syntax
 error message is reflected back to the user.

 XSS/SQL is being used as an example here, but there are other
 similar problems.

 These diagnostic errors happen quite frequently, but sometimes
 researchers do not publish enough relevant details to know whether
 the vulnerability is resultant or not.

===
SECTION.7. [HOT] Hypotheses, Observations, and Theories
===

This is a very free-form collection of hypotheses, observations, and
theories about vulnerabilities.

** DRAFT DRAFT DRAFT **

HOT.DOS. On "denial of service"

 A key note: the phrase "denial of service" is often treated like it
 is a vulnerability. However, it is a CONSEQUENCE of the
 exploitation (or attempted exploitation) of a vulnerability. A
 variety of WIFFs can lead to a denial of service, and there are also
 many types of "denial of service". There is little research that
 tries to identify the underlying causes for "DoS."

HOT.IMM. On immutable vs. mutable

 Some immutable data isn't critical (text color); but some critical
 data IS mutable (username upon login).

 In some cases, an attacker can make something immutable and have an
 impact; e.g. changing perm's on a shared file so that others can't
 read it. This is not (currently) well-covered in PLOVER.

HOT.CLASS. On classification and taxonomies

 Multi-factor vulnerabilities, by their nature, could fit into two or
 more separate categories, especially when they are multi-WIFF. Thus
 MFVs are good stress testers for any classification scheme.

HOT.COMPLEX. On vulnerability complexity

 Theory: can vulnerability complexity - and/or attack complexity - be
 measured in terms of PLOVER concepts?

 [*] number of attack channels the attacker has to control
 [*] number of manipulations needing to be performed
 [*] "popularity" of those manipulations (i.e. often are those
 manipulations publicly reported?)
 [*] number of WIFFs necessary for exploit

 [*] minimum number of inputs required as part of the attack
 [*] environmental / operational constraints

 NOTE that the attack complexity is different from the vuln
 complexity. For example, symlinks and PHP file inclusion are both
 multi-factor vulns, but the attacks are usually very simple. Buffer
 overflow involving an off-by-one error requiring a long hostname
 returned by DNS resolution is multi-channel but single WIFF.

 Might want to cover multi-input attacks somehow, e.g. a path
 traversal where you have to provide 2 parameters, one for directory
 and one for filename. This is at least a little more complex.

HOT.VULNS. Thoughts on vulnerabilities

 Notice how argument injection in process invocation is similar to
 attribute injection in XSS variants. Both involve whitespace and
 "arguments." Some SQL injection exploits require whitespace as
 well.

 The exploitation of a vulnerability can involve the introduction of
 invalid, malformed, or inconsistent input in one context, which is
 valid, well-formed, and consistent in another context. One example
 is SQL injection. A counter-example is a vuln that results in DoS.
 Maybe this ONLY APPLIES to discuss vulns that cross security
 boundaries? DoS does NOT cross boundaries... or more precisely, it
 crosses different boundaries than code execution, privilege
 escalation, etc.

 More vulnerabilities are multi-factor than you'd expect.

 A product that's vulnerable to a single-factor issue is likely to be
 simultaneously vulnerable to multi-factor variants of that issue.
 For example, an application that blindly accepts "../" is likely to
 accept "%2e2e%2f" and so on. However, once a product begins to
 perform cleansing, the new manipulations could be invalid for an
 older version of the product.

 Web browser vulnerabilities are often multi-factor, multi-input,
 multi-step, and/or multi-channel.

 Some kinds of "intentional" infoleaks don't require any
 manipulations by the attacker, and the attacker only needs to have a
 Monitor role in a particular channel. This is not yet well-covered

 in PLOVER.

 The same vector or line of code can have multiple manipulations and
 WIFFs for completely different fault types. Consider the statement
 "open($filename)" in Perl.

 Note how vulnerability "variants" often require different
 manipulations to exploit.

 The role of context switching should be examined more closely; it is
 present in many vulns.

HOT.DESIMP. Design vs. Implementation

 Thoughts on whether particular vulns are design vs. implementation -
 sometimes you can't tell without knowing developer's intentions!
 Also, some non-traditional implementation bugs are the result of
 failure to implement security mechanisms as required by the designs,
 e.g. "basic constraints" certificates.

 Design decisions play a role in many vulnerabilities, if not all.
 This is especially the case with MFVs.

 Programming language design plays a major role in WIFFs.

 Theory: every implementation bug is multi-factor - at least one
 fault, which is effectively enabled by at least one design flaw or
 weakness. (hmmm need to rephrase this, but I know what I mean)

HOT.POP. Popularity of Some Vulnerabilities

 Why are buffer overflows still so common today? New faults are
 discovered... multi-step and multi-input attacks are being found...
 new manipulations are being discovered.

 Why is XSS so common? See the Alternate Channels sections for more
 specific details, but... It's multi-channel, so developers don't
 think of the attack. The exploit is single-path, so it's easy for
 researchers to find. There are many different manipulations that
 can bypass the more obvious protections, and at least some of the
 XSS that's reported is really resultant XSS instead of primary XSS,
 e.g. when an XSS manipulation triggers an SQL error due to invalid

 syntax.

HOT.RESPRI. Resultant and Primary Vulns

 A resultant vuln in one context could be primary in another. For
 example, suppose a researcher finds 2 issues. Issue 1 allows the
 attacker to gain extra privileges, but not administrator privileges.
 Then, in Issue 2, the attacker can then use those extra privileges
 to gain administrator privileges. Issue 2 is resultant from Issue
 1, but it is also independent of it; if Issue 1 did not exist, then
 Issue 2 would still be a problem.

 It would be very useful to identify the relationships between
 primary and resultant WIFFs. E.g. buffer overflow can be a
 resultant vuln of format string, signedness error, etc.; XSS is a
 resultant vuln of SQL injection if the manipulation contains XSS and
 the SQL engine generates an error.

HOT.STD. Standards vs. Non-standards

 The lack of standards compliance is a MAJOR FACTOR in interaction
 errors, especially multiple interpretation errors. This makes the
 job of monitors and intermediaries extremely difficult to do
 correctly.

HOT.EVOL. Evolution of Security of a Product

 This is based on observations.

 Initial vulnerability reports for a product involve the most obvious
 entry points and the most obvious WIFFs, e.g. buffer overflows in
 username/pass, subject lines, etc., or basic "../" path traversal.

 As the product matures, more complex manipulations, multiple
 manipulations, or alternate channels may be required.

 Less obvious entry points are found. e.g. all the commands of a
 product have been tested; what about file format manipulations of
 the files that it processes?

 The most mature, well-tested product is only subject to rare kinds
 of WIFFs, or new entirely classes of WIFFs.

HOT.CODE. On the State of Code Analysis

 Code analysis technologies have different focuses.

 - fuzzers seem focused on data manipulations, but not step
 manipulations

 - code auditing tools are fault focused

HOT.BUFF. Buffer Overfows, Today and Yesterday

 Most of yesterday's "classic" buffer overflows are single-input and
 single-channel. The attacker fills a single field with long input
 of any set of characters, the program blindly accepts the input, and
 it crashes or executes code.

 Many of today's "classic" buffer overflows are multi-factor.

 While classic "blind unbounded copy" buffer overflows still exist
 today, there are many multi-factor vulnerabilities today that are
 also referred to as "buffer overflows." One common MFV overflow
 involves the input field and a length field, in which the attacker
 modifies the length field and provides an input field whose actual
 length is inconsistent with the length field. Integer overflows can
 be one factor of an MFV in this scenario.

 Another MFV overflow example is an off-by-one error that overwrites
 the terminating null character of a string, which effectively causes
 the string to be larger than expected, even when the programmer has
 otherwise kept very close track of string lengths. The factors
 involved here include the off-by-one error itself (possibly made
 easier by the design factor of 0-based vs. 1-based array indexing),
 the design factor in C of using terminator characters for strings,
 and the fault during execution, i.e. that a large input is copied
 into a small buffer.

 Other MFV overflows can include "expansion-based" buffer overflows,
 in which the attacker provides special inputs that are translated
 into larger strings (think "&" to "&" in web applications), or

 overflows that involve long sequences of special characters that
 cause the parser to lose track of where it is in the buffer that it
 is writing to.

 Note that none of these MFV overflows are easily detectable using
 brute force black-box techniques. Each requires inputs that are
 more well-crafted than a long string of "A" characters followed by
 shellcode. This demonstrates how MFVs can have more complicated
 exploit scenarios, and it might explain why most MFV overflows are
 only found by the top researchers.

===
SECTION.8. [GENESIS] Genesis of Vulnerabilities
===

This section identifies specific phases of the software life cycle.
Contrary to popular opinion, most vulnerabilities can be introduced
during any of several phases. However, some vulnerabilities do tend
to appear in one phase or another.

The phases include:

 [*] design
 [*] implementation
 [*] bundling
 [*] distribution
 [*] installation
 [*] configuration
 [*] documentation
 [*] patch
 [*] removal

GENESIS.DESIGN. Design

 Note: this seems under-studied, especially with respect to
 classification of design flaws. Most "design limitations" or
 "design errors" are probably covered by other vulnerability
 categories. It is the author's belief that many implementation
 bugs are enabled by design flaws.

 Common problems in this phase include:

 [*] introduction of many WIFFs

 [*] failure to introduce design elements or patterns that minimize
 the likelihood and risk of classes of implementation errors
 (e.g. "use lookup table for valid values" to avoid special
 character, MAID, and overflow errors)
 [*] Incomplete specification, leading to interpretation errors,
 [*] Vague specification, leading to multiple interpretation errors
 [*] Lack of support for security-relevant options
 [*] Required adherence to an insecure standard. For example, the
 DOCSIS standard has certain design flaws, as does
 IP/TCP/UDP/ICMP.

GENESIS.IMPLEMENTATION. Implementation

 WIFFs in this phase are well-covered by PLOVER.

GENESIS.TESTING. Testing

 Common problems in this phase include practices that make testing
 more efficient:

 [*] introducing back doors to facilitate testing. CVE-2002-1272 -
back door intended for development accidentally left enabled
in production

 [*] leaving in debugging code. CVE-2001-0528 - debugging version
 of DLL logs plaintext password. CVE-1999-0095 - debug command
 in product left enabled
 [*] using insecure configuration. CAN-2003-0983 - default
 settings should have been disabled by the vendor, include a
 user account and open TCP port

GENESIS.BUNDLING. Bundling Phase.

 A product may have dependencies on third-party products or libraries
 that need to be bundled or made available on the end system for
 proper functioning.

 Common problems in this phase include:

 [*] The bundled product itself may have vulnerabilities.
 Exploitation might require proxied channels through the main

 product, or direct channels with the bundled product.
 [*] There may be interaction errors between the main product and the
 bundled product, such as behavioral changes.

 Examples:

 CAN-2005-2385 - AV product uses a third-party library that contains
 directory traversal and buffer overflow issues

GENESIS.DISTRIB. Distribution

 Common problems in this phase include:

 [*] not undoing modifications from the testing phase (debugging
 code, back doors, insecure configuration)
 [*] not providing a mechanism for integrity checking of the
 software. This is especially problematic for automatic
 download or update.
 - CVE-2002-0671, CVE-2002-0676, CAN-2001-1125, CAN-2003-0237 -
 product downloads executables from a web site but does not
 verify integrity of the executables, allowing malicious
 injection using DNS spoofing
 [*] introduction of embedded malicious code at the distribution point
 - CAN-2002-1840 - backdoor in the configuration file of an IRC
 client downloaded from compromised site
 - CAN-2002-2049 - configure compilation script modified at
 distribution point

GENESIS.INSTALL. Installation Phase

 Common problems in this phase include:

 [*] insecure permissions
 [*] undeleted temporary files containing cleartext sensitive
 information
 [*] WIFFs in the installation scripts themselves, e.g. symlink
 following in shell scripts

GENESIS.PATCH. Patch Error

 Common problems in this phase include:

 [*] regression error: an old vulnerability is introduced into new
 code
 - CAN-2005-2158, CAN-2005-1937
 - CAN-2002-1233 - regression error enables symlink
 - CAN-2005-1649 - regression error of "Land" vulnerability
 (spoofed packet, self-referencing manipulation, infinite loop)
 [*] overwrite of security patch with older patch
 - CAN-2002-1670 - upgrade overwrites previous security-relevant
patches
 [*] interaction errors with other patches
 [*] overwrite of configuration to less secure options
 [*] WIFFs that arise from the patching process itself
 [*] incomplete vulnerability fix. Typically this involves fixing a
 specific WIFF but not considering other manipulations, alternate
 channels, etc.
 - CAN-2005-0206 - incomplete patch misses 64-bit architecture
 [*] other errors
 - CVE-1999-1047 - patches applied in a particular sequence
 allows firewall bypass and does not log events

GENESIS.DOC. Documentation Error

 Common problems in this phase include:

 [*] Omission of security-critical information
 [*] Error/typo causes user to introduce a vulnerability or risk
 [*] Specific recommendation of insecure practices

GENESIS.PORT. Porting

 A product may be ported to a different environment (e.g. OS,
 language, or hardware platform). The product must consider
 differences with the original environment, otherwise
 vulnerabilities may be introduced that are specific to the new
 environment.

 For example, a product that was originally developed and secured on
 Unix could be ported to a Windows platform and become subject to
 very basic Windows-specific bugs, e.g. directory traversal using

 "\" instead of "/". The reverse is also true, of course, although
 examples are not immediately available.

 Common type of ports are:

 [*] port to different OS
 [*] port to different hardware / architecture (e.g. chip)
 [*] port to different programming language
 [*] port from single-user to multi-user
 [*] port from non-networked to networked

GENESIS.CONFIG. Configuration

 Note: configuration errors are vastly under-studied, especially in
 terms of classification. They can be more complex than
 vulnerabilities, which are often discrete and easily separable. In
 addition, configuration overlaps with the general area of "policy,"
 which can have elements that are not always considered to be
 relevant to security.

 Common configuration problems include:

 [*] Default password
 [*] Default, non-essential service or component
 [*] Default less-secure operating mode
 [*] Administrator capability accessible to arbitrary hosts

GENESIS.OPENV. Genesis - Operating Environment

 The product might be deployed into an operating environment or
 context that violates its most basic assumptions, introducing
 entire classes of WIFFs that were not previously relevant. For
 example, a program designed for local users might be called from a
 CGI wrapper, thus rendering all inputs under possible control by an
 untrusted party.

 Common operating environment changes are:

 [*] make program setuid
 [*] port local program to networked
 [*] single-user to multi-user environment

==
SECTION.9. [WIFF] WIFFs: Weaknesses, Idiosyncrasies, Faults, Flaws
==

The bulk of this document covers a large variety of WIFFs, with a
large number of real-world vulnerability examples.

The order of presentation, and the categorization implied by the
different sections, is not intended to be authoritative.

Each WIFF attempts to include a definition, notes on terminology,
research gaps, common overlap with other WIFFs, and other information.
Two or three examples are provided for each WIFF. For many WIFFs, an
appendix lists additional examples that further illustrate the
subtlety and variety of vulnerabilities. Multi-factor examples may be
included.

The examples use CVE identifiers (CVE-yyyy-nnnn or CAN-yyyy-nnnn) for
specific vulnerabilities that demonstrate the given category. The
identifiers can be accessed from the search form at
http://cve.mitre.org/cve

Following is a summary of the main categories.

[BUFF] Buffer overflows, format strings, etc.

 Buffer Boundary Violations ("buffer overflow"), Unbounded
 Transfer ("classic overflow"), Boundary beginning violation
 ("buffer underflow" ?), Out-of-bounds Read, Buffer over-read,
 Buffer under-read, Array index overflow, Length Parameter
 Inconsistency, Other length calculation error, Format string
 vulnerability

[SVM] Structure and Validity Problems

 Missing Value Error, Missing Parameter Error, Missing Element
 Error, Extra Value Error, Extra Parameter Error, Undefined
 Parameter Error, Undefined Value Error, Wrong Data Type,
 Incomplete Element, Inconsistent Elements

[SPEC] Special Elements (Characters or Reserved Words)

 General Special Element Problems, Parameter Delimiter, Value
 Delimiter, Record Delimiter, Line Delimiter, Section Delimiter,
 Input Terminator, Input Leader, Quoting Element, Escape, Meta, or

 Control Character / Sequence, Comment Element, Macro Symbol,
 Substitution Character, Variable Name Delimiter, Wildcard or
 Matching Element, Whitespace, Grouping Element / Paired
 Delimiter, Delimiter between Expressions or Commands, Null
 Character / Null Byte

[SPECM] Common Special Element Manipulations

 Special Element Injection, Equivalent Special Element Injection,
 Leading Special Element, Multiple Leading Special Elements,
 Trailing Special Element, Multiple Trailing Special Elements,
 Internal Special Element, Multiple Internal Special Element,
 Missing Special Element, Extra Special Element, Inconsistent
 Special Elements

[SPECTS] Technology-Specific Special Elements

 Cross-site scripting (XSS), Basic XSS, XSS in error pages, Script
 in IMG tags, XSS using Script in Attributes, XSS using Script Via
 Encoded URI Schemes, Doubled character XSS manipulations, e.g.
 "<<script", Null Characters in Tags, Alternate XSS syntax, OS
 Command Injection, Argument Injection or Modification, SQL
 injection, LDAP injection, XML injection (aka Blind Xpath
 injection), Custom Special Character Injection, CRLF Injection,
 Improper Null Character Termination

[PATH] Path Traversal and Equivalence Errors

 Path Traversal, Relative Path Traversal, "../filedir",
 "/../filedir", "/directory/../filename",
 "directory/../../filename", "..\filename" ("dot dot backslash"),
 "\..\filename" ("leading dot dot backslash"),
 "\directory\..\filename", "directory\..\..\filename", "..."
 (triple dot), "...." (multiple dot), "....//" (doubled dot dot
 slash), ".../...//", Absolute Path Traversal,
 /absolute/pathname/here, \absolute\pathname\here ("backslash
 absolute path"), "C:dirname" or C: (Windows volume or "drive
 letter"), "\\UNC\share\name\" (Windows UNC share), Path
 Equivalence, Trailing Dot - "filedir.", Internal Dot -
 "file.ordir", Multiple Internal Dot - "file...dir", Multiple
 Trailing Dot - "filedir....", Trailing Space - "filedir ",
 Leading Space - " filedir", file[SPACE]name (internal space),
 filedir/ (trailing slash, trailing /), //multiple/leading/slash
 ("multiple leading slash"), /multiple//internal/slash ("multiple
 internal slash"), /multiple/trailing/slash// ("multiple trailing
 slash"), \multiple\\internal\backslash, filedir\ (trailing

 backslash), /./ (single dot directory), filedir* (asterisk /
 wildcard), dirname/fakechild/../realchild/filename, Windows 8.3
 Filename, Link Following, UNIX symbolic link (symlink) following,
 UNIX hard link, Windows Shortcut Following (.LNK), Windows hard
 link, Virtual Files, Windows MS-DOS device names, Windows ::DATA
 alternate data stream, Apple ".DS_Store", Apple HFS+ alternate
 data stream

[CP] Channel and Path Errors

 Channel Errors, Unprotected Primary Channel, Unprotected
 Alternate Channel, Alternate Channel Race Condition, Proxied
 Trusted Channel, Unprotected Windows Messaging Channel
 ("Shatter"), Alternate Path Errors, Direct Request aka "Forced
 Browsing", Miscellaneous alternate path errors, Untrusted
 Search Path, Uncontrolled Search Path Element, Unquoted Search
 Path or Element

[CCC] Cleansing, Canonicalization, and Comparison Errors

 Encoding Error, Alternate Encoding, Double Encoding, Mixed
 Encoding, Unicode Encoding, URL Encoding (Hex Encoding), Case
 Sensitivity (lowercase, uppercase, mixed case), Early Validation
 Errors, Validate-Before-Canonicalize, Validate-Before-Filter,
 Collapse of Data into Unsafe Value, Permissive Whitelist,
 Incomplete Blacklist, Regular Expression Error, Overly
 Restrictive Regular Expression, Partial Comparison

[INFO] Information Management Errors

 Information Leak (information disclosure), Discrepancy
 Information Leaks, Response discrepancy infoleak, Behavioral
 Discrepancy Infoleak, Internal behavioral inconsistency infoleak,
 External behavioral inconsistency infoleak, Timing discrepancy
 infoleak, Product-Generated Error Message Infoleak,
 Product-External Error Message Infoleak, Cross-Boundary Cleansing
 Infoleak, Intended information leak, Process information infoleak
 to other processes, Infoleak Using Debug Information, Sensitive
 Information Uncleared Before Use, Sensitive memory uncleared by
 compiler optimization, Information loss or omission, Truncation
 of Security-relevant Information, Omission of Security-relevant
 Information, Obscured Security-relevant Information by Alternate
 Name

[RACE] Race Conditions

 Race condition enabling link following, Signal handler race
 condition, Time-of-check Time-of-use race condition, Context
 Switching Race Condition, Alternate Channel Race Condition, Other
 race conditions

[PPA] Permissions, Privileges, and ACLs

 Privilege / sandbox errors, Incorrect Privilege Assignment,
 Unsafe Privilege, Privilege Chaining, Privilege Management Error,
 Privilege Context Switching Error, Privilege Dropping / Lowering
 Errors, Insufficient privileges, Misc. privilege issues,
 Permission errors, Insecure Default Permissions, Insecure
 inherited permissions, Insecure preserved inherited permissions,
 Insecure execution-assigned permissions, Fails poorly due to
 insufficient permissions, Permission preservation failure,
 Ownership errors, Unverified Ownership, Access Control List (ACL)
 errors, User management errors

[HAND] Handler Errors

 Handler errors, Missing Handler, Dangerous handler not
 cleared/disabled during sensitive, Unparsed Raw Web Content
 Delivery, Unrestricted File Upload

[UI] User Interface Errors

 Product UI does not warn user of unsafe actions, Insufficient UI
 warning of dangerous operations, User interface inconsistency,
 Unimplemented or unsupported feature in UI, Obsolete feature in
 UI, The UI performs the wrong action, Multiple Interpretations of
 UI Input, UI Misrepresentation of Critical Information

[INT] Interaction Errors

 Multiple Interpretation Error (MIE), Extra Unhandled Features,
 Behavioral Change, Expected behavior violation, Unintended
 proxy/intermediary, HTTP response splitting, HTTP Request
 Smuggling

[INIT] Initialization and Cleanup Errors

 Insecure default variable initialization, External initialization
 of trusted variables or values, Non-exit on Failed
 Initialization, Missing Initialization, Incorrect initialization,
 Incomplete Cleanup

[RES] Resource Management Errors

 Memory leak, Resource leaks, UNIX file descriptor leak, Improper
 resource shutdown, Asymmetric resource consumption
 (amplification), Network Amplification, Algorithmic Complexity,
 Data Amplification, Insufficient Resource Pool, Insufficient
 Locking, Missing Lock Check

[NUM] Numeric Errors

 Off-by-one Error, Integer Signedness Error (aka "signed integer"
 error), Integer overflow (wrap or wraparound), Integer underflow
 (wrap or wraparound), Numeric truncation error, Numeric Byte
 Ordering Error

[AUTHENT] Authentication Error

 Authentication Bypass by Alternate Path/Channel, Authentication
 bypass by alternate name, Authentication bypass by spoofing,
 Authentication bypass by replay, Man-in-the-middle (MITM),
 Authentication Bypass via Assumed-Immutable Data, Authentication
 Logic Error, Missing Critical Step in Authentication,
 Authentication Bypass by Primary WIFF, No Authentication for
 Critical Function, Multiple Failed Authentication Attempts not
 Prevented, Miscellaneous Authentication Errors

[CRYPTO] Cryptographic errors

 Plaintext Storage of Sensitive Information, Plaintext Storage in
 File or on Disk, Plaintext Storage in Registry, Plaintext Storage
 in Cookie, Plaintext Storage in Memory, Plaintext Storage in GUI,
 Plaintext Storage in Executable, Plaintext Transmission of
 Sensitive Information, Key Management Errors, Missing Required
 Cryptographic Step, Weak Encryption, Reversible One-Way Hash,
 Miscellaneous Crypto Problems

[RAND] Randomness and Predictability

 Insufficient Entropy, Small Space of Random Values, PRNG Seed
 Error, Same Seed in PRNG, Predictable Seed in PRNG, Small Seed
 Space in PRNG, Predictable from Observable State, Predictable
 Exact Value from Previous Values, Predictable Value Range from
 Previous Values

[CODE] Code Evaluation and Injection

 Direct Dynamic Code Evaluation ("Eval Injection"), Direct
 Static Code Injection, Server-Side Includes (SSI) Injection,
 PHP File Inclusion

[ERS] Error Conditions, Return Values, Status Codes

 Unchecked Error Condition, Missing Error Status Code, Wrong
 Status Code, Unexpected Status Code or Return Value

[VER] Insufficient Verification of Data

 Improperly Verified Signature, Use of Less Trusted Source,
 Untrusted Data Appended with Trusted Data, Improperly Trusted
 Reverse DNS, Insufficient Type Distinction, Cross-Site Request
 Forgery (CSRF), Other Insufficient Verification

[MAID] Modification of Assumed-Immutable Data

 Web Parameter Tampering, PHP External Variable Modification

[MAL] Product-Embedded Malicious Code

 Back Door, Back Door, Developer-Introduced Back Door,
 Outsider-Introduced Back Door, Hidden User-Triggered
 Functionality, Logic Bomb, Time Bomb

[ATTMIT] Common Attack Mitigation Failures

 Insufficient Replay Protection, Susceptibility to Brute Force
 Attack, Susceptibility to Spoofing

[CONT] Containment errors (container errors)

 Sensitive Entity in Accessible Container, Sensitive Data Under
 Web Root, Sensitive Data Under FTP Root

[MISC] Miscellaneous WIFFs

 Double-Free Vulnerability, Incomplete Internal State Distinction,
 Other Types of Truncation Errors, Signal Errors, Improperly
 Implemented Security Check for Standard, Misinterpretation Error,
 Business Rule Violations or Logic Errors

==
SECTION.9.1. [BUFF] Buffer overflows, format strings, etc.

==

Note: while buffer overflows have been widely studied, a large number
of related WIFFs have been discovered. A more systematic analysis of
overflows - and related out-of-bounds buffer operations - is needed.

BUFF. Buffer Boundary Violations ("buffer overflow")

 Functional Area: memory management

 Terminology Note: some prominent vendors and researchers use the
 term "buffer overrun," but most people use "buffer overflow."

 Terminology Note: many issues that are now called "buffer
 overflows" are substantively different than the "classic" overflow,
 including entirely different bug types that rely on overflow
 exploit techniques, such as integer signedness errors, integer
 overflows, and format string bugs. This imprecise terminology can
 make it difficult to determine which variant is being reported.

 Note: this checklist does not distinguish between stack-based and
 heap-based buffer overflows, which may require different discovery
 and exploit techniques, but they are not inherently different from
 a programming perspective.

BUFF.OVER. Unbounded Transfer ("classic overflow")

 Note: at the programmer level, stack-based and heap-based overflows
 do not differ significantly, so they are not distinguished here.
 Obviously, from the exploit perspective using shellcode, they can
 be quite different.

 CVE-2000-1094 - buffer overflow using command with long argument

 CVE-1999-0046 - buffer overflow in local program using long
 environment variable

 CVE-2002-1337 - buffer overflow in comment characters, when product
 increments a counter for a ">" but does not decrement for "<"

BUFF.UNDER. Boundary beginning violation ("buffer underflow" ?)

 Definition: the product writes at least part of the data before the
 beginning of the buffer that it intended to write.

 Note: this could be resultant from several errors, including a bad
 offset or an array index that decrements before the beginning of
 the buffer (see array index overflows).

 Terminology Note: some prominent vendors and researchers use the
 term "buffer underrun".

 Note: this term has probably been used for multiple issue types;
 the concept seems understudied

 Reference:

 Ref: VULN-DEV:20040110 Buffer UNDERFLOWS: What do you know about it?

 Examples:

 BUGTRAQ:20020911 Buffer over/underflows in ssldump prior to 0.9b3

 CAN-2004-1176

 CAN-2003-0082

 CVE-2004-2620 - buffer underflow due to mishandled special chars

BUFF.READ. Out-of-bounds Read

 Definition: the product reads data past the end, or before the
 beginning, of the intended buffer.

 Note: needs study.

 Terninology Note: some people say "read buffer overflow", but the
 "overflow" term might be so closely associated with "write" that
 this term could cause confusion. An alternate term might be

 "buffer over-read"

 Research Gaps: under-studied and under-reported. Most issues are
 probably labeled as buffer overflows.

 CAN-2004-0112 - out-of-bounds read due to improper length check

 CAN-2004-0183, CAN-2004-0221 - packet with large number of
 specified elements cause out-of-bounds read.

 CAN-2004-0184 - out-of-bounds read, resultant from integer
 underflow

 CAN-2004-1940 - large length value causes out-of-bounds read

 CAN-2004-0421 - malformed image causes out-of-bounds read

BUFF.OREAD. Buffer over-read

 Definition: the product reads data past the end of the intended
 buffer.

BUFF.UREAD. Buffer under-read

 Definition: the product reads data past the end of the intended
 buffer.

 Note: needs study.

 Research Gaps: under-studied.

BUFF.INDEX. Array index overflow

 Definition: a buffer overflow or underflow that occurs when an
 attacker-influenced value is used as an array index.

 Alternate terms: "out-of-bounds array index" or
 "index-out-of-range" or "array index underflow"

 Overlaps: integer signedness errors, parameter tampering,

 out-of-bounds read, overflows.

 Note: a single fault could allow both an overflow and underflow of
 the array index.

 Note: an index overflow exploit might use buffer overflow
 techniques, but this can often be exploited without having to
 provide "large inputs."

 Note: array index overflows can also trigger out-of-bounds read
 operations, or operations on the wrong objects; i.e., "buffer
 overflows" are not always the result.

 Examples:

 CAN-2005-0369 - large ID in packet used as array index

 CAN-2001-1009 - negative array index as argument to POP LIST command

 CAN-2003-0721 - Integer signedness error leads to negative array
 index

 CAN-2004-1189 - product does not properly track a count and a
 maximum number, which can lead to resultant array index overflow.

BUFF.LEN. Length Parameter Inconsistency

 Alternate Term: length manipulation, length tampering

 Definition: the attacker can manipulate the length parameter
 associated with an input so that it is inconsistent with the actual
 length of the input.

 Note: probably overlaps other categories

 Note: can overlap zero-length issues (CVE-2001-0825)

 Examples:

 CVE-2001-1186, CVE-2001-0191, CAN-2003-0429, CVE-2000-0655,
 CAN-2004-0492, CAN-2004-0201, CVE-2003-0825, CVE-2004-0095,
 CAN-2004-0826, CAN-2004-0808, CAN-2004-0808, CAN-2002-1357,
 CAN-2004-0774, CAN-2004-0940, CAN-2004-0989, CAN-2004-0568,
 CAN-2003-0327, CAN-2003-0345, CAN-2004-0430, CAN-2005-0064, others

 CAN-2004-0413 - leads to memory consumption, integer overflow, and
 heap overflow

 CAN-2004-0940 is effectively an accidental double increment of a
 counter that prevents a length check conditional from exiting a
 loop.

 CAN-2002-1235 - length field of a request not verified

 CVE-2005-3184 - buffer overflow by modifying a length value

 SECUNIA:18747 - length field inconsistency crashes cell phone

BUFF.LENCALC. Other length calculation error

 Note: this is a broad category. Some examples include: (1) simple
 math errors, (2) incorrectly updating parallel counters, (3) not
 accounting for size differences when "transforming" one input to
 another format (e.g. URL canonicalization or other transformation
 that can generate a result that's larger than the original input,
 i.e. "expansion").

 Note: this level of detail is rarely available in public reports, so
 it is difficult to find good examples.

 Examples:

 substitution overflow:

 CAN-2004-1363 - buffer overflow using environment variables that
 are expanded after the length check is performed

 CAN-2004-0747 - buffer overflow using expansion of environment
 variables

 CAN-2005-2103 - buffer overflow using a large number of
 substitution strings

 transformation overflow:

 CAN-2005-3120 - product adds extra escape characters to incoming
 data, but does not account for them in the buffer length (or is

 this expansion?)

 CAN-2003-0899 - buffer overflow when expanding ">" to ">", etc.

 expansion overflow:

 CVE-2001-0334 - buffer overflow using wildcards

 CAN-2001-0248, CAN-2001-0249 - long pathname + glob = overflow

 others:

 CVE-2002-0184 - special characters in argument are not properly
 expanded (needs closer investigation to determine if substitution,
 expansion, or transformation)

 CAN-2004-0434 - small length value leads to heap overflow

 CAN-2004-0940

 CAN-2002-1347 - multiple variants

 CAN-2005-0490 - needs closer investigation, but probably
 expansion-based

==
BUFF.FORMAT. Format string vulnerability

 Functional Area: logging, errors, general output

 Frequently targeted entities: file names, process names,
 identifiers

 Reference: [Newsham]

 Research gaps: format string issues are under-studied
 for languages other than C. Memory or disk consumption, control
 flow or variable alteration, and data corruption may result from
 format string exploitation in applications written in other
 languages such as Perl, PHP, Python, etc.

 Research Gaps: since format strings often occur in rarely-occurring
 erroneous conditions, it is highly that many latent issues exist in
 executables that do not have associated source code (or equivalent
 source).

 Examples:

 CAN-2002-1825 - format string in Perl program

 CVE-2001-0717, CVE-2002-0573 - format string in bad call to syslog
 function

 CAN-2002-1788 - format strings in NNTP server responses

==
SECTION.9.2. [SVM] Structure and Validity Problems
==

These problems are known more by their manipulations, or their
consequences, than the underlying WIFFs. Terminology does not exist
for most of these WIFFs.

Functional Area: non-specific, parsing

Research Gaps: the general problem of "malformed input" is
under-studied from the standpoint of underlying programming errors.
Most efforts have been in developing attack methods, which rarely
suggest the nature of the underlying error. Attack-related research
in this type of "malformed input" is scattered but ongoing, e.g. see
fuzzers, suite-based testing (PROTOS style), and fault injection. The
effect of these is often a denial of service, although other impacts
may be under-studied.

Diagnosis: the specific underlying cause is rarely diagnosed by the
researcher, although diagnosis is not always feasible with available
time or resources. This is especially problematic when researchers
report that "a number of random inputs were provided, which led to a
crash."

Note: this can overlap with special character mismanagement, and it
probably needs some more precise and well-defined sub-categories than
the ones listed below.

SVM.VAL.MISS. Missing Value Error

 Definition: the product does not handle when a parameter, field, or
 argument name is specified, but the associated value is missing,

 i.e. it is empty, blank, or null.

 Note: some "crash by port scan" bugs are probably due to this, but
 lack of diagnosis makes it difficult to be certain.

