Common Weakness Enumeration

A Community-Developed List of Software & Hardware Weakness Types

CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.2)  

CWE-1189: Improper Isolation of Shared Resources on System-on-a-Chip (SoC)

Weakness ID: 1189
Abstraction: Base
Structure: Simple
Status: Draft
Presentation Filter:
+ Description
The product does not properly isolate shared resources between trusted and untrusted agents.
+ Extended Description

A System-On-a-Chip (SoC) has a lot of functionality, but may have a limited number of pins or pads. A pin can only perform one function at a time. However, it can be configured to perform multiple different functions. This technique is called pin multiplexing. Similarly, several resources on the chip may be shared to multiplex and support different features or functions. When such resources are shared between trusted and untrusted agents, untrusted agents may be able to access the assets intended to be accessed only by the trusted agents.

+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
ChildOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.668Exposure of Resource to Wrong Sphere
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.1303Non-Transparent Sharing of Microarchitectural Resources
+ Relevant to the view "Hardware Design" (CWE-1194)
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1198Privilege Separation and Access Control Issues
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

Architecture and Design
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.


Class: Language-Independent (Undetermined Prevalence)


Class: System on Chip (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

Access Control

Technical Impact: Bypass Protection Mechanism

If resources being used by a trusted user are shared with an untrusted user, the untrusted user may be able to modify the functionality of the shared resource of the trusted user.

Technical Impact: Quality Degradation

The functionality of the shared resource may be intentionally degraded.
+ Potential Mitigations

Phase: Architecture and Design

Strategy: Separation of Privilege

When sharing resources, avoid mixing agents of varying trust levels.

Untrusted agents should not share resources with trusted agents.

+ Detection Methods

Automated Static Analysis - Binary or Bytecode

Kernel integrity verification can help identify when shared resource configuration settings have been modified.

Effectiveness: High

+ References
[REF-1036] Ali Abbasi and Majid Hashemi. "Ghost in the PLC Designing an Undetectable Programmable Logic Controller Rootkit via Pin Control Attack". 2016. <>.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2019-10-15Arun Kanuparthi, Hareesh Khattri, Parbati Kumar Manna, Narasimha Kumar V MangipudiIntel Corporation
+ Modifications
Modification DateModifierOrganization
2020-08-20CWE Content TeamMITRE
updated Common_Consequences, Description, Name, Potential_Mitigations, Related_Attack_Patterns, Relationships
+ Previous Entry Names
Change DatePrevious Entry Name
2020-08-20Improper Isolation of Shared Resources on System-on-Chip (SoC)
More information is available — Please select a different filter.
Page Last Updated: August 20, 2020