
Document version: 1.0.1 Date: October 29, 2009

This is a draft document. It is intended to support maintenance of CWE, and to educate
and solicit feedback from a specific technical audience. This document does not reflect
any official position of the MITRE Corporation or its sponsors. Copyright © 2009, The
MITRE Corporation. All rights reserved. Permission is granted to redistribute this
document if this paragraph is not removed. This document is subject to change without
notice.

Author: Steve Christey, Conor Harris (cwe@mitre.org)
URL: http://cwe.mitre.org/documents/vulnerability_theory/intro.html

Disclaimer1.
Introduction2.
Status3.
Intended Audience4.
Basic Concepts5.
Demonstration Code: Bug Barrel6.
Control Spheres7.
Protection Mechanisms8.
Chains and Composites9.
Properties10.
Simplified Error Handling Model11.
Resource Lifecycle12.
Message Structure between Control Spheres13.
Simplified Model of Access Control14.
Manipulation Types15.
Artifact Labels16.
Additional Concepts under Exploration17.
Examples of the Terminology in Action18.
Example Applications of the Theory19.
Future Work20.
Related Work21.
Credits22.
Changelog23.

This is a draft document. It is intended to support maintenance of CWE, and to educate
and solicit feedback from a specific technical audience. This document does not reflect
any official position of the MITRE Corporation or its sponsors. Copyright (c) 2009, The
MITRE Corporation. All rights reserved. Permission is granted to redistribute this
document if this paragraph is not removed. This document is subject to change without
notice.

Table of Contents

Disclaimer

Introduction

Despite the rapid growth of applied vulnerability research and secure software
development, these communities have not made much progress in formalizing their
techniques, and the "researcher's instinct" can be difficult to describe or teach to
non-practitioners. The discipline continues to be more black magic than science. For
example, terminology is woefully garbled and inadequate, and innovations can be
missed because they are mis-diagnosed as a common issue.

MITRE has been developing Vulnerability Theory, which is a vocabulary and framework
for discussing and analyzing vulnerabilities at an abstract level, but with more substance
and precision than heavily-abused, vague concepts such as "input validation" and
"denial of service." Our goal is to improve the research, modeling, and classification of
software flaws, and to help bring the discipline out of the dark ages. Our hope is that
this presentation will generate significant discussion with the most forward-thinking
researchers, educate non-expert researchers, and make people think about
vulnerabilities differently.

This document's most recent major revision was in July 2009, reflecting ongoing work
that dates back to 2005. This is the first update to the document since 2007, and
several important concepts are identified and explained for the first time in this new
revision.

The evolution of vulnerability theory is mostly occurring within the context of the
Common Weakness Enumeration (CWE), a classification of almost 800 types and
categories of weaknesses that lead to vulnerabilities such as buffer overflows, XSS,
insufficient randomness, and bad permissions. The theory is being used to explain
classification problems and train non-expert analysts about the vulnerability researcher
mindset. Some terminology has made its way into CVE, and it has helped us to
understand new vulnerability variants - especially by giving a vocabulary for efficiently
explaining why the variants are new.

This draft is the most extensive text that is available on the topic.

This document is for technically proficient vulnerability researchers and secure software
development practitioners with a broad background in the area. The audience is
assumed to be knowledgeable about a broad range of common software types and
protocols, vulnerability types, their associated attacks, and the common
countermeasures that fail to protect against vulnerabilities.

While the terminology is still evolving, much of it has stabilized and been actively used
within CWE.

This section summarizes the key concepts that currently form vulnerability theory. Some
concepts are further elaborated in subsequent sections.

Products, Behaviors, and Resources

A PRODUCT implements FEATURES by performing certain BEHAVIORS that operate on

Status

Intended Audience

Basic Concepts

RESOURCES.

PRODUCT: a software package, protocol design, architecture, etc.

FEATURE: a main capability offered by the product.

RESOURCE: an entity that is used, modified, or provided by the product, such as memory, CPU,
file, cookie, news article, or network connection.

BEHAVIOR: an action that the product takes to provide a feature, or an action that a user
performs.

For example, an FTP server may have two main features:

upload files

download files

The FTP server performs a behavior that establishes a connection to which it listens for
incoming requests. When a client connects to the FTP server, the server verifies the
user's identity (using an authentication behavior) then might accept a command to
download ("RETRIEVE") a file resource. Subsequent behaviors include: establishing a
separate data connection for sending the file; converting the file data from an internal
representation to the representation type specified by the client; sending the data; and
closing down the data connection.

Manipulations and Properties

A behavior performs MANIPULATIONS on resources by preserving or modifying
PROPERTIES. For example, a base64-encoding manipulation might be applied to a
binary file so that the file can be handled as ASCII; the resulting encoding has the
property of being "equivalent" to the original file.

PROPERTY: a security-relevant attribute of a behavior, data, code, or resource that must be
transformed or preserved throughout operation of the product. For example, user input might
initially contain arbitrary contents. After the system verifies that the input only contains letters
and numbers, then the input might be treated as valid with respect to the property
"alphanumeric." If the input is fed into an SQL query, then it might have a property of "trusted"
with respect to the property "contains no SQL syntax characters."

MANIPULATION: the modification of a resource by a behavior, typically to change the
resource's properties. This is generally used in the context of software as it manipulates inputs
and system resources to ensure that security properties are enforced. It can also be used by
attackers to modify resources so that they do not have the expected properties.

Channels, Actors, Roles, and Directives (CARD)

Within the product, one or more ACTORS take on certain ROLES and perform
DIRECTIVES that trigger behaviors. These directives are sent across CHANNELS. The
possible combinations of actors, roles, and channels form a TOPOLOGY. For example, a
common topology involves a User process being run by an Attacker that might connect
through a channel (TCP port 80) to a web Service being run by a Victim, where the User
gives the directive "Log me in" and provides username and password data.

ACTOR: an entity (product, person, or process) that interacts with the software or with other
entities that use the software. Types of Actors include: User, Service, Outsider, Consultant
(e.g., DNS or RADIUS), Monitor/Observer (e.g., intrusion detection, log monitor, debugger),
Intermediary (e.g., firewall, anti-virus, proxy). Some entities can encompass multiple types of

actors, e.g. an intrusion protection system that monitors for attacks and terminates connections
if something suspicious occurs.

ROLE: a pattern of behavior or interaction that is associated with a particular actor. Roles
include Victim, Attacker, Bystander, Accomplice, and Conduit.

DIRECTIVE: a request, command, signal, or other interaction from one upstream actor through
a channel to a different downstream actor (typically a product), which typically causes the
downstream actor to perform a desired behavior. Examples of directives are "Log me in as a
user," "Retrieve file," "Change permissions," and "Exit system."

CHANNEL: a resource that is used for sending directives and data between actors. There are
many types of channels, including: Socket, Serial port, Signal (which is an implicit channel),
Environment variable (implicit channel), Pipe, etc. "Alternate channels" are not the primary
channels, but alternate ways of moving data or directives between actors. For example, the
"Shatter" attack uses an alternate channel (the internal Windows messaging system) instead of
the GUI.

TOPOLOGY: the interrelationship between actors and roles in a single behavior chain. For
example, in a typical web-based SQL injection scenario, a User (acting as an Attacker) sends a
crafted request to a web application (acting as a Conduit) over one channel (TCP port 80), and
the web server sends a SQL query over a different channel to a database server (acting as a
Victim).

Security Policies, Control Spheres, and Protection Mechanisms

The product has a SECURITY POLICY (intended or implemented) that defines one or
more CONTROL SPHERES that specify restrictions on which actors are allowed to access
which resources or behaviors. A PROTECTION MECHANISM is a set of behaviors that is
intended to enforce the boundaries of a control sphere, i.e., protect the product (or
other actors) from attack.

CONTROL SPHERE: a (possibly empty) set of resources and behaviors that are accessible to a
single actor, or a group of actors that all share the same security restrictions. For example, a
blog management program might have a control sphere that allows an "administrator" to post
new blog entries, and a separate control sphere would allow "readers" to read blog entries but
disallow them from posting new entries.

SECURITY POLICY: a specification by the product or user that defines one or more control
spheres for one or more actors. An example policy might be "only the administrator can directly
invoke programs under /home/cwe/bin; only authenticated users may read files from
/home/cwe/webroot." The developer of the product has an INTENDED POLICY that dictates
appropriate behaviors, resources, and properties. The product itself has an IMPLEMENTED
POLICY, which is the code's implementation of the intended policy. Ideally, the intended and
implemented policies are the same; otherwise, a vulnerability may exist.

PROTECTION MECHANISM: a behavior or set of behaviors that helps to enforce an intended
security policy for the product (or an associated actor). This is also called a "control" or
"countermeasure" in some communities. Examples of protection mechanisms include input
validation, whitelists, blacklists, taint checking, stack overflow detection, etc. Protection
mechanisms may be different than SECURITY FEATURES such as authentication, access control,
cryptography, and privilege management. A mechanism might be implicit or explicit, depending
on the layer. For example, canary-based stack overflow protection is added by a compiler, so it
is implicit at the source code layer. If source code filters an output string against XSS, this is
an explicit protection mechanism.