 CAN-2002-0422 - blank Host header triggers resultant infoleak

 CVE-2000-1006 - blank "charset" attribute in MIME header triggers
 crash

 CAN-2004-1504, CAN-2005-2053 - blank parameter causes external
 error infoleak

SVM.PAR.MISS. Missing Parameter Error

 Definition: the product does not handle when a parameter, field, or
 argument name is not specified. Typically, the element is either
 required or frequently specified.

 Examples:

 CVE-2004-0276, CAN-2002-1488, CVE-2002-1169, CVE-2000-0521,
 CVE-2001-0590, CVE-2002-1236, CAN-2003-0239, CAN-2003-0477,
 CAN-2003-0422, CVE-2002-1531, CAN-2002-1077, CAN-2002-1358,
 CAN-2002-1023

 CVE-2002-1236, CAN-2003-0422 - CGI crashes when called without any
 arguments

 CVE-2002-1531, CAN-2002-1077 - crash in HTTP request without a
 Content-Length field

 CAN-2002-1358 - empty elements/strings in protocol test suite
 affect many SSH2 servers/clients

 CAN-2003-0477 - FTP server crashes in PORT command without an
 argument

 CVE-2002-0107 - resultant infoleak in web server via GET requests
 without HTTP/1.0 version string

 CAN-2002-0596 - GET reqeust with empty parameter leads to error
 message infoleak (path disclosure)

SVM.ELT.MISS. Missing Element Error

 Definition: the product does not handle when an expected element is
 not provided.

 Note: can overlap other problems.

SVM.VAL.EXT. Extra Value Error

 Definition: the product does not handle when more values are
 specified than expected.

 Note: This typically occurs in situations when only one value is
 expected.

 Note: this can overlap buffer overflows.

SVM.PAR.EXT. Extra Parameter Error

 Definition: the product does not handle when a parameter, field, or
 argument name is specified two or more times.

 Note: This typically occurs in situations when only one element is
 expected to be specified.

 Note: this type of problem has a big role in multiple interpretation
 vulnerabilities and various HTTP attacks.

 CAN-2003-1014 - MIE. multiple gateway/security products allow
 restriction bypass using multiple MIME fields with the same name,
 which are interpreted differently by clients.

SVM.PAR.UNDEF. Undefined Parameter Error

 Definition: the product does not handle when a parameter, field, or
 argument name is not defined or supported by the product.

 Examples:

 CVE-2001-0650

 CAN-2002-1488 - crash in IRC client via PART message from a channel
 the user is not in

 CVE-2001-0650 - router crash or bad route modification using BGP
 updates with invalid transitive attribute

SVM.VAL.UNDEF. Undefined Value Error

 Definition: the product does not handle when a value is not defined
 or supported for the associated parameter, field, or argument name.

 CVE-2000-1003 - client crash when server returns unknown driver type

SVM.WTYPE. Wrong Data Type

 Definition: the application does not properly handle when a
 particular element is of the wrong type, e.g. it expects a digit
 (0-9) but is provided with a letter (A-Z).

 Research gaps: probably under-studied.

 CVE-1999-1156 - FTP server crash via PORT command with non-numeric
 character

 CVE-2004-0270 - anti-virus product has assert error when line
 length is non-numeric

SVM.INCOMP. Incomplete Element

 Definition: the application does not properly handle when a
 particular element is not completely specified.

 Note: overlaps incomplete resource release

 Examples:

 CVE-2002-1532, CAN-2003-0195

 CVE-2002-1532 - HTTP GET without \r\n\r\n CRLF sequences causes
 product to wait indefinitely and prevents other users from
 accessing it

 CAN-2003-0195 - partial request is not timed out

 CAN-2005-2526 - MFV. CPU exhaustion in printer via partial
 printing request then early termination of connection.

 CVE-2002-1906 - CPU consumption by sending incomplete HTTP requests
 and leaving the connections open.

SVM.INC. Inconsistent Elements

 Definition: the product does not handle when multiple parameters,
 fields, arguments, or values should be consistent, but are not.

 Note: this can overlap other WIFFs such as Length Parameter
 Inconsistency.

==
SECTION.9.3. [SPEC] Special Elements (Characters or Reserved Words)
==

This section deals with various problems that involve special
elements such as special characters and reserved words.

Note that special characters, or reserved words, can have varying
functions depending on the context. For example, a double quote could
be a comment in one context and an escape in another; or a semicolon
could be a field separator or a value separator.

Research Gaps: while much research has been conducted on special
characters, reserved/special words are under-studied.

SPEC.GEN. General Special Element Problems

Every language has its own special elements such as characters and
reserved words. The following WIFFs are expressed in general terms.

Technology-specific problems that involve special elements, such as
cross-site scripting and SQL injection, are covered in another
section.

Functional Area: non-specific, parsing

Note: some of these types of special chars have been observed at one
point or another, but it's difficult to find suitable examples after
the fact. In an attempt to be complete about what kinds of "special
characters" exist, some types may have been added to this list without
any publicly reported vulnerability for those types.

SPEC.DELIM.PARAM. Parameter Delimiter

 Examples:

 CAN-2003-0307 - attacker inserts field separator into input to
 specify admin privs

SPEC.DELIM.VAL. Value Delimiter

 CAN-2000-0293 - multiple internal space, insufficient quoting -
 program does not use proper delimiter between values

SPEC.DELIM.REC. Record Delimiter

 CAN-2004-1982 - carriage returns in subject field allow adding new
 records to data file

 CVE-2001-0527 - attacker inserts carriage returns and "|" field
 separator characters to add new user/privileges

SPEC.DELIM.LINE. Line Delimiter

 Note: CRLF injection is covered in the tech-specific section.

 Note: depending on the language and syntax being used, this could be
 the same as the record delimiter.

 CVE-2002-0267 - linebreak in field of PHP script allows admin
 privileges when written to data file

SPEC.DELIM.SECTION. Section Delimiter

 One example of a section delimiter is the boundary string in a
 multipart MIME message. In many cases, doubled line delimiters can
 serve as a section delimiter.

 Note: CRLF injection is covered in the tech-specific section.

 Note: depending on the language and syntax being used, this could be
 the same as the record delimiter.

SPEC.INPTERM. Input Terminator

 Example: a "." in SMTP signifies the end of mail message data,
 whereas a null character can be used for the end of a string.

 CVE-2000-0319, CVE-2000-0320 - MFV. mail server does not properly
 identify terminator string to signify end of message, causing
 corruption, possibly in conjunction with off-by-one error.

 CAN-2001-0996 - mail server does not quote end-of-input terminator
 if it appears in the middle of a message.

 CAN-2002-0001 - improperly terminated comment or phrase allows
 commands.

SPEC.INPLEAD. Input Leader

SPEC.QUOTE. Quoting Element

 Examples: CAN-2003-1016, CAN-2004-0956

 CAN-2003-1016 - MIE. MFV too? bypass AV/security with fields that
 should not be quoted, duplicate quotes, missing leading/trailing

 quotes.

SPEC.ESCAPE. Escape, Meta, or Control Character / Sequence

 CVE-2002-0542 - mail program handles special "~" escape sequence
 even when not in interactive mode.

 CVE-2000-0703 - setuid program does not filter escape sequences
 before calling mail program

 CVE-2002-0986 - mail function does not filter control characters
 from arguments, allowing mail message content to be modified

 CVE-2003-0020, CAN-2003-0083 - Multi-channel issue. Terminal
 escape sequences not filtered from log files

 CVE-2003-0021, CVE-2003-0022, CVE-2003-0023, CVE-2003-0063,
 CAN-2000-0476 - terminal escape sequences not filtered by terminals
 when displaying files

 CAN-2001-1556 - MFV. (multi-channel). Injection of control
 characters into log files that allow information hiding when using
 raw Unix programs to read the files.

SPEC.COMMENT. Comment Element

 CAN-2002-0001 - mail client command execution due to improperly
 terminated comment in address list

 CAN-2004-0162 - MIE. RFC822 comment fields may be processed as
 other fields by clients.

 CAN-2004-1686 - well-placed comment bypasses security warning

 CAN-2005-1909, CAN-2005-1969 - information hiding using a
 manipulation involving injection of comment code into product.
 Note: these vulns are likely vulnerable to more general XSS
 problems, although a regexp might allow "<!--" while denying most
 other tags.

SPEC.MACRO. Macro Symbol

 Research Gaps: under-studied.

 CAN-2002-0770 - server trusts client to expand macros, allows macro
 characters to be expanded to trigger resultant infoleak.

SPEC.SUBST. Substitution Character

 Research Gaps: under-studied.

 CAN-2002-0770 - server trusts client to expand macros, allows macro
 characters to be expanded to trigger resultant infoleak.

SPEC.VARNAME. Variable Name Delimiter

 Example: "$" for an environment variable.

 Research Gaps: under-studied.

 CAN-2005-0129 - "%" variable is expanded by wildcard function into
 disallowed commands

 CAN-2002-0770 - server trusts client to expand macros, allows macro
 characters to be expanded to trigger resultant infoleak.

SPEC.WILDCARD. Wildcard or Matching Element

 Research Gaps: under-studied.

 CAN-2002-0433, CAN-2002-1010 - bypass file restrictions using
 wildcard character

 CVE-2001-0334 - wildcards generate long string on expansion

 CAN-2004-1962 - SQL injection involving "/**/" sequences

SPEC.WHITESPACE. Whitespace

 Alternate Term: white space

 Note: this can include space, tab, etc.

 Note: can overlap other separator characters or delimiters

 Examples:

 CAN-2002-0637 - MIE. virus protection bypass with RFC violations
 involving extra whitespace, or missing whitespace.

 CAN-2004-0942 - CPU consumption with MIME headers containing lines
 with many space characters, probably due to algorithmic complexity
 (RESOURCE.AMP.ALG).

 CAN-2003-1015 - MIE. whitespace interpreted differently by mail
 clients.

SPEC.GROUPING. Grouping Element / Paired Delimiter

 Description: does not properly handle the characters that are used
 to mark the beginning and ending of a group of entities, such as
 parentheses, brackets, and braces.

 Research Gaps: under-studied.

 Examples:

 [*] "<" and ">" angle brackets
 [*] "(" and ")" parentheses
 [*] "{" and "}" braces
 [*] "[" and "]" square brackets
 [*] '"' and '"' double quotes
 [*] "'" and "'" single quotes

 CAN-2004-0956 - crash via missing paired delimiter (open
 double-quote but no closing double-quote)

 CVE-2000-1165 - crash via message without closing ">"

 CVE-2005-2933 - buffer overflow via malbox name with an opening
 double quote but missing a closing double quote, causing a larger
 copy than expected

SPEC.DELIM.EXPR. Delimiter between Expressions or Commands

 Note: shell metacharacters (covered elsewhere) is one example.

SPEC.NULL. Null Character / Null Byte

 Note: this can be a factor in multiple interpretation errors, other
 interaction errors, filename equivalence, etc.

 CAN-2005-2008, CVE-2005-3293 - source code disclosure using trailing
null

 CAN-2005-2061 - trailing null allows file include

 CAN-2002-1774 - null character in MIME header allows detection bypass

 CVE-2000-0149, CVE-2000-0671, CVE-2001-0738, CAN-2001-1140

 CAN-2002-1031, CAN-2002-1025

 CAN-2003-0768

 CVE-2004-0189 - decoding function in proxy allows regular
 expression bypass in ACLs via URLs with null characters

 CVE-2005-3153, CVE-2005-4155 - null byte bypasses PHP regexp check
 (interaction error)

==
SECTION.9.4. [SPECM] Common Special Element Manipulations
==

The variety of manipulations that involve special elements is
staggering. This is one reason why they are so frequently reported.

Research Gaps: Customized languages and grammars, even those that are
specific to a particular product, are potential sources of WIFFs that
are related to special elements. However, most researchers
concentrate on the most commonly used representations for data
transmission, such as HTML and SQL. Any representation that is

commonly used is likely to be a rich source of WIFFs; researchers are
encouraged to investigate previously unexplored representations.

As previously discussed, precise terminology for the underlying WIFFs
does not exist. Therefore, these WIFFs use the terminology associated
with the manipulation.

 WIFFs involving special characters do not always require special
 manipulations besides injection of the special character, but
 sometimes they do.

 Note: This list is FAR from complete.

SPECM.INJ. Special Element Injection

 This is the most common type of WIFF.

SPECM.INJ.EQ. Equivalent Special Element Injection

 This WIFF frequently occurs when the product has protected itself
 against special element injection.

 Note: can include encoded special characters.

SPECM.LEADING. Leading Special Element

SPECM.LEADING.MULT. Multiple Leading Special Elements

SPECM.TRAILING. Trailing Special Element

SPECM.TRAILING.MULT. Multiple Trailing Special Elements

SPECM.INTERNAL. Internal Special Element

SPECM.INTERNAL.MULT. Multiple Internal Special Element

SPECM.MISS. Missing Special Element

 Definition: the product does not handle when a special element
 (character or reserved word) is missing.

 Note: this can overlap incomplete input.

 CVE-2002-1362 - crash via message type without separator character

 CVE-2002-0729 - missing special character (separator) causes crash

 CVE-2002-1532 - HTTP GET without \r\n\r\n CRLF sequences causes
 product to wait indefinitely and prevents other users from accessing
 it

SPECM.EXTRA. Extra Special Element

 Definition: the product does not handle when a special element
 (character or reserved word) is used more than once.

 CVE-2000-0116, CAN-2001-1157 - extra "<" in front of SCRIPT tag.

 CAN-2002-2086 - XSS using "<<script" - probably a cleansing error

SPECM.INC. Inconsistent Special Elements

 Definition: the product does not handle when an inconsistency exists
 between two or more special characters or reserved words, e.g. if
 paired characters appear in the wrong order, or if the special
 characters are not properly nested.

==
SECTION.9.5. [SPECTS] Technology-Specific Special Elements

==

Note that special elements problems can arise from designs or
languages that (1) do not separate "code" from "data" or (2) mix
meta-information with information.

==
SPECTS.XSS. Cross-site scripting (XSS)

 Definition: the product does not properly cleanse HTML or script
 from an input before it is inserted into a web page, in a way that
 causes it to be processed on the web client.

 Terminology Note: "CSS" was once used as the acronym for this
 problem, but this can cause confusion with the "Cascading Style
 Sheets," so its use has declined significantly, and its use is
 discouraged by the author.

 Terminology Note: the terminology is imprecise for this category,
 which has a number of variants.

 There are multiple ways to define this term or to split it into
 smaller categories.

 One way is based on the "longevity" of the manipulated data. One
 could distinguish between "stored" data and "reflected" data.
 Stored data is inserted into a file or database, and later sent to a
 victim unquoted. Reflected data is first sent to a victim by
 injecting the data into the URL, which the victim's browser then
 sends to the server, which reflects that data back to the user.

 In terms of channels, stored data is attacker-to-server-to-victim,
 in which all channels involve the web application. Reflected data
 is attacker-to-victim-to-server-to-victim, in which the
 attacker-to-victim channel can be external to the web application.

 From the standpoint of the underlying WIFFs, however, both types of
 issues require a cleansing problem by the server.

 One could also categorize these issues based on the type of
 manipulation involved. Full-blown injection of HTML tags such as
 SCRIPT, complete with unquoted "<" and ">" characters, is a
 different manipulation than the injection of "javascript:" or
 encoded "javAsc
ript:" schemes within a particular
 attribute of a tag. Many products protect against one manipulation

 but not the other. The underlying faults, or other WIFFs, are often
 different.

 PLOVER currently categorizes XSS WIFFs based on their associated
 manipulations.

 Terminology Note: some people distinguish between XSS and "HTML
 injection." The distinction is generally made as follows: XSS would
 apply to "sending a link to a victim which then injects script or
 HTML into a page that the victim generates when clicking on or
 otherwise activating the link," whereas "HTML injection" applies to
 "inserting HTML/script into the server directly into a page that the
 server later replays to another user or set of users." From the
 server standpoint, this bug is the same - the server is sent some
 script, then returns it unfiltered to the victim. From the attack
 standpoint, these are different.

SPECTS.XSS.BASIC. Basic XSS

 Definition: "Basic" XSS involves a complete lack of cleansing of any
 special characters, including the most fundamental XSS elements such
 as "<", ">", and "&".

 CVE-2002-0938 - XSS in parameter in a link

 CAN-2002-1495 - XSS in web-based email product via attachment
 filenames

 CAN-2003-1136 - HTML injection in posted message

 CAN-2004-2171 - XSS not quoted in error page

SPECTS.XSS.ERR. XSS in error pages

 Note: this can overlap unhandled error conditions, and external or
 internal error message infoleaks.

 CVE-2002-0840 - XSS in default error page from Host: header

 CVE-2002-1053 - XSS in error message

 CAN-2002-1700 - XSS in error page from targeted parameter

SPECTS.XSS.IMG. Script in IMG tags

 CAN-2002-1649, CAN-2002-1803, CAN-2002-1804, CAN-2002-1805,
 CAN-2002-1806, CAN-2002-1807, CAN-2002-1808 - javascript URI scheme
 in IMG tag

SPECTS.XSS.ATTRIB. XSS using Script in Attributes

 Definition: the product does not filter "javascript:" or other URI's
 from dangerous attributes within tags, such as onmouseover, onload,
 onerror, or style.

 CAN-2001-0520 - bypass filtering of SCRIPT tags using onload in
 BODY, href in A, BUTTON, INPUT, and others

 CVE-2002-1493 - guestbook XSS in STYLE or IMG SRC attributes

 CAN-2002-1965 - Javascript in onerror attribute of IMG tag

 CAN-2002-1495 - XSS in web-based email product via onmouseover event

 CAN-2002-1681 - XSS via script in <P> tag

 CAN-2003-1136 - javascript in onmouseover attribute

 CAN-2004-1935 - onload, onmouseover, and other events in an e-mail
 attachment

 CAN-2005-0945 - onmouseover and onload events in img, link, and mail
 tags.

 CAN-2003-1136 - onmouseover attribute in e-mail address or URL

SPECTS.XSS.ENCODED. XSS using Script Via Encoded URI Schemes

 CAN-2005-0563 - scheme "javAsc
ript:" in IMG tag

 CAN-2005-2276 - scheme "jAvascript" in IMG tag

 CAN-2005-0692 - encoded script within BBcode IMG tag

 CVE-2002-0117, CAN-2002-0118 - encoded "javascript" in IMG tag

SPECTS.XSS.DOUBLE. Doubled character XSS manipulations, e.g. "<<script"

 CAN-2002-2086 - XSS using "<<script"

 CVE-2000-0116, CAN-2001-1157 - extra "<" in front of SCRIPT tag

SPECTS.XSS.INVTAGS. Invalid Characters in Identifiers

 Definition: the product does not strip out invalid characters in the
 middle of tag names, schemes, and other identifiers, which are still
 rendered by some web browsers that ignore the characters.

 Note: Overlaps interpretation conflict, incomplete blacklist.

 Note: commonly used characters include null, CRLF, and other
 non-standard whitespace.

 CAN-2004-0595 - XSS filter doesn't filter null characters before
 looking for dangerous tags, which are ignored by web browsers. MIE
 and validate-before-cleanse.

SPECTS.XSS.ALTSYN. Alternate XSS syntax

 CVE-2002-0738 - XSS using "&={script}"

SPECTS.INJ.OS. OS Command Injection

 Alternate Name: shell injection, shell metacharacters

 Note: overlaps special character mismanagement, argument injection

 Fault: unquoted special characters, input restriction error

 Functional Area: program invocation

 Examples: many, including CVE-1999-0067, CVE-2001-1246,
 CVE-2002-0061, CAN-2003-0041

 CAN-2002-1898 - shell metacharacters in a telnet:// link (this is an
 MFV: a metachar manipulation using an alternate channel)

SPECTS.INJ.ARG. Argument Injection or Modification

 Definition: the product does not properly safeguard OS command or
 other arguments from modification by an attacker before execution,
 leading to security-relevant changes

 Note: at one layer of abstraction, this can overlap other WIFFs that
 have whitespace problems, e.g. injection of javascript into
 attributes of HTML tags.

 Fault: unquoted special characters, input restriction error,
 unquoted special terms, whitespace

 Canonical Example: CVE-1999-0113

 Examples: CVE-2004-0121, CAN-2003-0907, CVE-1999-0113,
 CAN-2004-0480, CAN-2004-0489, CVE-2002-0985,
 CVE-2001-0150, CVE-2001-0667, CAN-2004-0473,
 CAN-2004-0411

 CVE-2000-1220 - argument injection allows code execution by
 specifying alternate configuration file

SPECTS.INJ.SQL. SQL injection

 Definition: the product does not properly filter or quote special
 characters or reserved words that are used in SQL queries, allowing
 attackers to modify the syntax, content, or commands of the
 resulting SQL query before it is executed.

 Factors: resultant to special character mismanagement, MAID, or
 blacklist/whitelist problems. Can be primary to authentication
 errors.

 Examples: many, including CAN-2004-0366, CAN-2004-0343,
 CAN-2003-0779, CAN-2003-0500, CAN-2003-0377

SPECTS.INJ.LDAP. LDAP injection

 Definition: the product does not properly filter or quote special
 characters or reserved words that are used in LDAP queries or
 responses, allowing attackers to modify the syntax, contents, or
 commands of the LDAP query before it is executed.

 Research Gaps: under-reported. This is likely found very frequently
 by third party code auditors, but there are very few publicly
 reported examples.

 Factors: resultant to special character mismanagement, MAID, or
 blacklist/whitelist problems. Can be primary to authentication and
 verification errors.

 Ref: [SPI]

 Web Applications and LDAP Injection (SPI Dynamics)

SPECTS.INJ.XML. XML injection (aka Blind Xpath injection)

 Definition: the product does not properly filter or quote special
 characters or reserved words that are used in XML, allowing
 attackers to modify the syntax, content, or commands of the XML
 before it is processed by an end system.

 Fault: unquoted special characters, input restriction error

 Research Gaps: under-reported. This is likely found regularly by
 third party code auditors, but there are very few publicly reported
 examples.

 Reference: [SanctumX]

SPECTS.INJ.CUSTOM. Custom Special Character Injection

 Definition: the product does not properly filter or quote special

 characters or reserved words that are used in a custom or
 proprietary language or representation that is used by the product,
 allowing attackers to modify the syntax, content, or commands before
 they are processed by an end system.

 Research Gaps: under-studied. It is likely that these issues are
 fairly common in applications that use their own custom format for
 configuration files, logs, meta-data, messaging, etc. They would
 only be found by accident or with a focused effort based on an
 understanding of the format.

 Factors: can be primary to interaction errors.

 CVE-2001-0677 - read arbitrary files from mail client by providing a
 special MIME header that is internally used to store pathnames for
 attachments.

 CVE-2000-0703 - Setuid program does not cleanse special escape
 sequence before sending data to a mail program, causing the mail
 program to process those sequences

 CVE-2003-0020, CAN-2003-0083 - Multi-channel issue. Terminal escape
 sequences not filtered from log files

SPECTS.CRLF. CRLF Injection

 Definition: the product uses CRLF (carriage return line feeds) as a
 special sequence, e.g. to separate lines or records, but it does not
 properly handle inputs that contain CRLF sequences.

 Reference: CRLF Injection [Harnhammar]

 Research Gaps: probably under-studied, although gaining more
 prominence in 2005 as a result of interest in HTTP response
 splitting.

 Factors: primary to HTTP Response Splitting

 CAN-2002-1771 - CRLF injection enables spam proxy (add mail
 headers) using email address or name

 CAN-2002-1783 - CRLF injection in API function arguments modify
 headers for outgoing requests

 CAN-2004-1513 - spoofed entries in web server log file via carriage
 returns

SPECTS.NULLTERM. Improper Null Termination

 Definition: the product does not properly terminate a string or
 array with a null character or equivalent terminator.

 Null termination errors frequently occur in two different ways. An
 off-by-one error could cause a null to be written out of bounds,
 leading to an overflow. Or, a program could use a strncpy()
 function call incorrectly, which prevents a null terminator from
 being added at all. Other scenarios are possible.

 Note: conceptually, this does not just apply to the C language; any
 languagre or representation that involves a terminator could have
 this sort of problem.

 Factors: this is usually resultant from other WIFFs such as
 off-by-one errors, but it can be primary to boundary condition
 violations such as buffer overflows. In buffer overflows, it can
 act as an expander for assumed-immutable data.

 Note: overlaps missing input terminator.

 CAN-2000-0312 - attacker does not null-terminate argv[] when
 invoking another program

 CAN-2003-0777 - interrupted step causes resultant lack of null
 termination

 CAN-2004-1072 - fault causes resultant lack of null termination,
 leading to buffer expansion

 CAN-2001-1389 - multiple vulns related to improper null termination.

 CAN-2003-0143 - product does not null terminate a message buffer
 after snprintf-like call, leading to overflow

==
SECTION.9.6. [PATH] Path Traversal and Equivalence Errors
==

Files, directories, and folders are so central to information
technology that many different WIFFs and variants have been
discovered. The manipulations generally involve special characters or
sequences in pathnames, or the use of alternate references or
channels. They can be used to access files outside of a restricted
directory (path traversal or link following) or to access files that
are otherwise protected (path equivalence).

PATH.TRAV. Path Traversal

Definition: the product, when constructing file or directory names
from input, does not properly cleanse special character sequences that
resolve to a file or directory name that is outside of a restricted
directory.

Alternate Term: directory traversal

Functional Area: file processing

Attack: use alternate names, encoding

 Note: many different manipulations exist; most of them are intended
 to bypass various cleansing schemes.

 Terminology Note: "path traversal" is preferred over "directory
 traversal."

 Terminology Note: Like other WIFFs, terminology is often based on
 the types of manipulations used, instead of the underlying WIFFs.

 Terminology note: some people use "directory traversal" only to
 refer to the injection of ".." and equivalent sequences whose
 specific meaning is to traverse directories. Other variants like
 "absolute pathname" and "drive letter" have the *effect* of
 directory traversal, but some people may not call it such, since it
 doesn't involve ".." or equivalent.

 Note: pathname equivalence can be regarded as a type of
 canonicalization error.

 Note: some pathname equivalence issues are not directly related to
 directory traversal, rather are used to bypass security-relevant
 checks for whether a file/directory can be accessed by the attacker
 (e.g. a trailing "/" on a filename could bypass access rules that

 don't expect a trailing /, causing a server to provide the file when
 it normally would not).

 Note: this item should be split into multiple sub-categories, but
 for the sake of consistency with the numbering convention in earlier
 versions of this checklist, they were combined.

 Note: Incomplete diagnosis or reporting of vulnerabilities can make
 it difficult to know which variant is affected. For example, a
 researcher might say that "..\" is vulnerable, but not test "../"
 which may also be vulnerable.

 Note: any combination of the items below can provide its own
 variant, e.g. "//../" is not listed (CAN-2004-0325).

 Note: most of these issues are probably under-studied.

PATH.TRAV.REL. Relative Path Traversal

 Definition: the product can construct a path that contains relative
 traversal sequences such as "..", which is then processed by the
 operating system to create a path that is "above" or outside of a
 restricted path that was intended by the developer.

PATH.TRAV.REL.1. "../filedir"

PATH.TRAV.REL.2. "/../filedir"

 CVE-2005-1918 - a patch that protects against most ".." issues does
 not protect against "/../file/here".

PATH.TRAV.REL.3. "/directory/../filename"

PATH.TRAV.REL.4. "directory/../../filename"

 CAN-2002-0298

PATH.TRAV.REL.5. "..\filename" ("dot dot backslash")

 Examples: many, including CAN-2002-0661, CVE-2002-0946,
 CAN-2002-1042, CAN-2002-1209, CVE-2002-1178

PATH.TRAV.REL.6. "\..\filename" ("leading dot dot backslash")

 Examples:

 CAN-2002-1987 - \..
 CAN-2005-2142 - \..

PATH.TRAV.REL.7. "\directory\..\filename"

 Examples: CVE-2002-1987

PATH.TRAV.REL.8. "directory\..\..\filename"

 Examples: CVE-2002-0160

PATH.TRAV.REL.9. "..." (triple dot)

 Note: This manipulation is effective in two different contexts: (1)
 it is equivalent to "..\.." on Windows, or (2) it can take advantage
 of insufficient filtering, e.g. if the programmer does a single-pass
 removal of "./" in a string (collapse of data into unsafe value)

 Overlaps: Collapse of Data into Unsafe Value

 Examples:

 CVE-2001-0467 - \... in web server

 CVE-2001-0615 - "..." or "...." in chat server

 CVE-2001-0963, CVE-2001-1193, CAN-2001-1131 - "..." in cd command
 in FTP server

 CAN-2001-0480 - "..." in GET or CD command in FTP server

 CAN-2002-0288 - ... in web server

 CAN-2002-0784 - HTTP server protects against ".." but allows "..."

 CAN-2003-0313 - directory listing of web server using "..."

 CAN-2005-1658 - triple dot

PATH.TRAV.REL.10. "...." (multiple dot)

 Note: see "..." notes.

 Examples:

 CVE-2000-0240 - read files via "/........../" in URL

 CVE-2000-0773, CVE-2000-0773 - read files via "...." in web server

 CAN-1999-1082, CAN-2004-2121 - read files via "......" in web server
 (doubled triple dot?)

 CAN-2001-0491 - multiple attacks using "..", "...", and "...." in
 different commands

 CVE-2001-0615 - "..." or "...." in chat server

PATH.TRAV.REL.11. "....//" (doubled dot dot slash)

 Note: this could occur due to a cleansing error that removes a
 single "../" from "....//"

 Examples: Merak Mail Server with Icewarp, Sep. 10, 2004

PATH.TRAV.REL.12. ".../...//"

 Note: this is effective when a programmer uses a "../" regular
 expression in an attempt to remove sequences. Removing the two
 "../" sequences from ".../...//" yields "../".

 Examples:

 CAN-2005-2169

 CAN-2005-0202 - ".../....///" bypasses regexp's that remove "./"
 and "../"

==
PATH.TRAV.ABS. Absolute Path Traversal

 Definition: the product can construct a path that contains absolute
 path sequences such as "/path/here," which is then processed by the
 operating system to access a file or resource that is "above" or
 outside of a restricted path that was intended by the developer.

PATH.TRAV.ABS.1. /absolute/pathname/here

 Examples:

 CAN-2002-1345 - multiple FTP clients write arbitrary files via
 absolute paths in server responses

 CAN-2001-1269 - ZIP file extractor allows full path

 CAN-2002-1818, CAN-2002-1913, CAN-2005-2147 - path traversal using
 absolute pathname

PATH.TRAV.ABS.2. \absolute\pathname\here ("backslash absolute path")

 Examples: many, including CVE-1999-1263, CAN-2003-0753,
 CAN-2002-1344, CAN-2002-1525, CAN-2000-0614,

PATH.TRAV.ABS.3. "C:dirname" or C: (Windows volume or "drive letter")

 Examples: CAN-2001-0038, CAN-2001-0255, CAN-2001-0687,

 CAN-2001-0933, CAN-2002-0466, CAN-2002-1483

 CVE-2004-2488 - FTP server read/access arbitrary files using "C:\"
 filenames

PATH.TRAV.ABS.4. "\\UNC\share\name\" (Windows UNC share)

 Examples: CAN-2001-0687

==
PATH.EQ. Path Equivalence

Alternate Term: pathname equivalence

Path equivalence involves the use of special characters in file and
directory names. However, it is different because the associated
manipulations are all intended to generate multiple names for the same
object, whereas in path traversal, the manipulations are performed to
generate a name for a different object.

Note: some of these manipulations could be effective in path traversal
issues, too.

PATH.EQ.TDOT. Trailing Dot - "filedir."

 CAN-2000-1114, CAN-2002-1986, CAN-2004-2213, CVE-2005-3293 - source
 code disclosure using trailing dot

 CAN-2004-0061, CAN-2000-1133 - bypass directory access
 restrictions using trailing dot in URL

 CVE-2001-1386 - bypass check for ".lnk" extension using ".lnk."

PATH.EQ.IDOT. Internal Dot - "file.ordir"

 Note: this variant does not have any easily findable, publicly
 reported vulnerabilities, but it can be an effective manipulation in
 WIFFs such as validate-before-cleanse, which might remove a dot from
 a string to produce an unexpected string.

PATH.EQ.IDOT.MULT. Multiple Internal Dot - "file...dir"

 Note: this variant does not have any easily findable, publicly
 reported vulnerabilities, but it can be an effective manipulation in
 WIFFs such as validate-before-cleanse, which might use a regular
 expression that removes ".." sequences from a string to produce an
 unexpected string.

PATH.EQ.TDOT.MULT. Multiple Trailing Dot - "filedir...."

 Examples:

 BUGTRAQ:20040205 Apache + Resin Reveals JSP Source Code ...

 CAN-2004-0281 - multiple trailing dot allows directory listing

PATH.EQ.TSPACE. Trailing Space - "filedir "

 CAN-2001-0693, CAN-2001-0778, CAN-2001-1248, CAN-2004-0280,
 CAN-2004-2213, CAN-2005-0622, CAN-2005-1656, CAN-2002-1603 - source
 disclosure via trailing encoded space "%20"

 CVE-2001-0054 - MFV. directory traversal and other issues in
 FTP server using Web encodings such as "%20"; certain manipulations
 have unusual side effects

 CAN-2002-1451 - trailing space ("+" in query string) leads to
 source code disclosure

PATH.EQ.LSPACE. Leading Space - " filedir"

PATH.EQ.ISPACE. file[SPACE]name (internal space)

 Note: This is not necessarily an equivalence issue, but it can also
 be used to spoof icons or conduct information hiding via
 information truncation (see user interface errors).

 This WIFF is likely to overlap quoting problems, e.g. the "Program
 Files" untrusted search path variants. It also could be an
 equivalence issue if filtering removes all extraneous spaces.

 CAN-2000-0293 - filenames with spaces allow arbitrary file deletion
 when product does not properly quote them; some overlap with path
 traversal

 CVE-2001-1567 - "+" characters in query string converted to spaces
 before sensitive file/extension (internal space), leading to bypass
 of access restrictions to the file

PATH.EQ.TSLASH. filedir/ (trailing slash, trailing /)

 Examples: CAN-2002-0253 (overlaps infoleak), CAN-2001-0446,
 CAN-2004-0334, CAN-2001-0893, CAN-2001-0892, CAN-2004-1814,
 BID:3518

PATH.EQ.MLSLASH. //multiple/leading/slash ("multiple leading slash")

 Examples: CVE-2000-1050, CAN-2002-1483, CVE-1999-1456,
 CAN-2004-0235, CAN-2004-0578, CVE-2002-0275,
 CVE-2000-1050, CVE-2001-1072, CAN-2004-1032,
 CAN-2002-1238, CAN-2004-1878, CAN-2005-1365 (leading
 slash with "..")

 CVE-2000-1050 - access directory using multiple leading slash

 CVE-2001-1072 - bypass access restrictions via multiple
 leading slash, which causes a regular expression to fail

 CAN-2004-0235 - archive extracts to arbitrary files using multiple
 leading slash in filenames in the archive.

