Common Weakness Enumeration

A Community-Developed List of Software & Hardware Weakness Types

CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.3)  

CWE-1192: System-on-Chip (SoC) Using Components without Unique, Immutable Identifiers

Weakness ID: 1192
Abstraction: Base
Structure: Simple
Status: Draft
Presentation Filter:
+ Description
The System-on-Chip (SoC) does not have unique, immutable identifiers for each of its components.
+ Extended Description

A System-on-Chip (SoC) comprises several components (IP) with varied trust requirements. It is required that each IP is identified uniquely and should distinguish itself from other entities in the SoC without any ambiguity. The unique secured identity is required for various purposes. Most of the time the identity is used to route a transaction or perform certain actions, including resetting, retrieving a sensitive information, and acting upon or on behalf of something else.

There are several variants of this weakness:

  • A "missing" identifier is when the SoC does not define any mechanism to uniquely identify the IP.
  • An "insufficient" identifier might provide some defenses - for example, against the most common attacks - but it does not protect against everything that is intended.
  • A "misconfigured" mechanism occurs when a mechanism is available but not implemented correctly.
  • An "ignored" identifier occurs when the SoC/IP has not applied any policies or does not act upon the identifier securely.
+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
ChildOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.657Violation of Secure Design Principles
+ Relevant to the view "Hardware Design" (CWE-1194)
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1198Privilege Separation and Access Control Issues
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

Architecture and Design
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.


Class: Language-Independent (Undetermined Prevalence)


Class: System on Chip (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

Access Control

Technical Impact: Bypass Protection Mechanism

+ Potential Mitigations

Phase: Architecture and Design

Strategy: Separation of Privilege

Every identity generated in the SoC should be unique and immutable in hardware. The actions that an IP is trusted or not trusted should be clearly defined, implemented, configured, and tested. If the definition is implemented via a policy, then the policy should be immutable or protected with clear authentication and authorization.

+ Content History
+ Submissions
Submission DateSubmitterOrganization
2019-10-15Arun Kanuparthi, Hareesh Khattri, Parbati Kumar Manna, Narasimha Kumar V MangipudiIntel Corporation
+ Modifications
Modification DateModifierOrganization
2020-08-20CWE Content TeamMITRE
updated Description
2020-12-10CWE Content TeamMITRE
updated Related_Attack_Patterns
More information is available — Please select a different filter.
Page Last Updated: December 10, 2020