Attacks, Consequences, Weaknesses, and Vulnerabilities

While weaknesses are defined less precisely within CWE at this stage, a more precise
definition is available that uses concepts from vulnerability theory.

ATTACK: an attempt by an actor to violate the intended security policy, i.e., to access behaviors
or resources that are outside of the intended control sphere for that actor. This is typically
performed using manipulations of resources or behaviors that violate expected properties. An
attack might require bypassing a protection mechanism. For example, a guest visitor to a web
site might attempt to access administrative scripts by requesting them directly.

ATTACKER: an actor who attempts to violate intended security policy, i.e., who attempts to
gain access to behaviors or resources that are outside of the software's intended control sphere
for that actor.

CONSEQUENCE: a behavior that violates the intended security policy.

WEAKNESS: a type of behavior that has the potential for allowing an attacker to violate the
intended security policy, if the behavior is made accessible to the attacker. For example, an
unbounded strcpy() call is a weakness, since it might be subject to a buffer overflow if an
attacker can provide an input buffer that is larger than the output buffer.

VULNERABILITY: a set of one or more related weaknesses within a specific software product or
protocol that allows an actor to access resources or behaviors that are outside of that actor's
control sphere, i.e., that do not provide appropriate protection mechanisms to enforce the
control sphere.

Chains and Composites

Multiple weaknesses can be combined together to form CHAINS or COMPOSITES.

CHAIN: a sequence of two or more separate weaknesses that can be closely linked together to
form a vulnerability. For example, a chain may occur when a program encounters an integer
overflow (CWE-190) when calculating the amount of memory to allocate, which causes a small
buffer to be allocated and leads to a buffer overflow (CWE-120).

COMPOSITE: a combination of two or more separate weaknesses that can create a vulnerability,
but only if these weaknesses occur simultaneously. For example, a symlink following attack
involves several component weaknesses including filename predictability (CWE-340),
inadequate permissions (CWE-275), and a race condition (CWE-362).

Layering and Perspectives

Resources, behaviors, properties, manipulations, channels, actors, and directives can be
described at different levels of abstraction, or LAYERS. In some cases, the focal point of
a weakness or vulnerability depends on the PERSPECTIVE of the analyst.

The CWE content team believes that understanding of weaknesses and vulnerabilities
might be significantly improved with proper modeling of layering and perspectives.
However, this is a relatively new concept that requires further investigation.

There are three primary layers as currently defined within vulnerability theory:

SYSTEM layer: resources include memory, disks, files, and CPU; behaviors include system calls
and process execution.

CODE layer: resources include variables, structures, sockets, handles, and strings; behaviors
include assignments, function calls, and exception handling.

APPLICATION layer: resources include cookies, messages, profiles, headers, and databases;
behaviors include storing data, authentication, and sending messages.

A resource at one layer may be implemented using resources at lower layers. For
example, an application-layer certificate might be read from a code-layer socket; the

issuer might be stored in a code-layer string that occupies system-layer memory. A
pointer to the string is stored in a code-layer variable.

Behavior Layers

Layering can apply to behaviors, too. Consider the following C code, intended for a
privileged program.

/* ignore group ID for this example */
old_id = getuid();
setuid(0);
AttachToPrivilegedDevice();
/* CWE-252 [code layer], CWE-273 [application layer] */
setuid(old_id);
filename = GetUntrustedFilename();
WriteToFile(filename, "Hello world");

The code intends to raise its privileges to root to access a special device, then drop the
privileges back to the original user ID. It then writes to a user-supplied filename, and
defers to the operating system's permission checks to ensure that the user can write to
the specified filename.

In certain environments, it is possible for setuid to fail in certain situations, such as PAM
failures or exceeded process limits. As a result, there is a weakness in the code.

At the code layer, the weakness is CWE-252 - an unchecked return value from a
function. But at the application layer, the function is used to drop privileges, so
CWE-273 also applies - improper check for dropped privileges.

To illustrate vulnerability theory in action, the following code will be used in subsequent
sections. This code contains at least 10 weaknesses.

The intended functionality of the code is to support a web page that contains messages
from various users, such as a guestbook or comment page. The code extracts a
MessageType parameter from a request (line 2), constructs the associated filename
(lines 3-5), opens the file, (line 6), and sends each line of the file to the requestor - as
long as it does not appear to contain any scripting code (line 8).

Bug Barrel Example

Consider the Bug Barrel code:

 1 printf("<title>Blissfully Ignorant, Inc.</title>");
 2 ftype = Get_Query_Param("MessageType");
 3 strcpy(fname, "/home/cwe/");
 4 strcat(fname, ftype);
 5 strcat(fname, ".dat");
 6 handle = fopen(fname, "r");
 7 while(fgets(line, 512, handle)) {
 8 if (strncmp(line,"<script>",8)) {
 9 printf(line); } }
 10 return(200);

A non-exhaustive list of weaknesses and vulnerabilities is:

Demonstration Code: Bug Barrel

CWE-120: Classic Buffer Overflow (lines 2->4->10)

CWE-23: Relative Path Traversal (2->4->6)

CWE-79: Failure to Preserve Web Page Structure (XSS) (7->9)

CWE-134: Uncontrolled Format String (7->9)

CWE-476: NULL Pointer Dereference (6->7)

CWE-20: Improper Input Validation (2 & 8)

CWE-116: Improper Encoding or Escaping of Output (7->9)

CWE-73: External Control of File Name or Path (2->4->6)

CWE-404: Improper Resource Shutdown or Release (6->10)

CWE-252: Unchecked Return Value (2->4->6)

A CONTROL SPHERE is a set of resources and behaviors that are accessible to a single
actor, or a group of actors that all share the same security restrictions. This set can be
empty.

A product's security policy will typically define multiple control spheres, although this
policy might not be explicitly stated. For example, a server might define several
spheres:

one sphere for "administrators" who can create new user accounts with subdirectories under
/home/server/

a second sphere that covers the set of users who can create or delete files within their own
subdirectories.

a third sphere might be "users who are authenticated to the operating system on which the
product is installed." This control might be implicitly defined through OS-layer permissions.

Each control sphere has different sets of actors, resources, and allowable behaviors.

Weaknesses and vulnerabilities can arise when the boundaries of a control sphere are
not properly enforced, or when a control sphere is defined in a way that allows more
actors or resources than the developer or system operator intends. For example, an
application might intend to allow guest users to access files that are only within a given
directory, but a path traversal attack could allow access to files that are outside of that
directory, which are thus outside of the intended sphere of control.

Some weaknesses related to control spheres include:

CWE-610 Externally Controlled Reference to a Resource in Another Sphere

The product uses an externally controlled name or reference that resolves to a resource that is
outside of the intended control sphere.

This is a high-level weakness that includes path traversal and symlink following, since the
filename can be changed to reference a file that is outside of an intended directory.

CWE-669 Incorrect Resource Transfer Between Spheres

Control Spheres

The product does not properly transfer a resource/behavior to another sphere, or improperly
imports a resource/behavior from another sphere, in a manner that provides unintended control
over that resource.

This high-level weakness includes problems such as Unrestricted File Upload (CWE-434) and
Download of Code Without Integrity Check (CWE-494). In these cases, the transfer of resources
is intentional.

CWE-668 Exposure of Resource to Wrong Sphere

The product exposes a resource to the wrong control sphere, providing unintended actors with
inappropriate access to the resource.

This high-level weakness includes problems such as Information Leak (CWE-200) Insufficiently
Protected Credentials (CWE-522), and Incorrect Permission Assignment for Critical Resource
(CWE-732).

Bug Barrel Example

Consider the Bug Barrel code:

 1 printf("<title>Blissfully Ignorant, Inc.</title>");
 2 ftype = Get_Query_Param("MessageType");
 3 strcpy(fname, "/home/cwe/");
 4 strcat(fname, ftype);
 5 strcat(fname, ".dat");
 6 handle = fopen(fname, "r");
 7 while(fgets(line, 512, handle)) {
 8 if (strncmp(line,"<script>",8)) {
 9 printf(line); } }
 10 return(200);

Based on the strcpy() in line 3, the programmer has an intended control sphere in which
external requests are only intended to be allowed to read files that are stored under the
"/home/cwe/" web document root. With path traversal (CWE-22), however, a "../abc"
from line 2 would generate a filename of "/home/abc.dat" - which is outside of the
intended control sphere.

Bug Barrel may have another intended control sphere in which only Bug Barrel users can
add messages (through separate functionality that is not seen in the code above). If the
associated messages file has world-writable permissions, then any local user could
modify the messages file to change its contents, without going through the intended
web interface. The weak permissions have defined a control sphere that is too broad
because it includes unexpected actors (i.e., local users.)