PATH.EQ.MISLASH. /multiple//internal/slash ("multiple internal slash")

 CAN-2002-1483 - read files with full pathname using multiple internal
slash

PATH.EQ.MTSLASH. /multiple/trailing/slash// ("multiple trailing slash")

 CAN-2002-1078 - directory listings in web server using multiple
 trailing slash

PATH.EQ.MIBSLASH. \multiple\\internal\backslash

PATH.EQ.TBSLASH. filedir\ (trailing backslash)

 Examples: CAN-2004-0847

PATH.EQ.DOTDIR. /./ (single dot directory)

 Examples: CVE-2000-0004, CAN-2002-0304, BID:6042, possibly
 CAN-1999-1083 (could be a cleansing error), CAN-2004-0815
 ("/./////etc" cleansed to ".///etc" then "/etc"), CAN-2002-0112

PATH.EQ.WILD. filedir* (asterisk / wildcard)

 CAN-2004-0696 - list directories using desired path and "*"

 CAN-2002-0433 - list files in web server using "*.ext"

PATH.EQ.INOUT. dirname/fakechild/../realchild/filename

 Note: this is a manipulation that uses an injection for one
 consequence (containment violation using relative path) to achieve a
 different consequence (equivalence by alternate name)

 Examples: CAN-2001-1152, CVE-2000-0191

 CAN-2005-1366 - CGI source disclosure using "dirname/../cgi-bin"

PATH.EQ.83FNAME. Windows 8.3 Filename

 Definition: on later Windows operating systems, a file can have a
 "long name" and a short name that is compatible with older Windows
 file systems, with up to 8 characters in the filename and 3
 characters for the extension. These "8.3" filenames, therefore,
 have the "alternate name" property for files with long names, so are
 useful pathname equivalence manipulations.

 Research Gaps: probably under-studied.

 Functional Area: file processing

 Property: alternate name

 CVE-1999-0012 - multiple web servers allow restriction bypass using
 8.3 names instead of long names

 CAN-2001-0795 - source code disclosure using 8.3 file name

 CAN-2005-0471 - MFV. Product generates temporary filenames using
 long filenames, which become predictable in 8.3 format.

==
PATH.LINK. Link Following

Link following WIFFs involve insufficient protection against links or
shortcuts that can reference a file other than the one that was
intended.

Research Gaps: UNIX hard links, and Windows hard/soft links are
under-studied and under-reported.

Terminology Note: some people use the phrase "insecure temporary file"
when referring to a link following WIFF, but other WIFFs can product
insecure temporary files without any symlink involvement at all.

Functional Area: file processing, temporary files

Properties: alternate reference, pathname equivalence, container escape

Factors: race conditions, permissions, predictability

OS-specific: no

Note: link following vulnerabilities are MFV. They are the
combination of multiple elements: file or directory permissions,
filename predictability, etc.

Note: Windows soft links can be exploited remotely since a ".LNK" file
can be uploaded like a normal file.

PATH.LINK.UNIX.SYM. UNIX symbolic link following

 Fault: filename predictability, insecure directory permissions,
 non-atomic operations, race condition

 Alias: symlink following, symlink vulnerability

 Note: these are typically reported for temporary files or privileged
 programs

 Reference: [Colley2004]

 Research Gaps: symlink vulnerabilities are regularly found in C and
 shell programs, but all programming languages can have this problem.

 Research Gaps: "second-order symlink vulnerabilities" may exist in
 programs that invoke other programs that follow symlinks. They are
 rarely reported but are likely to be fairly common when process
 invocation is used. Reference: [Christey2005]

 Examples: many, including CVE-1999-1386, CVE-2000-0972,
 CVE-2000-1178, CAN-2004-0217, CAN-2003-0517

 CAN-2004-0689 - Possible interesting example

 CAN-2005-1879, CAN-2005-1880 - second-order symlink vulns

 CAN-2005-1916 - symlink in Python program

 CVE-2000-0972 - setuid product allows file reading by replacing a
 file being edited with a symlink to the targeted file, leaking the
 result in error messages when parsing fails.

 CAN-2005-0824 - signal causes a dump that follows symlinks

PATH.LINK.UNIX.HARD. UNIX hard link

 Research Gaps: under-studied. It is likely that programs that
 check for symbolic links could be vulnerable to hard links.

 Examples:

 CAN-2001-1494 - hard link attack, file overwrite; interesting
 because program checks against soft links

 CAN-2002-0793

 CAN-2003-0578

 CVE-1999-0783

 CAN-2004-1603

 CAN-2004-1901

 CAN-2005-1111

 hard link race condition
 BUGTRAQ:20030203 ASA-0001: OpenBSD chpass/chfn/chsh file content leak
 URL:http://www.securityfocus.com/archive/1/309962

PATH.LINK.WIN.LNK. Windows Shortcut Following (.LNK)

 Alternate name: Windows symbolic link following (symlink)

 Research Gaps: under-studied. Windows .LNK files are more
 "portable" than Unix symlinks and have been used in remote
 exploits. Some Windows API's will access LNK's as if they are
 regular files, so one would expect that they would be reported more
 frequently.

 Examples: CVE-2000-0342, CAN-2001-1042, CVE-2001-1043,
 CAN-2005-0587

 CAN-2001-1386 - ".LNK." - .LNK with trailing dot

 CVE-2003-1233 - rootkits can bypass file access restrictions to
 Windows kernel directories using NtCreateSymbolicLinkObject
 function to create symbolic link

PATH.LINK.WIN.HARD. Windows hard link

 Research Gaps: under-studied.

 Examples: CAN-2002-0725, CAN-2003-0844

==
PATH.VIRT. Virtual Files

Virtual file names are represented like normal file names, but they
are effectively aliases for other resources that do not behave like
normal files. Depending on their functionality, they could be
alternate entities. They are not necessarily listed in directories.

Functional Area: file processing

PATH.VIRT.DOSDEV. Windows MS-DOS device names

 Note: Historically, there was a bug in the Windows operating system
 that caused a blue screen of death, but even after that issue was
 fixed, DOS device names continue to be a factor.

 Examples: CAN-2002-0106, CAN-2002-0200, CAN-2002-1052,
 CVE-2001-0493, CVE-2001-0558, CVE-2000-0168, CAN-2001-0492,
 CAN-2004-0552, CAN-2005-2195

PATH.VIRT.WIN.ALTSTREAM. Windows ::DATA alternate data stream

 Properties: alternate name, alternate channel

 Fault: multiple identifiers, non-atomic object

 Examples: CVE-1999-0278, CVE-2000-0927 (note: there may be others
 with different attack vectors and impacts)

PATH.VIRT.MAC.DS. Apple ".DS_Store"

 Research Gaps: under-studied.

 Examples:

 BUGTRAQ:20010910 More security problems in Apache on Mac OS X

PATH.VIRT.MAC.ALTSTREAM. Apple HFS+ alternate data stream

 Fault: multiple identifiers, non-atomic object

 Research Gaps: under-studied.

 Example: CAN-2004-1084

==
SECTION.9.7. [CP] Channel and Path Errors
==

A number of vulnerabilities are specifically related to problems in
creating, managing, or removing alternate channels and alternate
paths.

Some of these can overlap virtual file problems (CHAP.VIRTFILE),
and they can are commonly used in "bypass" attacks, such as those that
exploit authentication errors.

Research Gaps: most of these issues are probably under-studied. Only
a handful of public reports exist.

CP.CHAN. Channel Errors

CP.CHAN.PRIM. Unprotected Primary Channel

 Definition: the product uses a primary channel for administration or
 restricted functionality, but it does not properly protect the

 channel.

CP.CHAN.ALT. Unprotected Alternate Channel

 Definition: the product protects a primary channel, but it does not
 use the same level of protection for an alternate channel.

 Factors: this can be primary to authentication errors, and resultant
 from unhandled error conditions.

 CVE-2002-0567 - DB server assumes that local clients have performed
 authentication, allowing attacker to directly connect to a process
 to load libraries and execute commands; a socket interface also
 exists (another alternate channel), so attack can be remote.

 CAN-2002-1578 - product does not restrict access to underlying
 database, so attacker can bypass restrictions by directly querying
 the database.

 CAN-2003-1035 - user can avoid lockouts by using an API instead of
 the GUI to conduct brute force password guessing

 CAN-2002-1863 - FTP service can not be disabled even when other
 access controls would require it

 CVE-2002-0066 - Windows named pipe created without
 authentication/access control, allowing configuration modification

 CVE-2004-1461 - router management interface spawns a separate TCP
 connection after authentication, allowing hijacking by attacker
 coming from the same IP address.

CP.CHAN.ALT.RACE. Alternate Channel Race Condition

 Definition: the product opens an alternate channel for communication
 with an authorized user, but the channel is unprotected and a race
 condition allows an attacker to access the channel instead.

 Attack: hijack

 Note: predictability can be a factor in some issues.

 CVE-1999-0351 - FTP "Pizza Thief" vulnerability. Attacker can
 connect to a port that was intended for use by another client.

 CAN-2003-0230 - hijack alternate named pipe while another user is
 authenticating.

 CAN-2003-0230 - product creates Windows named pipe during
 authentication that another attacker can hijack by connecting to it.

CP.CHAN.PROXIED. Proxied Trusted Channel

 Definition: the product controls and trusts both endpoints of a
 channel, but one endpoint can be accessed by an attacker and used as
 a proxy to interact with the product.

 Note: this can overlap some other categories, such as those
 exploited by "bounce" attacks, but the idea here is that both
 endpoints are under control of the product.

CP.CHAN.ALT.WM. Unprotected Windows Messaging Channel ("Shatter")

 Definition: the product does not properly verify the source of a
 message in the Windows Messaging System while running at elevated
 privileges, creating an alternate channel through which an attacker
 can directly send a message to the product.

 Reference: [Paget]

 Note: alternate channel attacks likely exist in other operating
 systems and messaging models, e.g. in privileged X Windows
 applications, but examples are not readily available.

 Note: overlaps privilege errors and UI errors.

 Research Gaps: possibly under-reported, probably under-studied. It
 is suspected that a number of publicized vulnerabilities that
 involve local privilege escalation on Windows systems may be related
 to Shatter attacks, but they are not labeled as such.

 CAN-2002-0971 - bypass GUI and access restricted dialog box

 CVE-2002-1230 - gain privileges via Windows message

 CAN-2003-0350 - a control allows a change to a pointer for a
 callback function using Windows message

 CAN-2003-0908 - product launches Help functionality while running
 with raised privileges, allowing command execution using Windows
 message to access "open file" dialog.

 CAN-2004-0213 - attacker uses Shatter attack to bypass GUI-enforced
 protection for CAN-2003-0908.

 CAN-2004-0207 - user can call certain API functions to modify
 certain properties of privileged programs

==
CP.ALTPATH. Alternate Path Errors

Note: this is partially covered by other categories.

CP.ALTPATH.DREQ. Direct Request aka "Forced Browsing"

 Definition: the web product does not sufficiently prevent a
 restricted or supporting script from being accessed directly by an
 attacker without going through the expected path.

 Terminology Note: the "forced browsing" term could be misinterpreted
 to include WIFFs such as CSRF or XSS, so its use is discouraged.

 Note: "Forced browsing" is a step-based manipulation involving the
 omission of one or more steps, whose order is assumed to be
 immutable; the application does not verify that the first step was
 performed. The consequence is typically "authentication bypass" or
 "path disclosure," although it can expose all kinds of WIFFs,
 especially in languages such as PHP, which allow external
 modification of assumed-immutable variables.

 Note: overlaps MAID, authorization errors, container errors; often
 primary to other WIFFs such as XSS and SQL injection.

 CAN-2004-2144 - bypass authentication via direct request

 CAN-2005-1892 - infinite loop or infoleak triggered by direct
 requests

 CAN-2004-2257 - bypass auth/auth via direct request

 CAN-2005-1688, CAN-2005-1697, CAN-2005-1698 - direct request leads
 to infoleak by error

 CAN-2005-1685, CAN-2005-1827 - authentication bypass via direct
 request

 CAN-2005-1654 - authorization bypass using direct request

 CAN-2005-1668 - access privileged functionality using direct request

 CAN-2002-1798 - upload arbitrary files via direct request

CP.ALTPATH.MISC. Miscellaneous alternate path errors

 CVE-1999-1111 - Buffer overflow protection mechanism allows bypass
 using alternate path

 CAN-2005-2148 - web product cleanses input from POST requests but
 not the URL, which allows an alternate path attack by specifying
 good values in POST, and bad values in the URL.

 CVE-2005-3300 - PHP script filters dangerous variables from inputs,
 but forgets to include _FILES. Overlaps blacklist/whitelist errors
 and MAID.

 CAN-2002-2059 - bypass of hardware restrictions via alternate path
 (pressing F8 key)

 CVE-2004-2352 - XSS in PHP script via an alternate path using cookies
 instead of POST data

 CAN-2001-0919 - cookie preferences can be bypassed by setting a
 cookie using Javascript

 CAN-2005-1590 - disable password protection and access interface by
 using Windows code to find a hidden window

 CVE-2003-1127 - web server allows source disclosure using HTTP TRACE
 method.

 CAN-2002-1715 - restricted shell bypass by uploading a script to a
 world-writable directory. Permissions, privileges, alternate path.

==
CP.UPATH. Untrusted Search Path

 Definition: The product uses a set of one or more "paths" to search
 for desired resources, such as code libraries or configuration
 files, but an attacker can modify the path so that it references an
 attacker-controlled resource.

 Alternate Term: Untrusted Path, Mutable Search Path (PLOVER 0.18 and
 earlier)

 Functional Area: program invocation, code libraries

 Research Gaps: search path issues on Windows are under-studied and
 possibly under-reported.

 CVE-1999-1120, CAN-2002-0470 - application relies on its PATH
 environment variable to find and execute program

CP.UPATH.ELEMENT. Uncontrolled Search Path Element

 Definition: One or more elements in a static search path is under
 control of the attacker, e.g. "." or "/tmp", even though the
 attacker cannot modify the search path itself.

 Note: PHP file inclusion is an instance of this (see PHP-specific
 issues); trusted environment variables is another.

 Examples: CAN-2002-1576, CAN-2000-1128, CAN-1999-1461,
 CVE-1999-1318, CAN-2003-0579, CVE-2001-0507,
 CVE-2000-0854, CAN-2001-0943, CAN-2001-0942,
 CAN-2001-0507, CAN-2002-2017

 CVE-1999-0690

 CVE-2001-0912 - error during packaging causes product to include a
 hard-coded, non-standard directory in search path

 CVE-2001-0289, CAN-2005-1705 - product searches current working
 directory for configuration file

 CVE-2005-1307 - product executable other program from current
 working directory.

 CAN-2002-2040 - untrusted path

 CAN-2005-2072 - modification of trusted environment variable leads
 to untrusted path vuln

 CAN-2005-1632 - product searches /tmp for modules before other paths

CP.UPATH.UNQUOT. Unquoted Search Path or Element

 Note: This covers "C:\Program Files" and space-in-search-path issues

 Notes: this theoretically could apply to other OSes besides
 Windows, especially those that make it easy for spaces to be in
 files or folders.

 Research Gaps: under-studied, probably under-reported.

 Functional area: program invocation

 Fault: missing quoting

 Weakness: whitespace allowed in identifiers

 Examples:

 CAN-2005-1185, small handful of others. Program doesn't quote the
 "C:\Program Files\" path when calling a program to be executed - or
 any other path with a directory or file whose name contains a space
 - so attacker can put a malicious program.exe into C:.

 CVE-2005-2938 - CreateProcess() and CreateProcessAsUser() can be
 misused by applications to allow "program.exe" style attacks in C:

 CAN-2000-1128 applies to "Common Files" folder, with a malicious
 common.exe, instead of "Program Files"/program.exe.

==
SECTION.9.8. [CCC] Cleansing, Canonicalization, and Comparison Errors
==

Note: this section needs more work. Most of the key concepts are
already covered by special characters and alternate encodings.

CCC.ENC. Encoding Error

 Note: partially overlaps path traversal and equivalence

 Note: many other types of encodings should be listed here

CCC.ENC.ALT. Alternate Encoding

 Definition: the product does not properly handle when an input has
 been modified to use an alternate encoding.

CCC.ENC.DOUBLE. Double Encoding

 Definition: the product does not properly handle when an input has
 been encoded twice.

 Research Gaps: probably under-studied.

 Examples: CVE-2001-0333, CAN-2005-0054, CAN-2004-1315,
 CAN-2004-1938, CAN-2004-1939

 CVE-2001-0333 - directory traversal using double encoding

 CAN-2004-1938 - "%2527" (double-encoded single quote) used in SQL
 injection

 CAN-2005-1945 - double hex-encoded data

 CAN-2005-0054 - browser executes HTML at higher privileges via URL
 with hostnames that are double hex encoded, which are decoded twice
 to generate a malicious hostname.

CCC.ENC.MIXED. Mixed Encoding

 Definition: the product does not properly handle when the same input
 uses multiple (mixed) encodings.

CCC.ENC.UNI. Unicode Encoding

 Examples: CVE-2000-0884, CAN-2001-0709, CAN-2001-0669 (overlaps
 interaction error)

CCC.ENC.URL. URL Encoding (Hex Encoding)

 Definition: the product does not properly handle when all or part of
 an input has been URL encoded.

 CVE-2000-0900, CAN-2005-2256, CAN-2004-2121 - hex-encoded path
 traversal variants - "%2e%2e", "%2e%2e%2f", "%5c%2e%2e"

 CAN-2004-0280, CAN-2003-0424, CAN-2001-0693, CAN-2001-0778 - "%20"
 (encoded space)

 CAN-2002-1831 - crash via hex-encoded space "%20"

 CVE-2000-0671, CVE-2004-0189, CAN-2002-1291, CVE-2002-1031,
 CAN-2001-1140, CAN-2004-0760, CVE-2002-1025 - "%00" (encoded null)

 CAN-2004-0072 - "%2e" (encoded dot)

 CAN-2002-1213 - "%2f" (encoded slash)

 CAN-2004-0072, CAN-2004-0847 - "%5c" (encoded backslash)

 CAN-2002-1575 - "%0a" (overlaps CRLF)

CCC.CASE. Case Sensitivity (lowercase, uppercase, mixed case)

 Improperly handled case sensitive data can lead to several possible
 consequences, including:

 [*] case-insensitive passwords reducing the size of the key space,
 making brute force attacks easier

 [*] bypassing filters or access controls using alternate names
 [*] multiple interpretation errors using alternate names

 Functional Area: file processing, passwords

 Property: alternate names

 Research Gaps: these are probably under-studied in Windows
 environments, where file names are case-insensitive and thus are
 subject to equivalence manipulations involving case.

 Examples: CVE-2000-0497, CVE-2000-0498, CAN-2001-0766,
 CAN-2001-0795, CAN-2001-1238, CAN-2003-0411, CAN-2002-0485
 (leads to interpretation error), CVE-1999-0239,
 CAN-2005-0269, CAN-2004-1083, CAN-2004-2154 (overlaps ACL
 bypass), CVE-2000-0499

 CVE-2002-2119 - case insensitive passwords lead to search space
 reduction

 CVE-2004-2214 - HTTP server allows bypass of access restrictions
 using URIs with mixed case

 CAN-2004-2154 - mixed upper/lowercase allows bypass of ACLs

 CAN-2004-2214 - bypass access restrictions using mixed case

 CVE-2005-4509 - bypass malicious script detection by using tokens
 that aren't case sensitive.

 CAN-2002-1820 - mixed case problem allows "admin" to have "Admin"
 rights (alternate name property)

CCC.EVE. Early Validation Errors

 Products need to validate data at the proper time, after data has
 been canonicalized and cleansed. Early validation is susceptible to
 various manipulations that result in dangerous inputs that are
 produced by canonicalization and cleansing.

 Note: since early validation errors usually arise from improperly
 implemented defensive mechanisms, it is likely that these will be
 reported more frequently as secure programming becomes implemented

 more widely.

 Research Gaps: these errors are mostly reported in path traversal
 vulnerabilities, but the concept applies anyplace where filtering
 occurs.

CCC.VBC. Validate-Before-Canonicalize

 Definition: a program "validates" data before it is canonicalized,
 which leaves it vulnerable to certain manipulations that are later
 removed during canonicalization. Invalid data can then avoid
 detection before it is produced by canonicalization.

 Functional Area: non-specific

 Note: this overlaps other categories

 Examples: CAN-2002-0433, CAN-2003-0332, CVE-2002-0802,
 CVE-2000-0191 (overlaps "fakechild/../realchild")

 CVE-2004-2363 - product checks URI for "<" and other literal
 characters, but does it before hex decoding the URI, so "%3E" and
 other sequences are allowed.

CCC.FILTER. Validate-Before-Filter

 Definition: a program validates data before it has been filtered or
 cleansed, which could produce dangerous data after the filtering
 step.

 Alternate Term: validate-before-cleanse

 Functional Area: non-specific

 Note: this category is probably under-studied.

 Examples: CAN-2002-0934, CAN-2003-0282, possibly CAN-2003-0417,
 apexec.pl

CCC.COLLAPSE. Collapse of Data into Unsafe Value

 Definition: the product cleanses or filters data in a way that
 causes the data to "collapse" into an unsafe value.

 Note: overlaps regular expressions, although an implementation might
 not necessarily use regexp's.

 CAN-2004-0815 - "/.////" in pathname collapses to absolute path.

 CVE-2005-3123 - "/.//..//////././" is collapsed into "/.././" after
 ".." and "//" sequences are removed.

 CAN-2002-0325 - ".../...//" collapsed to "..." due to removal of
 "./" in web server

 CAN-2002-0784 - "///./../.../" claimed to work - "./" removal would
 produce "///..."

 CAN-2005-2169 - MFV. Regular expression intended to protect against
 directory traversal reduces ".../...//" to "../".

CCC.WHITELIST. Permissive Whitelist

 Definition: an application uses a "whitelist" of acceptable values,
 but the whitelist permits at least one unsafe value.

 Note that a permissive whitelist produces resultant vulnerabilities.

CCC.BLACKLIST. Incomplete Blacklist

 Definition: an application uses a "blacklist" of prohibited values,
 but the blacklist is incomplete.

 Note: an incomplete blacklist frequently produces resultant
 WIFFs. Exploitation of those WIFFs using the obvious manipulations
 might fail, but minor variations might succeed.

 Note: some incomplete blacklist issues might arise from multiple
 interpretation errors, e.g. a blacklist for dangerous shell
 metacharacters might not include a metacharacter that only has
 meaning in one particular shell, not all of them; or a blacklist for
 XSS manipulations might ignore an unusual construct that's supported

 by one web browser, but not others.

 CVE-2005-2782 - PHP remote file inclusion in web application that
 filters "http" and "https" URLs, but not "ftp".

 CAN-2004-0542 - programming language does not filter certain shell
 metacharacters in Windows environment.

 CAN-2004-0595 - XSS filter doesn't filter null characters before
 looking for dangerous tags, which are ignored by web browsers. MIE
 and validate-before-cleanse.

 CVE-2005-3287 - web-based mail product doesn't restrict dangerous
 extensions such as ASPX on a web server, even though others are
 prohibited.

 CVE-2004-2351 - resultant XSS from incomplete blacklist (only
 <script> and <style> are checked)

 CVE-2005-2959 - privileged program does not clear sensitive
 environment variables that are used by bash. Overlaps multiple
 interpretation error.

 CAN-2005-1824 - SQL injection protection scheme does not quote the
 "\" special character.

 CAN-2005-2184 - incomplete blacklist prevents user from
 automatically executing .EXE files, but allows .LNK, allowing
 resultant Windows symbolic link

CCC.REGEXP. Regular Expression Error

 Definition: a regular expression is incorrectly specified in a way
 that causes data to be improperly filtered, compared, or cleansed.

 Keywords: regexp

 Note: this can seem to overlap whitelist/blacklist problems, but it
 is intended to deal with improperly written regular expressions,
 regardless of the values that those regular expressions use.

 Note: can overlap partial comparison.

 Note: interacts with null byte in PHP.

 Research Gaps: regexp errors are likely a primary factor in many
 MFVs, especially those that require multiple manipulations to
 exploit. However, they are rarely diagnosed at this level of
 detail.

 CVE-2002-2109 - regexp isn't "anchored" to the beginning or end,
 which allows spoofed values that have trusted values as substrings.

 CAN-2005-1949 - regexp for IP address isn't anchored at the end,
 allowing appending of shell metacharacters

 CVE-2001-1072 - bypass access restrictions via multiple leading
 slash, which causes a regular expression to fail

 CAN-2000-0115 - local user DoS via invalid regular expressions

 CAN-2002-1527 - error infoleak via malformed input that generates a
 regular expression error

 CAN-2005-0603 - error infoleak via regular expression with invalid
 syntax

 CAN-2005-1061 - certain strings are later used in a regexp, leading
 to a resultant crash.

 CAN-2005-2169 - MFV. Regular expression intended to protect against
 directory traversal reduces ".../...//" to "../".

 CAN-2005-0603 - malformed regexp syntax leads to error infoleak

 CAN-2005-1820 - code injection due to improper quoting of regular
 expression

 CVE-2005-3153, CVE-2005-4155 - null byte bypasses PHP regexp check

CCC.REGEXP.REST. Overly Restrictive Regular Expression

 Definition: a regular expression is overly restrictive, which
 prevent dangerous values from being detected.

 Note: can overlap whitelist/blacklist errors.

 CAN-2005-1604 - MIE. ".php.ns" bypasses ".php$" regexp but is still
 parsed as PHP by Apache. (manipulates an equivalence property under
 Apache)

CCC.PCOMP. Partial Comparison

 Definition: User input is only partially compared to the desired
 input before a match is determined.

 For example, an attacker might succeed in authentication by
 providing a small password that matches the associated portion of
 the larger, correct password.

 Note: this is conceptually similar to other WIFFs, such as
 insufficient verification and regular expression errors. it is
 primary to some WIFFs.

 Examples:

 CAN-2004-1012 - argument parser of an IMAP server treats a partial
 command "body[p" as if it is "body.peek", leading to index error and
 out-of-bounds corruption.

 CAN-2004-0765 - web browser only checks the hostname portion of a
 certificate when the hostname portion of the URI is not a fully
 qualified domain name (FQDN), which allows remote attackers to spoof
 trusted certificates.

 CVE-2002-1374 - one-character password by attacker checks only
 against first character of real password

==
SECTION.9.9. [INFO] Information Management Errors
==

INFO.LEAK. Information Leak (information disclosure)

 Definition: an information leak is the intentional or unintentional
 disclosure of information that either (1) is regarded as sensitive

 within the product's own functionality, such as a private message,
 or (2) provides information about the product or its environment
 that could be useful in an attack but is normally not available to
 the attacker, such as the installation path of a product that is
 remotely accessible.

 Many information leaks are resultant (e.g. path disclosure in PHP
 script error), but they can also be primary (e.g. timing
 discrepancies in crypto).

 There are many different types of problems that involve information
 leaks. Their severity can range widely depending on the type of
 information that is leaked. In addition, information leaks are
 often resultant.

INFO.LEAK.DIS. Discrepancy Information Leaks

 Definition: a discrepancy information leak is an information leak in
 which the product behaves differently, or sends different responses,
 in a way that reveals security-relevant information about the state
 of the product, such as whether a particular operation was
 successful or not.

INFO.LEAK.DIS.RES. Response discrepancy infoleak

 Definition: A response discrepancy information leak occurs when the
 product sends different messages in direct response to an attacker's
 request, in a way that allows the attacker to learn about the inner
 state of the product.

 The leaks can be inadvertent (bug) or intentional (design).

 Note: can overlap errors related to escalated privileges

 Examples:

 CVE-2002-2094 - this, and others, use ".." attacks and monitor
 error responses, so there is overlap with directory traversal.

 CAN-2001-1483 - user enumeration by infoleak from inconsistent
 responses

 CAN-2001-1528 - account number enumeration via inconsistent
 response infoleak

 CAN-2004-2150 - user enumeration via error message discrepancy
 infoleak

 CAN-2005-1650 - infoleak by inconsistent responses

 Other examples: CAN-2004-0294, CAN-2004-0243, CAN-2002-0514,
 CAN-2002-0515, CAN-2001-1387, CAN-2004-0778, CAN-2004-1428

INFO.LEAK.DIS.BEH. Behavioral Discrepancy Infoleak

 Definition: a behavioral discrepancy information leak occurs when
 the product's actions indicate important differences based on (1)
 the internal state of the product or (2) differences from other
 products in the same class.

 Attacks such as OS fingerprinting rely heavily on both behavioral
 and response discrepancies.

INFO.LEAK.DIS.BEH.INT. Internal behavioral inconsistency infoleak

 Definition: Two separate operations in a product cause the product
 to behave differently in a way that is observable to an attacker
 and reveals security-relevant information about the internal state
 of the product, such as whether a particular operation was
 successful or not.

 Examples:

 CAN-2002-2031 - file existence via infoleak monitoring whether
 "onerror" handler fires or not

 CAN-2005-2025 - valid groupname enumeration via behavioral infoleak
 (sends response if valid, doesn't respond if not)

 CAN-2001-1497 - behavioral infoleak in GUI allows attackers to
 distinguish between alphanumeric and non-alphanumeric characters
 in a password, thus reducing the search space

 CAN-2003-0190 - product immediately sends an error message when

 user does not exist instead of waiting until the password is
 provided, allowing username enumeration.

INFO.LEAK.BEH.EXT. External behavioral inconsistency infoleak

 Definition: the product behaves differently than other products like
 it, in a way that is observable to an attacker and reveals
 security-relevant information about which product is being used, or
 its operating state.

 Examples:

 CAN-2002-0208 - product modifies TCP/IP stack and ICMP error
 messages in unusual ways that show the product is in use

 CAN-2004-2252 - behavioral infoleak by responding to SYN-FIN packets

 CVE-2000-1142 - honeypot generates an error with a "pwd" command in
 a particular directory, allowing attacker to know they are in a
 honeypot system

INFO.LEAK.TIM. Timing discrepancy infoleak

 Definition: Two separate operations in a product require different
 amounts of time to complete, in a way that is observable to an
 attacker and reveals security-relevant information about the state
 of the product, such as whether a particular operation was
 successful or not.

 Functional Area: cryptography, authentication

 Attack: Timing attack

 Note: overlaps crypto error, can be thought of as overlapping
 inconsistent response

 Examples: CVE-2003-0078, CAN-2000-1117, CAN-2003-0637,
 CAN-2003-0190, CAN-2004-1602, CAN-2005-0918

INFO.LEAK.ERR.PGEN. Product-Generated Error Message Infoleak

 Definition: the product identifies an error condition and creates
 its own diagnostic or error messages that contain sensitive
 information.

 Functional Area: non-specific

 Attack: trigger error, monitor responses

 Examples: various

 CAN-2005-1745 - infoleak of sensitive information in error message
 (physical access required)

INFO.LEAK.ERR.EXT. Product-External Error Message Infoleak

 Definition: the product performs an operation that triggers a
 diagnostic or error message that is not under direct control of the
 product, e.g. an error generated by the programming language that
 the product uses.

 This is inherently a resultant vulnerability from a WIFF within the
 product or an interaction error. It might be controllable by
 configuration, e.g. in PHP error messages.

 Functional Area: non-specific

 Attack: trigger error, monitor responses

 Note: PHP applications are often targeted for having this issue
 when the PHP interpreter generates the error outside of the
 application's control. However, it's not just restricted to PHP,
 as other languages/environments exhibit the same issue.

 Examples: CAN-2004-1581, CAN-2004-1579, CAN-2005-0459,
 CAN-2005-0443, CAN-2005-0433, CAN-2005-0326, CAN-2004-1101
 (VisualBasic)

INFO.LEAK.CBC. Cross-Boundary Cleansing Infoleak

 Definition: the product does not properly remove sensitive data
 from a source when preparing it for, or transferring it to, an
 untrusted destination.

 Note: this is intended to be different from infoleaks that are
 resultant from initialization or reuse errors, although those could
 be viewed as cross-boundary. It could be regarded as a type of
 privacy leak. In some cases, it could be a resultant
 vulnerability, multiple interpretation error, or interaction error.

 Some examples include Word or PDF files that did not remove
 sensitive supporting information, such as the edit history, when
 copying or exporting.

 CAN-2005-0406 - some image editors modify a JPEG image, but the
 original EXIF thumbnail image intact within the JPEG. (Also an
 interaction error).

 CVE-2002-0704 - NAT feature in firewall leaks internal IP addresses
 in ICMP error messages.

INFO.LEAK.INT. Intended information leak

 Definition: a product's design or configuration includes
 functionality that is specifically designed to publish information
 that is security-sensitive.

 Note: this overlaps other categories, but it is distinct from the
 error message infoleaks.

 Note: it's not always clear whether an infoleak is intentional or
 not. For example, CVE-2005-3261 identifies a PHP script that lists
 file versions, but it could be that the developer did not intend
 for this information to be public, but introduced a direct request
 issue instead.

 CAN-2002-1725, CVE-2004-0033, CAN-2003-1181, CAN-2004-1422,
 CAN-2004-1590 - script calls phpinfo()

 CAN-2003-1038 - product lists DLLs and full pathnames

 CAN-2005-1205, CAN-2005-0488 - Telnet protocol allows servers to
 obtain sensitive environment information from clients

INFO.LEAK.PRIVACY. Privacy Leak

 Definition: a privacy leak occurs when a product exports information
 about the product's user, in which the information has no impact on
 the secure operation of the product itself, but the information is
 regarded as sensitive by the user.

INFO.LEAK.PROC. Process information infoleak to other processes

 Certain information about a process could be obtained from other
 processes within the operating system, including arguments and
 environment variables. This can be an externally controlled
 infoleak, but some protective mechanisms may exist that could make
 it internally controlled.

 Research Gaps: under-studied, especially environment variables.

 CAN-2005-1387, CAN-2005-2291 - password passed on command line

 CAN-2001-1565, CAN-2004-1948 - username/password on command line
 allows local users to view via "ps" or other process listing
 programs

 CAN-1999-1270 - PGP passphrase provided as command line argument

 CAN-2004-1058 - kernel race condition allows reading of environment
 variables of a process that is still spawning

INFO.LEAK.DEBUG. Infoleak Using Debug Information

 Note: this overlaps other categories.

 CAN-2004-2268 - debug information infoleak of password.

 CAN-2002-0918 - CGI script includes sensitive information in debug
 messages when an error is triggered.

 CAN-2003-1078 - FTP client with debug option enabled shows password
 to the screen.

INFO.MGT.UNCLEAR. Sensitive Information Uncleared Before Use

 Definition: the product does not fully clear previously used
 information in a data structure, file, or other resource, before
 making that resource available to another party that did not have
 access to the original information.

 Note: This typically involves memory in which the new data is not
 as long as the old data, which leaves portions of the old data
 still available ("memory disclosure"). However, equivalent errors
 can occur in other situations where the length of data is variable
 but the associated data structure is not.

 Research gaps: currently frequently found for network packets, but
 it can also exist in local memory allocation, files, etc.

 Functional Area: non-specific, memory management, networking

 Note: can overlap cryptographic errors, cross-boundary cleansing
 infoleaks

 Note: can be resultant from other WIFFs.

 Examples:

 CAN-2003-0001 - Ethernet NIC drivers do not pad frames with null
 bytes, leading to infoleak from malformed packets.

 CAN-2003-0291 - router does not clear information from DHCP packets
 that have been previosuly used

 CAN-2005-1406, CAN-2005-1858, CAN-2005-3180 - products do not fully
 clear memory buffers when less data is stored into the buffer than
 previous.

 CVE-2005-3276 - product does not clear a data structure before
 writing to part of it, yielding information leak of previously used
 memory

 CAN-2002-2077 - memory not properly cleared before reuse

INFO.MGT.COMP. Sensitive memory uncleared by compiler optimization

 Definition: sensitive memory is cleared according to the source

 code, but compiler optimizations leave the memory untouched when it
 is not read from again, ak "dead store removal."

 Note: this is also an interaction error.

 Note: this can be hard to diagnose.

 References: [Howard2002] [Wagner]

INFO.LOSS. Information loss or omission

 Definition: the product does not record, or improperly records,
 security-relevant information, e.g. for monitoring.

 Note: these can be resultant vulns, e.g. a buffer overflow might
 trigger a crash before the product can log the event.

INFO.LOSS.TRUNC. Truncation of Security-relevant Information

 Definition: The application truncates the display, recording, or
 processing of security-relevant information in a way that can
 obscure the source or nature of an attack.

 CAN-2005-0585 - web browser truncates long sub-domains or paths,
 facilitating phishing

 CAN-2004-2032 - bypass URL filter via a long URL with a large
 number of trailing hex-encoded space characters.

 CAN-2003-0412 - does not log complete URI of a long request (truncation)

INFO.LOSS.OMIT. Omission of Security-relevant Information

 Definition: The application does not record or display information
 that would be important for identifying the source or nature of an
 attack.

 Examples:

 CAN-1999-1029 - login attempts not recorded if user disconnects
 before maximum number of tries

 CAN-2002-1839 - sender's IP address not recorded in outgoing e-mail

 CVE-2000-0542 - failed authentication attempt not recorded if later
 attempt succeeds

INFO.LOSS.OBS. Obscured Security-relevant Information by Alternate Name

 Definition: The product records security-relevant information
 according to an alternate name of the affected entity, instead of
 the canonical name.

 CAN-2002-0725 - attacker performs malicious actions on a hard link
 to a file, obscuring the real target file.

==
SECTION.9.10. [RACE] Race Conditions
==

RACE.LINK. Race condition enabling link following

 Note: this is already covered by PATH.LINK. It is included here
 because so many people associate race conditions with link problems;
 however, not all link following issues involve race conditions.

RACE.SIGNAL. Signal handler race condition

 Functional Area: signals, interprocess communication

 Note: probably under-studied.

 Examples: CVE-2001-1349, CAN-2004-0794, CAN-2004-2259

RACE.TOCTOU. Time-of-check Time-of-use race condition

 Definition: the product performs a verification check on an object,
 but the object (or its reference) can change before the product
 performs an operation on that object.

 Note that TOCTOU issues do not always involve symlinks, not is
 every symlink issue a TOCTOU problem.

 Non-symlink TOCTOU issues are not reported frequently, but they are
 likely to occur in code that attempts to be secure.

 Examples: CAN-2003-0813, CAN-2004-0594, others

RACE.CSWITCH. Context Switching Race Condition

 Definition: a product performs a series of non-atomic actions to
 switch between contexts that cross privilege or other security
 boundaries, but a race condition allows an attacker to modify or
 misrepresent the product's behavior during the switch.

 Note: this is commonly seen in web browser vulnerabilities, in which
 the attacker can perform certain actions while the browser is
 transitioning from a trusted to an untrusted domain, or vice versa,
 and the browser performs the actions on one domain using the trust
 level and resources of the other domain.

 Note: can be resultant or primary.

 Note: can overlap signal handler race conditions.

 Research Gaps: under-studied as a concept. Frequency unknown; few
 vulnerability reports give enough detail to know when a context
 switching race condition is a factor.

 CAN-2004-2260 - browser updates address bar as soon as user clicks
 on a link instead of when the page has loaded, allowing spoofing by
 redirecting to another page using onUnload method. ** this is one
 example of the role of "hooks" and context switches, and should be
 captured somehow - also a race condition of sorts **

 CVE-2004-0191 - XSS when web browser executes Javascript events in
 the context of a new page while it's being loaded, allowing
 interaction with previous page in different domain.

 CVE-2004-2491 - web browser fills in address bar of clicked-on link

 before page has been loaded, and doesn't update afterward.

RACE.ALTCHAN. Alternate Channel Race Condition

 Note: this is already covered by CP.CHAN.ALT.RACE.

RACE.MISC. Other race conditions

 Note: see "Alternate Channel Race Condition"

 CAN-2005-2306 - race condition causes same token to be assigned to
 multiple sessions (same name property)

 CAN-2005-1680 - authentication bypass by (1) insufficient access
 control (anyone from same IP address) or (2) "race condition" by
 being the first to access the software

 CAN-2005-2174 - race condition allows infoleak

==
SECTION.9.11. [PPA] Permissions, Privileges, and ACLs
==

==
PPA.PRIV. Privilege / sandbox errors

 A variety of vulnerabilities occur with improper handling,
 assignment, or management of privileges. These are especially
 present in sandbox environments, although it could be argued that
 any privilege problem occurs within the context of some sort of
 sandbox.

 Note: can heavily overlap authorization errors

 Research Gaps: many of the following concepts require deeper study.
 Most privilege problems are not classified at such a low level of
 detail, and terminology is very sparse. Certain classes of
 software, such as web browsers and software bug trackers, provide a
 rich set of examples for further research; operating systems have
 matured to the point that these kinds of WIFFs are rare.

PPA.PRIV.ASSIGN. Incorrect Privilege Assignment

 Definition: a product incorrectly assigns a privilege to a
 particular entity.

 Note: overlaps user management errors

 CVE-1999-1193 - untrusted user placed in unix "wheel" group

 CVE-2005-2741 - product allows users to grant themselves certain
 rights that can be used to escalate privileges

 CAN-2005-2496 - product uses group ID of a user instead of the
 group, causing it to run with different privileges. This is
 resultant from some other unknown issue.

 CVE-2004-0274 - product mistakenly assigns a particular status to an
 entity, leading to increased privileges

PPA.PRIV.UNS. Unsafe Privilege

 Definition: a particular privilege, role, capability, or right can
 can be used to perform unsafe actions that were not intended, even
 when it is assigned to the correct entity.

 Note: there are 2 separate sub-categories here:

 [*] privilege incorrectly allows entities to perform certain actions
 [*] object is incorrectly accessible to entities with a given
privilege

 This overlaps authorization and access control problems.

 Accessible entities:

 CAN-2002-1981 - roles have access to dangerous procedures

 CAN-2002-1671 - untrusted object/method gets access to clipboard

 CAN-2004-2204 - gain privileges using functions/tags that should

 be restricted

 CVE-2000-0315 - traceroute program allows unprivileged users to
 modify source address of packet

 CAN-2004-0380 - bypass domain restrictions using a particular
 file that references unsafe URI schemes

 CVE-2002-1154 - script does not restrict access to an update
 command, leading to resultant disk consumption and filled error
 logs.

 Unsafe privileged actions:

 CAN-2002-1145 - "public" database user can use stored procedure
 to modify data controlled by the database owner

 CVE-2000-0506 - user with capability can prevent setuid program
 from dropping privileges

 CAN-2002-2042 - allows attachment to and modification of
 privileged processes

 CVE-2000-1212 - user with privilege can edit raw underlying
 object using unprotected method

 CAN-2005-1742 - inappropriate actions allowed by a particular
 role

 CAN-2001-1480 - untrusted entity allowed to access the system
 clipboard

 CAN-2001-1551 - extra Linux capability allows bypass of
 system-specified restriction

 CVE-2001-1166 - user with debugging rights can read entire process

 CAN-2005-1816 - non-root admins can add themselves or others to
 the root admin group

 CAN-2005-2173 - users can change certain properties of objects
 to perform otherwise unauthorized actions

 CAN-2005-2027 - certain debugging commands not restricted to just
 the administrator, allowing registry modification and infoleak

PPA.PRIV.CHAIN. Privilege Chaining

 Definition: two distinct privileges, roles, capabilities, or rights
 can be combined in a way that allows an entity to perform unsafe
 actions that would not be allowed without that combination.

 Note: it is difficult to find good examples for this WIFF. There
 is some conceptual overlap with Unsafe Privilege.

 CAN-2005-1736 - chaining of user rights

 CAN-2002-1772 - gain certain rights via privilege chaining in
 alternate channel

 CAN-2005-1973 - application is allowed to assign extra permissions
 to itself

 CAN-2003-0640 - "operator" user can overwrite usernames and
 passwords to gain admin privileges

PPA.PRIV.MGT. Privilege Management Error

 Definition: a product does not properly grant, track, modify,
 record, or reset the privileges that are intended.

 CAN-2001-1555 - terminal privileges are not reset when a user logs out

 CAN-2001-1514 - does not properly pass security context to child
 processes in certain cases, allows privilege escalation

 CVE-2001-0128 - does not properly compute roles

PPA.PRIV.CONTEXT. Privilege Context Switching Error

 Definition: the product does not properly manage privileges while
 it is switching between different contexts that cross privilege
 boundaries.

 Note: this concept needs more study.

 CAN-2002-1688, CAN-2003-1026 - web browser cross domain problem
 when user hits "back" button

 CAN-2002-1770 - cross-domain issue - third party product passes
 code to web browser, which executes it in unsafe zone

 CAN-2005-2263 - run callback in different security context after it
 has been changed from untrusted to trusted. * note that "context
 switch before actions are completed" is one type of problem that
 happens frequently, espec. in browsers.

PPA.PRIV.DROP. Privilege Dropping / Lowering Errors

 CAN-2000-1213 - program does not drop privileges after acquiring
 the raw socket

 CVE-2001-0559 - setuid program does not drop privileges after a
 parsing error occurs, then calls another program to handle the
 error

 CVE-2001-0787, CVE-2002-0080 - does not drop privileges in related
 groups when lowering privileges

 CVE-2001-1029 - does not drop privileges before determining access
 to certain files

 CVE-1999-0813 - finger daemon does not drop privileges when
 executing programs on behalf of the user being fingered.

 CVE-1999-1326 - FTP server does not drop privileges if a connection
 is aborted during file transfer

 CVE-2000-0172 - program only uses setgeuid to drop privileges

 CVE-2004-2504 - Windows program running as SYSTEM does not drop
 privileges before executing other programs (many others like this,
 especially involving the Help facility)

 CAN-2004-0806 - setuid program does not drop privileges before
 executing program specified in an environment variable

 CAN-2004-0828 - setuid program does not drop privileges before
 processing file specified on command line

 CAN-2004-2070 - service on Windows does not drop privileges before
 using "view file" option, allowing code execution.

PPA.PRIV.INSUFF. Insufficient privileges

 Definition: the product does not handle when it has insufficient
 privileges to perform an operation.

 Note: overlaps dropped privileges, insufficient permissions

 Note: can produce resultant WIFFs

 CAN-2001-1564 - system limits are not properly enforced after
 privileges are dropped

 CVE-2005-3286 - firewall crashes when it can't read a critical
 memory block that was protected by a malicious process

 CAN-2005-1641 - does not give admin sufficient privileges to
 overcome otherwise legitimate user actions

PPA.PRIV.MISC. Misc. privilege issues

 CAN-2005-2087 - browser follows references to non-standard objects

 CAN-2001-1504 - automatically executing code in an email;
 sandboxing error?

 CAN-2004-1121 - web browser allows modification of URL in the status
 bar via TABLE tags.

==

PPA.PERM. Permission errors

 Functional Area: file processing, non-specific

 Note: overlaps insufficient privileges

PPA.PERM.DEF. Insecure Default Permissions

 Definition: a program, upon installation, sets insecure permissions
 for an object.

 CAN-2005-1941 - executables installed world-writable

 CAN-2002-1713 - home directories installed world-readable

 CAN-2001-1550 - world-writable log files allow information loss;
 world-readable file has cleartext passwords

 CAN-2002-1711 - world-readable directory

 CAN-2002-1844 - Windows product uses insecure permissions when
 installing on Solaris (genesis: port error)

 CVE-2001-0497 - insecure permissions for a shared secret key file.
 Overlaps cryptographic problem.

 CAN-1999-0426 - default permissions of a device allow IP spoofing

PPA.PERM.INH.ASSIGNED. Insecure Inherited Permissions

 Definition: a product defines a set of insecure permissions that
 are inherited by objects that are created by the program.

 Examples:

 CAN-2005-1841 - user's umask is used when creating temp files

 CAN-2002-1786 - insecure umask for core dumps [is the umask
 preserved or assigned?]

PPA.PERM.INH.PRESERVED. Insecure preserved inherited permissions

 Definition: a product inherits a set of insecure permissions for an
 object, e.g. when copying from an archive file, without user
 awareness or involvement.

 CAN-2005-1724 - does not obey specified permissions when exporting

PPA.PERM.ASSIGNED. Insecure execution-assigned permissions

 Definition: a product, while it is executing, changes the
 permissions of an object in an insecure way that cannot be
 controlled by the user.

 Examples: many, such as CVE-2002-0265, CAN-2003-0876

 CAN-2002-1694 - log files opened read/write

PPA.PERM.INSUFF. Fails poorly due to insufficient permissions

 Fault: unchecked error condition

 Research Gaps: this type of issue is probably under-studied, since
 researchers often concentrate on whether an object has too many
 permissions, instead of not enough.

 Examples:

 CAN-2003-0501 - special file system allows attackers to prevent
 ownership/permission change of certain entries by opening them
 before calling setuid program

 CVE-2004-0148

PPA.PERM.PRESERVE. Permission Preservation Failure

 Definition: the product does not properly preserve permissions
 when copying, restoring, or sharing objects, which can cause them
 to have less restrictive permissions than intended.

 Note: can be resultant.

 Examples:

 SUNALERT:27807

 CAN-2001-1515 - automatic modification of permissions inherited
 from another file system

 CAN-2005-1920 - permissions on backup file are created with
 defaults, possibly less secure than original file

 CVE-2001-0195 - file is made world-readable when being cloned

==
PPA.OWN. Ownership errors

 Definition: the product assigns the wrong ownership, or does not
 properly verify the ownership, of an object or resource.

 CAN-1999-1125 - program runs setuid root but relies on a
 configuration file owned by a non-root user.

PPA.OWN.UNVERIFIED. Unverified Ownership

 Definition: the product does not properly verify that a critical
 resource is owned by the proper entity.

 Note: this overlaps verification errors, permissions, and
 privileges.

 Note: this can be a factor in other vulnerabilities.

 CVE-2001-0178 - program does not verify the owner of a UNIX socket
 that is used for sending a password

 CAN-2004-2012 - owner of special device not checked, allowing root

PPA.ACL. Access Control List (ACL) errors

 Note: this item needs more work.

 Possible sub-categories include:

 [*] Trusted group includes undesired entities
 [*] Group can perform undesired actions
 [*] ACL parse error does not fail closed

PPA.USER. User management errors

 Note: this item needs more work.

 Possible sub-categories include:

 [*] user in wrong group
 [*] user with insecure profile / "configuration"

==
SECTION.9.12. [HAND] Handler Errors
==

Note: this concept is under-defined and needs more research.

HAND. Handler errors

 Note: may be resultant

HAND.WRONG. Improper Handler Deployment

 Definition: the wrong "handler" is assigned to process an object,
 e.g. calling a servlet to reveal source code of a .JSP file, or
 automatically "determines" type even if contradictory to an
 explicitly specified type).

 Factors: usually resultant.

 Note: can overlap Unrestricted File Upload.

 CVE-2001-0004 - source code disclosure via manipulated file
 extension that causes parsing by wrong DLL

 CVE-2002-0025 - web browser does not properly handle the
 Content-Type header field, causing a different application to
 process the document

 CAN-2000-1052 - source code disclosure by directly invoking a

 servlet

 CAN-2002-1742 - arbitrary Perl functions can be loaded by calling a
 non-existent function that activates a handler

HAND.MISSING. Missing Handler

 Definition: a handler is not available or implemented.

HANDLER.DANG. Dangerous handler not cleared/disabled during sensitive
operations

HAND.UNPARSED. Unparsed Raw Web Content Delivery

 Definition: raw content or supporting code is stored under the web
 root with an extension that is not specially handled by the server
 such as ".inc" or ".pl", causing the content or code to be delivered
 to the user without the pre-processing that was expected, typically
 resulting in an information leak.

 Note: this can overlap containment errors, but it is not necessarily
 the same thing.

 Note: also overlaps direct requests, alternate path, permissions,
 sensitive file under web root

 CAN-2002-1886, CAN-2002-2065, CAN-2005-2029, SECUNIA:11394 - ".inc"
 file stored under web document root and returned unparsed by the
 server

 CVE-2001-0330 - direct request to .pl file leaves it unparsed

 CAN-2002-0614 - .inc file

 CVE-2004-2353 - unparsed config.conf file

HAND.UPLOAD. Unrestricted File Upload

 Definition: the product allows the attacker to upload or transfer
 files of dangerous types that can be automatically processed within
 the product's environment.

 Alternate term: formerly called "File Upload of Dangerous Type"

 Note: this can overlap incomplete blacklist / permissive whitelist
 errors when the product tries, but fails, to properly limit which
 types of files are allowed.

 Note: this can also overlap containment errors.

 Note: this can also overlap multiple interpretation errors for
 intermediaries, e.g. anti-virus products that do not filter
 attachments with certain file extensions that can be processed by
 client systems.

 Research Gaps: PHP applications are most targeted, but this likely
 applies to other languages that support file upload, as well as
 non-web technologies.

 CVE-2001-0901 - web-based mail product stores ".shtml" attachments
 that could contain SSI

 CAN-2002-1841 - PHP upload does not restrict file types

 CAN-2005-1868 - upload and execution of .php file

 CAN-2005-1881 - upload file with dangerous extension

 CAN-2005-0254 - program does not restrict file types

 CAN-2004-2262 - improper type checking of uploaded files

==
SECTION.9.13. [UI] User Interface Errors
==

Research Gaps: user interface errors that are relevant to security
have not been studied at a high level.

UI.NOWARN. Product UI does not warn user of unsafe actions

 Note: often resultant, e.g. in unhandler error conditions

 Note: can overlap privilege errors, conceptually at least

 Examples:

 CVE-1999-1055, CVE-1999-0794, CVE-2000-0277 - product does not warn
 user when document contains certain dangerous functions or macros

 CVE-2000-0517 - product does not warn user about a certificate if
 it has already been accepted for a different site. Possibly
 resultant.

 CAN-2005-0602 - file extractor does not warn user it setuid/setgid
 files could be extracted. Overlaps privileges/permissions.

 CVE-2000-0342 - e-mail client allows bypass of warning for dangerous
 attachments via a Windows .LNK file that refers to the attachment

UI.WARN.INSUFF. Insufficient UI warning of dangerous operations

 Definition: a user interface provides a warning to a user regarding
 dangerous or sensitive operations, but the warning is not
 noticeable enough to warrant attention.

UI.INC. User interface inconsistency

 Definition: a user interface - whether a GUI or not - behaves
 inconsistently with respect to the operations that are actually
 performed on the system, e.g. checking a security option does
 nothing, or the user tells the interface to "restrict ALL" when it
 is implemented as "restrict SOME".

 Note: this is often resultant.

 CAN-1999-1446 - UI inconsistency; visited URLs list not cleared when
 "Clear History" option is selected

UI-INC.UNIMP. Unimplemented or unsupported feature in UI

 Definition: A UI function appears to be supported and gives

 feedback to the user that suggests that it is supported, but the
 underlying functionality is not implemented.

 CVE-2000-0127 - GUI configuration tool does not enable a security
 option when a checkbox is selected, although that option is honored
 when manually set in the configuration file.

 CVE-2001-0863, CVE-2001-0865 - router does not implement a specific
 keyword when it is used in an ACL, allowing filter bypass

 CAN-2004-0979 - web browser does not properly modify security
 setting when the user sets it.

UI.INC.OBS. Obsolete feature in UI

 Definition: A UI function is obsolete and the product does not warn
 the user.

UI.WRONGACT. The UI performs the wrong action

 Definition: the UI performs the wrong action with respect to the
 user's request.

 CAN-2001-1387 - network firewall accidentally implements one command
 line option as if it were another, possibly leading to behavioral
 infoleak.

 CVE-2001-0081 - command line option correctly suppresses a user
 prompt but does not properly disable a feature, although when the
 product promtps the user, the feature is properly disabled

 CAN-2002-1977 - product does not "time out" according to user
 specification, leaving sensitive data available after it has expired

UI.MULTINT. Multiple Interpretations of UI Input

 Definition: The UI has multiple interpretations of user input but
 does not warn the user, or selects the less secure interpretation.

UI.MISREP. UI Misrepresentation of Critical Information

 Definition: the UI does not properly represent critical information
 to the user, allowing the information - or its source - to be
 obscured or spoofed. This is often a component in phishing attacks.

 Research Gaps: misrepresentation problems are frequently studied in
 web browsers, but there are no known efforts for categorizing these
 problems in terms of the shortcomings of the interface. In
 addition, many misrepresentation issues are resultant.

 Note: this category needs refinement.

 Overlaps Wheeler's "Semantic Attacks"

 Here are some examples of misrepresentation:

 [*] icon manipulation (making a .EXE look like a .GIF)
 [*] homographs: letters from different character sets/languages that
 look similar. The use of homographs is effectively a
 manipulation of a visual equivalence property.
 [*] a race condition can cause the UI to present the user with
 "safe" or "trusted" feedback before the product has fully
 switched context. The race window could be extended
 indefinitely if the attacker can trigger an error.
 [*] "Window injection" vulnerabilities (though these are usually
 resultant from privilege problems)
 [*] status line modification (e.g. CAN-2004-1104)
 [*] various other web browser issues.
 [*] GUI truncation (e.g. filename with dangerous extension not
 displayed to GUI because of truncation)
 - CAN-2004-2227 - GUI truncation enables information hiding
 [*] injected internal spaces (e.g. "filename.txt .exe"
 - though this overlaps truncation
 [*] Also consider DNS spoofing problems - can be used for
misrepresentation

 CAN-2001-0398 - attachment with many spaces in filename bypasses
 "dangerous content" warning and uses different icon. Likely
 resultant.

 CAN-2001-0643 - misrepresentation and equivalence issue

 CAN-2005-0593 - lock spoofing from several different WIFFs

 == wrong status / state notifier

 CAN-2005-0143 - lock icon displayed when an insecure page loads a
 binary file loaded from a trusted site

 CAN-2005-0144 - secure "lock" icon is presented for one channel,
 while an insecure page is being simultaneously loaded in another
 channel

 CAN-2004-0761 - certain redirect sequences cause security lock icon
 to appear in web browser, even when page is not encrypted

 CAN-2004-2219 - spoofing via multi-step attack that causes incorrect
 information to be displayed in browser address bar

 == overlay ==

 CAN-2004-0537 - wide "favorites" icon can overlay and obscure address bar

 OSVDB:5703 - GUI overlay vulnerability (misrepresentation)

 == visual distinction ==

 CAN-2005-2271, CAN-2005-2272, CAN-2005-2273, CAN-2005-2274 - web
 browsers do not clearly associate a Javascript dialog box with the
 web page that generated it, allowing spoof of the source of the
 dialog. "origin validation error" of a sort?

 CAN-2001-1410 - browser allows attackers to create chromeless
 windows and spoof victim's display using unproptected Javascript
 method.

 CVE-2002-0197 - chat client allows remote attackers to spoof
 encrypted, trusted messages with lines that begin with a special
 sequence, which makes the message appear legitimate.

 CAN-2005-0831 - product allows spoofing names of other users by
 registering with a username containing hex-encoded characters.

 == visual truncation ==

 CAN-2003-1025 - special character in URL causes web browser to
 truncate the user portion of the "user@domain" URL, hiding real
 domain in the address bar.

 CAN-2005-0243 - chat client does not display long filenames in file

 dialog boxes, allowing dangerous extensions via manipulations
 including (1) many spaces and (2) multiple file extensions.

 CAN-2005-1575 - web browser file download type hiding using
 whitespace

 CVE-2004-2530 - visual truncation in chat client using whitespace
 to hide dangerous file extension

 CAN-2005-0590 - dialog box in web browser allows user to spoof the
 hostname via a long "user:pass" sequence in the URL, which appears
 before the real hostname.

 OSVDB:6009 - GUI obfuscation (visual truncation) in web browser -
 obscure URLs using a large amount of whitespace. Note - "visual
 truncation" covers a couple variants.

 CAN-2004-1451 - null character in URL prevents entire URL from being
 displayed in web browser

 == miscellaneous ==

 [step-based attack, GUI]
 CAN-2004-2258 - password-protected tab can be bypassed by
 switching to another tab, then back to original tab

 CAN-2005-1678 - dangerous file extensions not displayed

 CVE-2002-0722 - web browser allows remote attackers to misrepresent
 the source of a file in the File Download dialogue box.

==
SECTION.9.14. [INT] Interaction Errors
==

 Definition: An interaction error occurs when two entities work
 correctly when running independently, but they interact in ways when
 they are run together. This could apply to products, systems,
 components, etc.

 Terminology Note: some use "Interaction Error" to describe products
 that behave according to specification. However, the PLOVER
 definition includes products that do not necessarily comply with
 standard specifications.

INT.MULT. Multiple Interpretation Error (MIE)

 Alternate Term: Interpretation Conflict

 Definition: Product A handles inputs or steps differently than
 Product B, which causes A to perform incorrect actions based on its
 perception of B's state.

 Note: this is generally found in proxies, firewalls, anti-virus
 software, and other intermediary devices that allow, deny, or
 modify traffic based on how the client or server is expected to
 behave.

 Reference: [Christey2005b], [PtacekNewsham]

 The classic multiple interpretation flaws were reported in a paper
 that described the limitations of intrusion detection systems.
 [PtacekNewsham] showed that OSes varied widely in their behavior
 with respect to unusual network traffic, which made it difficult or
 impossible for intrusion detection systems to properly detect
 certain attacker manipulations that took advantage of the OS
 differences.

 Another classic multiple interpretation error is the "poison null
 byte" [RFP], in which null characters have different
 interpretations in Perl and C, which have security consequences
 when Perl invokes C functions. Similar problems have been reported
 in ASP [Moore] and PHP.

 Some of the more complex web-based attacks, such as HTTP request
 smuggling, also involve multiple interpretation errors.

 Note: a comment on a way to manage these problems is in [Skoll].

 Manipulations are major factors in MIEs, such as doubling,
 inconsistencies between related fields, and whitespace.

 CAN-2005-1215 - bypass filters or poison web cache using
 requests with multiple Content-Length headers, a non-standard
 behavior.

 CAN-2002-0485 - anti-virus product allows bypass via

 Content-Type and Content-Disposition headers that are mixed
 case, which are still processed by some clients.

 CAN-2002-1978, CAN-2002-1979 - FTP clients sending a command
 with "PASV" in the argument can cause firewalls to misinterpret
 the server's error as a valid response, allowing filter bypass.

 CAN-2002-0637 - virus product bypass with spaces between MIME
 header fields and the ":" separator, a non-standard message that
 is accepted by some clients.

 CAN-2002-1777 - AV product detection bypass using inconsistency
 manipulation (file extension in MIME Content-Type
 vs. Content-Disposition field)

 CVE-2005-3310 - CMS system allows uploads of files with GIF/JPG
 extensions, but if they contain HTML, Internet Explorer renders
 them as HTML instead of images.

 CVE-2005-4260 - interpretation conflict allows XSS via invalid "<"
 when a ">" is expected, which is treated as ">" by many web
 browsers.

 CVE-2005-4080 - interpretation conflict (non-standard behavior)
 enables XSS because browser ignores invalid characters in the middle
 of tags.

INT.MULT.EXTRAFEAT. Extra Unhandled Features

 Definition: B has features that A does not handle or model.

INT.BEH.CHANGE. Behavioral Change

 Definition: A's behavior or functionality changes with a new
 version of A, or a new environment, which is not known (or
 manageable) by B.

 Alternate Term: functional change

 CAN-2002-1976 - Linux kernel 2.2 and above allow promiscuous mode
 using a different method than previous versions, and ifconfig is
 not aware of the new method (alternate path property).

 CAN-2005-1711 - anti-virus product uses a defunct method in another
 product that does not return an error code, allowing viruses to
 avoid detection.

 CAN-2005-1711 - product uses defunct method from another product
 that does not return an error code and allows detection avoidance

INT.BEH.VIO. Expected behavior violation

 Definition: A feature, API, or function being used by a product
 behaves differently than the product expects.

 Property: consistency

 CAN-2003-0187 - inconsistency in support of linked lists causes
 program to use large timeouts on "undeserving" connections

 CAN-2003-0465 - "strncpy" in Linux kernel acts different than libc
 on x86, leading to expected behavior difference - sort of a
 multiple interpretation error?

 CVE-2005-3265 - buffer overflow in product stems to the use of a
 third party library function that is expected to have internal
 protection against overflows, but doesn't.

INT.PROXY. Unintended proxy/intermediary

 Definition: a product can be used as an intermediary or proxy
 between an attacker and the ultimate target, so that the attacker
 can either bypass access controls or hide activities.

 Property: Alternate Channel

 CVE-1999-0168 - portmapper could redirect service requests from an
 attacker to another entity, which thinks the requests came from the
 portmapper.

 CAN-2005-0315 - FTP server does not ensure that the IP address in a
 PORT command is the same as the FTP user's session, allowing port
 scanning by proxy.

 CAN-2002-1484 - web server allows attackers to request a URL from
 another server, including other ports, which allows proxied
 scanning.

 CAN-2004-2061 - CGI script accepts and retrieves incoming URLs

 CAN-2002-1484 - server in debug mode allows remote attackers to use
 it as an intermediary for port scanning via a request for a URL
 that specifies the target IP address and port, then monitoring the
 resulting error message

 CAN-2001-1484 - MFV - bounce attack allows access to TFTP from
 trusted side

 CVE-1999-0017 - FTP bounce attack. Protocol allows attacker to
 modify the PORT command to cause the FTP server to connect to other
 machines besides the attacker's. Similar to proxied trusted
 channel.

INT.WEB.HTTP-SPLIT. HTTP response splitting

 Factors: resultant from CRLF injection, primary to multiple
 interpretation error

 Note that HTTP response splitting is probably only multi-factor in
 an environment that uses intermediaries.

 CAN-2005-1951, CAN-2004-2146 - application accepts CRLF in an object
 ID, allowing HTTP response splitting

 CAN-2004-1620, CAN-2004-1656, CAN-2004-1687 - HTTP response
 splitting via CRLF in parameter related to URL

 CAN-2005-2060, CAN-2005-2065 - bulletin board allows response
 splitting via CRLF in parameter

 CVE-2004-2512 - response splitting via CRLF in PHPSESSID.

INT.WEB.HTTP-SMUG. HTTP Request Smuggling

 Note: request smuggling can be performed due to a multiple

 interpretation error, where the target is an intermediary or
 monitor, via a consistency manipulation (Transfer-Encoding and
 Content-Length headers).

 Note: resultant from CRLF injection.

 CAN-2005-2088, CAN-2005-2089, CAN-2005-2090, CAN-2005-2091,
 CAN-2005-2092, CAN-2005-2093, CAN-2005-2094 - web servers allow
 requets smuggling via inconsistent Transfer-Encoding and
 Content-Length headers.

==
SECTION.9.15. [INIT] Initialization and Cleanup Errors
==

 Note: most of these initialization errors are significant factors in
 other WIFFs. Researchers tend to ignore these, concentrating
 instead on the resultant WIFFs, so their frequency is uncertain, at
 least based on published vulnerabilities.

INIT.DEF. Insecure default variable initialization

 Definition: The product, by default, initializes an internal
 variable with an insecure or less secure value than is possible.

 Note: this overlaps other categories, probably should be split into
 separate items.

INIT.EXTINIT. External initialization of trusted variables or values

 Note: overlaps Missing variable initialization, especially in PHP

 Note: this is a significant factor in a number of resultant WIFFs.

 Note: overlaps other categories, e.g. PHP

 CVE-2000-0959 - does not clear dangerous environment variables,
 enabling symlink attack

 CVE-2001-0033 - specify alternate configuration directory in
 environment variable, enabling untrusted path.

 CVE-2001-0872 - dangerous environment variable not cleansed

 CAN-2001-0084 - specify arbitrary modules using environment
 variable

INIT.FAIL. Non-exit on Failed Initialization

 Definition: the product does not exit or otherwise modify its
 operation when security-relevant errors occur during
 initialization, such as when a configuration file has a format
 error.

 Research Gaps: under-studied. These issues are not frequently
 reported, and it is difficult to find published examples.

 CAN-2005-1345 - product does not trigger a fatal error if missing
 or invalid ACLs are in a configuration file

INIT.MISS. Missing Initialization

 Definition: The product does not initialize critical variables,
 which causes the execution environment to use unexpected values.

 Note: this WIFF is a major factor in a number of resultant WIFFs,
 especially in web applications that allow global variable
 initialization (such as PHP) with libraries that can be directly
 requested.

 Research Gaps: it is highly likely that a large number of resultant
 WIFFs have missing initialization as a primary factor, but
 researcher reports generally do not provide this level of detail.

 CAN-2005-2978 - product uses uninitialized variables for size and
 index, leading to resultant buffer overflow

 CAN-2005-2109 - internal variable in PHP application is not
 initialized, allowing external modification.

 CAN-2005-2193 - array variable not initialized in PHP application,
 leading to resultant SQL injection.

INIT.INC. Incorrect Initialization

 Note: might overlap default initialization

 CAN-2001-1471 - invalid value prevents certain variables from being
 initialized, leading to resultant diect code injection.

 CAN-2005-1036 - permission bitmap is not properly initialized,
 leading to resultant privilege elevation or DoS.

INIT.CLEANUP.TMP. Incomplete Cleanup

 Definition: the product does not properly "clean up" and remove
 temporary or supporting resources after they have been used.

 Alias: Insufficient Cleanup

 Note: overlaps other categories. Concept needs further development.

 Note: this could be primary (e.g. leading to infoleak) or resultant
 (e.g. resulting from unhandled error condition or early
 termination).

 Functional Area: file processing

 Note: overlaps other categories such as permissions and containment.

 CVE-2000-0552 - world-readable temporary file not deleted after use.

 CAN-2005-2293 - temporary file not deleted after use, leaking
 database usernames and passwords.

 CVE-2002-0788 - interaction error creates a temporary file that can
 not be deleted due to strong permissions

 CAN-2002-2066, CAN-2002-2067, CAN-2002-2068, CAN-2002-2069,
 CAN-2002-2070 - alternate data streams for NTFS files are not
 cleared when files are wiped (alternate channel / infoleak)

 CAN-2005-1744 - users not logged out when application is restarted
 after security-relevant changes were made.