The intended security policy of Bug Barrel may also include: "messages may not contain
any scripting." The associated control sphere might be "a user can only add a message
that can contain boldface, italics, or underlined text." These requirements are not
explicitly stated anywhere; it is implicit in the protection mechanism at line 8, which
tries to strip <script> tags. However, this action is incomplete, so the implemented
security policy is "a line in a message may not contain '<script>' at the beginning."

There is also an intended control sphere with respect to buffer overflows. One line 4, the
programmer assumes that the strcat() will not write outside the boundaries of fname.
The original allocation of fname is not seen in this code. However, whether the allocation
was performed on the stack or the heap, the associated size value (call it "SIZE")
defined a control sphere for fname. If ftype can contain a string that is longer than
fname, then a buffer overflow in line 4 can occur. The strcpy() would write to adjacent
memory (and possibly adjacent variables), which is outside the intended control sphere

of the fname buffer. At a higher layer, there is another control sphere: only the explicit
behaviors in the source code should be executed. If an attacker can leverage the buffer
overflow for code execution, then the attacker's shellcode probably contains behaviors
that were not in the intended control sphere as implied by the source code.

A protection mechanism effectively defines (or enforces) a control sphere. This may be a
subset of the full control sphere for the software; for example, a protection mechanism
might only be used to sanitize data, not to perform authentication. A protection
mechanism is correct if its implemented control sphere is the same as the intended
control sphere for that protection mechanism. A mechanism has a vulnerability if its
implemented control sphere subsumes the intended control sphere. The mechanism is
unnecessarily restrictive if it is a proper subset of the intended control sphere -
effectively, it does not allow the user to do everything that the user is supposed to be
able to do.

A SECURITY FEATURE is a protection mechanism for any actor that is not the product,
typically the product's user. For example, cryptography may be used to protect the
user's data, but it might not have any role in protecting the product's own control
sphere.

Types of Protection Mechanism Failures (PMF)

When a weakness or vulnerability occurs, this is due to a failure to provide the
appropriate protection mechanism. Each protection mechanism failure can be broadly
categorized as:

MISSING: the developer does not use a protection mechanism at all. This is seen in a high
percentage of weaknesses as documented in CWE.

INCORRECT: the developer uses a protection mechanism that attempts to provide some
defense, but an error within the mechanism itself allows it to be bypassed. This can be due to a
more general weakness within the mechanism itself.

In CWE, the "improper" term is used as a generalization of both "missing" and
"incorrect." This is typically used in cases in which both "missing" and "incorrect"
applies, or if the specifics are not known.

Note that Jeff Williams (OWASP, Aspect Security) breaks down protection mechanism
failures by at least four types:

Missing: the same as "missing" in vulnerability theory

Ignored: a form of "missing" in which a protection mechanism is available, but the developer
does not use it in all situations

Broken: the same as "incorrect" in vulnerability theory

Misused: a form of "incorrect" in which the developer attempts to use the protection
mechanism but does not invoke it properly

These distinctions are important for understanding how developers can introduce errors
while trying to address security concerns, and in improving development practices to
avoid these problems in the first place. However, within CWE, these distinctions are
rarely important when describing general weakness types, since the method of

Protection Mechanisms

introduction is not relevant to the behavior that has been implemented.

As of CWE 1.4, the term "insufficient protection mechanism" is used to describe
situations in which the mechanism can vary in strength on a continuous or sliding scale,
instead of a discrete scale. The continuous scale may vary depending on the context and
risk tolerance. For example, the requirements for randomness may vary between a
random selection for a greeting message versus the generation of a military-strength
key. On the other hand, a weakness that allows a buffer overflow is always incorrect -
there is not a sliding scale that varies across contexts.

Sanitization Techniques (VICES)

SANITIZATION is a general term to describe the process of ensuring that input or output
has certain security properties before it is used. When used, the term could be referring
to one or more of the following: filtering/cleansing, canonicalization/resolution,
encoding/decoding, escaping/unescaping, quoting/unquoting, or validation.

The following types of sanitization may be used. There may be others that have not
been covered yet.

VERIFICATION: check if the input is already good

INDIRECT SELECTION: use the input as a mapping to known-safe values

CLEANSING: modify the input until it has the expected properties, typically by filtering (the
explicit removal of dangerous or otherwise invalid elements).

ENFORCEMENT BY CONVERSION: convert the input into a different, well-controlled
representation. For example, in PHP, a common mechanism for avoiding SQL injection is to
apply intval() to all numeric inputs, which guarantees that the generated value is a number.

SANDBOXING: Rely on an external or implicit protection mechanism to provide enforcement.
For example, a web application firewall might reject a suspicious request or modify the request
before passing it to the application being protected.

The following terms are relevant to two or more of the types of sanitization listed above:

ENFORCE: a general term, meaning to check or manipulate a resource so that it has a property
that is required by the security policy. For example, the filtering of all non-alphanumeric
characters from an input is one mechanism to enforce that "all characters are alphanumeric."
An alternate method of enforcement would be to reject the input entirely if it contains anything
that's non-alphanumeric.

CANONICALIZATION: a behavior that converts or reduces an input/output to a single fixed form
that cannot be converted or reduced any further. In cases in which the input/output is used as
an identifier, canonicalization refers to the act of converting that identifier. For example, when
the current working directory is "/users/cwe," the filename "../xyz" can be canonicalized to
"/users/xyz."

Canonicalization may be used in verification, cleansing, and in some cases, as a means
of enforcement by conversion.

Comparison is frequently used in both verification and cleansing. One common weakness
is Insufficient Comparison (CWE-697), in which he software compares two entities in a
security-relevant context, but the comparison is insufficient, which may lead to resultant
weaknesses. This can occur in at least two different ways: (1) the comparison checks
one factor incorrectly; or (2) the comparison should consider multiple factors, but it does
not check some of those factors at all.

Bug Barrel Example

Consider the Bug Barrel code:

 1 printf("<title>Blissfully Ignorant, Inc.</title>");
 2 ftype = Get_Query_Param("MessageType");
 3 strcpy(fname, "/home/cwe/");
 4 strcat(fname, ftype);
 5 strcat(fname, ".dat");
 6 handle = fopen(fname, "r");
 7 while(fgets(line, 512, handle)) {
 8 if (strncmp(line,"<script>",8)) {
 9 printf(line); } }
 10 return(200);

The value of ftype is not validated at all, so there is missing input validation (CWE-20).
The lack of validation has at least three distinct consequences. Since there is no check
on the length of ftype, the buffer overflow (CWE-119) in lines 2 to 4 is possible. Since
there is no check of the contents of the ftype variable, a path traversal (CWE-22) attack
is possible through lines 2, 4, and 6. In addition, there is no validation that the ftype
variable constructed a pathname for a file that exists, leading to a NULL pointer
dereference (CWE-479) in line 7.

For cross-site scripting (CWE-79), there is an attempt to perform input validation on line
8, but this is using an insufficient blacklist (CWE-184). This is an incorrect protection
mechanism. For the same XSS problem, there is also a missing protection mechanism -
no encoding of the output (CWE-116) from the printf call in line 9.

For the uncontrolled format string (CWE-134) on line 9, the exposure of this string to
external input was probably entirely accidental due to the missing "%s" specifier.
Because of this accident, there is no protection mechanism.

For both the buffer overflow and the uncontrolled format string, there may be implicit
protection mechanisms available. For example, some implementations of printf() have
reduced the risk of format string problems by removing support for the "%n" specifier,
which provides fine-grained control to an attacker but is not used in most real-world
code. For buffer overflows, canary techniques are available at the compiler layer (such
as Microsoft's /GS compiler option), and hardware-layer features such as the
non-executable (NX) flag can reduce the impact of overflow exploits.

Many weaknesses and vulnerabilities arise because of the interaction of multiple factors.
As a result, inconsistencies in classification and terminology problems can occur, because
people may be concentrating on different parts of the same problem.

A CHAIN is a sequence of two or more separate weaknesses that can be closely linked
together within software. One weakness, X, can directly create the conditions that are
necessary to cause another weakness, Y, to enter a vulnerable condition. When this
happens, CWE refers to X as PRIMARY to Y, and Y is RESULTANT from X. For example, if
an integer overflow (CWE-190) occurs when calculating the amount of memory to
allocate, an undersized buffer will be created, which can lead to a buffer overflow
(CWE-120). In this case, the integer overflow would be primary to the buffer overflow.
Chains can involve more than two weaknesses, and in some cases, they might have a
tree-like structure.

A primary weakness (or "root cause") is the first error in the code, after which things

Chains and Composites

start to go wrong. For example, when an off-by-one error prevents a null byte from
being added to a string, which causes a buffer over-read, the off-by-one error is
primary.

A resultant weakness includes behaviors that either (a) add to the problem, (b) fail to
correct it, or (c) are only exposed because of the primary weakness. For example, a PHP
program might have a primary weakness that uses extract($_GET) to overwrite global
variables that were not intended to be mutable through a web request. As a result, the
extract() might modify the variables after input validation has occurred, leading to
resultant XSS, SQL injection, file inclusion, or other issues, depending on how the
variable is being used.

While CWE primarily contains "implicit" chaining relationships, there are several chains
that are so common that they were assigned their own CWE identifiers. These are called
Named Chains. For example, CWE-691 covers the integer-overflow-to-buffer-overflow
chain in the previous paragraph. CWE-690 covers chains in which an unchecked return
value leads to a NULL pointer dereference.

Chain Example

 1 #define MAX 200
 2 int width, height, sz;
 3 width = ReadUntrustedInt();
 4 height = ReadUntrustedInt();
 5 if ((width > MAX) || (height > MAX)) {
 6 ExitWithError("bad width/height"); }
 7 sz = width * height;
 8 buf = malloc(sz);
 9 mmov(buf, ImageData);

This code example attempts to allocate a buffer that is large enough to hold a graphical
image, based on the width and height that has been specified by an untrusted actor.
Line 5 contains two insufficient comparisons (CWE-697) because it does not check to see
if width or height are negative. As a result of the improper check, an integer overflow
(CWE-190) can occur in line 7 when width and height are both large-but-negative
values. An insufficiently-sized buffer is allocated in line 8, which then leads to a buffer
overflow (CWE-120) in line 9.

Composite

A COMPOSITE is a combination of two or more separate weaknesses that can create a
vulnerability, but only if they all occur all the same time. One weakness, X, can be
"broken down" into component weaknesses Y and Z. For example, Symlink Following
(CWE-61) is only possible through a combination of several component weaknesses,
including predictability (CWE-340), inadequate permissions (CWE-275), and race
conditions (CWE-362). By eliminating any single component, a developer can prevent
the composite from becoming exploitable. There can be cases in which one weakness
might not be essential to a composite, but changes the nature of the composite when it
becomes a vulnerability; for example, NUL byte interaction errors (CWE-626) can widen
the scope of path traversal weaknesses (CWE-22), which often limit which files could be
accessed due to idiosyncrasies in filename generation.

Note that while composites have been defined for as long as chains, they have not been
studied as closely, and they are not as well-understood. One complication is that
composites may have components at multiple layers.

Composite Example

 1 $tmp = "/tmp/logfile.$$";
 2 open($fh, ">$tmp") || die;
 3 print $fh "starting task.\n";
 4 DoTaskAndLogResults($fh);
 5 print $fh "Done!\n";
 6 close($fh);

This code example attempts to execute a task and log any results into a temporary log
file. Line 1 generates a predictable filename that includes the process ID. The open() in
line 2 opens the target filename for writing. Not only is the filename predictable, it is
also in a directory (/tmp) that typically has world-writable permissions. Since the open()
will succeed even if the file already exists, there is a race condition in which an attacker
can create the target file before line 2 is executed. The target filename could be a
symbolic link that points to a file that is owned by the victim who is executing the code.
The timing window is probably large, because there is no check to see if $tmp exists
before it is even opened.

As a result, at line 2, there are three simultaneous conditions:

(1) the creation of a file with a predictable name

(2) the creation of a file in a directory with insecure permissions, and

(3) a race condition.

Fixing any one of these component weaknesses would eliminate or significantly reduce
the vulnerability. If a filename is unpredictable, then an attacker cannot reliably
pre-create a symbolic link with the expected name. If the file is created in a directory
with restrictive permissions, then the attacker could not create a symbolic link in the
target directory. If the race condition is omitted - e.g. by using lower-level coding
constructs that ensure the open() will only succeed if the file did not exist beforehand -
then the open would fail if an attack is launched.

Bug Barrel Example

Consider the Bug Barrel code:

 1 printf("<title>Blissfully Ignorant, Inc.</title>");
 2 ftype = Get_Query_Param("MessageType");
 3 strcpy(fname, "/home/cwe/");
 4 strcat(fname, ftype);
 5 strcat(fname, ".dat");
 6 handle = fopen(fname, "r");
 7 while(fgets(line, 512, handle)) {
 8 if (strncmp(line,"<script>",8)) {
 9 printf(line); } }
 10 return(200);

This code contains several chains. In line 6, an unchecked return value (CWE-252) can
lead to a NULL pointer dereference (CWE-476) if the fopen() call in line 6 fails. Since
ftype is under full control of the requester and can contain near-arbitrary content,
exploitation of this problem is probably simple. In line 8, there is an incomplete blacklist
(CWE-184) that allows cross-site scripting (CWE-79) attacks. Other chains are also
present.

There is a subtle composite that involves insecure permissions (CWE-732), a missing
protection mechanism, and symlink following. Assuming a UNIX-based permission

model, the web application user can effectively access any world-readable ".dat" file
under the root directory, not just /home/cwe. There is no way to directly specify
permissions that state "fopen cannot access files regardless of this directory." It may be
possible to force this restriction by creating a chroot() jail, although it might not be
realistic (or portable). In conjunction with the path traversal (CWE-22) through lines
2/4/6, a local user could launch a symbolic link attack (CWE-61) against the .dat file in
order to access any file that is readable by Bug Barrel, but not by the local user. Thus
the absence of a suitable protection mechanism for file containment effectively becomes
a composite with external control of a filename (CWE-73) that become components of
symbolic link following and path traversal weaknesses. Note that this perspective of path
traversal is not well-developed.

Chains may also be possible, in the sense that a multi-stage attack could occur. For
example, even if the program is changed so that the messages file is properly encoded
on line 9, XSS might still be possible by using the path traversal weakness to reference
another file that contains malicious script.

Properties can apply to resources, data, or behaviors, including code. These properties
are often a factor in weaknesses and vulnerabilities.

VALIDITY: The degree of conformance to data/behavior specifications. Examples include:

GET index.html (no version)

non-existent username

"<SCRIPT" without closing tag

inconsistent length/payload

incorrect sequence of steps

packet with length field inconsistent with actual length

"US3R" token when only A-Z characters are expected

EQUIVALENCE: Whether two identifiers, inputs, resources, or behaviors have different
representations, but are ultimately treated as being the same. Examples include:

"../.." == "%2e%2e/%2e%2e" (in URIs)

"filename.txt" == "FileName.txt." (in Windows)

$_GET['x'] == $_REQUEST['x'] (in PHP)

step equivalence: (A->B->C) == (A->C)

"/tmp/abc" and a symlink to /tmp/abc

"localhost" and "localhost.example.com" (fully qualified domain name)

127.0.0.1 and "hostname.example.com" (IP address and its domain name)

MUTABILITY: Whether the resource is expected to be modifiable, by whom, and when.
Examples include:

format string: if a format string is mutable, then attackers can modify the format of output and
possibly introduce buffer overflows. For most format string vulnerabilities, the intended format
string should have been a constant, i.e., it was never intended to be mutable by any actor

Properties

stack-based buffer overflow: violates non-mutability of the stack and adjacent variables
(relative to the source code layer)

PHP's register_globals often violates non-mutability of critical variables

modification of cookies or hidden form fields often violates the programmer's expectation that
cookies cannot be modified

an unprivileged user's access to a mutex for a privileged process may introduce immutability
when mutability is required

ACCESSIBILITY: Whether the resource can be accessed, by whom, and when. Examples
include:

mutex

permissions

"Shatter" attack

TRUSTABILITY: Whether the resource can be trusted to have certain properties. For example,
an input field to a PHP application can not be trusted to have any specific contents. After the
input is converted to a number via a function such as intval(), it can be trusted to be a number;
however, it cannot be trusted to have a specific numeric value until other checks are
performed.

UNIQUENESS: whether the resource or identifier is unique. For example, a session identifier is
assumed to be unique.

PREDICTABILITY: whether a certain property or state of the resource (or identifier) can be
sufficiently predicted. For example, a random seed that is created from the system's current
date is predictable. A cryptographically strong hash generates outputs that are not predictable.

There may be other types of properties that require further investigation, such as
atomicity, temporal relationships, and completeness.

Note that an input can be valid but security-relevant. For example, "O'Reilly" is a valid
last name, but the apostrophe "'" is a special character for SQL and would be invalid if
not quoted properly.

Dimensions of Validity

The validity of resources, data, or behaviors can be assessed (or might be assumed)
based on several possible dimensions.

LEXICAL: whether the item is a well-formed token. Examples: "My", "name".

SYNTACTIC: whether the item follows expected syntax and grammar rules. Examples: "My
name is John." (valid) "John name my is." (invalid). HTTP response splitting attacks (CWE-113)
occur because of the use of CRLF sequences to modify expected syntax (CWE-93), which in
turn causes the request to be misinterpreted.