==
SECTION.9.16. [RES] Resource Management Errors
==

Resource management errors can lead to consumption, exhaustion, etc.

Note: often a resultant vulnerability

RES.MEMLEAK. Memory leak

 Definition: the product does not sufficiently track and release
 allocated memory after it has been used, which slowly consumes
 remaining memory. This is often triggered by improper handling of
 malformed data or unexpectedly interrupted sessions.

 Note: this is often a resultant WIFF due to improper handling of
 malformed data or early termination of sessions.

 Functional Area: memory management

 Terminology Note: "memory leak" has sometimes been used to describe
 other kinds of issues, e.g. for information leaks in which the
 contents of memory are inadvertently leaked (CAN-2003-0400 is one
 such example of this terminology conflict).

 CAN-2005-3119 - memory leak because function does not free() an
 element of a data structure.

 CAN-2004-0427, CVE-2002-0574 - memory leak when counter variable is
 not decremented

 CAN-2005-3181 - kernel uses wrong function to release a data
 structure, preventing data from being properly tracked by other
 code

 CAN-2004-0222 - memory leak via unknown manipulations as part of
 protocol test suite

 CVE-2001-0136 - memory leak via a series of the same command

RES.LEAK. Resource leaks

RES.LEAK.FILEDESC. UNIX file descriptor leak

 Definition: a process does not close sensitive file descriptors
 before invoking a child process, which allows the child to perform
 unauthorized I/O operations using those descriptors.

 Functional Area: program invocation

 CAN-2002-0767, CAN-2003-0740 - privileged file descriptor not
 closed before executing child process

 CVE-2000-0378, CAN-2004-2215 - does not properly close file
 descriptors after logout

 CAN-2005-0205 - file descriptor not closed, allowing DNS spoofing

RES.RELEASE. Improper resource shutdown

 Definition: a resource is not properly cleared and made available
 for re-use.

 Note: can be resultant from improper error handling or insufficient
 resource tracking.

 Note: overlaps memory leaks, asymmetric resource consumption,
 malformed input errors.

 Functional Area: non-specific

 Examples:

 CVE-1999-1127 - does not shut down named pipe connections if
 malformed data is sent

 CVE-2001-0830 - sockets not properly closed when attacker
 repeatedly connects and disconnects from server

 CVE-2002-1372 - return values of file/socket operations not
 checked, allowing resultant consumption of file descriptors

==

RES.AMP. Asymmetric resource consumption (amplification)

 Definition: an attacker can force a victim to consume more resources
 than should be allowed for the attacker's current level of access.

 Functional Area: non-specific

 Note: There are probably several sub-types besides these.

 Note: Sometimes this is a factor in "flood" attacks, but other types
 of amplification exist.

RES.AMP.NETWORK. Network Amplification

 Definition: a product or network sends more network traffic to a
 recipient (usually spoofed) than is warranted for the access level
 of the recipient.

 Note: spoofing is often a factor. Applications that use UDP are
 typically targeted, although this problem can exist in other
 protocols or contexts.

 Note: network amplification, when performed with spoofing, is
 normally a multi-channel attack from attacker (acting as user) to
 amplifier, and amplifier to user.

 CVE-1999-0513 - Smurf attack, spoofed ICMP packets to broadcast
 addresses.

 CVE-1999-1379 - DNS query with spoofed source address causes more
 traffic to be returned to spoofed address than was sent by the
 attacker.

 CVE-2000-0041 - large datagrams are sent in response to malformed
 datagrams.

 CAN-1999-1066 - game server sends a large amount of traffic in
 response to an initial connection request.

RES.AMP.ALG. Algorithmic Complexity

 Definition: an algorithm in a product has an inefficient worst-case

 computational complexity that can be triggered by an attacker,
 typically using crafted manipulations that ensure that the worst
 case is being reached.

 Note: the typical consequence is CPU consumption, but memory
 consumption and consumption of other resources can also occur.

 Note: similar issues can occur in cryptography.

 Reference: Algorithmic Complexity Attacks [Crosby]

 CAN-2003-0244, CAN-2003-0364 - CPU consumption via inputs that
 cause many hash table collisions

 CAN-2002-1203 - product performs unnecessary processing before
 dropping an invalid packet.

 CAN-2001-1501 - CPU and memory consumption using many wildcards

 CVE-2004-2527 - product allows attackers to cause multiple copies of
 a program to be loaded more quickly than the program can detect
 that other copies are running, then exit. This type of error
 should probably have its own category, where teardown takes more
 time than initialization.

 CAN-2005-1792 - memory leak by performing actions faster than the
 software can clear them

RES.AMP.EARLY. Early Amplification

 Definition: the product allows an entity to perform a legitimate but
 expensive operation before the entity has proven that the operation
 should be allowed.

 Note: overlaps authentication errors.

 CVE-2004-2458 - tool creates directories before authenticating
 user. general class of issue? step problem on product's side.

RES.AMP.DATA. Data Amplification

 Definition: the product does not properly handle a compressed input
 with a very high compression ratio that produces a large output.

 An example of data amplification is a "decompression bomb," a small
 ZIP file that can produce a large amount of data when it is
 decompressed.

==
RES.POOL. Insufficient Resource Pool

 Definition: the software's resource pool is not large enough to
 handle peak demand, which allows an attacker to prevent others from
 accessing the resource by using a (relatively) large number of
 requests for resources. Frequently the consequence is a "flood" of
 connection or sessions.

 Functional Area: non-specific

 Note: "large" is relative to the size of the resource pool, which
 could be very small. See examples.

 Note: floods often cause a crash or other problem besides denial of
 the resource itself; these are likely examples of *other*
 vulnerabilities, not an insufficient resource pool.

 CVE-1999-1363 - large number of locks on file exhausts the pool and
 causes crash

 CAN-2001-1340 - product supports only one connection and does not
 disconnect a user who does not provide credentials

 CVE-2002-0406 - large number of connections without providing
 credentials allows connection exhaustion

==
RES.LOCK.UNRES. Unrestricted Critical Resource Lock

 Definition: a critical resource can be locked or controlled by an
 attacker, indefinitely, in a way that prevents access to that
 resource by others, e.g. by obtaining an exclusive lock or mutex, or
 modifying the permissions of a shared resource.

 Note: this overlaps Insufficient Resource Pool when the "pool" is of
 size 1. It can also be resultant from race conditions, although the

 timing window could be quite large in some cases.

 CVE-2001-0682, CAN-2002-1914, CAN-2002-1915 - program can not
 execute when attacker obtains a lock or mutex.

 CVE-2000-0338 - predictable file names used for locking, allowing
 attacker to create the lock beforehand. Resultant from permissions
 and randomness.

 CAN-2000-1198 - lock files with predictable names. Resultant from
 randomness.

 CVE-2002-0051 - overlaps permissions, large-window race condition.
 Critical file can be opened with exclusive read access by user.

 CVE-2002-1914 - users prevent execution of a dump program by locking
 a file

 CAN-2002-1869 - product does not check if it can write to a log
 file, allowing attackers to avoid logging by accessing the file
 using an exclusive lock. Overlaps unchecked error condition.

RES.LOCK.INSUFF. Insufficient Resource Locking

 Definition: a product does not completely lock access to a resource,
 in a way that either (1) allows an attacker to simultaneously access
 those resources, or (2) causes other errors that lead to a resultant
 WIFF. This can be due to unusual conditions, inability to detect
 when locking should occur, or incomplete actions.

 Note: can be primary or resultant.

 Examples:

 CVE-2002-0638 - temporary file not properly locked when modifying
 critical file, allowing privilege escalation using a complex race
 condition.

 CAN-2002-1749 - product doesn't properly lock itself if left idle

 CAN-2002-1933 - window not locked if it's minimized

 CAN-2005-2019 - certain resources are not sufficiently locked,
 allowing race condition, causing data corruption, and enabling

 restriction bypass.

RES.LOCKCHECK. Missing Lock Check

 Definition: a product does not check to see if a lock is present
 before performing sensitive operations on a resource.

 CAN-2004-1056 - product does not properly check if a lock is
 present, allowing other attackers to access functionality

==
SECTION.9.17. [NUM] Numeric Errors
==

NUM.OBO. Off-by-one Error

 Definition: a product uses an incorrect maximum or minimum value
 that is 1 more, or 1 less, than the correct value.

 Resultant: can produce resultant buffer overflows

 Note: this is not always a buffer overflow. For example, an
 off-by-one error could be a factor in a partial comparison, a read
 from the wrong memory location, an incorrect conditional, etc.

 Research Gaps: under-studied. It requires careful code analysis or
 black box testing, where inputs of excessive length might not cause
 an error. Off-by-ones are likely triggered by extensive fuzzing,
 with the attendant diagnostic problems.

 Terminology: an "off-by-five" error was reported for sudo in 2002
 (CVE-2002-0184), but that is more like a "length calculation" error.

 References: [Flake2001], [Christey2004a], [klog1999], [McHog]
 "buffer overflow" chapter)

 Examples: CAN-2003-0466, CAN-2003-0252, CAN-2003-0625,
 CVE-2001-1391, CVE-2002-0083, CVE-2002-0653,
 CVE-2002-0844, CVE-1999-1568, CAN-2004-0346,
 CAN-2004-0005, CAN-2003-0356, CAN-2001-1496,
 CAN-2004-0342 (this is an interesting example that
 might not be an off-by-one), CAN-2001-0609 (an

 off-by-one enables a terminating null to be
 overwritten, which causes 2 strings to be merged and
 enable a format string)

 CAN-2002-1745 - off-by-one error allows source code disclosure of
 files with 4 letter extensions that match an accepted 3-letter
 extension.

 CAN-2002-1816 - off-by-one buffer overflow

 CAN-2002-1721 - off-by-one error causes an snprintf call to
 overwrite a critical internal variable with a null value.

 CAN-2003-0466 - off-by-one error in function used in many products
 leads to a buffer overflow during pathname management, as
 demonstrated using multiple commands in an FTP server

 CAN-2003-0625 - off-by-one error allows read of sensitive memory
 via a malformed request

NUM.SIGN. Integer Signedness Error (aka "signed integer" error)

 Definition: a signed integer is cast to an unsigned integer in a
 manner that has security implications. Generally, this occurs when
 the attacker provides an input that contains a negative signed
 integer, which is cast to a large positive unsigned integer.

 Reference: [Younan2003], section 5.4.3; [blexim], chapter 3

 Functional Area: non-specific, memory management

 Note: Some signedness errors arise as a result of positive inputs
 that are used in mathematical calculations that produce a negative
 value. Others involve comparisons in a signed context ("signed
 comparison") that fail to account for the use of the value in an
 unsigned context (e.g. comparing a negative signed integer to a
 positive "maximum" signed integer when that negative integer is
 later cast to an unsigned value that is greater than the maximum).
 It is not clear whether these should be treated as separate WIFFs.

 Note: buffer overflows and array index errors can be resultant
 vulnerabilities.

 Terminology Note: signedness errors are sometimes referred to as

 integer overflows. Since they can also lead to buffer overflows,
 they may be referred to as buffer overflows.

 Note: there can be cases in which an integer signedness error leads
 to an integer overflow, e.g. if an application reads a -1 value in a
 signed context but increments that value in an unsigned context
 (e.g. when allocating "input+1" bytes of memory).

 Note: there are likely some cases in which providing a negative
 integer is not necessarily a signedness error, but still security
 relevant; consider the "$var[-1]" construct in Perl, which
 identifies the last element of the array.

 Research Gaps: research seems to have concentrated exclusively on
 the security implications of using signed negative integers in an
 unsigned context, but there has been little or no work on the
 implications of using unsigned integers in a signed context (though
 it may be possible, e.g. if an unsigned is explicitly cast to a
 signed).

 CVE-2001-0653 - large value in argument allows memory modification
 when argument is interpreted as a negative number

 CAN-2003-0166 - integer signedness error in memory allocation
 function for interpreter allows memory consumption or arbitrary
 code via negative arguments to interpreter's API functions

 CAN-2005-1402 - negative value not caught by maximum value signed
 comparison, later used in memory allocation, triggering memory
 consumption or crash (presumably from unhandled error condition)

 CAN-2004-0661 - Integer signedness error in DHCP product allows
 making long DHCP lease (13 years) via -1 LEASETIME option.

 CAN-2003-0619 - integer signedness error leads to kernel panic via
 negative size value.

NUM.OVERFLOW. Integer overflow (wrap or wraparound)

 Definition: integer overflow: two values are added together such
 that they exceed the maximum integer value (MAXINT), which produces
 a value that is not equal to the correct result. This can happen in
 signed and unsigned cases; in the unsigned case on a 32 bit system,
 adding 1 to 0xffffffff leads to 0, whereas in the signed case,

 adding 1 to 0x7fffffff changes the signed value from 2147483647 to
 -2147483648.

 Reference: [Younan2003], section 5.4.3; [blexim], chapter 3

 Functional Area: non-specific, memory management, counters

 Terminology Note: "integer overflow" is used to cover several types
 of errors, including signedness errors, or buffer overflows that
 involve manipulation of integer data types instead of characters.
 Part of the confusion results from the fact that 0xffffffff is -1 in
 a signed context.

 Note: integer overflows can be primary to buffer overflows

 CVE-2002-0391 - integer overflow via a large number of arguments

 CAN-2005-1141 - image with large width and height leads to integer
 overflow

 CAN-2005-0102, CAN-2004-2013 - length value of -1 leads to
 allocation of 0 bytes and resultant heap overflow

NUM.UNDERFLOW. Integer underflow (wrap or wraparound)

 Definition: integer underflow: one value is subtracted from the
 other such that it is less than the minimum integer value, which
 produces a value that is not equal to the correct result. This can
 happen in signed and unsigned cases.

 Terminology Note: "integer underflow" is sometimes used to identify
 signedness errors in which an originally positive number becomes
 negative as a result of subtraction. However, there are cases of
 bad subtraction in which unsigned integers are involved, so it's not
 always a signedness issue.

 Terminology Note: "integer underflow" is occasionally used to
 describe array index errors in which the index is negative.

 Research Gaps: under-studied.

 CAN-2004-0816 - integer underflow in firewall via malformed packet

 CAN-2004-1002 - integer underflow by packet with invalid length

 CAN-2005-0199 - long input causes incorrect length calculation

 CAN-2005-1891 - malformed icon causes integer underflow in loop
 counter variable

NUM.TRUNC. Numeric truncation error

 Definition: the product truncates a number, e.g. due to casting or
 other conversion between numeric types, in a way that has security
 implications.

 Research Gaps: under-studied and under-reported.

NUM.BYTEORD. Numeric Byte Ordering Error

 Definition: the product mixes up the order in which bytes are
 processed (e.g. big-endian and little-endian), causing a wrong
 number in a security-critical context.

 Note: under-reported, but probably not likely to occur frequently,
 as byte ordering bugs are usually very noticeable even with normal
 inputs. This bug is more likely to occur in rarely triggered error
 conditions.

==
SECTION.9.18. [AUTHENT] Authentication Error
==

 Definition: the product does not properly ensure that the user has
 proven their identity.

 Consequence: authentication bypass

 Terminology: an alternate term is "authentification", which appears
 to be most commonly used by people from non-English-speaking
 countries.

 Note: this can be resultant from SQL injection vulnerabilities and
 other issues.

 Functional Area: authentication

AUTHENT.ALTPC. Authentication Bypass by Alternate Path/Channel

 Definition: a product requires authentication, but the product has
 an alternate path or channel that does not require authentication.

 Note: this is often seen in web applications that assume that
 access to a particular CGI program can only be obtained through a
 "front" screen. But this problem is not just in web apps.

 Note: overlaps Unprotected Alternate Channel

 Examples: CVE-2000-1179, CAN-1999-1454, CVE-2000-0944,
 CAN-1999-1077, CAN-2003-1035 (overlaps brute force),
 CAN-2003-0304, CAN-2002-0870, CAN-2004-0213 (non-web),
 many web applications

 CVE-2002-0066 - bypass authentication via direct request to named pipe

 CAN-2003-1035 - user can avoid lockouts by using an API instead of
 the GUI to conduct brute force password guessing

AUTHENT.ALTNAME. Authentication bypass by alternate name

 Definition: the software performs authentication based on the name
 of the resource being accessed, but there are multiple names for
 the resource, and not all names are checked.

 Note: overlaps equivalent encodings, canonicalization,
 authorization, multiple trailing slash, trailing space, mixed case,
 and other equivalence issues.

 Note: "alternate name" itself is a rather general class of
 data-driven manipulation.

 Examples: CAN-2003-0317, CAN-2004-0847

AUTHENT.SPOOF. Authentication bypass by spoofing

 Note: resultant vuln from insufficient verification

AUTHENT.REPLAY. Authentication bypass by replay

AUTHENT.MITM. Man-in-the-middle (MITM)

AUTHENT.MAID. Authentication Bypass via Assumed-Immutable Data

 Definition: the authentication scheme or implementation uses key
 data elements that are assumed to be immutable, but can be
 controlled or modified by the attacker, e.g. if a web application
 relies on a cookie "Authenticated=1"

 Examples: CVE-2002-0367 (DebPloit), CVE-2004-0261 (web auth)

 CAN-2002-1730, CAN-2002-1734 - authentication bypass by setting
 certain cookies to "true"

 CAN-2002-2064 - admin access by setting a cookie

 CAN-2002-2054 - gain privileges by setting cookie

 CAN-2004-1611 - product trusts authentication information in cookie

 CAN-2005-1708 - authentication bypass by setting admin-testing
 variable to true.

 CAN-2005-1787 - bypass auth and gain privs by setting a variable

AUTHENT.LOGIC. Authentication Logic Error

 Examples: CAN-2003-0750 (conditional should have been an 'or' not
 an 'and')

AUTHENT.STEPMISS. Missing Critical Step in Authentication

 Note: this overlaps insufficient verification.

 CAN-2004-2163 - shared secret not verified in a RADIUS response
 packet, allowing authentication bypass by spoofing server replies.

AUTHENT.RESULTANT. Authentication Bypass by Primary WIFF

 Definition: the authentication algorithm is sound, but the
 implemented mechanism can be bypassed as the result of a separate
 WIFF that is primary to the authentication error.

 Note: most "authentication bypass" errors are resultant, not
 primary.

 Examples: CVE-2002-1374, CVE-2000-0979, CAN-2001-0088

AUTHENT.NONE. No Authentication for Critical Function

 Definition: the product does not perform any authentication for
 functionality that requires a provable user identity or consumes a
 significant amount of resources.

 Note: this is separate from "bypass" issues in which authentication
 exists, but is faulty.

 CAN-2002-1810 - MFV. Access TFTP server without authentication and
 obtain configuration file with sensitive plaintext information

AUTHENT.MULTFAIL. Multiple Failed Authentication Attempts not Prevented

 Definition: the product does not implement sufficient measures to
 prevent multiple failed authentication attempts within in a short
 time frame, making it more susceptible to brute force attacks.

 Note: common protection mechanisms include disconnecting a user,
 implementing a timeout, locking out a targeted account, or
 requiring a computational task on the user's part.

 CAN-1999-1152, CVE-2001-1291, CAN-2001-0395, CAN-2001-1339,
 CAN-2002-0628 - product does not disconnect or timeout after

 multiple failed logins

 CVE-1999-1324 - user accounts not disabled when they exceed a
 threshold; possibly a resultant vuln

AUTHENT.MISC. Miscellaneous Authentication Errors

 Note: these examples include multiple sub-categories that should be
 created.

 CAN-2005-1680 - authentication bypass by (1) insufficient access
 control (anyone from same IP address) or (2) "race condition" by
 being the first to access the software

 CAN-2001-1425 - challenge-response authentication allows remote
 attackers to compute the response based on observable information.
 Resultant from information leak.

 CAN-2004-1685 - router allows authentication bypass by connecting to
 it from the same IP address as logged-in admin.

 CVE-2004-2458 - tool creates directories before authenticating
 user. general class of issue? step problem on product's side.

 CAN-2005-1831 - step-driven interruption attack allows
 authentication bypass

 CVE-2005-3327 - authentication bypass by step-based manipulation
 (skipped step)

==
SECTION.9.19. [CRYPTO] Cryptographic errors
==

Note: this category is incomplete and needs refinement, as there is
good documentation of cryptographic flaws and related attacks.

Note: some of these can be resultant.

Functional Area: cryptography

CRYPTO.PTEXT. Plaintext Storage of Sensitive Information

CRYPTO.PTEXT.DISK. Plaintext Storage in File or on Disk

 CAN-2001-1481 - plaintext credentials in world-readable file

 CAN-2005-1828, CAN-2005-2209 - password in cleartext in config file

 CAN-2002-1696 - decrypted copy of a message written to disk given a
 combination of options and when user replies to an encrypted
 message

 CVE-2004-2397 - plaintext storage of private key and passphrase in
 log file when user imports the key

CRYPTO.PTEXT.REG. Plaintext Storage in Registry

 CAN-2005-2227 - plaintext passwords in registry key

CRYPTO.PTEXT.COOKIE. Plaintext Storage in Cookie

 CAN-2002-1800 - admin password in plaintext in a cookie

 CAN-2001-1537 - default configuration has cleartext
 usernames/passwords in cookie

 CAN-2001-1536 - usernames/passwords in cleartext in cookies

 CAN-2005-2160 - authentication information stored in cleartext in a
 cookie

CRYPTO.PTEXT.MEM. Plaintext Storage in Memory

 Note: this could be a resultant WIFF, e.g. if the compiler removes
 code that was intended to wipe memory.

 Note: it could be argued that such problems are usually only
 exploitable by those with administrator privileges. However,
 swapping could cause the memory to be written to disk and leave it

 accessible to physical attack afterwards.

 CAN-2001-1517, BID:10155 - sensitive authentication information in
 cleartext in memory

 CAN-2001-0984 - password protector leaves passwords in memory when
 window is minimized, even when "clear password when minimized" is set

 CAN-2003-0291 - SSH client does not clear credentials from memory

CRYPTO.PTEXT.GUI. Plaintext Storage in GUI

 CAN-2002-1848 - unencrypted passwords stored in GUI dialog may
 allow local users to access the passwords

CRYPTO.PTEXT.EXEC. Plaintext Storage in Executable

 CAN-2005-1794 - product stores RSA private key in a DLL and uses it
 to sign a certificate, allowing spoofing of servers and MITM
 attacks.

CRYPTO.PTEXT.TRANS. Plaintext Transmission of Sensitive Information

 CAN-2002-1949 - passwords transmitted in cleartext

CRYPTO.KEYMGT. Key Management Errors

 Note: this category should probably be split into multiple
 sub-categories.

 CAN-2005-2146 - insecure permissions when generating secret key,
 allowing spoofing

 CAN-2001-1527 - administration passwords in cleartext in executable

 CVE-2000-0762 - default installation of product uses a default
 encryption key, allowing others to spoof the administrator

 == static key / global shared key ==

 CAN-2002-1947 - "global shared key" - product uses same SSL key
 for all installations, allowing attackers to eavesdrop or hijack
 session

 CVE-2005-4002 - "global shared key" - product uses same secret key
 for all installations, allowing attackers to decrypt data.

 CAN-2005-2196 - product uses default WEP key when not connected to
 a known or trusted network, which can cause it to automatically
 connect to a malicious network. Overlaps: default

 == end ==

 == exposed or accessible private key ==

 Note: overlaps information leak

 CAN-2005-1794 - private key stored in executable

 CVE-2001-0072 - crypto program imports both public and private
 keys but does not tell the user about the private keys, possibly
 breaking the web of trust

 == misc ==

 CAN-2005-3256 - encryption product accidentally selects the wrong
 key if the key doesn't have additional fields that are normally
 expected, leading to infoleak to the owner of that wrong key

CRYPTO.STEPMISS. Missing Required Cryptographic Step

 Note: overlaps incomplete/missing security check

 Note: can be resultant

 Examples: BID:2356

CRYPTO.WEAKENC. Weak Encryption

 Note: a variety of encryption algorithms exist, with various

 weaknesses. This category could probably be split into smaller
 sub-categories.

 CAN-2001-1546 - weak encryption

 CAN-2004-2172 - weak encryption (chosen plaintext attack)

 CAN-2002-1682 - weak encryption

 CAN-2002-1697 - weak encryption produces same ciphertext from the
 same plaintext blocks

 CAN-2002-1739 - weak encryption

 CAN-2005-2281 - weak encryption scheme

 CAN-2002-1872 - weak encryption (XOR)

 CAN-2002-1910 - weak encryption (reversible algorithm)

 CAN-2002-1946 - weak encryption (one-to-one mapping)

 CAN-2002-1975 - encryption error uses fixed salt, simplifying brute
 force / dictionary attacks (overlaps randomness)

CRYPTO.REVHASH. Reversible One-Way Hash

 Definition: a hashing algorithm produces results that can allow an
 attacker to determine the original input - or generate an input
 that produces the same hash - using feasible brute force or custom
 attacks.

CRYPTO.MISC. Miscellaneous Crypto Problems

 Examples: CVE-1999-0982, CVE-2000-0402, CAN-1999-1256,
 CAN-2002-0344, many others

 CAN-2002-1762 - sensitive information stored in cleartext

 CAN-2003-0987 - crypto error (integrity checking)

 CAN-2005-1797 - timing attack on AES (Rijndael) as a result of

 design limitations of S-boxes

 CVE-2004-2524 - attacker can retrieve plaintext credentials by using
 accessible "encryption" routine on desired username, then sending
 the encrypted username. Product then sends back username/password
 in plaintext. Poor cryptography?

 CAN-2002-1892 - username/pass stored in readable format after
 backup

==
SECTION.9.20. [RAND] Randomness and Predictability
==

The product may use insufficiently random numbers or values in a
security context that requires unpredictable numbers.

Factors: can be primary to cryptographic errors, authentication
errors, symlink following, information leaks, and others.

Functional Area: non-specific, cryptography, authentication, session
management

RAND.ENT. Insufficient Entropy

 Definition: the product uses an algorithm or scheme that produces
 insufficient entropy, leaving patterns or clusters of values that
 are more likely to occur than others.

 Examples:

 CAN-2001-0950 - insufficiently random data used to generate session
 tokens using C rand(). Also, for certificate/key generation, uses a
 source that does not block when entropy is low

RAND.SPACE. Small Space of Random Values

 Definition: the number of possible random values is smaller than
 needed by the product, making it more susceptible to brute force
 attacks.

 CAN-2002-0583 - product uses 5 alphanumeric characters for filenames
 of expense claim reports, stored under web root.

 CVE-2002-0903 - product uses small number of random numbers for a
 code to approve an action, and also uses predictable new user IDs,
 allowing attackers to hijack new accounts.

 CVE-2003-1230 - SYN cookies implementation only uses 32-bit keys,
 making it easier to brute force ISN

 CAN-2004-0230 - complex predictability / randomness (reduced space)

RAND.SEED. PRNG Seed Error

A Pseudo-Random Number Generator can use seeds incorrectly, in various
ways.

RAND.SEED.SAME. Same Seed in PRNG

 Definition: a PRNG uses the same seed each time the product is
 initialized.

RAND.SEED.PRED. Predictable Seed in PRNG

 Definition: a PRNG is initialized from a predictable seed,
 e.g. using process ID or system time.

RAND.SEED.SPACE. Small Seed Space in PRNG

 Definition: a PRNG uses a relatively small space of seeds.

 Note: overlaps predictable from observable state

 Examples: CVE-2002-0872

RAND.PRED.STATE. Predictable from Observable State

 Definition: a number or object is predictable based on observations
 that the attacker can make about the state of the system or network,
 such as time, process ID, etc.

 Examples:

 CVE-2002-0389, CVE-2001-1141

 CVE-2000-0335 - DNS resolver library uses predictable IDs, which
 allows a local attacker to spoof DNS query results.

 CAN-2005-1636 - MFV. predictable filename and insecure permissions
 allows file modification to execute SQL queries

RAND.PRED.PREV. Predictable Exact Value from Previous Values

 Definition: an exact value or random number can be precisely
 predicted by observing previous values.

 Examples: CVE-2002-1463

 CVE-1999-0074 - Listening TCP ports are sequentially allocated,
 allowing spoofing attacks

 CVE-1999-0077 - Predictable TCP sequence numbers allow spoofing.

 CVE-2000-0335- DNS resolver uses predictable IDs, allowing a local
 user to spoof DNS query results.

RAND.PRED.RANGE. Predictable Value Range from Previous Values

 Definition: a relatively small set of likely values or random
 numbers can be predicted, typically by observing previous values or
 general non-random patterns within the generator, and simplifying a
 brute force attack.

 Examples: [Zalewski2001]

RAND.STATIC. Static Value in Unpredictable Context

 Definition: The product's execution context requires or assumes that
 certain values must be variable and unpredictable, but the value is
 the same.

 Note: may be primary or resultant.

 Note: overlaps default configuration.

 Note: this is often a factor in attacks on web browsers, in which
 known or predictable filenames become necessary to exploit browser
 vulnerabilities.

 CAN-2002-0980 - component for web browser writes an error message
 to a known location, which can then be referenced by attackers to
 process HTML/script in a less restrictive context

==
SECTION.9.21. [CODE] Code Evaluation and Injection
==

Code can be highly portable, and it can be transferred from one
endpoint to another for the purpose of automatic execution on the
receiving endpoint. Vulnerabilities can arise if the code can be
controlled or influenced by an untrusted source.

Research Gaps: Many of these WIFFs are under-studied, and terminology
is not sufficiently precise.

CODE.EVAL. Direct Dynamic Code Evaluation ("Eval Injection")

 Definition: The product allows inputs to be fed directly into a
 function (e.g. "eval") that dynamically evaluates and executes the
 input as code, usually in the same interpreted language that the
 product uses.

 Alternate term: direct code injection

 Factors: special character errors can play a role in increasing the
 variety of code that can be injected, although some vulnerabilities
 do not require special characters at all, e.g. when a single
 function without arguments can be referenced and a terminator
 character is not necessary.

 CAN-2002-1750, CAN-2002-1751, CAN-2002-1752, CAN-2002-1753,
 CAN-2005-1527, CAN-2005-2837 - direct code injection into Perl eval
 function

 CAN-2005-1921, CAN-2005-2498 - MFV. code injection into PHP eval
 statement using nested constructs that should not be nested.

 CVE-2005-3302 - code injection into Python eval statement from a
 field in a formatted file.

 CAN-2001-1471 - MFV. invalid value prevents initialization of
 variables, which can be modified by attacker and later injected into
 PHP eval statement.

CODE.STAT. Direct Static Code Injection

 Definition: The product allows inputs to be fed directly into an
 output file that is later processed as code, e.g. a library file or
 template.

 Note: "HTML injection" (see XSS) could be thought of as an example
 of this, but it is executed on the client side, not the server side.
 Server-Side Includes (SSI) are an example of direct static code
 injection.

 CVE-2002-0495 - Perl code directly injected into CGI library file
 from parameters to another CGI program

 CAN-2005-1876 - direct PHP code injection into supporting template
 file

 CAN-2005-1894 - direct code injection into PHP script that can be
 accessed by attacker

 CAN-2003-0395 - PHP code from User-Agent HTTP header directly
 inserted into log file implemented as PHP script.

CODE.STAT.SSI. Server-Side Includes (SSI) Injection

 Definition: a web product allows the injection of sequences that
 cause the server to treat as server-side includes.

 Note: this can be resultant from XSS/HTML injection because the same
 special characters can be involved. However, this is server-side
 code execution, not client-side.

CODE.STAT.PHPINC. PHP File Include

 Definition: a PHP product uses "require" or "include" statements, or
 equivalent statements, that use attacker-controlled data to identify
 code or HTML to be directly processed by the PHP interpreter before
 inclusion in the script.

 Alternate Term: PHP file inclusion

 Note: this is frequently a functional consequence of other WIFFs.
 It is usually multi-factor with other factors (e.g. MAID), although
 not all inclusion bugs involve assumed-immutable data. Direct
 request WIFFs frequently play a role.

 Overlaps: Untrusted search path, direct request

 Research Gaps: other interpreted languages with "require" and
 "include" functionality could also product vulnerable applications,
 but as of 2005, PHP has been the focus.

 Reference: [Clowes]

 Note: can overlap directory traversal in local inclusion problems.

 CAN-2004-0285, CAN-2004-0030, CVE-2004-0068, CAN-2005-2157,
 CAN-2005-2162, CAN-2005-2198 - modification of assumed-immutable
 configuration variable in include file allows file inclusion via
 direct request

 CVE-2004-0128 - modification of assumed-immutable variable in
 configuration script leads to file inclusion

 CAN-2005-1864, CAN-2005-1869, CAN-2005-1870 - PHP file inclusion

 CAN-2005-2154 - PHP local file inclusion

 CAN-2002-1704, CAN-2002-1707, CAN-2005-1964, CAN-2005-1681,
 CAN-2005-2086 - PHP remote file include

 CAN-2004-0127, CAN-2005-1971 - directory traversal vulnerability in
 PHP include statement

 CVE-2005-3335 - PHP file inclusion issue, both remote and local;
 local include uses ".." and "%00" characters as a manipulation,
 but many remote file inclusion issues probably have this vector.

==
SECTION.9.22. [ERS] Error Conditions, Return Values, Status Codes
==

Keywords: error code, status code, return code, return value,
 error checking

If a function in a product does not generate the correct return/status
codes, or if the product does not handle all possible return/status
codes that could be generated by a function, then security issues may
result.

This type of problem is most often found in conditions that are rarely
encountered during the normal operation of the product. Presumably,
most bugs related to common conditions are found and eliminated during
development and testing.

In some cases, the attacker can directly control or influence the
environment to trigger the rare conditions.

Note: this WIFF is often primary to a variety of other WIFFs.

Research Gaps: many researchers focus on the resultant WIFFs and do
not necessarily diagnose whether a rare condition is the primary
factor. However, in 2005 it seems to be reported more frequently than
in the past. This subject needs more study.

ERS.UNCH. Unchecked Return Value

 Definition: the product does not check the return value from a
 function or other entity in a way that leads to a vulnerability.

 Note: this falls into 2 sub-categories: (1) Unchecked Error Return
 Value and (2) Unchecked Valid Return Value. The former involves the
 inability of the product to detect and handle when an error occurs.
 The latter might exist when the product handles errors correctly but

 does not account for all possible return values, thus missing valid
 (but rarely occurring) return values.

 Alternate names: Unchecked return value, Unchecked error condition

 CAN-2002-1870 - failure to check results of recv call leads to
 resultant heap corruption

 CAN-2002-1952 - error return codes not checked for database
 operations, allowing authentication bypass if database errors occur

 CAN-2005-2183 - long input (non-overflow) leads to unhandled error
 condition and resultant authentication bypass

 CAN-2005-2244 - MFV. Buffer overflow conditions due to improperly
 handled error condition (memory allocation failure)

 CVE-2000-0536 - authentication bypass when connecting host does not
 have a reverse DNS entry.