DOMAIN: whether the item is valid within the domain of interest. For example, "red," "green,"
and "blue" are valid within the domain of colors; they are invalid within the domain of common
first names. An unchecked array index (CWE-129) is invalid if it points to an index that is not
within the boundaries of the associated array. The sentence "I understand an orange hammer,"
while syntactically valid, is probably not valid in most domains.

RELATIONAL: whether two or more items are consistent with respect to their inter-
relationships. For example, a message that contains a content length that is different than the
actual length of the content does not have relational validity. The commands "USER [user]" and

"DOWNLOAD [filename]" may be valid from a syntactic and domain perspective, but they might
not be relationally valid if the user is expected to provide a PASSWORD command before the
DOWNLOAD.

Following are some examples of validity with respect to HTTP requests:

lexical: G#T / HTTP/1.a (command and version number)

syntactic: GET . HTTP?1.1 (separator between protocol and version)

domain: GITCHY / ABCD/1.1 ("GITCHY" and "ABCD" not valid)

relational: a POST request with a Content-Length value that is inconsistent with the actual
length of the request body

Bug Barrel Example

Consider the Bug Barrel code:

 1 printf("<title>Blissfully Ignorant, Inc.</title>");
 2 ftype = Get_Query_Param("MessageType");
 3 strcpy(fname, "/home/cwe/");
 4 strcat(fname, ftype);
 5 strcat(fname, ".dat");
 6 handle = fopen(fname, "r");
 7 while(fgets(line, 512, handle)) {
 8 if (strncmp(line,"<script>",8)) {
 9 printf(line); } }
 10 return(200);

For the uncontrolled format string (CWE-134) in line 9, the programmer probably left
out a "%s" as a format string specifier to the printf() call. As a result of this omission,
the "line" variable serves as a format string and violates the expected MUTABILITY
property that "the first argument to printf is immutable."

For the filename to be accessed, there are at least two assumptions of validity when the
fopen() is invoked in line 6:

(a) fname points to a file that exists

(b) fname points to a file under /home/cwe

An unchecked return value weakness (CWE-252) does not ensure that fopen() succeeds,
which would imply the VALIDITY of the first property. A path traversal weakness
(CWE-22) violates the second VALIDITY property in lines 2, 4, and 6. Path traversal is
possible because an input of "../abc" for ftype would generate the filename "/home
/cwe/../abc.dat" which is EQUIVALENT to "home/abc.dat". As a result of the path
traversal, the targeted file is ACCESSIBLE even when the intended policy states that it
should not be.

For cross-site scripting (CWE-79), the test in line 8 assumes that the printf() in line 9 is
only using TRUSTED data. However, the test did not consider all possible inputs that
provide EQUIVALENT scripting capabilities, such as "<sCrIpT>" which is equivalent to
"<script>" because HTML tags are case-insensitive.

If the permissions for /home/cwe/ allow local users to create their own .dat files within
that directory, then this may provide some MUTABILITY to the directory that the
programmer did not expect. The creation of a symbolic link would then further violate

the ACCESSIBILITY of the file that is targeted by the symbolic link.

There is probably also an assumption of lexical validity in that the MessageType
parameter only contains alphanumeric characters, but this is not clear from the listed
code. Further, there might only be a handful of legitimate MessageType values that are
part of the expected domain.

Many weaknesses, and the vulnerabilities they create, can be caused by errors and other
exceptional conditions, as covered by Failure to Handle Exceptional Conditions
(CWE-703) under the Research View (CWE-1000).

In a security context, the proper detection and handling of exceptional conditions serves
as a protection mechanism by checking and enforcing properties of resources and
behaviors.

Techniques for exceptional conditions vary widely, such as:

the "errno" convention in C, in which a function returns a value that indicates an error and sets
the errno variable to indicate which type of error occurred

exception handling in Java, C++, Ruby, and others

protocol-specific techniques such as the "404 not found" error message in HTTP

Despite the variety of algorithms, techniques, and implementations in use, many of
these can be characterized as part of a simplified model of error handling:

CHECK BEFORE: before the software performs a behavior to manipulate a resource, it checks to
see if an exceptional condition already exists, or if the condition will definitely occur if the
behavior is undertaken

HANDLE BEFORE: knowing that the behavior will fail or otherwise be incorrect, the software
modifies its execution so that the behavior is avoided, or the software changes the conditions
so that the behavior will succeed

CHECK AFTER: after a behavior is attempted, the software verifies that it performed as
expected, or otherwise detects if an exceptional condition has occurred

HANDLE AFTER: in some cases the behavior will still be undertaken, and the CHECK-AFTER will
detect that an exceptional condition occurred. There may still be a chance for the software to
maintain or establish control over its behaviors and resources.

Weaknesses in the Error Handling "Life Cycle"

Each phase of the error handling "life cycle" may generate different weaknesses that are
captured in CWE. Initial investigation by the CWE content team suggests that many of
these weaknesses are independent of whether the problem occurs in a "before"
opportunity or an "after" opportunity.

Two of the main CWE entries are:

CWE-754 Improper Check for Exceptional Conditions

CWE-755 Improper Handling of Exceptional Conditions

Simplified Error Handling Model

The children of CWE-754 identify some of the lower-level weaknesses that may arise for
an improper check, such as:

CWE-252 Unchecked Return Value

CWE-273 Improper Check for Dropped Privileges

Under CWE-755, lower-level weakness children for improper handling include:

CWE-636 Not Failing Securely ('Failing Open')

CWE-209 Error Message Information Leak

CWE-390 Detection of Error Condition Without Action

Code Example: malloc()

Consider the following code:

 void SayHello () {
 str = (char *) malloc (2048);
 if (str == NULL) {
 ReportError();
 exit(1);
 }
 strcpy(str, "Hello world!");
 }

The behavior of malloc() is to return NULL when there is insufficient memory available to
allocate a buffer. From the perspective of the SayHello() function that calls malloc(),
there is no standard mechanism in C to perform a CHECK-BEFORE by seeing if memory
is available before it attempts the allocation. Thus no CHECK-BEFORE/CHECK-AFTER is
feasible, and SayHello() must simply call malloc() and see if it succeeded.

The CHECK-AFTER occurs in the conditional that compares str to NULL. The
HANDLE-AFTER is associated with the block containing the calls to ReportError() and
exit().

Notice that the programmer had several opportunities for improper error detection and
handling. If there was no comparison with str (i.e., no CHECK-AFTER), then the strcpy()
could result in a NULL pointer dereference. Even with a correct check to see if str is
NULL, the program must alter its control flow. If there is no call to exit(), for example,
then the strcpy() could still lead to a NULL pointer dereference.

Also note that at another layer - such as the definition of malloc() itself - there may be
an implementation-specific CHECK-BEFORE behavior that ensures that there is enough
memory. The HANDLE-BEFORE for malloc() in this case would be to return a NULL
pointer to signal the erroneous condition.

Code Example: Authentication

Consider the following code:

 $user = $_POST['user'];
 $pass = $_POST['pass'];
 $result = AuthenticateUser($user, $pass);
 if ($result != SUCCESS) {
 printError("no can do");

die;
 }
 ShowSecretFile();

Here, there is an authentication task. By its nature, authentication should not grant
access to the secret file until it is certain of the user's identify. Thus, the authentication
test is a CHECK-BEFORE, and the error message with the exit is the HANDLE-BEFORE.

Note that, at this layer of code, there is not an opportunity for a CHECK-AFTER or a
HANDLE-AFTER to take place - if the program shows the secret file to an
unauthenticated user, then it is too late to do anything about it.

Code Example: Exception Handling

Consider the following Java code:

 try {
 doSomething();
 }
 catch (BadException e) {
 handleProblem();
 }

With exception handling techniques such as try/catch, the declaration of a catch
effectively defines a HANDLE-AFTER action for an exceptional condition. In these cases,
at this layer, there often is no explicit CHECK-BEFORE, HANDLE-BEFORE, or CHECK-
AFTER. The implementation of exception handling performs these tasks at a lower level
- either in the method definition within doSomething, a lower-level method, or the Java
virtual machine itself.

There may be a possibility of defining a CHECK-BEFORE/HANDLE-BEFORE behavior,
such as NULL pointer dereference prevention. This is not always feasible.

Bug Barrel Example

Consider the Bug Barrel code:

 1 printf("<title>Blissfully Ignorant, Inc.</title>");
 2 ftype = Get_Query_Param("MessageType");
 3 strcpy(fname, "/home/cwe/");
 4 strcat(fname, ftype);
 5 strcat(fname, ".dat");
 6 handle = fopen(fname, "r");
 7 while(fgets(line, 512, handle)) {
 8 if (strncmp(line,"<script>",8)) {
 9 printf(line); } }
 10 return(200);

For the handling of the messages file, there is a path traversal weakness (CWE-22) from
lines 2, 4, and 6. With respect to path traversal, there are at least two opportunities for
a CHECK-BEFORE: checking "ftype" before calling strcat() on line 4, or checking "fname"
before the fopen() on line 6.

After line 6, there is no CHECK-AFTER to ensure that the file was successfully opened,
so there could be a NULL pointer dereference (CWE-476) or other undefined behavior in
line 7.

In line 7, the conditional is effectively a CHECK-AFTER that sees if the fgets() call
succeeded; if the call failed, then the HANDLE-AFTER is to exit the loop.

In line 8, the code performs a CHECK-BEFORE to filter out dangerous HTML tags to
avoid cross-site scripting (CWE-79). However, this check is incomplete, to XSS is still
possible. If proper output encoding were used before the printf() in line 9, when this
would serve as a HANDLE-BEFORE.

Resources often have explicit instructions on how to be created, used and destroyed.
When software fails to follow these instructions, it can lead to unexpected behaviors and
potentially exploitable states.

Within the CWE Research View, the pillar for resource management is:

CWE-664 Improper Control of a Resource Through its Lifetime

Resources have three primary stages:

INITIALIZATION: the base elements of the resource are allocated and assigned certain
properties. Until the initialization is complete, the resource is not intended to be available for
use by the application. Otherwise, various weaknesses may occur.

This is covered by:

CWE-665 Improper Initialization

Children of this weakness include Allocation of Resources Without Limits or Throttling
(CWE-770) and Missing Initialization (CWE-456).

USAGE: the resource may be read, modified, copied, or otherwise manipulated. This phase is
where the bulk of software activities occur, and where most weaknesses lie.

RELEASE: the resource is no longer available for use. Any relevant behaviors signal the release,
such as by closing a connection by sending a FIN packet. Other actions may be performed,
such as releasing lower-layer resources if the original resource is a complex structure or object.
In many cases, the resource may be RENEWABLE, i.e., it can be reused by other processes or
actors once it has been released. For example, a free() call makes the associated memory
available to other functionality in the program, or possibly even to other processes.

This is covered by:

CWE-404 Improper Resource Shutdown or Release

Children of this weakness include memory leaks (CWE-401), finalize() Method Without
super.finalize() (CWE-568), and Improper Check for Certificate Revocation (CWE-299).
CWE-299 is a child because certificate revocation is effectively a statement that the resource
has been released, and CWE-299 is the failure to detect if an externally-influenced resource has
been released by the external party.

Throughout this lifecycle, resources are accessed or referred to using IDENTIFIERS or
HANDLES. The process of RESOLUTION converts a resource identifier to a single,
canonical form. For example, code that converts "/tmp/abc/../def.xyz" to "/tmp/def.xyz"
is performing resolution on an identifier that is being used for a file resource.

Weaknesses can arise when an attacker can control an identifier, handle, or reference
that can resolve to a resource that is outside of the intended control sphere.

Weaknesses that are related to improper resolution are covered in Use of Incorrectly-
Resolved Name or Reference (CWE-706).

Resource Lifecycle

Bug Barrel Example

Consider the Bug Barrel code:

 1 printf("<title>Blissfully Ignorant, Inc.</title>");
 2 ftype = Get_Query_Param("MessageType");
 3 strcpy(fname, "/home/cwe/");
 4 strcat(fname, ftype);
 5 strcat(fname, ".dat");
 6 handle = fopen(fname, "r");
 7 while(fgets(line, 512, handle)) {
 8 if (strncmp(line,"<script>",8)) {
 9 printf(line); } }
 10 return(200);

For the handling of the messages file, there are two separate weaknesses. The
initialization step includes the construction of the filename in "fname" (lines 3 through
5), and the opening of a file handle (line 6). At this point, the Bug Barrel does not check
to see if the initialization failed - i.e., that the fopen() call in line 6 returned a non-NULL
value. As a result, a NULL pointer dereference (CWE-476) can occur in line 7.

Assuming that the fopen() succeeds, the code sends the contents of the file in the while
loop in lines 7 and 9. However, it does not release the handle before it returns in line
10, so there is a file descriptor leak (CWE-775).

There is a chance for another initialization error, although it is not clear at this layer.
Specifically, if the behavior of Get_Query_Param() is to provide a NULL pointer when the
desired parameter is not specified in the URL, then the "ftype" variable will be initialized
to an unexpected value, and a NULL pointer dereference occurs in line 4.

As already mentioned, many weaknesses can occur during the usage stage as well. In
this case, there is a path traversal weakness (CWE-22) from lines 2, 4, and 6, in which a
".." sequence in ftype will cause the program to read a file that is not in the intended
control sphere of the user.

When communication occurs between control spheres, this communication typically
takes the form of structured messages or data. The structured message contains one or
more directives, separated by "special elements" and metadata that act as markers for
the structure of the message.

In many protocols and specifications, the directive and its supporting data are
transferred as a single mixed "stream" within a single channel. Injection-related
weaknesses (CWE-74) occur when the product allows an attacker to modify the
structure of a message as it is sent across this single stream. A data/directive boundary
error occurs when data contains special elements that cause portions to be inadvertently
interpreted as directives, or vice versa.

The primary CWE entry for this type of problem is Improper Enforcement of Message or
Data Structure (CWE-707). When an incoming message is not properly structured, then
the product may behave incorrectly. If the product sends an outgoing message that is
not properly structured, then its downstream component may behave incorrectly. This
weakness typically applies in cases where the product prepares a control message that
another process must act on, such as a command or query, and malicious input that was
intended as data, can enter the control plane instead. However, this weakness also
applies to more general cases where there are not always control implications.

Message Structure between Control Spheres

Bug Barrel Example

Consider the Bug Barrel code:

 1 printf("<title>Blissfully Ignorant, Inc.</title>");
 2 ftype = Get_Query_Param("MessageType");
 3 strcpy(fname, "/home/cwe/");
 4 strcat(fname, ftype);
 5 strcat(fname, ".dat");
 6 handle = fopen(fname, "r");
 7 while(fgets(line, 512, handle)) {
 8 if (strncmp(line,"<script>",8)) {
 9 printf(line); } }
 10 return(200);

For cross-site scripting (CWE-79), suppose that "fname" is only expected to be a
simplified data file containing multiple pre-formatted HTML messages. It is assumed
that the file only contains the , <u>, and <i> HTML tags. Any other tag would
violate the intended structure of the message file. If the program has allowed attackers
to create their own messages without doing any proper validation or encoding, then a
variety of strings could modify the intended structure. Even a tag such as "<sCrIpT>"
would not be caught by the case-sensitive comparison in line 8. As a result, at line 9,
the program can include unexpected scripting syntax in its output to the web browser,
modifying the intended structure of the resulting web page.

Access control is a commonly-used protection mechanism, but a wide variety of
mechanisms exist. A simplified model may assist in describing mechanism-independent
failures.

PERMISSIONS: the explicit specifications for a resource, or a set of resources, that defines
which actors are allowed to access that resource, and which actions may be performed by those
actors. Permissions can contribute to the definition of one or more intended control spheres.

PRIVILEGES: the explicit specifications for an actor that defines which behaviors are allowed by
the actor.

AUTHENTICATION: the process of verifying that an actor has a specific real-world identity,
typically by checking for information that the software assumes can only be produced by that
actor. This is different than authorization, because authentication focuses on verifying the
identity of the actor, not what resources the actor can access.

AUTHORIZATION: the process of determining whether an actor has the required privileges to
access a resource based on the permissions associated with that resource, in conjunction with
the implicit and explicit security policies for the system. This is different than authentication,
because authorization focuses on whether a given actor can access a given resource, not in
proving what the real-world identity of the actor is.

ACCESS CONTROL: a protection mechanism that performs AUTHENTICATION and
AUTHORIZATION to ensure that each actor can only access resources and behaviors within that
actor's intended control sphere.

Types of Manipulations

There are three main manipulation types:

Simplified Model of Access Control

Manipulation Types

REACHABILITY: required to reach the relevant behavior. Example - when a buffer overflow can
only occur in the password field, the reachability manipulation involves providing a login name
first.

TRIGGER: modifies the behavior. Examples: long argument, flood of requests. The trigger
manipulation usually violates the expected properties of the input.

FACILITATOR: improves control of behaviors or overcomes limitations imposed by product
behaviors. Examples: using alphanumeric shellcode to satisfy filtering requirements, "%00" in
Perl/PHP filenames to expand the scope of directory traversal to arbitrary file extensions, or the
">" in the beginning of XSS manipulation that closes off the opening tag that the product has
already produced in the output. A SYNTACTIC REALIGNMENT is a facilitator manipulation that
allows execution to continue cleanly after the payload has been executed.

Manipulations can be characterized in terms of properties. They can be composed or
chained.

Examples of Manipulations and Properties

Using "../../etc/passwd" might be equivalent to "/etc/passwd" for file operations in which the
current working directory is two levels below the / directory.