 CVE-2005-2708 - unchecked return code in kernel leads to system
 panic under low memory conditions

 CAN-2004-0427 - Kernel does not properly decrement a counter in
 certain error conditions, leading to resultant memory leak.

 CVE-2004-2396 - unchecked return code with unknown consequences

ERS.MISSERR. Missing Error Status Code

 Definition: the product encounters an error but does not return a
 status code or return value to indicate that an error has occurred.

 Note: may be primary or resultant.

 CVE-2004-0063 - function returns "OK" even if another function
 returns a different status code than expected, leading to accepting
 an invalid PIN number.

 CVE-2002-1446 - error checking routine in PKCS#11 library returns
 "OK" status even when invalid signature is detected, allowing
 spoofed messages.

 CAN-2002-0499 - kernel function truncates long pathnames without

 generating an error, leading to operation on wrong directory.

 CAN-2005-2459 - function returns non-error value when a particular
 erroneous condition is encountered, leading to resultant null
 dereference.

ERS.WRONGCODE. Wrong Status Code

 Definition: a function or operation returns an incorrect value or
 status code that does not indicate an error, but causes the product
 to modify its behavior based on the incorrect result, in a way that
 leads to a vulnerability.

 Note: this can produce resultant vulnerabilities, and it might
 overlap other categories.

 CAN-2003-1132 - DNS server returns wrong response code for
 non-existent AAAA record, which effectively says that the domain is
 inaccessible

 CAN-2001-1509 - hardware-specific implementation of system call
 causes incorrect results from geteuid

 CAN-2001-1559 - system call returns wrong value, leading to a
 resultant null dereference

ERS.UNEXPCODE. Unexpected Status Code or Return Value

 Definition: the product does not properly check when a function or
 operation returns a value that is legitimate for the function, but
 is not expected by the product.

 Note: this can produce resultant vulnerabilities.

 CAN-2004-1395 - certain packets (zero byte and other lengths) cause
 a recvfrom call to produce an unexpected return code that causes a
 server's listening loop to exit

 CVE-2002-2124 - unchecked return code from recv() leads to infinite loop

 CAN-2005-2553 - kernel function does not properly handle when a null
 is returned by a function call, causing it to call another function

 that it shouldn't.

 CAN-2005-1858 - memory not properly cleared when read() function
 call returns fewer bytes than expected

 CVE-2000-0536, CAN-2001-0910 - bypass access restrictions when
 connecting from IP whose DNS reverse lookup does not return a
 hostname.

 CVE-2004-2371 - game server doesn't check return values for
 functions that handle text strings and associated size values.

 CAN-2005-1267 - resultant infinite loop when function call returns -1
value

ERS.UNREP. Silent Failure (Unreported Error Condition)

 Definition: the product encounters an error condition but does not
 report it, leading to vulnerabilities.

 Note: could be primary or resultant. Overlaps other categories
 related to error conditions.

 CVE-2005-4342 - component silently fails instead of throwing an
 exception when another key component is disabled, allowing security
 bypass

==
SECTION.9.23. [VER] Insufficient Verification of Data
==

Definition: the product does not sufficiently verify the origin or
authenticity of data, in a way that leads to a vulnerability.

Terminology Note: "origin validation" could fall under this

Common manipulations: spoofing, replay.

VER.OVE. Origin Validation Error

 Definition: the product does not properly verify that the source of
 data or communication is valid.

 Note: this is a factor in many WIFFs, both primary and resultant.
 The problem could be due to design or implementation. This is a
 fairly general class.

 Examples:

 CAN-2000-1218, CAN-2005-0877 - DNS server can accept DNS updates
 from hosts that it did not query, leading to cache poisoning

 CAN-2001-1452 - DNS server caches glue records received from
 non-delegated name servers

 CAN-2005-2188 - user ID obtained from untrusted source (URL)

 CAN-2003-0174 - LDAP service does not verify if a particular
 attribute was set by the LDAP server

 CAN-1999-1549 - product does not sufficiently distinguish external
 HTML from internal, potentially dangerous HTML, allowing bypass
 using special strings in the page title. Overlaps special elements.

 CAN-2003-0981 - product records the reverse DNS name of a visitor in
 the logs, allowing spoofing and resultant XSS.

VER.SIG. Improperly Verified Signature

 Definition: the product does not verify, or improperly verifies, the
 cryptographic signature for data.

 CAN-2002-1796 - does not properly verify signatures for "trusted"
 entities

 CAN-2005-2181, CAN-2005-2182 - insufficient verification allows
 spoofing

 CAN-2002-1706 - accepts a configuration file without a Message
 Integrity Check (MIC) signature

VER.LTRUST. Use of Less Trusted Source

 Definition: the product has two different sources of the same data
 or information, but it uses the source that has less support for
 verification, is less trusted, or is less resistant to attack.

 CVE-2001-0860 - product uses IP address provided by a client,
 instead of obtaining it from the packet headers, allowing easier
 spoofing.

 CAN-2004-1950 - web product uses the IP address in the
 X-Forwarded-For HTTP header instead of a server variable that uses
 the connecting IP address, allowing filter bypass.

 BID:15326 - similar to CAN-2004-1950

 CAN-2001-0908 - product logs IP address specified by the client
 instead of obtaining it from the packet headers, allowing
 information hiding.

 CVE-2006-1126 - PHP application uses IP address from X-Forwarded-For
 HTTP header, instead of REMOTE_ADDR.

VER.UDAPP. Untrusted Data Appended with Trusted Data

 Definition: The product, when processing trusted data, accepts any
 untrusted data that is also included with the trusted data.

 CVE-2002-0018 - does not verify that trusted entity is authoritative
 for all entities in its response

VER.DNSREV. Improperly Trusted Reverse DNS

 Definition: the product trusts the hostname that is provided when
 performing a reverse DNS resolution on an IP address, without also
 performing forward resolution.

 CAN-2001-1488 - does not do double-reverse lookup to prevent DNS
 spoofing

 CAN-2001-1500 - does not verify reverse-resolved hostnames in DNS

 CAN-2000-1221, CVE-2002-0804 - authentication bypass using spoofed
 reverse-resolved DNS hostnames

 CVE-2001-1155 - filter does not properly check the result of a
 reverse DNS lookup, which could allow remote attackers to bypass
 intended access restrictions via DNS spoofing.

 CAN-2004-0892 - reverse DNS lookup used to spoof trusted content in
 intermediary

 CAN-2003-0981 - product records the reverse DNS name of a visitor in
 the logs, allowing spoofing and resultant XSS.

VER.INSUFF-VERIFY.TYPE. Insufficient Type Distinction

 Definition: the product does not properly distinguish between
 different types of elements in a way that leads to insecure
 behavior.

 Note: overlaps others, e.g. Multiple Interpretation Errors.

 CAN-2005-2260 - browser user interface does not distinguish between
 user-initiated and synthetic events

 CVE-2005-2801 - Product does not compare all required data in two
 separate elements, causing it to think they are the same, leading to
 loss of ACLs. Similar to Same Name error.

VER.INTEG.MISS. Missing Integrity Check

 Definition: the product does not perform an integrity check that is
 required by its design; or, the product's design does not include an
 integrity check for critical data or resources.

 Note: overlaps origin validation error

 CVE-2002-0671, CVE-2002-0676, CAN-2001-1125, CAN-2003-0237 - product
 downloads executables from a web site but does not verify integrity
 of the executables, allowing malicious injection using DNS spoofing

VER.INTEG.INC. Incomplete Integrity Check

 Definition: the product does not perform all steps of an integrity
 check that is required by its design; or, the product's design does
 not provide sufficient steps in an integrity check for critical data
 or resources.

 Note: overlaps origin validation error, Non-conformant API Usage

 Note: examples are not currently available although such problems
 have been reported and may be covered by other PLOVER categories.

VER.WEB.CSRF. Cross-Site Request Forgery (CSRF)

 Definition: the web product does not, or can not, sufficiently
 verify whether a well-formed, valid, consistent request was
 intentionally provided by the user who submitted the request.

 Note: CSRF is multi-channel:

 1. Attacker-to-victim (injection; external or internal channel)

 2. Victim-to-server (activation; internal channel)

 The associated WIFF is Insufficient Verification of Data.

 Note: could be resultant from XSS, although XSS is not necessarily
 required.

 Reference: [PeterW]

 Examples: CAN-2004-1703, CAN-2004-1995, CAN-2004-1967,
 CAN-2004-1842, CAN-2005-1947, CAN-2005-2059

 CAN-2005-1674 - CSRF

VER.PHP-UPLOAD. PHP Upload Verification

 Note: this category needs work.

 CAN-2002-1460 - PHP web forum does not properly verify whether a
 file was uploaded, allowing attackers to reference other files by
 modifying POST variables.

 CAN-2002-1710 - product does not distinguish uploaded file from
 other files

 CAN-2002-1759 - PHP script does not restrict access to uploaded
 files. Overlaps container error.

VER.OTHER. Other Insufficient Verification

 CAN-2004-2163 - shared secret in a response is not verified,
 allowing authentication bypass using spoofing

 CAN-2001-1568, CAN-2001-1569 - incomplete verification of
 certificates in WAP products allows SSL certifciate spoofing using
 man-in-the-middle attack

 CAN-2002-1846 - product doesn't require user to provide correct old
 password when changing new password

 CAN-2005-2145 - kernel driver doesn't verify the origin of certain
 messages, allowing attacker to disable certain warnings.

==
SECTION.9.24. [MAID] Modification of Assumed-Immutable Data
==

Definition: the product does not properly protect an assumed-immutable
element from being modified by an attacker.

Factors: MAID issues can be primary to many other WIFFs, and they are
a major factor in languages such as PHP.

Note: This happens when a particular input is critical enough to the
functioning of the application that it should not be modifiable at
all, but it is. A common programmer assumption is that certain
variables are immutable; especially consider hidden form fields in web
applications. So there are many examples where the MUTABILITY
property is a major factor in a vuln.

Note: common data types that are attacked are environment variables,
web application parameters, and HTTP headers.

CAN-2002-1757 - relies on $PHP_SELF variable for authentication

 CAN-2005-1905 - gain privileges by modifying assumed-immutable
 code addresses that are accessed by a driver

MAID.PTAMP. Web Parameter Tampering

 Definition: a web product does not properly protect
 assumed-immutable values from modification in hidden form fields,
 parameters, cookies, or URLs, which lead to modification of critical
 data.

 Alternate Term: Assumed-Immutable Parameter Tampering

 Note: this is a primary WIFF for many other WIFFs and functional
 consequences, including XSS, SQL injection, path disclosure, and
 file inclusion.

 Note: this is a technology-specific MAID problem.

 [SM2] can this be split into assumed-immutable vs. unverified?
 especially the case in direct request vulnerabilities in PHP
 applications - if the variable wasn't set from a $_GET or other
 variable, then it's probably assumed-immutable.

 CAN-2002-0108 - forum product allows spoofed messages of other
 users via hidden form fields for name and e-mail address.

 CVE-2000-0253, CVE-2000-0254, CVE-2000-0926, CAN-2000-0101,
 CAN-2000-0102 - shopping cart allows price modification via hidden
 form field

 CVE-2000-0758 - allows admin access by modifying value of form field

 CAN-2002-1880 - read messages by modifying message ID parameter

 CAN-2000-1234 - send email to arbitrary users by modifying email
 parameter

 CAN-2005-1652 - authentication bypass by setting a parameter

 CAN-2005-1784 - product does not check authorization for
 configuration change admnin script, leading to password theft via
 modified e-mail address field

 CAN-2005-2314 - logic error leads to password disclosure

 CAN-2005-1682 - modification of message number parameter allows
 attackers to read other people's messages

MAID.PHPVAR. PHP External Variable Modification

 Definition: a PHP product does not properly protect against the
 modification of variables from external sources.

 Note: this is a tech-specific instance of MAID.

 Factors: this can be resultant from direct request (alternate path)
 issues. It can be primary to WIFFs such as PHP file inclusion, SQL
 injection, XSS, authentication bypass, and others.

 CVE-2000-0860 - file upload allows arbitrary file read by setting
 hidden form variables to match internal variable names.

 CAN-2001-0854 - mistakenly trusts $PHP_SELF variable to determine if
 include script was called by its parent

 CAN-2002-0764 - PHP remote file inclusion by modified
 assumed-immutable variable.

 CAN-2001-1025 - modify key variable when calling scripts that don't
 load a library that initializes it.

 CAN-2003-0754 - authentication bypass by modifying array used for
 authentication

==
SECTION.9.25. [MAL] Product-Embedded Malicious Code
==

Definition: the product, as delivered to the consumer, contains
undocumented, hidden functionality or configuration that is
specifically intended to secretly obtain access, sensitive data, or
cause a denial of service when certain conditions are met.

Note: this is distinct from default, documented configuration that
happens to be insecure, or intentionally embedded vulnerabilities. In

some cases, the lines can be blurred, and the developer's intentions
can not be known.

Terminology Note: a web search suggests that the phrase "embedded
malicious code" is commonly used as a synonym for "payload" in the
context of exploits.

MAL.BDOOR. Back Door

 Definition: a hidden, undocumented alternate channel, alternate
 path, or alternate name in the product, as delivered to the
 consumer, that is specifically intended for outside entities to
 interact with the product without successfully passing through all
 security mechanisms.

 Keywords: back door, backdoor

 Note: sometimes it is unclear whether a "back door" issue is
 intentionally malicious, or just the result of a design error.

MAL.BDOOR.ACC. Back Door

 Definition: a hidden, undocumented account, typically hard-coded,
 that allows an attacker to obtain access using either (1) a special
 name or (2) a special password.

 CVE-2002-1272 - back door intended for development accidentally left
 enabled in production

MAL.BDOOR.ACC.DEV. Developer-Introduced Back Door

 CAN-2000-1230 - developer back door

 CAN-2002-1936 - default and back door accounts

 CAN-2000-0248 - back door

 CVE-2004-1884 - back door account in FTP server

MAL.BDOOR.HPASS. Hard-Coded Password or Account

 Definition: the product contains a hard-coded password or account
 that cannot be changed by the user through the normal interface.

 Note: the password could be documented or undocumented.

 CAN-2005-1837 - hard-coded username with predictable password
 obtained from product serial number

 CAN-2005-2026 - developer hard-coded account/password

 CAN-2005-1867 - hard-coded admin password

MAL.BDOOR.ACC.OUT. Outsider-Introduced Back Door

 Definition: a back door that is introduced by a party other than the
 developer, e.g. by an attacker at the product's distribution source.

 CAN-2002-1840, CAN-2002-2049 - non-developer introduced back door

MAL.HFUNC. Hidden User-Triggered Functionality

 Definition: the product contains functionality that is "hidden" but
 cannot be triggered by a user, i.e. the functionality is not
 accessible during well-formed, valid, consistent interactions.

 Note: the "Trojan Horse" and "Easter Egg" concepts are covered by
 this WIFF.

MAL.LOGBOMB. Logic Bomb

 Needs definition.

 Note: overlaps business rule violation.

MAL.TIMBOMB. Time Bomb

 Needs definition.

 Note: overlaps business rule violation.

==
SECTION.9.26. [ATTMIT] Common Attack Mitigation Failures
==

This section covers failures of the product design in protecting
against widely used attacks. Most of these attacks require conditions
or WIFFs that are already covered elsewhere. However, they are
mentioned so frequently that there should be some place for them in
PLOVER.

Note that these attacks involve particular manipulations; the
underlying WIFFs can vary widely.

ATTMIT.REPLAY. Insufficient Replay Protection

 Definition: the product does not use sufficient measures to prevent
 replay attacks from succeeding, e.g. randomness, integrity checking,
 timeouts, and data verification.

 CAN-2004-2243 - session hijacking via replay

 CAN-2002-2046 - authentication bypass by stealing and replaying
 MD5'd password

 CAN-2002-1746 - sniff and replay

 CAN-2001-1545 - session ID stored in URL allows theft and replay by
 HTTP referer or sniffing. NOTE: many web session ID vulns are MFV
 since there's (1) intentional infoleak and (2) replay.

 CAN-2005-2185 - cookies do not expire and simplify replay attacks

 CAN-2001-1505 - modification of user sessions by replaying packets

 CAN-2005-1664 - web middleware allows replay attacks using state
 identifiers

 CVE-2005-3435 - password hash replay; don't need to know original

 password.

ATTMIT.BRUTE. Susceptibility to Brute Force Attack

 Functional Areas: cryptography, authentication

ATTMIT.SPOOF. Susceptibility to Spoofing

 Terminology Note: the "spoofing" term is used to describe a wide
 variety of attacks. The "forgery" term is under-used but might be
 able to provide some distinction. More investigation is needed.

 Research Gaps: while spoofing attacks are frequently reported, there
 is little research into the underlying WIFFs that enable spoofing to
 be successful.

 Note: overlaps insufficient verification and misrepresentation
 problems. Insufficient randomness, or predictability, is often a
 critical factor in spoofing attacks.

 Other WIFFs are heavily involved in allowing spoofing to be
 successful. For example:

 [*] GUI does not notify user of original origin of a message or
 window

 [*] product does not verify the origin of the message or window

 [*] product does not check all required fields

 [*] underlying protocol design does not include verification

 Examples:

 CVE-1999-0395 - race condition allows an attacker to spoof a server

 CAN-1999-1254 - OS allows DoS by spoofed ICMP redirect messages,
 causing OS to change its routing tables

 CAN-1999-0667 - ARP protocol allows ARP replies to be spoofed

 CAN-2005-2145 - information hiding by spoofing

 CAN-2003-0552 - kernel allows spoofing of routing information via
 forged packets whose source address is the same as the target

 CAN-2001-0323 - ICMP PMTU discovery feature allows DoS by spoofing
 "ICMP Fragmentation needed but Don't Fragment (DF) set" packets
 between two target hosts, which could cause one host to lower its
 MTU when transmitting to the other host.

 CAN-1999-0195 - Denial of service in portmapper allows attackers to
 modify or spoof RPC services with spoofed source IP such as
 127.0.0.1.

 CAN-2004-0527, CAN-2004-0528 - web browser allows remote attackers
 to spoof a legitimate URL in the status bar via A HREF tags with
 modified "alt" values that point to the legitimate site, combined
 with an image map whose href points to the malicious site, which
 facilitates a "phishing" attack.

 CAN-2004-0763 - spoof of certificates in web browser via redirects
 and Javascript that uses the "onunload" method.

 CAN-2005-1746 - spoofed cookies to force contact with systems
 outside a trusted group

 CAN-1999-1291 - connection reset by forcing a reset (RST) via a PSH
 ACK or other means, obtaining the target's last sequence number
 from the resulting packet, then spoofing a reset to the target.

==
SECTION.9.27. [CONT] Containment errors (container errors)
==

This tries to cover various problems in which improper data is
included within a "container."

Note: this overlaps many other WIFFs. Most vulnerabilities could be
regarded as "container" problems.

CONT.ACC. Sensitive Entity in Accessible Container

 Definition: the product stores sensitive data, objects, code, or
 other entities in a directory or other container that is accessible

 to an attacker.

 Alternate term: containment error, container error

CONT.WEB. Sensitive Data Under Web Root

 Factors: can be resultant from insecure permissions.

 CAN-2002-2029 - executable interpreter under web root

 CAN-2002-1909, CAN-2005-1647, CAN-2005-2005, CAN-2005-2192,
 CAN-2005-2189, CAN-2005-2229 - data file with authentication
 information (usernames, passwords, keys) accessible under web root

 CAN-2005-2075 - database backup file stored under web root with
 predictable filename

 CAN-2005-0229 - temporary data file with credit card information
 under web root

 CAN-2003-0841 - temporary file in guessable directory name

 CAN-2005-1716, CAN-2005-1733 - database under web root

CONT.FTP. Sensitive Data Under FTP Root

 Example: various Unix FTP servers require a password file that is
 under the FTP root, due to use of chroot.

==
SECTION.9.28. [MISC] Miscellaneous WIFFs
==

This section includes other WIFFs that do not fit cleanly into
previously specified categories.

MISC.DFREE. Double-Free Vulnerability

 Definition: the product performs a free() operation on a pointer
 that it has already previously freed.

 Note: this is usually resultant from another WIFF, such as an
 unhandled error or race condition between threads. It could also be
 primary to WIFFs such as buffer overflows.

 Note: also a Consequence.

 CAN-2004-0642, CAN-2004-0772, CAN-2005-1689 - double-free resultant
 from certain error conditions

 CAN-2003-0545 - double-free from invalid ASN.1 encoding

 CAN-2003-1048, CAN-2005-0891 - double-free from malformed GIF

 CVE-2002-0059 - double-free from malformed compressed data

MISC.INVFREE. Free of Invalid Pointer

 Definition: the product attempts to free memory associated with an
 invalid pointer.

 Note: usually resultant; an atomic consequence.

 Note: overlaps double-free, others.

 CAN-2003-1201 - free of uninitialized pointer when function return
 code does not indicate success

 CVE-2004-2486 - free of uninitialized variable

 CVE-2005-3249 - free of invalid pointer

 CVE-2005-3806 - free of wrong pointer. typo in variable name
 causes wrong memory to be freed - possibly unallocated - leading
 to memory corruption or DoS

MISC.ASSERT. Reachable Assert Failure

 Definition: the product allows an attacker to manipulate the product
 state, possibly via direct inputs, that reach an assert statement
 that fails.

 Note: this is effectively an atomic consequence. It is frequently
 resultant from a number of low-level WIFFs.

 Examples:

 CAN-2004-0931 - database allows crash via request with "high ASCII"
 values (requiring 8 bits>) in the server field, triggering an assert
 error.

 CVE-2004-0270 - anti-virus product has assert error when line length
 is non-numeric

 CVE-2005-0446 - assert error in web proxy from various responses

MISC.EXTCONF. Externally Required Insecure Design Conformance

 Definition: the product is required to support an externally
 specified design, e.g. to support interoperability, but that design
 has one or more inherent vulnerabilities.

 Note: it could be argued that this is primary to most other WIFFs.

 CAN-2005-1646 - FTP protocol design flaw (FTP bounce) allowed in
 product due to insecure requirements of FXP, which is forced to be
 supported by product

 CAN-2002-1968 - attacker can download DOCSIS configuration file from
 TFTP server on internal network side, then modify. Possibly
 standard-required behavior.

MISC.WEAK. Selection of Weaker Scheme

 Definition: the product can choose between two schemes, algorithms,
 or protocols that meet all applicability requirements for a task,
 but the product selects the "weaker" scheme that is less resistant
 to attack.

 Note: conceptually similar to Use of Less Trusted Source

 Note: can be primary, but probably resultant in most cases.

 Research Gaps: under-studied

 Note: other examples exist but have not been identified yet.

 CAN-2005-2395 - web browser chooses weakest authentication scheme
 available instead of the strongest, enabling leak of credentials in
 plaintext

MISC.NONCONFORM.IMP. Non-Conformant Implementation

 Definition: the product does not follow the required
 security-relevant conventions when implementing a design-required
 algorithm, scheme, or protocol.

 Resarch Gaps: under-studied.

 Note: overlaps interaction errors.

 Examples: many, spread throughtout other WIFFs.

MISC.NONCONFORM.API. Non-Conformant API Usage

 [King] "API abuse"

 Definition: the product does not follow the required conventions
 when using a specific API, in a way that leads to a vulnerability.

 Alternate names: "API abuse" or "Convention Violation"

 Terminology note: currently, there is not a good term to capture the
 concepts being described.

 Note: conceptually, this can overlap a large number of other issues.
 It can be primary to many WIFFs, e.g. a "non-conformant API usage"
 of strcpy() leads to buffer overflows.

 CAN-2003-0653 - kernel module does not use a required structure when
 sending certain error responses, leading to kernel panic.

 CVE-2005-3181 - kernel uses wrong specialized function to free a
 structure, leading to memory leak

 CVE-2003-0986 - kernel does not use required function when copying

 data from user space to kernel space, allowing DoS.

MISC.CDEP. Client-Dependent Security Enforcement

 Definition: the product trusts a client or other user-controlled
 resource to enforce security restrictions but does not protect
 against the use of a modified client that bypasses those
 restrictions.

 Note: can be primary in many web application vulnerabilities,
 although the resultant issues are normally emphasized.

 Note: overlaps parameter tampering, MAID.

MISC.SDIST. Incomplete Internal State Distinction

 Definition: the product does not properly determine which state it
 is in, causing it to assume it is in state X when in fact it is in
 state Y, causing it to perform incorrect operations in a
 security-relevant manner.

 Note: this conceptually overlaps other categories such as
 insufficient verification, but this refers to the product's
 "self-perception."

 Note: probably resultant from other WIFFs such as unhandled error
 conditions, inability to handle out-of-order steps, multiple
 interpretation errors, etc.

MISC.INCACT. Incomplete Action

 Definition: the product does not perform all steps of a particular
 task, or act on all relevant objects, or examine all relevant data

 Alternate term: Partial Action

 Note: overlaps other categories such as incomplete verification,
 missing steps, etc.

 CVE-2004-0715 - product does not clear all member relationships when

 a group is deleted, which can cause those members to be part of a
 new group that has the same name as the old group.

 CVE-2004-2305 - AV product only scans password-protected file in ZIP
 file, skipping the other files in the ZIP

 BID:6787 - anti-virus product only checks first 15K of a message, so
 virus can avoid detection by inserting malicious code after that.

MISC.TRUNC. Other Types of Truncation Errors

 Buffer consumption (buffer truncation?)

 CAN-2003-0748 - fill a filename with spaces so that a ".html"
 can't be added to the end

 CVE-2004-2597 - long buffer from client causes server additions to
 be truncated, preventing key/value pair from being modified and
 leading to ACL bypass and spoofing.

 Others:

 CAN-2005-0983 - long message is not properly truncated, causing
 the remainder of the message to be interpreted as different data.

MISC.SIGNAL. Signal Errors

 Definition: the product does not properly handle or manage a signal.

 Note: several sub-categories could exist, but this needs more
 study. Some sub-categories are:

 [*] unhandled signals
 [*] untrusted signals
 [*] sending wrong signals

 Note: Signal Handler Race Conditions are covered elsewhere.

 Examples:

 CAN-2002-2039 - unhandled SIGSERV signal allows core dump

 CAN-1999-1224 - SIGABRT (abort) signal not properly handled, causing
 core dump

 CAN-2002-2039 - SIGSERV (invalid memory reference) signal causes
 core dump

 CAN-2004-1014 - remote attackers cause a crash using early
 connection termination, which generates SIGPIPE signal

 CAN-2005-2377 - library does not handle a SIGPIPE signal when a
 server becomes available during a search query. Overlaps unchecked
 error condition?

 CAN-2002-0839 - SIGUSR1 can be sent as root from non-root process

 CAN-1999-1441 - kernel does not prevent users from sending SIGIO
 signal, which causes crash in applications that do not handle it.
 Overlaps privileges.

 CVE-2000-0747 - script sends wrong signal to a process and kills it.

 CVE-1999-1326 - interruption of operation causes signal to be
 handled incorrectly, leading to crash

 CVE-2001-1180 - shared signal handlers not cleared when executing a
 process. Overlaps initialization error.

 CAN-2004-2069 - privileged process does not properly signal
 unprivileged process after session termination, leading to
 connection consumption

 CAN-2004-2259 - SIGCHLD signal to FTP server can cause crash under
 heavy load while executing non-re-entrant functions like
 malloc/free. Possibly signal handler race condition?

 CAN-2005-0893 - certain signals implemented with unsafe library
 calls

MISC.STDCHK. Improperly Implemented Security Check for Standard

 Definition: the software does not properly implement one or more
 security-relevant checks as specified by the design of a
 standardized algorithm, protocol, or technique.

 Note: this is a "missing step" error on the product side, which can
 overlap WIFFs such as insufficient verification and spoofing. It is
 frequently found in cryptographic and authentication errors. It is
 sometimes resultant.

 Note: this is an implementation error, in which the
 algorithm/technique requires certain security-related behaviors or
 conditions that are not implemented or checked properly, thus
 causing a vulnerability.

 CAN-2002-0862, CVE-2002-0970, CVE-2002-1407 - browser does not
 verify Basic Constraints of a certificate, even though it is
 required, allowing spoofing of trusted certificates.

 CAN-2005-0198 - logic error prevents some required conditions from
 being enforced during Challenge-Response Authentication Mechanism
 with MD5 (CRAM-MD5)

 CAN-2004-2163 - shared secret not verified in a RADIUS response
 packet, allowing authentication bypass by spoofing server replies.

 CAN-2005-2181, CAN-2005-2182 - insufficient verification in VoIP
 implementation, in violation of standard, allows spoofed messages.

 CAN-2005-2298 - security check not applied to all components,
 allowing bypass

MISC.MISINT. Misinterpretation Error

 Definition: the product misinterprets an input, whether from an
 attacker or another product, in a security-relevant fashion.

 Note: this concept needs further study. It is likely a factor in
 several WIFFs, possibly resultant as well. Overlaps MIE.

 CAN-2005-2225 - product sees dangerous file extension in free text
 of a group discussion, disconnects all users

 CVE-2001-0003 - product does not correctly import and process
 security settings from another product

MISC.BUSRULE. Business Rule Violations or Logic Errors

 Definition: the product performs as expected with respect to
 documented WIFFs, manipulations, and attack vectors, but it behaves
 in certain ways that can only be regarded as vulnerabilities within
 the context of the "business rules" that the product implements.

 Note: it is hoped that most business rule violations can already be
 captured by other PLOVER categories, e.g. "users should not have
 privilege X" or "customers should not be able to modify prices."

 Research Gaps: under-studied as a concept. Since business rule
 violations are most likely to appear in custom software, third party
 code auditors may have insights regarding this type of problem.

MISC.SAMENAME. Same Name Error

 Definition: the product relies on the name or identifier of a
 resource for security-relevant decisions, but it does not properly
 protect against the use of other resources that have the same name.

 Alternate term: Same Identifier Error

 Terminology Note: "name" is a slight misnomer in that a "name" does
 not have to be an alphabetic identifier or word.

 Note: overlaps untrusted path, macro/function redefinition, spoof,
 bypass, origin validation error, insufficient verification, others.

 Note: similar to equivalence errors.

 Examples:

 CAN-2005-1933 - attacker can override system behavior using a
 resource with the same name

 CAN-2004-1051 - product allows the attacker to define functions that
 are executed in place of programs with the same function name

 CVE-2002-2063 - malicious program can bypass firewall if it has the
 same filename as an otherwise "trusted" file (though this is also an
 "insufficient verification" problem)

 CAN-2004-0708 - attacker gains privileges by creating username that
 has the same name as a privileged group.

 CAN-2005-1791 - near-equivalence causes crash (domain name looks
 like an IP address)

 CAN-2002-0572 - Unix-based OS allows local users to access
 restricted files by closing the file descriptors for stdin, stdout,
 and stderr, which might then be reused by a called setuid process.

 CAN-2002-2053 - protocol implementation allows DoS by router with
 same IP address as the product router.

MISC.ALTNAME. Other Alternate Name Error

 Path traversal vulnerabilities, which have already been covered,
 involve the manipulation of the "alternate name" property to reach
 the same resource. Alternate name problems exist elsewhere,
 although they are not documented as heavily.

 Examples:

 CAN-2004-2083 - browser allows misrepresentation of "safe" file type
 in download box using CLSID in filename

 CAN-2004-0420 - application allows attackers to spoof the type of a
 file with a CLSID specifier in the filename.

MISC.NEIGHBORNAME. Neighbor Name Error

 Definition: the name of a resource ("neighbor name") can be inferred
 or guessed from a known name. The most visible examples are in
 filenames.

 Note: related to predictability.

 Examples:

 file.ext~ (tilde) - commonly used for backups

 file.ext.bak - backup

 CAN-2002-1928 - view directory using "~" or ".bak"

MISC.UNDOC. Undocumented Functionality

 Definition: the product contains functionality that is not
 documented but is not otherwise malicious in nature.

 Note: Undocumented functionality is conceptually similar to
 product-embedded malicious code. The fundamental difference is that
 undocumented functionality is not necessarily malicious in nature.

MISC.UNDOC.ACCOUNT. Undocumented Account

 Examples:

 CVE-2006-0181 - undocumented admin account has default password,
 allowing privilege escalation

MISC.UNDOC.EGG. Easter Egg

 Definition: the product contains "easter egg" functionality that
 does not compromise security or privacy of the user, but is
 unrelated to the proper functioning of the product, e.g. an embedded
 game or animated credit list of the developers.

 Note: always primary. Easter egg itself may contain other WIFFs.

MISC.CONF. Configuration Error

 Configuration errors are under-studied from a vulnerability
 classification perspective. This category identifies common
 configuration problems that are not covered in other sections.

MISC.CONF.DEFPASS. Default Password

 Definition: the product is installed with a password that is common
 across many installations, but the product does not require that the
 password be changed before access is granted.

 Note: typically primary, but sometimes resultant from unexpected
 installation actions or interruptions.

 Examples:

 CVE-2005-3717 - WIFI phone has default password

 CVE-2005-3595, CVE-2005-3344, CVE-2005-0865 - admin account
 installed with a blank password

 CVE-2005-3280 - product installs database with default password
 for database admin account

 CVE-2005-0601 - default password used if a setup dialog has not
 been run. Resultant.

 CVE-2004-1591 - router restes password to default if the router is
 shut off. Resultant.

MISC.CONF.ACCESS. Broad Access Configfuration

 Definition: the product's default configuration allows access to a
 broad set of users, systems, etc., instead of a restricted set.

 Examples:

 CAN-2002-1782 - default configuration allows a user without shell
 access to read files as that user

 CAN-2002-1921 - default configuration of database, when running on
 Windows, does not set the bind address to loopback, allowing remote
 connections

 CAN-2005-1748 - remote anonymous connections allowed, leading to
 infoleak or DoS

MISC.CONF.AUDIT. Insufficient Audit Configuration

 Definition: the product's auditing or logging features are not
 properly configured to capture the information that is requied for
 the product's operating environment.

 Note: this is frequently dependent on the particular enterprise.

 CAN-2002-1923 - logging not enabled by default

==
SECTION.10. Additional Examples
==

Many additional examples are provided in this section. They can serve
different functions.

1) The manipulation, alternate elements, and consequence examples
 further demonstrate these important concepts.

2) The categorized examples highlight additional subtleties or unusual
 manifestations of the associated WIFFs.

3) The uncategorized examples include outliers that are not currently
 describable by PLOVER, complex examples, or other examples that
 simply have not been inserted into PLOVER yet.

==
SECTION.10.1. [ALT] Alternate Elements Examples
==

These are additional examples for demonstrating the concepts of
alternate names, channels, and paths.

Note that many examples are already scattered throughout the WIFF list
and other sections with examples.

EX.ALT.NAME. Alternate Name Examples

 CVE-2001-0846 - obtain database by requesting it using its ID
 instead of its name.

 CVE-2001-0873 - inconsistency between "-option" and "--option"
 (long option name)
 - alternate name

 - there must be some more examples out there...

 CVE-2001-0664, CVE-2001-0724 - browser allows security restriction
 bypass using URLs with dotless IP addresses.

 CVE-2001-0664, CVE-2001-0724 - dotless IP address

 CVE-2002-1961, BID:7456 - trailing dot in a fully
 qualified domain name (FQDN), e.g. "www.example.com."

 CAN-2003-0896 - attacker provides a Java class name that uses an
 internal representation instead of the expected one (example of
 "alternate name")

 CAN-2001-1026, CAN-2002-1877, CAN-2002-1962 - filter bypass using
 IP address instead of hostname in a URL

 CAN-2002-1790 - filter bypass using encapsulated SMTP addresses

 CAN-2003-0976 - component does not support aliases, which prevents
 restrictions from being applied

EX.ALT.CHAN. Alternate Channel / Alternate Path Examples

 CAN-2002-1883 - product opens unprotected alternate port

 CAN-2005-2150 - alternate named pipes accessible by null sessions

 CAN-2005-2261 - incomplete disabling of scripts allows execution via
 alternate channel. Probably MFV.

 CAN-2005-2144 - permission bypass using alternate channel - using
 memory mapping to access files

 CAN-2005-1970 - bypass using feature (alternate channel)

 CAN-2004-2176 - firewall trusts an application that can be used as a
 proxy for other processes; result is bypass via alternate channel

 CAN-2002-2083 - authentication bypass via alternate path (help
 feature launched from login window)

 - CAN-2002-1722 - physical access screen lock bypass by pressing

 user-assigned buttons (alternate path)

 - CAN-2001-1520 - alternate channel - user with physical access can
 obtain PIN using a serial monitor. Also overlaps "sends sensitive
 information to entity over untrusted channel" - the read-only
 version of "allows external input for critical internal variables"

 - CAN-2005-2148 - insufficient filtering allows SQL injection via
 alternate channel. An MFV.

 - CAN-2002-1826 - permission bypass using alternate channel (using
 mmap to access memory devices)

==
SECTION.10.2. [MAN] Manipulations Examples
==

Note: This list of manipulations is incomplete. The most basic
manipulations are frequently covered elsewhere, e.g. "inject special
characters" or "provide long input."

MANIP.LENGTH. Lengthening manipulation

 This manipulation involves providing more data than is expected,
 making it "longer" or "larger." Many buffer overflow attacks (but
 not all) require an extender manipulation to provide a long or large
 argument.

 CVE-2002-0462 - product with very large parameter either causes
 external infoleak in one configuration, or resource consumption in
 another

MANIP.SHORTEN. Shortening manipulation

 This manipulation involves providing less data than is expected,
 making it "shorter" or "smaller."

MANIP.COMPRESSOR. Compressor manipulations

 Definition: A compressor manipulation provides an input that, when
 transformed by the product, produces an output that is larger than
 the original input.

 For example, the attacker could provide a string "&&" which could be
 expanded to "&&" in an HTML context, possibly leading to a
 buffer overflow.

 Or, the attacker could create a very small ZIP file that, when
 unzipped, expands to an extremely large result.

 CVE-2002-0068 - FTP URL with many special characters causes a core
 dump when client escapes the characters.

 CAN-2001-0247 - buffer overflow using wildcard characters to expand
 string

MANIP.INFLATOR. Inflator manipulations

 Definition: An inflator manipulation is the opposite of a
 compressor. The attacker provides an input that, when transformed
 by the product, produces an output that is smaller than the original
 input. Such manipulations theoretically exist, but no public
 reports are known.

 One effect of an inflator manipulation might be to expose unused
 portions of a buffer that were expected to be filled by the product.

MANIP.SPOOFING. Spoofing manipulations

 Note: The spoofing concept is covered elsewhere, but "inserting a
 false identifier," or a false reference, is an important
 manipulation in many vulns.

MANIP.INCONSISTENCY. Multiple Value Inconsistency

 Definition: the attacker manipulates multiple values so that they
 are inconsistent.

 Note: this manipulation is frequently successful in exploiting
 multiple interpretation errors. However, it is also a factor in
 other WIFFs such as buffer overflows, e.g. when using a length
 parameter manipulation so that the length field for a buffer does
 not reflect the actual length of the buffer.

 Functional Area: non-specific

 Examples: CAN-2004-0244 (difficult to search for examples of this
 type, although they are known to exist)

MANIP.REFLOOP. Reference loop

 Definition: A "reference loop" exists when Object A refers to B,
 which refers back to A. Reference loops can include more than two
 objects, such as A->B->C->A.

 If a reference loop violates a consistency property, then it could
 have security-relevant consequences, typically an infinite loop,
 amplification, or invalid pointer dereferencing.

 CAN-2005-1829 - infinite loop/crash via 2 embedded objects that
 call each other ("reference loop")

MANIP.DOUBLE. Double or duplicate elements.

MANIP.FILEXT.MULT. Multiple File Extensions

 Definition: the attacker uses a filename with multiple extensions.

 Note: this manipulation can be useful in multiple interpretation
 errors, contaiment errors, remote code injection, invalid handler
 deployment, and others. It is frequently found in PHP applications,
 e.g. "test.php.jpg".

 It also overlaps misrepresentation errors in the user interface,
 e.g. spoofed icons or truncated long filenames with dangerous
 extensions.

 Functional Area: file processing

 Examples: CAN-2004-1404, CAN-2004-1405, CAN-2002-0223, CAN-2005-0565

MANIP.MIXTYPE. Mixed Data Types

 Definition: use a data type that is not appropriate for the
 associated input.

 This manipulation can be used in a couple different cases. For
 example, the attacker could provide an alphabetic argument for a
 numeric field, in order to manipulate the validity property. Or,
 the attacker could inject HTML/script into text files that are
 automatically processed as if they were HTML, or use URL encoding
 when communicating with an FTP server that tries to be "friendly" to
 web clients that don't remove URL encoding before making FTP
 requests.

MANIP.DATA.UNC. Uncontrolled Data Manipulations

 Uncontrolled manipulations are manipulations that are not performed
 with repeatable or well-designed data. The resulting data is likely
 to be interpreted as a more specific manipulation by the product,
 but that manipulation is not known at the time of generation.

 From the product's perspective, this data is going to be either
 well-formed or malformed, valid or invalid, consistent or
 inconsistent. However, the attacker does not necessarily know which
 of these properties is held by a particular manipulation.

 This is a legitimate and common manipulation, although it can make
 diagnosis more difficult.

MANIP.DATA.UNC.RAND. Random Data

 The attacker uses randomly generated data in an attack.

MANIP.DATA.UNC.CONT. Well-formed Data in Wrong Context

 Definition: The attacker uses data that is well-formed for one
 context, but not in the format or structure that is expected by the
 product. For example, the attacker could provide a JPEG image to
 an audio tool that expects an MP3 sound file. Data could also be
 generated on the attacker side using rules that do not follow the
 product's expected structure or format. For example, a rule might
 be "send all possible sub-strings between 1 and 3 characters long."

 Note: overlaps Mixed Data Types.

MANIP.STEP. Step Manipulations

MANIP.STEP.MISSING. Missing step

MANIP.STEP.MISSING.FIRST. Missing first step

MANIP.STEP.MISSING.LAST. Missing last step

 Examples:

 CAN-2000-1227 - resource consumption by sending requests but not
 reading the responses

 CAN-2005-1911 - product hangs while waiting for input that never
 arrives

 CAN-2004-0829 - attacker performs step without previous required step

MANIP.STEP.ORDER. Out-of-order step

 CAN-2002-2082 - step ordering error - resource is locked before
 authentication succeeds, allowing attackers to lock other resources

 CVE-2000-1022 - step-based manipulation on out-of-order operations

 CAN-2001-1560 - step order violation? leads to crash

 CVE-2005-3296 - FTP server directory listing by using LIST before
 logging in

MANIP.STEP.REPEAT. Repeated step

 Definition: perform the same step multiple times.

 Note: depending on the associated WIFF, repeated step manipulations
 can trigger buffer boundary violations, not just resource
 consumption.

 CAN-2002-1763 - step-based fault (repeatedly pressing certain keys)
 causes screensaver crash and resultant authentication bypass

MANIP.STEP.REPEAT.FLOOD. Flooding Step

 Definition: perform a repeated step rapidly.

 Note: this is used to exploit resource exhaustion problems,
 including asymmetric consumption

 CAN-2002-1876 - resource exhaustion (licenses) via large number of
 rapid requests

 CAN-1999-1569 - flood of spoofed UDP packets exceeds server's user
 limit

 CAN-2002-1850 - hang/memory consumption by writing a large amount
 of data to stderr

MANIP.STEP.INTERRUPT. Interrupted step (early termination)

 Definition: the attacker terminates session, procedure, algorithm,
 etc. before normally expected.

 Note: the results of this manipulation can be variable, but it can
 result in infinite loop, null dereference, memory leaks, and
 others.

 Note: this overlaps incomplete data manipulations.

 CAN-2002-1862 - step-based vuln by closing connection before all

 data has been sent

 CAN-2005-2170 - DoS by connecting then disconnecting without
 sending any data

 CVE-2004-2356 - null deref by connecting then disconnecting without
 sending any data

 CAN-2004-0437 - disconnect from FTP server while performing
 "LIST -L," which causes an invalid socket to be accessed.

 CAN-2002-1942 - certain Keep-Alive connections are not properly
 handled if terminated early

MANIP.STEP.INCOMPLETE. Incomplete step

 Definition: perform only a portion of a particular step.

 Note: overlaps data manipulations.

 CAN-2002-1906 - CPU consumption via incomplete HTTP requests and
 leaving those connections open.

MANIP.STEP.DELAY. Delayed Execution of Next Expected Step

 Definition: the attacker delays, or does not perform, the next
 expected step.

 Note: overlaps missing step

 CAN-2003-0744 - product hangs while waiting for expected input.
 step-based manipulation - "stop executing steps"

 CVE-2001-0513 - product opens up a separate port and redirects user
 to that port, allowing port consumption when user does not connect
 to the separate port.

MANIP.STEP.EX. Miscellaneous step-based examples

 CAN-2004-0829 - crash by sending a "find next" request without the

 required initial "find first" request

 CAN-2000-0647 - FTP server crash with MLST before user logs in

 CAN-2000-0648 - FTP server crash with a "RENAME TO" command before
 a "RENAME FROM" command.

 (unexpected abort causes infinite loop)

MANIP.DATA. Data manipulations

MANIP.VALID.ZEROLEN. Zero Length Issues

 Examples: CAN-2004-0218, CAN-2004-0367, CAN-2004-0627 (overlaps
 authentication), CVE-1999-0905, CVE-2001-0825 (overlaps overflow),
 BID:4804

MANIP.NESTING. nesting manipulations

 CAN-2001-0519 - nested SCRIPT tags bypass script filter

 - CAN-2005-2161
 - by nesting [url] tags, XSS is possible
 - same with CAN-2005-2327

 CAN-2005-2161 - nested structure manipulation allows XSS

 CAN-2005-1935 - manipulation involving nested structures

 CAN-2005-2327 - nested structure enables XSS

 CAN-2005-1665 - deep nesting causes CPU consumption

MANIP.GEN.SPOOF. Spoofing

 CAN-2001-1519 - create a spoofed named pipe

 CAN-2002-2063 - bypass by spoofing trusted filenames

 CAN-2005-1942 - bypass security using spoofed messages

 CAN-2005-2268, CAN-2005-2271, CAN-2005-2272, CAN-2005-2273,
 CAN-2005-2274 - GUI does not clearly identify the origin of a dialog
 box; overlaps spoofing

==
MANIP.EX. Manipulation examples

MANIP.EX.ALT

 CAN-2005-1994 - bypass access restrictions (imposed by
 intermediary) using hex-encoded characters such as "%2e". Overlaps
 multiple interpretation error and alternate name.

MANIP.EX.LONG - long input manipulation

 CAN-2004-2165 - long input manipulation leads to unallocated memory
 write

 CVE-2002-2081: long input causes service abort, no big deal
 normally except this happens during mid-transfer, so the file being
 uploaded is never cleared. result: disk consumption.

 CAN-2005-2105 - long username manipulation leads to authentication
 bypass

 CAN-2002-2081 - disk consumption (resultant) via long input
 manipulation, which causes crash without deleting file being
 uploaded

MANIP.EX.NUMERIC

 CAN-2004-2179 - manipulation using maximum allowable numeric values

MANIP.EX.NUMERIC.SIZE. manipulation of size or length field to
introduce inconsistency

 CAN-2002-1828 - negative length value causes crash

 CAN-2002-1768 - random manipulation (packet size) causes DoS

 CAN-2004-2223 - crash caused by large size manipulation

MANIP.EX.VALIDITY

 CAN-2002-1969 - DoS (crash) via invalid username

 CAN-2002-1801 - error message infoleak via category that does not
 exist

 CAN-2000-1226 - unsupported protocol (non-IP) packets cause crash

 CAN-2005-2265 - crash by invalid argument (wrong type - object
 instead of string)

 CAN-2005-1885 - error message infoleak via invalid (non-integer)
 value

MANIP.EX.UNSTRUCT - non-random, unstructured manipulation

 CAN-2002-1881 - non-random, unstructured manipulation of content
 (ROT13 encoding) causes DoS

 CVE-2001-0080 - DoS by connecting to SSH using non-SSH client
 causes "protocol mismatch error"

MANIP.EX.MULT. misc. multi-manipulations

 CAN-2005-2239 - multiple manipulation - long string + special
 (null) characters er with a large number of / characters

MANIP.EX.MISC misc/unclassified manipulations

 CAN-2004-2147 - DoS via email message without a body

 CAN-2001-1489, CAN-2001-1490, CAN-2001-1491 - CPU consumption and
 memory leak (?) via web page with large number of images

 CAN-2005-2006 - unusual manipulation produces resultant infoleak

 CAN-2002-1994 - manipulation of multiple HTTP requests with a
 single CRLF instead of the normal 2

 CAN-2002-2003 - DoS by structured manipulations using nmap, actual
 fault/manipulation undiagnosed

 CAN-2001-1552 - multiple newlines cause DoS

 CAN-2005-1931 - crash from malformed (or invalid?) argument

 CAN-2005-1793 - large width and height value manipulations cause
 a crash

 CAN-2005-1808 - large size value causes memory allocation
 failure and triggers exception

 CAN-2005-1643 - large size value leads to failed memory allocation
 or out-of-bounds read

MANIP.EX.FRAG. Fragmentation

 This manipulation involves breaking a data element into multiple
 smaller fragments, which are later combined by the product into the
 original element.

 Fragmentation manipulations can lead to consequences such as denial
 of service, bypass, and buffer boundary violations.

 Note: This concept involves any sort of element that can be
 subdivided, not just packets.

 Types of fragmentation:

MANIP.EX.FRAG.COMPLETE. Complete fragmentation

 All fragments, when combined, produce an entire data element.

 CAN-2001-1572 - filter bypass using small packets

MANIP.EX.FRAG.INCOMPLETE. Incomplete fragmentation

 All fragments, when combined, leave "gaps" in the data.

MANIP.EX.FRAG.OVERLAP. Overlapping fragmentation

 Some fragments, when combined, can overlap and overwrite other
 fragments.

 Examples:

 CAN-2004-0744 - DoS using "Rose Attack" by sending small packet
 fragments that don't produce a full packet

 CAN-2001-1540 - DoS by fragmented IP packets that split the TCP
 header

 BID:6245 - bypass URL blocking by fragmenting the URL into
 separate packets

MANIP.EX.NONSTD. Inject Non-standard Data.

 - CAN-2002-1775 - non-RFC MIME header
 - CAN-2002-1778 - firewall bypassing using certain invalid TCP flag
 combinations e.g. SYN/FIN.
 - CAN-2002-2072 - DoS via invalid null argument
 - CAN-2002-2075 - large number manipulation causes DoS; fault unknown

MANIP.IMMUTABLE. Modify Assumed-Immutable Data.

==
SECTION.10.3. [ACON] Atomic Consequences - Examples
==

Most atomic consequences have already been covered in other sections.
However, some atomic consequences are frequently reported as if they
were problems on their own, so they are highlighted here.

EX.ACON. Invalid Pointer Dereference

 Note: this overlaps null dereferences, but is intended to be
 slightly different.

 CAN-2004-1748, CAN-2004-1718, CAN-2005-0114, CAN-2004-0767,
 CAN-2004-0766 - invalid pointer to hook function leads to crash.

 CAN-2005-1830 - invalid pointer causes crash

EX.ACON.NULLDEREF. Null Dereference (Null Pointer Dereference)

 Functional Area: non-specific

 Note: resultant from various issues, including unchecked error
 condition and race condition.

 Note: most vulnerability reports only list the null dereference and
 not the underlying trigger.

 Examples: CAN-2004-0079, CAN-2004-0365, CAN-2003-1013,
 CAN-2003-1000, CAN-2004-0389 (overlaps malformed inputs),
 CAN-2004-0119, CAN-2004-0458 (overlaps missing argument),
 CVE-2002-0401

 CVE-2005-3274 - race condition causes a table to be corrupted if a
 timer activates while it is being modified, leading to resultant
 null dereference; also involves locking.

 CAN-2002-1912 - large number of packets leads to null dereference

 CAN-2005-0772 - packet with invalid error status value triggers
 null dereference

EX.ACON.DIVZERO. Divide-by-zero

 Note: this can be resultant from various issues, including unchecked
 error condition. Examples are difficult to find, although it is
 likely that many issues have been reported at higher levels,
 e.g. "crash".

 CAN-2005-2134 - multiple operations at the same time cause
 divide-by-zero, fault unknown

 CAN-2005-0306, CAN-2004-0804 - numeric parameter of "0" cause
 divide-by-zero

 CAN-2004-0245 - large or negative Content-Length causes
 divide-by-zero

 CAN-1999-1448 - dates before a minimum, or well after the current,
 lead to divide by zero

 CAN-2004-0804 - image processor generates divide-by-zero when the
 number of row bytes is zero.

EX.ACON.ACCFREED. Access of Previously Freed Memory

 Note: this is the result of other faults

 - CAN-2004-1141, CAN-2004-1093, CVE-2004-0080 (overlaps infoleak),
 CAN-2001-1397, CAN-2003-0813 (overlaps race), maybe CAN-2004-1057

EX.ACON.DOUBLEFREE. Double-free

 Note: this is a special instance of Access of Previously Freed Memory.

 Functional Area: memory management

 Examples: CVE-2002-0004, CVE-2000-0550, CVE-2002-0847,
 CVE-2002-0059, CAN-2004-0416, CVE-2003-0015, CVE-2003-0073

EX.ACON.ACCUNINIT. Access of Uninitialized Memory

 Note: resultant from an initialization error.

 Note: other flavors probably exist

 CAN-2004-0082 - copy of uninitialized buffer into a password field
 might make a less secure password

EX.ACON.INFLOOP. Infinite loop

 Functional Area: control flow, non-specific

 Note: this is more the result of a programming error. Multiple
 sub-categories likely. More study is needed.

 Factors: can be primary to amplification or flooding, can be
 resultant from integer handling errors and probably many others.

 Examples: CVE-2000-0620, CVE-2000-1203, CVE-2000-0738,
 CAN-2002-1355 (overlaps integer signedness),
 CVE-2002-0403

 CAN-2005-2295 - infinite loop via zero size value

 CVE-2001-0194 - infinite loop due to long input manipulation

 CAN-2005-1899 - infinite loop via zero-length data (packet)

 CAN-2005-1923 - infinite loop caused by maximum alowable value
 manipulation leading to zero-length read

 CAN-2005-1807 - long header field leads to infinite loop (memory
 and CPU consumption)

 CAN-2005-1739 - 0 value leads to infinite loop

 CAN-2005-1741 - infinite loop by malformed data

EX.ACON.LONGLOOP. Long Loop

 Definition: the product enters a loop that is not infinite, but
 performs many more iterations than intended.

 Note: often resultant from integer signedness errors, e.g. a loop
 from 1 to -1.

EX.ACON.DEADLOCK. Deadlock

 Note: this is under-studied relative to vulnerability research.

 Examples: CAN-2001-1400

EX.ACON.INFREC. Infinite Recursion

 Definition: the product enters a series of recursive calls that do
 not have any terminating condition that could be met.

 Note: this is a special type of infinite loop.

 CAN-2001-1539 - DoS by causing stack recursion

 CAN-2002-1714 - infinite recursion via an object with a field that
 references the document that contains the object

 CAN-2002-1902 - infinite recursion by creating a child of an
 outdated parent

EX.ACON.DEEPREC. Deep Recursion

 Definition: the product enters a series of recursive calls that are
 not infinite, but go more deeply than intended.

EX.ACON.STALE. Stale Identifier, Pointer, or Handle Access

 Definition: the product accesses an identifier, pointer, or handle
 that is "stale," i.e. the associated object has been moved or
 delted.

 Note: sometimes a consequence of a race condition, resource
 management error, or unhandled error condition.

 Note: bugs that lead to stale handles can overlap with infoleaks,
 e.g. when data is read from previously freed memory.

 CAN-2004-0689 - doesn't handle when symlinks point to stale
 locations

 BID:6305 - stale process ID for a privileged process may allow a

 later process with the same PID to access network traffic.

 CAN-2002-1674 attacker causes DoS by removing a file that another
 function is referencing (stale identifier bug). overlaps race
 condition.

==
SECTION.10.4. [CAT] Additional Categorized Examples
==

This section contains a large number of additional examples for
previously described categories.

EX.MFV. Examples - Multi-Factor Vulnerabilities

 While many items in PLOVER are multi-factor, these examples help to
 illustrate the variety of MFVs that have been reported. For most
 taxonomies, these could be outliers or classifiable under more than
 one class.

 CAN-2003-0981 - product records the reverse DNS name of a visitor
 in the logs, allowing spoofing and resultant XSS.

 CVE-2004-2351 - resultant XSS from incomplete blacklist (only
 <script> and <style> are checked)

 CAN-2005-2819 - XSS using "Conditional Comments" in Internet
 Explorer (overlaps multiple interpretation error, incomplete
 blacklist)

 CVE-2005-4454 - MFV. Filter-before-canonicalize, incomplete
 blacklist, XSS, interaction error. Product searches for
 "javascript" in style attributes before stripping "\", allowing a
 "javas\cript" to yield a valid pseudo-URI that is rendered by some
 web browsers.

 CVE-2004-2398 - MFV. Interaction error, permissions,
 predictability. One product installs a directory with
 world-readable permissions, another product uses that directory and
 uses filenames that contain valid usernames, leading to infoleak.

 CAN-2003-0721 - Integer signedness error causes an out-of-bounds

 array access using a negative number.

 CVE-2004-2352 - XSS in PHP script via an alternate path using cookies
 instead of POST data

 CVE-2001-0054 - MFV. directory traversal and other issues in
 FTP server using Web encodings such as "%20"; certain manipulations
 have unusual side effects

 CVE-2002-1982 - MFV. directory traversal sequences and a
 discrepancy information leak lead to disclosure of the existence
 of files.

 CVE-2004-1354 - MFV. directory traversal sequences and
 information leak by inconsistent responses lead to disclosure of
 the existence of files.

 CAN-2005-2319 - PHP file include under complex, atypical conditions,
 bypassing local file existence check

 CVE-2005-3288 - "lazy" race condition combined with direct request.
 User can upload file with dangerous extension while composing a
 message, then access that file before the message is completed and
 the product renames the file to a safer extension.

 CAN-2003-0161 - MFV. email address parser does not properly handle
 certain conversions from char and int types, causing a length check
 to be disabled when an input value is interpreted as a special
 control value, leading to resultant buffer overflow.

 CAN-2002-0253 - obtain physical path via trailing slash, which
 modifies a base path and causes an include directive to fail,
 leading to error message infoleak

 CAN-2005-0708 - memory disclosure that occurs when a file is
 truncated while it's being transferred. Involves a step-based
 attack and a non-standard race condition.

 CAN-2001-1534 - predictable session ID's allows authentication bypass
 (primary insufficient randomness with resultant authentication)

 [long input manipulation, early termination step manipulation]
 CVE-2002-0741 - DoS by sending command with long argument, then
 immediately terminating connection

 CAN-2002-2057, CAN-2002-2058 - MFV. weak encryption and sensitive

 file under web root. A common vulnerability.

 CVE-2003-0124 - MFV. malformed file with improper quotes causes a
 static string to be returned, which is then used to find a program
 to execute. Variant of untrusted search path.

 CAN-2002-2025 - MFV. resource exhaustion via flood of requests
 using MS-DOS device names

 CAN-2005-1768 - race condition in concurrent threads with
 resultant overflow

 CVE-2004-2354 - XSS manipulation triggers SQL injection problem,
 which is reflected to user when MySQL generates errors

 CAN-2002-1676 - cleartext passwords in config file while product is
 running. "lazy" race condition.

 CAN-2003-0972 - Integer signedness error via a large number of
 special characters in escape sequences, leading to resultant buffer
 overflow.

 SECUNIA:18223 - argument injection, incomplete blacklist,
 interaction error. Program filters dangerous "-S" arguments but
 does not filter getopt-style "-vS" arguments.

 CVE-2002-0121 - session IDs stored in temporary files whose name
 contains the session ID, allowing local users to hijack web
 connections. Overlaps containment error.

EX.CAT.BUFF.OVER. Examples - Unbounded Transfer ("classic overflow")

 CVE-1999-0006 - buffer overflow using long password

 CVE-1999-0021 - buffer overflow in CGI program using long query
 string, referer, or user agent string.

 CVE-1999-0879 - buffer overflow using macro variables

 CAN-2005-2120 - large number of consecutive special characters (
 ("\" in registry key name) leads to overflow

 CVE-1999-0368 - buffer overflow in FTP server by creating large
 directory names

 CAN-2001-0247 - buffer overflow using wildcard characters to expand
 string

 CVE-2001-0236, CVE-2001-0500 - buffer overflow via long argument

 CVE-2001-0836 - buffer overflow via long URL

 CVE-2002-0801 - buffer overflow via long HTTP Host header field

 CAN-2002-0031 - multiple buffer overflows using long arguments in a
 URI

 CAN-2002-0154 - multiple buffer overflows in long arguments to
 database extended stored procedures

 CAN-2003-0533 - buffer overflow that causes long debugging entries
 to be created

 CAN-2004-0460 - buffer overflow in logging utility using multiple
 options

 CAN-2002-1692, CAN-2005-1826 - buffer overflow via long file
 extension

 CAN-2002-1754 - buffer overflow by DNS resolution to long hostname

EX.CAT.BUFF.INDEX. Array index overflow

 CAN-2003-0072 - request causes out-of-bounds read

 CVE-2004-0093 - out-of-bounds array index in window manager

 CVE-2001-1036 - out-of-range offset

 CAN-2002-1066 - large message index value in POP RETR/DELE command

 CAN-2005-2115 - large ID value used as array index

 CAN-1999-0798 - numeric "type" argument used as an array index

 CAN-2002-1387 - "number of operations" argument used as index

EX.CAT.BUFF.LEN. Length parameter manipulation ("length tampering")

EX.CAT.BUFF.MISC. More boundary violation examples

 CAN-2002-1687 - buffer overflow via environment variable

 CAN-2002-1792 - buffer overflow involves manipulation of long input
 by splitting into multiple packets

 CAN-2002-1973 - buffer overflow triggered by a query string that
 causes a parsing error

 CAN-2005-1766 - heap overflow without multi-field manipulations

 CAN-2005-1873 - buffer overflow involving wildcard

 CAN-2005-2081 - buffer overflow in parser using special characters

 CAN-2005-2213 - buffer overflow via large number of entities

 CAN-2004-0444 - multiple interesting examples - length tampering,
 overflow during expansion/transformation, and an overflow that
 occurs by NOT providing certain expected fields.

 CAN-2004-0891 - unusual circumstances cause an unbounded write to
 the wrong buffer

 CAN-2003-0057 - buffer overflow by connecting from IP address that
 DNS resolves to a long hostname

 CVE-2005-1268 - off-by-one error leads to overwrite of one null byte

 CAN-2005-1770 - buffer overflow requires certain signals to trigger

EX.CAT.FORMSTR. Format string vulnerability

 CAN-2000-0574 - format strings used when creating title for a
 process

 CAN-2004-0354 - format strings in logging and error functions

 CVE-2000-0594 - format string in IRC client via channel name

 CVE-2000-0763, CVE-2001-0111 - local format string via command
 line argument

 CVE-2000-0844 - format string in internationalization product

 CVE-2000-0967 - format string by triggering errors

 CVE-2000-1000 - format string in filename

 CVE-2000-1004 - format string in directory name

 CVE-2000-0573 - format string in SITE EXEC command in FTP server

 CVE-2004-0159, CVE-2004-0159 - format strings in file names not
 handled by "ls" command

 CVE-2001-0060, CAN-2001-0609 - format string in malicious IDENT
 server response

 CVE-2001-0740 - lagre number of "%s" *might* trigger format string
 (undiagnosed)

 CVE-2001-1081 - format strings into log messages

 CVE-2002-0374 - format string in ICQ client

 CVE-2002-0251 - buffer overflow via large number of format strings
 - possibly involving expansion?

 CAN-2001-0281, CAN-2003-0697, CAN-2004-0733 - format string in
 debugging commands

 CAN-2004-0800 - format string in name of invoking program

 CAN-2005-2390 - product-specific format string specifiers such as
 "%C", "%R", and "%U" lead to information leak via a shutdown
 message

 CVE-2002-0716, CAN-2004-0536 - local format string via filename

 CVE-2002-0916, CVE-2002-1244, CVE-2002-1519, CAN-2002-0930,
 CAN-2003-0391, CAN-2004-2074 - format strings in username or
 password

 CAN-1999-1417 - MFV. format strings using encoded "%" characters

 CAN-2005-1122 - MFV. format strings using double-encoded "%"
 characters.

 CAN-2000-0918, CAN-2000-1207 - format strings in environment
 variable

 CAN-2001-1078 - format strings in arguments to common SMTP and POP3
 commands

 CAN-2002-0586, CAN-2002-0587 - same vector has both format string
 and overflow

 CAN-2002-0702, CAN-2002-0913 - format strings in DNS server
 response

 CAN-2005-1738 - format string allows access to files outside
 restricted directory

 CVE-2002-0598 - format string in security product via server banner

EX.CAT.ELT.MISS. Missing parameter/field/argument

 CVE-2002-1169, CVE-2002-1169 - missing version number in HTTP
 request triggers crash

 CVE-2000-0521 - missing HTTP version number triggers source code
 disclosure

 CVE-2001-0590 - missing HTTP protocol specification triggers source
 code disclosure

 CAN-2002-1023 - crash in HTTP request without the URI

 CAN-2002-1488 - crash in IRC client via PART message without
 channel name

 CAN-2003-0239 - malformed GIF does not have a color table after an
 image descriptor

 CAN-2002-0566 crash via an HTTP Authorization header without an
 authentication type.

 CAN-2005-2399 - trigger SQL errors in web app with missing
 parameters

EX.CAT.SPEC.DELIM.LINE. Delimiter between lines

 CVE-2001-0902 - MFV. spoof web log entries with URL encoded
 carriage returns/line feeds

 CVE-2002-1405 - CRLF injection in web browser allows injection of
 false HTTP headers

 CAN-2002-1575 - spam proxy via URL-encoded newlines in mail-related
 parameters such as subject line

 CAN-2003-0336 - MFV. carriage return in spoofed special string
 allows arbitrary file read

 CAN-2004-2140 - bulletin board allows modification of text file via
 CRLF in subject

 CVE-2000-0610 - bypass mail server authentication and spam proxy
 via username with carriage return

 CAN-2004-2146 - HTTP response splitting in bulletin board using
 CRLF in CGI script parameter

 CVE-2001-0902 - Microsoft IIS 5.0 allows remote attackers to spoof
 web log entries via an HTTP request that includes hex-encoded
 newline or form-feed characters.

EX.CAT.SPEC.WILDCARD. Wildcard, matching, or "completion" character

 CVE-2000-0587 - bypass directory permissions using filename
 completion

 CAN-2001-1501 - CPU/memory consumption using many wildcards

 CAN-2004-0930, CAN-2005-0256 - CPU consumption using wildcards

 CAN-2002-0558 - MFV. directory traversal using ".." and wildcards

 CAN-2003-1137 - read files or execute scripts using wildcard

 character

 CAN-2002-0433 - bypass access restrictions in HTTP server using
 HTTP request with a "*"

 CAN-2002-0558 - list arbitrary directories in FTP server via ".."
 and "*.*" sequences in a LIST command.

 CAN-2003-1137 - read files or execute CGI scripts in web server via
 a GET with a "*"

 CAN-2003-1207 - FTP server crash via dir with large amount of "."
 followed by "/*" string.

 CAN-2004-0696 - CGI script directory list using "*" (asterisk)
 character

 CAN-2004-0736 - search engine error infoleak via "**"

 CAN-2005-0483 - directory traversal in shell scripts implementing
 special FTP SITE commands, using ".." and "*" characters.

EX.CAT.PTRAV.ABS.1. /absolute/pathname/here

 CAN-2000-0614 - absolute pathnames specified for output of
 compressed files

 CAN-2004-1277 - FTP server allows file writing using arguments with
 "/"

 CAN-2003-0753 - PHP local file inclusion using full pathname

 CVE-2000-1196 - file read using parameter to error page generator
 script

EX.CAT.PTRAV.REL Other relative path directory traversal examples

 CAN-2002-1982 - directory traversal ".." allows file existence
 disclosure from infoleak (inconsistent error messages)

 CAN-2002-1837 - ".." directory traversal used to determine
 existence of filenames by resultant infoleak (inconsistent error

 messages)

 CAN-2002-1813 - directory traversal in web-friendly client using
 the href attribute of a link

EX.CAT.FILEEQ.1. filedir. (trailing dot)

 CAN-2005-0622 - read PHP source code via trailing dot or trailing
 space

 CAN-2002-1997 - filter bypass using trailing dot after file extension

 CAN-2002-1855, CAN-2002-1856, CAN-2002-1857, CAN-2002-1858,
 CAN-2002-1860, CAN-2002-1861 - trailing dot in directory name
 allows retrieval of protected files

 CVE-2002-1986 - read CGI script source code using trailing dot

EX.CAT.FILEEQ.5. filedir[SPACE] (trailing space)

 CAN-2005-1656 - source code disclosure by trailing hex-encoded
 space (manipulation of equivalence property by alternate encoding
 leading to improper handler deployment)

EX.CAT.FILEEQ.10. //multiple/leading/slash ("multiple leading slash")

 CVE-1999-1456 - web server read files via multiple leading slashes

 CVE-2002-0275, CAN-2002-1238 - multiple leading slashes in web
 server

 CAN-2004-1878 - access administrative scripts via double leading /

 CAN-2005-1908 - bypass access restrictions using extra leading / or \

 CAN-2005-1365 - Product tries to remove ".." sequences by
 incrementing and decrementing a counter, but multiple leading
 slashes prevent the counter from reaching the expected value.