If "/a/b/c" filename is a symbolic link to "/etc/passwd," then /a/b/c is equivalent to
/etc/passwd in most file operations.

A binary file and its base64-encoded version are semantically equivalent, assuming the
encoding is valid.

A PHP application vulnerability involving register_globals might violate a property that a
variable's value should not be mutable by the product's users.

A "GET /" without the version is syntactically invalid.

A stack-based buffer overflow involving a long input string might be syntactically and
semantically valid for the protocol's specification, but it might be semantically invalid (too
large) for the product's intended policy. When the stack-based overflow occurs, this modifies
adjacent variables and violates the intended non-mutability of the stack. When the shellcode is
actually executed after the overflow has occurred, that same input is semantically invalid at the
product's level, but semantically valid at the OS level, since it's well-formed.

Session fixation attacks introduce non-mutability when mutability is required.

Access control can sometimes be bypassed by changing lowercase to uppercase, preserving
equivalence.

In FTP, doing a "LIST" before a "USER/PASS" is semantically invalid.

Making 100 connections to a server might be semantically valid, although the underlying array
that tracks the connections might become "syntactically" invalid.

Directive manipulations might include:

Skip first step

Skip required step

Perform steps out of order

Perform repeated steps

Do not finish step

Interrupt step

Notice how most directive manipulations have equivalent data-driven manipulations. For
example, HTTP Parameter Pollution (HPP) involves repeated use of the same parameter.

For attacks that are intended to bypass protection mechanisms, some manipulations
include:

Use equivalence to access a desired object that is being protected by its name

Use invalid step sequences to directly access a resource instead of going through expected
steps

Access alternate channel, which is assumed to be trusted

Artifact Labels are used to identify important locations in code, design, or an algorithm
that are relevant to a potential weakness or vulnerability. Vulnerability researchers
frequently highlight these locations when presenting vulnerable code, but they do not
use the same terminology, if at all. These labels can be useful in describing certain
vulnerability topologies in the abstract sense, as well.

INTERACTION POINT: the location where "input" (of either data or directives) enters the
product from an external environment.

CROSSOVER POINT: the location after which an expected property is violated. This is likely to
lead to incorrect actions at a later point. For example, a programmer might use a regular
expression to restrict an input string to contain only digits, such as for a telephone number.
After applying the regular expression, the string is expected to have the property "only contains
digits." If the regular expression is incorrectly specified (e.g. only testing for the presence of a
digit anywhere in the string), then after its application, the code reaches a crossover point
because the string does not necessarily have the property of "only contains digits."

TRIGGER POINT: the location in the software after which it can no longer prevent itself from
violating the intended security policy without relying on implicit mechanisms at another layer.
For example, in buffer overflows, the trigger point occurs when the software writes to a
memory location outside of the targeted buffer. With OS command injection, the trigger point
occurs when the command is passed from the application to the OS.

ACTIVATION POINT: the location at which the software violates the intended security policy,
i.e., where the attacker's "payload" becomes active; presumably, the payload involve the
incorrect behaviors. For example, in SQL injection, the activation point occurs when the
database server executes the attacker-modified SQL query.

ATTACK VECTOR: a tuple of (INTERACTION POINT, CROSSOVER POINT, TRIGGER POINT,
ACTIVATION POINT). Different vulnerabilities could have the same attack vector. Different
attacks could have different trigger and activation points; for example, a buffer overflow
intended for denial of service would have a different activation point than one intended for
code execution.

The crossover, trigger, and activation points can appear in different locations - different
functions, components, or processes. For example, in HTML injection, the trigger point
might be the introduction of XSS sequences into a web page that is generated;
however, the payload is not activated until an outside party visits the page with a web
browser that has scripting enabled.

Crossover, trigger, and activation points can also be very close together, which typically

Artifact Labels

occurs with buffer overflows and OS command injection (CWE-78).

Note that there might be additional points of interest, especially at a low level. Also,
while this model is suitable for input-related weaknesses, it might not be sufficient for
behavior-based weaknesses, such as Incorrect Behavior Order (CWE-696) and Incorrect
Control Flow Scoping (CWE-705).

Bug Barrel Example

Consider the Bug Barrel code:

 1 printf("<title>Blissfully Ignorant, Inc.</title>");
 2 ftype = Get_Query_Param("MessageType");
 3 strcpy(fname, "/home/cwe/");
 4 strcat(fname, ftype);
 5 strcat(fname, ".dat");
 6 handle = fopen(fname, "r");
 7 while(fgets(line, 512, handle)) {
 8 if (strncmp(line,"<script>",8)) {
 9 printf(line); } }
 10 return(200);

For a buffer overflow (CWE-119), the interaction point is the assignment to ftype at line
2. Since there is no check to see if ftype is larger than fname, then the crossover point
is between lines 2 and 4 - ftype has a "size" property that is larger than expected by the
programmer. The trigger point somewhere within the execution of strcat() on line 4,
since strcat() does not prevent overflow. If the attacker has a goal of crashing the
software, then the strcat() call may also be the activation point. However, if the
attacker's goal is to execute code, then the code is not executed until the function
returns at line 10 (assuming fname is allocated on the stack and there are no external
protection mechanisms).

For a path traversal (CWE-22) attack, the interaction point is the assignment to ftype at
line 2. The crossover is at line 4, since it is clear from line 3 that the programmer
assumes that ftype does not have ".." sequences in it. The trigger point is at line 6,
because the program has opened an unexpected file for reading. The activation point
does not occur until line 9, when the software sends the contents of the unexpected file
to the attacker. Note that if the fopen() in line 6 was for a write instead of a read, then
the activation point would have occurred at line 6.

For cross-site scripting (CWE-79), the primary interaction point is at line 7, where the
input is read from the opened file. Assuming that this file contains HTML tags such as
"<sCrIpT>" or tags such as IMG that accept javascript in attributes, then the crossover
point happens after line 8. This is because the check for "<script>" tags is an
incomplete blacklist (CWE-184), so the line variable in line 9 violates the expected
property "contains no script." The trigger point happens in line 9, when the XSS is sent
as output to the target browser. Note that the activation point is not reached until the
attacker's script is executed within the user's web browser. This demonstrates how
artifact labels can cross multiple components.

Note that a more complicated attack may exist. Using path traversal, the attacker might
be able to use type-I XSS (or CSRF) to convince a user to make a request with
MessageType containing ".." sequences. These in turn might be used with %0 (null
bytes) to access a web server log that contains XSS in it. In this case, there are
effectively three interaction points - lines 2 and 7, in addition to whatever attack
inserted the XSS sequences into the target file in the first place.

Differences between crossover and trigger points

It can be difficult to identify the differences between crossover and trigger points. They
often appear at the same line of code in one layer, but they may be distinct at a lower
layer.

Much of the challenge occurs when there is a missing protection mechanism, because
there might not be any code that can be unambiguously "blamed" for causing the
problem. Thus the location of the crossover point can be uncertain. For example, if a
generated filename is never checked for directory traversal sequences, then the
crossover point could be where the filename is constructed (although it could be checked
after construction), or just before a file operation (e.g., delete) is performed on the
supplied filename.

The evolving convention has been to identify the crossover point as the last possible
place in which an explicit check/handle for the target property can be performed.
However, this may be subject to change.

Consider the following code:

 LongString = GetUntrustedInput();
 printf("Hello world!");
 strcat(x, LongString); /* overflow */

The crossover can be identified as occurring in the function call to strcat() - at this layer,
there is no opportunity to enforce the expected properties of LongString. At a lower
layer, within the implementation of the strcat(), the trigger point effectively occurs
somewhere within a memory copy operation.

Notes on Terminology

For interaction points, "injection" might be a more natural term. However, the term is
already overloaded within various communities, and current usage is data-centric.
Interaction points can be equivalent to what others call "entry points," but that term has
different uses in binary reverse engineering.

Artifact Labels and Protection Mechanisms

From an application perspective, different protection mechanisms may be useful at
different stages of an attack. These can be described in association with artifact labels. A
defense-in-depth strategy may include protection mechanisms at each stage.

Before Interaction Point: an application firewall may sanitize inputs before the input is even
provided to the application. This is outside the control of the application itself.

Between Interaction and Crossover: Explicit mechanisms such as input validation attempt to
prevent resources from having unexpected properties. These are under the control of the
application.

Between Crossover and Trigger: it is likely that few mechanisms exist to provide appropriate
protection in this phase. This is because, by definition, a resource does not have an assumed
property after the crossover point has been reached. There may be some lower-layer
protections available, such as an input validation step within an API function.

Between Trigger and Activation: at this point, there may be a reliance on externally-provided
mechanisms such as canary-based stack overflow protection. In multi-stage injection attacks
(e.g. second-order SQL injection), a protection mechanism on the downstream component may
be available. For example, an attacker might be able to reach a trigger point in which untrusted
XSS or SQL syntax is inserted into a database, but if the downstream component performs
proper input validation and output encoding when it reads that data from the database, the
activation point is avoided.

After Activation: by definition, once the activation point has been reached, the attacker has
already violated the software's intended control sphere. At this stage, only external mechanisms
can limit the damage, such as role-based access control, privilege separation or jails, or
automated intrusion detection and prevention, etc.

The following concepts are probably important, but they haven't been explored as fully
as the others.

ASSUMPTIONS/EXPECTATIONS: The assumptions that a program, design, or API makes
regarding the properties of behaviors and resources. The human developer makes certain
assumptions; when code executes, it has certain expectations about its environment, data, etc.,
and how its behaviors have modified program state.

DESIGN LIMITATION: a feature or behavior that can theoretically be used correctly, but could
lead to a vulnerability if not. For example, the functionality of strcpy() is a design limitation. It
can be used securely, but it can introduce vulnerabilities if used incorrectly. This incorrect
usage would be an implementation flaw (and perhaps, usage of strcpy at all might be regarded
as a design flaw in some circles). Conjecture: all implementation bugs are associated with at
least one design limitation.

DEGREES OF CONTROL: how much control an actor has over a resource; this is frequently
described in terms of attacker control over data, directives, and consequences. An actor might
have Full, Partial, or No control over a resource - and this could change over time.

PRINCIPLES: everyone's definition of "vulnerability" differs, but it could be defined in terms of
certain principles, such as "users should not have access to any resource that is not explicitly
granted or implied." Defining these principles could become the basis of a Universal Policy.

BOUNDARIES/INTERFACES: the boundaries between multiple actors, components, etc. Many
(but probably not all) issues occur at boundaries or interfaces between two different entities.
Boundaries *might* include representation, data, process/module, actor, etc. Representation is
probably essential for adequately explaining major vulnerability phyla such as "injection".

OUTPUTS: Wing et al. explicitly model "exit points" as places where data exits a system; web
application security people talk a lot about "output validation." This notion is useful when
examining a system/actor in isolation, but a framework that can cover all aspects of
attacks/vulnerabilities might only need to model "input." Information leaks can be thought of
as output, but it's only a leak if it's an input to an attacker.

Additional Concepts under Exploration

CONTAINERS/SANDBOXES: these seem to apply mostly to files and code, but thinking of
vulnerabilities as they relate to containers has sometimes been useful. For example, directory
traversal and some Java sandbox escaping works by using syntactically valid manipulations that
produce references to resources outside the container, which are semantically invalid relative to
the intended policy. PHP file inclusion can be thought of as a violation of an intended container
that uses semantically invalid manipulations.

"EXPLICIT" vs. "EMERGENT" - behaviors, properties, and resources can either be explicit or
emergent. For example, a covert channel can be an emergent resource that wasn't originally
intended.

The relationship between design limitations and implementation errors needs more
study. Protection mechanisms seem to have unique characteristics in comparison to
typical vulnerabilities, and it might be useful to distinguish between "missing" versus
"incorrect" protection mechanisms.

The following items don't contain any revelations that would be surprising for expert
researchers. The point is to demonstrate the efficiency of the vocabulary.

1) Any protection mechanism that relies on names or identifiers should defend against
equivalence manipulations. A product, language, or environment should attempt to minimize
the number and types of equivalence manipulations, which are common factors in cross-site
scripting and path traversal.

2) Fuzzers are very good at finding resultant weaknesses and consequences, but unless the
fuzzing is structured, there is no indication of the primary weakness. Diagnosis can be made
more difficult if the trigger and activation points are not close by. Unstructured fuzzing will
often fail due to the lack of reachability manipulations, e.g. if a parser requires certain semantic
consistency between data elements, before a vulnerable behavior can even be invoked.

3) Black box testing is likely to fail if the techniques do not consider whether an activation
point might be in another process or channel.

4) Monitors and Intermediaries are especially subject to equivalence and validity manipulations,
since the receiving/target hosts might have alternate interpretations. Example: a web app
firewall might allow invalid HTML through, even though the victim's browser converts that
HTML into "valid" HTML. An intermediary might choose to act on header X, when its
semantically equivalent header Y is what's actually processed by the client.

5) When protection mechanisms are involved, a manipulation might originally be syntactically
invalid before the mechanism, but then syntactically/semantically valid after the mechanism
Example: "....//" in directory traversal is syntactically invalid, until a bad filtering scheme
collapses the string into "../". Double-decoding issues are similar.

6) XSS and buffer overflows can share certain characteristics, such as the mixture of data and
directives. In the overflow case, though, this mixture occurs at a level below the programming
language; for XSS, it's at a level above the programming language.

There are several potential applications, only two of which are covered here.

1) Gap analysis and finding new vulnerability classes

By moving up a level of abstraction from classes like buffer overflows, XSS, and privilege
management errors, we might be able to use the framework to describe new issues in
vulnerability theory terms, then look at other known instances that share similar characteristics.

Examples of the Terminology in Action

Example Applications of the Theory

This would help identify gaps in understanding (or current researcher focus), and possibly lead
to discovery of new vulnerability classes, or at least variants. Example: Product class X has
behaviors B1 and B2, with manipulations M1...M5 on resource R. These manipulations preserve
property P and modify property Q. What types of vulnerabilities or attacks involve P and Q, and
therefore might be able to affect X?

2) Evaluating vulnerability "difficulty"

Since we expect products to always have vulnerabilities, we hope that they only have the most
difficult-to-find, difficult-to-exploit vulnerabilities. Concepts such as artifact labels could be
used to calculate the "distance" from input to exploit; novelty and complexity of manipulations
could be evaluated more cleanly; actors and channels could be used to describe a "topology"
("vulnerability surface"); and protection mechanisms could be assessed in terms of the
properties they preserve.

For example, if a vulnerability has the interaction, trigger, and activation points all in the same
function, that's probably a more obvious vulnerability than something that involves multiple
actors, channels, and manipulations.

There are several opportunities for future work in this area.

1) There will continue to be a synergistic relationship with CWE development and maintenance,
especially with respect to the Research View (CWE-1000).

2) Relationships with CAPEC will be investigated more closely, especially with respect to
concepts such as manipulations, properties, and an attacker's intended policy.

3) Further clarification of layers and perspectives

4) Clarify relationships with the CWE formalization project led by KDM Analytics. Many CWE
weaknesses lack the needed precision, but ideally, vulnerability theory should be able to
support machine-findable constructs as identified in white box definitions, although this may
happen at a different layer than the current focus.

5) Extend beyond the data-driven focus. There has been some effort to ensure that directives
also have sufficient coverage for related concepts such as properties, but gaps are likely, such
as temporal consistency and atomicity.

6) The work in security policies, control spheres, and protection mechanisms may provide a
mechanism for formulating "micro-policies" at an algorithmic level, instead of a product level,
which has been the emphasis of previous academic research. More work may need to be done
with properties to support this.

Dowd et al's "Art of Software Security Assessment" touches on some of these concepts
in an introductory chapter, but it does not propose them as a formal framework. Our
work is more detailed in this respect.

The work from Jeannette Wing et al on measuring attack surface introduces some
concepts that overlap vulnerability theory, but it is largely for data-driven attack vectors
and is focused on quantitative measurements of design quality.

The Trike threat modeling framework has similar concepts.

Informal conversations with Matt Bishop of UC Davis suggest some overlap with their
current work.

Future Work

Related Work

One early reviewer suggested that dataflow diagramming has some utility, and using
that terminology where appropriate might be useful in educating non-security
practitioners.

As of July 2009, the most novel elements of vulnerability theory include behaviors,
properties, and control spheres.

Bill Heinbockel contributed to the 2007 version of this document.

Chris Wysopal, David Litchfield, and Ivan Arce all provided commentary on pre-2007
versions of this document.

Janis Kenderdine advocated the theory that path traversal issues are composites.

Tom Stracener provided supportive feedback on the 2007 version.

1.0.1 - October 29, 2009

changed Error Handling Life Cycle section to a sub-section

no other changes were performed

1.0 - July 27, 2009

added control spheres

added error handling model

added access control model

added protection mechanisms

provided additional details for properties, actors, etc.

created new "Bug Barrel" and introduced into sections

0.5 - July 9, 2007

extended definitions

more examples of specific concepts

prepared for public release

0.4 - April 7, 2007

reasons lost

0.3 - Feb 26, 2007

Credits

Changelog

added crossover points, related work

0.2 - Feb 14, 2007

added minor points based on feedback

0.1 - Jan 31, 2007

first version

CWE is a Software Assurance strategic initiative sponsored by the National Cyber Security Division of the U.S. Department
of Homeland Security.

This Web site is hosted by The MITRE Corporation.
Copyright 2009, The MITRE Corporation. CWE and the CWE logo are trademarks of The MITRE Corporation.

Contact cwe@mitre.org for more information.

Privacy policy
Terms of use
Contact us