 CAN-2004-1032 - MFV. multiple leading slashes fill a buffer so

 that a static filename can't be appended to the buffer, leading to
 file deletion.

EX.CAT.INFO.LEAK.ERR. Error Message Infoleak Examples

 CAN-2001-1437 - error message infoleak from invalid (non-numeric)
 value

 CAN-2002-1677 - infoleak by error message from invalid value

 CAN-2002-2008 infoleak in error message using invalid
 (non-existent) identifier

 CAN-2002-2045 - path disclosure via error message infoleak using
 invalid parameter

 CAN-2002-1822 - web server error message infoleak via request to JSP
 page that does not exist.

 CAN-2002-1723 - path disclosure infoleak via error message from
 invalid (non-existent) user name

 CAN-2002-1728 - path disclosure infoleak via error message from
 invalid (non-existent) file name

 CAN-2002-1801 - error message infoleak from invalid (nonexistent)
 value

EX.CAT.INFO.LEAK.OTHER. Other Information Leak Examples

 CAN-2002-1943 - infoleak - internal IP address (alternate name)
 leaked to external entity

 CAN-2002-0284 - client leaks absolute path to server

 CAN-2002-1934 - leaks sensitive password information to the screen
 during boot, requiring physical access to exploit

 CAN-2002-2006 infoleak by example code

 CAN-2001-1499 - user enumeration by infoleak in response

 discrepancy, also authentication method disclosure via intentional
 infoleak

 CAN-2002-1940 - infoleak by writing extraneous sensitive data into
 unused portion of a compiled program

 CAN-2000-1237 - user enumeration from infoleak of early error
 reporting (behavioral infoleak or response infoleak?)

 CAN-2001-1532 - authentication infoleak in URLs, allowing user
 session hijacking e.g. by obtaining HTTP referer URLs

 CAN-2003-0105 - intermediary does not obfuscate certain responses,
 leading to infoleak that identifies the type of web server running

 CVE-2001-1382 - behavioral infoleak in security countermeasure of
 enrypted communications product

 CVE-1999-1099 - malformed UDP packet causes error string that
 inadvertently includes sensitive information

 CAN-2001-1571 - most recently logged in user is sent in cleartext

 CAN-2005-2226 - inadvertent infoleak

 CAN-2005-2285 - information leak - info stored in externally
 accessible resources (URLs, web pages, config files)
 --> a containment error?

 CAN-2002-1888 - privacy leak.

 CAN-2004-2226 - infoleak by causing victim to connect to attacker
 server to download a CSS file (alternate channel?). Similar to
 CSRF? Kind of a behavioral infoleak, not on product but on user.
 Other associated vulns can allow user to be forced into doing something.

 CAN-2005-1760 - infoleak of password from intermediate report

 CAN-2005-1728 - includes credentials in log file

EX.CAT.INFOLOSS.OMIT. Omission of Security-relevant Information

 CVE-2000-0937 - does not log failed logins if username is correct
 but password is wrong

 CAN-2001-0471 - repeated login attempts not recorded

 CAN-2001-0471 - SSH daemon does not log repeated login attempts

 CVE-2001-0056 - does not log invalid logins

 CVE-2001-0978 - does not record failed login attempts

 CAN-2000-0118 - does not log failed password guesses if process is
 killed before timeout

 CAN-2004-1357 - does not properly log IP addresses as result of
 other error

 CAN-2002-1839 - sender's IP address not recorded in message
 headers, allowing information hiding

EX.HANDLER.WRONG. Improper handler deployment

 CVE-2000-0682 - source code disclosure by inserting string into URL
 that invokes a servlet

 CVE-2000-0778 - soruce code disclosure via a specific header in an
 HTTP request

 CVE-2001-0126 - arbitrary Java execution via a style sheet that
 redirects to another source

 CVE-2005-1112 - source code disclosure when an invalid HTTP header
 causes the server to process the page instead of the proper engine

EX.CAT.MULTINT. Multiple Interpretation Error (MIE)

 CAN-2004-0935, CAN-2004-0937 - compressed file with headers set
 to 0 cause the file to be ignored an anti-virus product, but the
 compression software still handles it.

 CAN-2001-1542 - multiple interpretation error: intermediary
 allows improperly MIME-encoded email attachments that can be
 processed by certain clients.

 CAN-2002-0440 - Content-Length of 0 causes HTTP proxy scan to be
 skipped, but web clients may ignore the Content-Length.

 CAN-2003-1015 - multiple virus products allow content
 restriction bypass using unusual whitespace manipulations.

 CAN-2002-1776 - AV product does not scan files with .nch and
 .dbx extensions, which are automatically recognized and
 processed by another product (incomplete blacklist)

 CVE-2002-0714 - FTP proxy does not compare the IP addresses of
 control and data connections with the FTP server, allowing firewall
 rules to be bypassed.

 CAN-2002-0285 - MIE. mail client treats carriage return in mail
 headers as if they are CRLF, allowing filter bypass

 CAN-1999-1053 - interaction error/MIE. Product cleanses SSI
 commands between "<!--" and "--> separators, but underlying web
 server allows other closing sequences.

 CAN-2001-1548, CAN-2001-1549 - bypass firewall on Windows via
 non-standard TCP packets using non-Windows protocol adapters

EX.CAT.RESLEAK.FILEDESC UNIX file descriptor leak

 CAN-2002-0677 - file descriptor argument is used as an array index

 CAN-2004-1033 - file descriptor leak allows read of restricted
 files

 CVE-2000-0094 - access to restricted resource using modified file
 descriptor for stderr

 CVE-2002-0638 - open file descriptor used as alternate channel in
 complex race condition

 CVE-2002-0766 - MFV. attacker fills file descriptor table then
 closes a descriptor e.g. for stderr, which leads to unhandled error
 condition when privileged program can't assign an alternate
 descriptor.

 CVE-2000-1108 - does not verify that file descriptor is a TTY,
 allowing file corruption via symlink

 CAN-2001-1047 - race condition allows one thread to set a file
 descriptor to NULL, creating stale handle in the other thread.

 CAN-2003-0489 - program does not fully drop privileges after
 creating a file descriptor, which allows access to the descriptor
 via a separate vulnerability

 CAN-2003-0937 - user bypasses restrictions by obtaining a file
 descriptor then calling setuid program, which does not close the
 descriptor.

 CAN-2002-1866 - file descriptors not closed for HTTP 404 messages,
 leading to resource consumption

 CAN-2005-1922 - file descriptor consumption after input triggers
 errors

 CVE-2004-2215 - terminal manager does not properly close file
 descriptors, allowing attackers to access terminals of other users

EX.CAT.RESOURCE.AMP.ALG. Algorithmic Complexity

 CAN-2005-2505 - certain Gregorian dates cause CPU consumption due
 to algorithmic complexity

 CVE-1999-1537 - web server allows SSL requests to HTTPS port for
 normally unencrypted files, requiring extra work for the server.

 CVE-2000-1184 - attackers can specify a large file in the TERMCAP
 variable, causing the server to consume resources while processing
 the file.

 CAN-2001-1244, CAN-2004-0002 - both amplification and complexity

EX.RESOURCE.POOL. Insufficient Resource Pool

 CAN-2002-0234 - product does not impose maximum limit on
 connections, allowing port scan to consume all available connections

 CAN-2002-1063 - large number of FTP PASV requests consumes all
 available FTP ports.

EX.RESOURCE.LOCK. Unrestricted critical resource lock

 CAN-2002-1963 - resource exhaustion by local users due to low
 resource limit

 CAN-2005-2283 - no input size restriction allows resource
 consumption

 CAN-2001-1518 - product in multi-user environment only supports one
 session at a time, leading to resource exhaustion by creating a
 named pipe session

 CAN-2004-2164 - database connection not closed

 CAN-2002-1866 - product does not close file descriptors for 404
 error messages, leading to resource exhaustion (resource leak?)

 CAN-2005-2241 - "resource leak" by not quickly "timing out"
 inactive sockets

 ** Resource hijacking

 CAN-2002-1827 - DoS by obtaining an exclusive lock

 CAN-2002-1869 - local user prevents log files from being opened for
 writing

 CAN-2005-2070 - keeping connection open prevents product from
 reloading

 CAN-2002-1914, CAN-2002-1915 - attacker uses a file lock to prevent
 a program from executing

EX.CAT.INT.SIGN. Integer Signedness Error

 CVE-2003-0075 - negative offset value used - overlaps array index?

 CAN-2002-0973 - large negative values to OS system calls allow
 kernel memory access

 CAN-2003-0619 - negative size value

 CAN-2003-0721 - negative number used as array index

 CAN-2003-0972 - large number of special characters in escape
 sequences trigger signedness error and lead to buffer overflow

 CAN-2005-0340 - negative string length

 CAN-2004-1035 - signedness errors cause crash or memory infoleak

 CAN-2004-0493 - large number of special characters leads to
 signedness error and overflow on 64-bit systems

 CAN-2002-1355 - signedness error leads to infinite loop

 CVE-2002-1373 - large negative integers used in memory copy call

 CAN-2003-0372 - negative value to interpreted language function
 leads to signedness error underneath

 CAN-2005-1263 - negative length passes signed integer comparison
 and leads to buffer overflow

 CAN-2002-1062 - signedness error triggered by long inputs?

 CVE-2002-0036 - integer signedness error when large unsigned data
 element length is later used as a negative value.

 CVE-2002-1420 - integer signedness error in OS system call via a
 negative size value, which passes check as a signed integer but is
 later used as an unsigned integer when copying data.

 CAN-2002-0973 - integer signedness error in several system calls
 via large negative values allows sensitive memory access

 CVE-2001-1279 - invalid lengths trigger signedness error and lead
 to buffer overflow

 CVE-2002-0036 - large unsigned data length is later used as negative
value

 CVE-2002-1420 - negative size value satisfies maximum value check
 as signed integer, but is later used as unsigned value.

EX.CAT.INT.OVERFLOW. Integer Overflows

 CVE-2005-3278 - [code excerpt available] integer overflow in malloc
 calculation causes malloc of less memory than expected, leading to
 buffer overflow.

 CVE-2001-0144 - integer overflow in security patch

 CVE-2002-0639 - integer overflow during challenge/response
 authentication

 CAN-2005-1704 - integer overflow via file that claims large number
 of headers, leading to heap overflow

 CAN-2005-1693 - name length of -1 leads to heap overflow

 CAN-2005-1545 - integer overflow in parser for executable file leads
 to heap overflow

 CAN-2005-1521 - integer overflow via large value in parameter

 CAN-2004-0990 - integer overflow in image files with large image
 rows value

 CAN-2005-0736 - integer overflow by creating a large number of
 events

 CAN-2004-1503 - large number of requests causes variable to wrap
 around (step-based manipulation)

 CAN-2004-1311 - content length field of -1 leads to heap overflow

 CAN-2004-1049 - integer overflow in image with large size field

 CAN-2004-0657 - integer overflow in NNTP server when a client
 requests a time 34 years in the future

 CAN-2003-0357, CAN-2004-0633 - integer overflow in network sniffer

 CAN-2004-0417 - integer overflow causes server crash and resultant
 un-deleted temporary resources

 CAN-2004-0216 - long file name triggers integer overflow when
 calculating a buffer length

 CAN-2004-0184 - integer overflow in ISAKMP Identification payload

 leads to small byte count during conversion, then out-of-bounds
 read

 CAN-2005-1693, CAN-2005-1704 - integer overflow leading to heap
 overflow

 CAN-2004-0431 - large "number of elements" field triggers integer
 overflow then resultant heap overflow

 CAN-2005-1513 - integer overflow only on 64-bit platforms with
 large amounts of virtual memory

 CAN-2004-1308 - integer overflow with "-1" count, leading to
 resultant heap overflow

EX.CAT.ERR. Unhandled Error Condition / Unchecked Error Condition

 CAN-2005-2617 - return value from function not checked, leading to
 resultant memory leak

 CAN-2004-1070 - return values from certain calls not properly checked

 CAN-2001-1324 - return value to function call not properly checked,
 allowing setuid to user-specified UID.

 CAN-2005-0078 - unchecked value from a function call allows
 attackers with physical access to cause a crash

 CVE-2004-0077 - return value not checked when maximum number of
 descriptors is exceeded

 CVE-2002-1372 - return values of file/socket operations not
 checked, allowing resultant consumption of file descriptors

 CAN-2002-0717 - HTTP POST request with unspecified manipulations
 leads to unhandled error condition, then a free of improper memory.

 CAN-1999-1434 - login program does not check for an error when a key
 file is missing, preventing privileges from being dropped

 CAN-2005-0255 - string handling functions do not check return values
 of other functions, causing a reallocation to fail when memory is
 exhausted, leading to the wrong pointer being returned.

 CAN-2005-2151 - failure in DNS not properly handled

 CAN-2003-0690 - product does not verify whether a function call
 succeeds, allowing privilege escalation by trigging certain error
 conditions

 CAN-2005-1795 - MFV. shell metacharacters if permissions prohibit
 a delete action from being successful.

EX.CAT.RAND. Randomness and Predictability

 CVE-2002-1107 - product does not generate sufficiently random
 numbers, which may make it vulnerable to attacks like spoofing.

 CAN-2002-1935 - bypass registration using predictable IDs

 CAN-2000-0916 - insufficient random number generator used to
 generate initial TCP sequence numbers, allowing spoofing

 CAN-2005-1631 - view private bookmarks by guessing IDs

EX.CAT.DOCROOT.WEB. Sensitive Data Under Web Root

 CAN-2005-1835, CAN-2005-2217 - data file under web root

 CAN-2002-1449 - username/password in data file under web root

 CAN-2002-0943, CAN-2005-1645 - database file under web root

==
SECTION.10.5. [UNCAT] Additional Uncategorized Examples
==

The following examples have not been categorized yet, for any of
several reasons:

 - they might require more diagnosis

 - they might be multi-factor, and it might not be certain which WIFF
 would demonstrate them most effectively

 - they do not cleanly fit into the current PLOVER classes, i.e. are
 outliers

These uncategorized examples can also be used as a "stress test" for
other classification efforts.

EX.UNCAT. Miscellaneous Uncategorized Examples

 CVE-2001-0268 - user can access restricted kernel memory using an
 address that is out of the expected range.

 CVE-2005-4412 - attacker with access to user's session can read
 plaintext passwords from window/GUI, which "hides" the passwords
 using asterisks although the plaintext version is still accessible
 from a tool. Also an unprotected alternate channel problem.

 CVE-2005-2923 - invalid memory reference, triggered by long input
 manipulation - NOT a buffer overflow.

 CVE-2005-3784 - product accidentally removes entities that are still
 in use by other processes, leading to resultant "dangling reference"

 OSVDB:11002 - MFV. GUI race condition, certificate handling
 problem. Product allows MITM until user finishes interacting with a
 dialog box.

 CVE-2005-3783 - functional change causes a routine to fail to
 properly determine if an action is being performed against itself

 CVE-2005-3505 - XSS specific to a single web browser only.

 CVE-2005-3432 - list protected files using wildcard character

 CVE-2005-3494 - missing authorization check, as a subgroup of
 authorization error - but overlap w/privs

 CAN-2001-1570 - step manipulation leads to lockout

 CAN-2005-1671 - single common log file writable/readable by multiple
 users, leading to infoleak. General design issue: single-user app
 on a multi-user system

 CAN-2005-1743 - doesn't handle a particular exception that is
 thrown, leading to audit information loss or incorrect identity

 CAN-2005-2969 - an option in a product disables a step that is
 needed to prevent certain man-in-the-middle attacks that cause a
 weaker protocol to be selected.

==

EX.UNCLASS. Unclassifiable Examples

These examples contain sufficient detail to understand the problem(s),
but there is not a WIFF in PLOVER that sufficiently captures the
problem.

 CAN-2001-1547 - does not block attachments from forwarded messages;
 alternate path issue?

 CAN-2002-2028 - does not check if an account is locked before
 accepting a valid password, allowing bypass of policy

 CAN-2004-2182 - session fixation vuln. One factor: making a mutable
 variable immutable.

 CVE-2005-3323 - a file inclusion issue, but not PHP?

 CVE-2004-2306 - certain OS configuration, when one package has been
 removed, disables a security setting and allows detection avoidance.

 CAN-2002-1932 - full event log does not trigger an alert in certain
 configs.

 CAN-2002-1937 - MAC address hard-coded within configuration,
 allowing ARP spoofing.

 CVE-2005-3275 - product declares a variable to be static, when it
 could be modified at the same time by two different entities.

 CAN-2005-3254 - program checks for minimum value for UIDs that it
 should not seteuid to, but the minimum value is too small, thus
 allowing seteuid to some system accounts with UIDs that exceed the
 minimum. Generally speaking, involves an incorrect/incomplete
 specification of all the members of a generic group; conceptually it
 is very similar to a permissive blacklist.

 CAN-2005-2176, CAN-2005-2177 - mail client automatically processes
 HTML in an attachment instead of prompting the user first. Could be

 unprompted dangerous action, maybe resultant.

 CAN-2004-0461 - product, when compiled in certain environments, uses
 insecure versions of library functions for handling strings,
 enabling resultant buffer overflows.

 CVE-2001-0850 - configuration error uses insecure versions of safe
 library functions, enabling buffer overflows

 CVE-2004-0652 - obtain username and password by directly accessing
 internal methods.

 CVE-2005-4345 - access to administrator password hash can be
 obtained by using an API call.

 CAN-2002-2013 - cookie theft from other domains using null character
 followed by target domain

==

EX.RESEARCH. Interesting Examples requiring further research

These examples identify manipulations or WIFFs that require additional
research or investigation to classify.

 CAN-2002-1747, CAN-2002-1755 - cut-and-paste attacks in
 crypto/authentication

 CAN-2002-1849 - resource consumption (users) by not performing
 "standard" logout - step-based manipulation

 CVE-2005-2798 - product can delegate GSSAPI credentials to clients
 who don't use GSSAPI methods, leading to exposure of those
 credentials (information leak/redirection)

 CAN-2005-2069 - Interaction Error? Product uses TLS when connecting
 to a slave, but does not use TLS when referred to the master.

 CAN-2003-0496 - attacker gains privileges by providing a named pipe
 as an argument to a function, instead of a normal file

 CAN-2005-0051 - anonymous login to named pipe leads to information
 disclosure

 CVE-2005-3280 - could be a problem with a default password, an
 unrestricted channel, or a combination of both.

 CVE-2004-2415 - XML entity expansion attack

 CAN-2005-1723 - an odd issue

 CVE-2004-2338 - product does not properly parse certain access rules
 on big-endian 64-bit platforms, leading to filter bypass

 CAN-2005-0268 - PHP script executes code specified in a particular
 parameter. (not clear whether dynamic or static code injection)

 CAN-2005-0593 - GUI spoof. Web browsers allow remote attackers to
 spoof the "security" icon via several different methods

 CAN-2003-0592, CAN-2003-0593, CAN-2003-0594 - web browser sends
 cookies outside domain with "%2e%2e"

 CAN-2002-1667 - OS does not check the existence of a particular
 object, which can be triggered by unexpected user actions

 CAN-2001-1535 - iDEFENSE "Brute-Forcing Web Application Session IDs"

 CAN-2002-1983 - DoS (hang) via multiple timers with a 1-ms tick,
 possibly involving asymmetric consumption or resource management
 error

 CAN-2005-2068 - OS allows modifying TCP options of existing session
 with TCP packet with SYN flag for already-existing session

 CAN-2005-2114 - CPU consumption, possibly involving infinite
 recursion

 CAN-2005-2134 - unusual manipulation leads to divide-by-zero,
 possibly due to race condition or unhandled error

 CAN-2005-1640 - missing or erroneous authorization check - doesn't
 check privileges

 CAN-2005-1992 - default security-critical configuration value is
 invalid

 CAN-2002-1712 - Flood of empty packets with ACK/FIN bit set. Note:
 might not be MFV if the packets don't have to be empty.

 CAN-2005-1762 - unknown vuln with "non-canonical" manipulation

 CAN-2005-1703 - incomplete packet triggers null dereference

 CAN-2005-1740 - insecure tempfile creation allows writing by symlink
 or execution by modification of file (bad permissions)

 CVE-2000-0353, CAN-2002-0317, CAN-2001-1192 - automatic download and
 execution by various means, not direct dynamic code execution

 CAN-2005-1638 - special characters, possibly by unusual
 manipulation, which enables XSS

 CAN-2003-0336 - mail client allows file read via an email message
 with a carriage return character in a spoofed special string that is
 associated with the message. Special sequence/element injection,
 not special char.

==

EX.UNDIAG. Interesting Examples that were not diagnosed

These examples identify interesting manipulations or resultant WIFFs,
but the primary WIFFs are unknown due to the lack of diagnosis by the
researcher and/or vendor.

 CAN-2002-1871 - product installs files with setuid/setgid privileges
 if unusual entries are found in certain fields.

 CAN-2005-1720 - ACL handling error during file copy prevents
 permissions from being properly applied to the copied file

 CVE-2005-1992 - a change between software versions causes dangerous
 methods to be allowed when they weren't in earlier versions.

 CAN-2001-0617 - attacker can gain access to services even if
 individual services have been disabled

 CVE-2000-0915 - finger allows read files by specifying filename
 instead of username

 CAN-2005-2301 - LDAP injection?

 CVE-2002-1132 - diagnostic error? malformed argument to script
 causes error message when the file cannot be included in the script;
 reported as error message infoleak.

 CAN-2002-1925 - certain portscans cause crash when admin selects a

 particular log tab in the GUI

 CAN-2002-1988 - long variables for non-existent resources trigger
 memory consumption and hang

 CAN-1999-1265 - special character "(" in SMTP arguments causes CPU
 consumption.

 CAN-1999-0347 - web browser allows file reading and spoofing of
 pages using "%01" character in URL, causing browser to use the
 domain specified after the "%01"

 CAN-2000-1138 - mail program does not notify user when S/MIME
 message has a broken signature. Could be resultant or primary UI,
 or primary CRYPTO.

 CAN-2002-2080 - memory consumption via large number of RCPT TO
 headers

 CAN-2004-2151 - memory allocation via large data size leads to
 memory consumption or crash

 CAN-2002-2009 - path disclosure via certain characters before .jsp
 extension including "+" (space equivalent), ">/", "</", and "%20"
 (hex-encoded space)

 CAN-2002-1397 - API function for language interpreter allows DoS via
 negative argument, underlying WIFF unknown but possibly signedness
 error.

 CAN-2003-0418 - IP stack does not properly calculate the size of a
 response, causing memory infoleak in ICMP error response

 CAN-2005-2053 - diagnostic error? wildcard "*" injection causes
 infoleak and possibly directory traversal

 CAN-2005-2076 - "@" character not properly handled in a password,
 leaking part of password to the screen; possibly special char

 CAN-2004-0470 - inadvertent removal of security-relevant tags when a
 key datum is missing

 CAN-2005-1932 - multiple examples of critical variable modification

 CAN-2004-2197 - does not check ownership of files

 CAN-2004-2225 - crafted data: URI has unexpected consequences
 (delete files)

 CAN-2005-1659 - triple dot and XSS

 CAN-2005-1663 - unusual manipulation "://" in an HTTP request

 CVE-2004-2516 - directory traversal bug with unusual syntactic
 manipulations; underlying bug unclear

 CAN-2005-1774 - unknown issue prevents enforcement of permissions

 CAN-2005-1791 - near-equivalence causes crash (domain name looks
 like an IP address)

 CVE-2001-0969 - keyword in firewall rules not honored when certain
 interfaces are used

 CVE-2001-0866 - outbound ACL not handled if an inbound ACL is not
 configured on all interfaces

 CAN-2004-1001 - password check function does not properly handle
 error from a function call

 CAN-2005-1956 - unknown WIFF allows bypass of file extension check
 using unusual "~~~~~~" data manipulation

==
SECTION.11. References
==

[Paget] "Exploiting design flaws in the Win32 API for privilege
 escalation. Or... Shatter Attacks - How to break Windows."
 August, 2002

http://security.tombom.co.uk/shatter.html

[Segal] "HTTP Request Smuggling"
 Ory Segal

June 2005
http://www.watchfire.com/resources/HTTP-Request-Smuggling.pdf

[SPI] "Web Applications and LDAP Injection"
 SPI Dynamics

[PeterW] "Cross-Site Request Forgeries (Re: The Dangers of Allowing
 Users to Post Images)"
 Peter W
 Bugtraq
 June 15, 2001
 http://cert.uni-stuttgart.de/archive/bugtraq/2001/06/msg00216.html

[Moore] "0x00 vs ASP file upload scripts"
 Brett Moore
 July 13, 2004
 http://www.security-assessment.com/Whitepapers/
0x00_vs_ASP_File_Uploads.pdf

[RFP] "Poison NULL byte"
 Rain Forest Puppy
 Phrack

[LitchfieldBU] "Buffer Underruns, DEP, ASLR and improving the
 Exploitation Prevention Mechanisms (XPMs) on the Windows platform"
 September 30, 2005
 http://www.ngssoftware.com/papers/xpms.pdf

[PtacekNewsham] "Insertion, Evasion, and Denial of Service: Eluding
 Network Intrusion Detection"
 Thomas H. Ptacek, Timothy N. Newsham
 January 1998
 http://www.insecure.org/stf/secnet_ids/secnet_ids.pdf

[Zalewski2001] "Strange Attractors and TCP/IP Sequence Number Analysis"
 Michal Zalewski
 2001
 http://www.bindview.com/Services/Razor/Papers/2001/tcpseq.cfm

[Watts] "Discovering and Exploiting Named Pipe Security Flaws for Fun
 and Profit," Blake Watts
 http://www.blakewatts.com/namedpipepaper.html

[Howard2002] "When scrubbing secrets in memory doesn't work"
 Michael Howard
 Bugtraq
 Nov 5, 2002
 http://cert.uni-stuttgart.de/archive/bugtraq/2002/11/msg00046.html

 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/
html/secure10102002.asp

[Wagner] "GNU GCC: Optimizer Removes Code Necessary for Security"
 Joseph Wagner
 Bugtraq
 November 16, 2002
 http://www.derkeiler.com/Mailing-Lists/securityfocus/bugtraq/
2002-11/0257.html

"A Critical Analysis of Vulnerability Taxonomies
Matt Bishop and David Bailey
CSE-96-11
September 1996"

http://seclab.cs.ucdavis.edu/projects/vulnerabilities/scriv/ucd-
ecs-96-11.pdf

http://www.laas.fr/IFIPWG/Workshops&Meetings/44/W1/09-Iyer.pdf
 ** "FSM" model
 ** exploit involves multiple operations on several objects; exploits must
pass through
"elementary activities" where each one is an opportunity for security check

[SanctumX] Sanctum, "Blind XPath injection", May 19, 2004
 http://www.sanctuminc.com/pdfc/
WhitePaper_Blind_XPath_Injection_20040518.pdf

[Clowes] A Study in Scarlet

[Flake2001] Halvar Flake, "Third Generation Exploits" presentation at
 Black Hat Europe 2001.
 http://www.blackhat.com/presentations/bh-europe-01/halvar-flake/
bh-europe-01-halvarflake.ppt

[Christey2004a] "Off-by-one errors: a brief explanation"
 Steve Christey

Secprog and SC-L mailing list posts
May 5, 2004

Secprog:
http://marc.theaimsgroup.com/?

l=secprog&m=108379742110553&w=2
http://marc.theaimsgroup.com/?

l=secprog&m=108379754014251&w=2

SC-L:
[need to get URL]

[Christey2005] "Second-Order Symlink Vulnerabilities"
 Steve Christey

 Bugtraq
 June 7, 2005
 http://www.securityfocus.com/archive/1/401682

[Christey2005b] "On Interpretation Conflict Vulnerabilities"
 Steve Christey

Bugtraq
November 3, 2005

[Colley2004a] "Crafting Symlinks for Fun and Profit"
 Infosec Writers Text Library

 April 12, 2004
 http://www.infosecwriters.com/texts.php?op=display&id=159

[Crosby] "Algorithmic Complexity Attacks" (Crosby, Wallach)
 http://www.cs.rice.edu/~scrosby/hash/CrosbyWallach_UsenixSec2003/
index.html

[klog1999] klog, "The Frame Pointer Overwrite" September 9, 1999, in
 Phrack Issue 55, Chapter 8

 http://kaizo.org/mirrors/phrack/phrack55/P55-08

[McHog] "Exploiting Sotware" Gary McGraw, Greg Hoglund

[Newsham] Format String Attacks
 Tim Newsham, Guardent

 September 2000
 http://www.lava.net/~newsham/format-string-attacks.pdf

[Skoll] "Re: Corsaire Security Advisory - Multiple vendor MIME RFC2047
 encoding"

David F. Skoll
Bugtraq
September 15, 2004
http://marc.theaimsgroup.com/?l=bugtraq&m=109525864717484&w=2

[Corsaire] "Re:[2] Corsaire Security Advisory - Multiple vendor MIME

 RFC2047 encoding issue"
Martin O'Neal
Bugtraq
September 15, 2004
http://marc.theaimsgroup.com/?l=bugtraq&m=109551582712011&w=2

[Younan2003] "An overview of common programming security
 vulnerabilities and possible solutions"

Yves Younan
Student thesis
August 2003
http://fort-knox.org/thesis.pdf

[blexim] "Basic Integer Overflows"
 blexim
 Phrack Issue 60, Chapter 10
 http://www.phrack.org/phrack/60/p60-0x0a.txt

[Harnhammar] "CRLF Injection"
 Ulf Harnhammar
 Bugtraq
 May 7, 2002
 http://cert.uni-stuttgart.de/archive/bugtraq/2002/05/
msg00079.html

==
SECTION.12. Contributors / Acknowledgements
==

This document identifies over 1400 specific vulnerabilities in
real-world products. This would not be possible without detailed,
public vulnerability reports by security researchers everywhere, from
bored teenagers to seasoned professionals. Some variants or
manipulations were first discovered by previously unknown researchers
in rarely-used products.

Antonomasia and Mads Rasmussen suggested that the original
vulnerability auditing checklist should be annotated with specific
examples.

Pascal Meunier was a good sounding board for early versions of some of
the concepts that evolved into PLOVER.

In 2005, many people started discussing vulnerability classification

again, especially the webappsec list. This inspired a final effort to
provide a workable update to previous documents. Bob Martin was
especially encouraging in getting this version out.

==
SECTION.13. Change Log
==

0.1 - 2005/07/20
 [*] created PLOVER acronym
 [*] developed outline
 [*] copied over vulnerability auditing checklist (0.000026)
 [*] reviewed and added many new examples
 [*] refined manipulations, properties, etc. in separate document

0.2 - 2005/07/21
 [*] refined categories
 [*] categorized most CVE's

0.3 - 2005/07/22
 [*] wrote intro
 [*] reorganized many categories; began merging checklist gaps with
categories
 [*] new concepts - multi-channel attack, facilitator manipulation
 [*] added theories and observations

0.4 - 2005/07/23
 [*] more work on categories
 [*] started "bad practices" section
 [*] wrote up short descriptions for some CVE's, collected more examples

0.5 - 2005/07/24
 [*] more short descriptions for some CVE's, added more examples
 [*] continued categorical refinement and merging

0.6 - 2005/07/25
 [*] cleaned up document formatting
 [*] fleshed out some more examples

0.7 - 2005/07/26
 [*] wrote Core Definitions
 [*] merged data properties/manipulations from elsewhere, then refined
 [*] started Problems with Existing Terminology
 [*] added Multi-Factor Vulnerabilities

0.8 - 2005/07/27
 [*] more definitions
 [*] wrote Alternate Elements
 [*] wrote sections for channels and endpoints
 [*] functional consequences
 [*] more organization

0.9 - 2005/07/28
 [*] more cleanup, a little more formatting
 [*] more writing
 [*] started moving extra examples to appendix

0.10 - 2005/07/29
 [*] more cleanup, more examples
 [*] wrote various definitions, research gaps, terminology notes

0.11 - 2005/07/30
 [*] still more cleanup, more WIFF definitions

0.12 - 2005/07/31
 [*] finished up WIFF definitions and examples, reorganized
 [*] more formatting
 [*] added Unprotected Alternate Channel
 [*] summarized WIFF list
 [*] cleaned up Hypotheses, Diagnostic Errors, Genesis,

0.13 - 2005/08/01
 [*] cleaned up chapter/section names
 [*] added more intro text
 [*] reorganized sections
 [*] added Direction and Location of Channels, expanded multi-channel
 attacks accordingly

0.14 - 2005/08/02
 [*] finished categorizing WIFFs
 [*] renumbered entire document
 [*] reordered more sections

0.15 - 2005/08/03
 [*] fixed typos

0.16 - 2005/08/19
 [*] more examples
 [*] minor modifications over past couple weeks
 [*] renamed "eval injection" issue

0.17 - 2005/10/03
 [*] minor modifications
 [*] generated HTML version

0.18 - 2005/10/11
 [*] added Litchfield paper on buffer underruns
 [*] more examples

0.19 - 2005/10/20
 [*] more notes on intended information leak
 [*] merged "Mutable Search Path" into "Untrusted Search Path" - not
 sure why there were two in the first place.

0.20 - 2005/10/27
 [*] began mapping CLASP root causes to PLOVER
 [*] began replacing BID's with CVE's
 [*] began mapping Pernicious Kingdoms to PLOVER
 [*] worked on categorizing un-categorized examples
 [*] added MFV examples section

0.21 - 2005/11/05
 [*] added descriptions to remaining CVE's in examples section
 [*] moved more uncategorized examples to proper categories

0.22 - 2005/11/06
 [*] moved more uncategorized examples to proper categories
 [*] added some more categories

0.23 - 2006/02/22
 [*] finished up examples
 [*] made more MISC categories
 [*] froze existing set of categories

0.24 - 2006/03/15
 [*] Major changes since 0.17: REMOVED categories SPECTS.XSS.NULL,
 CP.UPATH.MUTABLE
 [*] Major changes since 0.17: ADDED categories SPECTS.XSS.INVTAGS,
 INFO.LEAK.PRIVACY, RES.AMP.EARLY, RAND.STATIC, ERS.UNREP,
 VER.OVE, VER.INTEG.MISS, VER.INTEG.INC, VER.PHP-UPLOAD,
 MAL.BDOOR.HPASS, MISC.INVFREE, MISC.ASSERT, MISC.EXTCONF,
 MISC.WEAK, MISC.NONCONFORM.IMP, MISC.NONCONFORM.API, MISC.CDEP,
 MISC.INCACT, MISC.SAMENAME, MISC.ALTNAME, MISC.NEIGHBORNAME,
 MISC.UNDOC, MISC.UNDOC.ACCOUNT, MISC.UNDOC.EGG, MISC.CONF,
 MISC.CONF.DEFPASS, MISC.CONF.ACCESS, MISC.CONF.AUDIT
 [*] Major changes since 0.17: RENAMED categories: SPECTS.NULLTERM,
 PATH.LINK.UNIX.SYM, HAND.UPLOAD, RES.LOCK.INSUFF,

 CODE.STAT.PHPINC, ERS.UNCH

