CWE

Common Weakness Enumeration

A Community-Developed List of Software & Hardware Weakness Types

CWE Top 25 Most Dangerous Software Errors
Home > CWE List > CWE- Individual Dictionary Definition (4.0)  
ID

CWE-1235: Incorrect Use of Autoboxing and Unboxing for Performance Critical Operations

Weakness ID: 1235
Abstraction: Base
Structure: Simple
Status: Incomplete
Presentation Filter:
+ Description
The code uses boxed primitives, which may introduce inefficiencies into performance-critical operations.
+ Extended Description

Languages such as Java and C# support automatic conversion through their respective compilers from primitive types into objects of the corresponding wrapper classes, and vice versa. For example, a compiler might convert an int to Integer (called autoboxing) or an Integer to int (called unboxing). This eliminates forcing the programmer to perform these conversions manually, which makes the code cleaner.

However, this feature comes at a cost of performance and can lead to resource exhaustion and impact availability when used with generic collections. Therefore, they should not be used for scientific computing or other performance critical operations. They are only suited to support "impedance mismatch" between reference types and primitives.

+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.400Uncontrolled Resource Consumption
+ Relevant to the view "Software Development" (CWE-699)
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1006Bad Coding Practices
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

PhaseNote
ImplementationThe programmer may use boxed primitives when not strictly necessary.
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Java (Undetermined Prevalence)

C# (Undetermined Prevalence)

Operating Systems

Class: OS-Independent (Undetermined Prevalence)

Architectures

Class: Architecture-Independent (Undetermined Prevalence)

Technologies

Class: Technology-Independent (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Availability

Technical Impact: DoS: Resource Consumption (CPU); DoS: Resource Consumption (Memory); DoS: Resource Consumption (Other); Reduce Performance

Incorrect autoboxing/unboxing would result in reduced performance, which sometimes can lead to resource consumption issues.
Low
+ Demonstrative Examples

Example 1

Java has a boxed primitive for each primitive type. A long can be represented with the boxed primitive Long. Issues arise where boxed primitives are used when not strictly necessary.

(bad code)
Example Language: Java 
Long count = 0L;
for (long i = 0; i < Integer.MAX_VALUE; i++) {
count += i;
}

In the above loop, we see that the count variable is declared as a boxed primitive. This causes autoboxing on the line that increments. This causes execution to be magnitudes less performant (time and possibly space) than if the "long" primitive was used to declare the count variable, which can impact availability of a resource.

Example 2

This code uses primitive long which fixes the issue.

(good code)
Example Language: Java 
long count = 0L;
for (long i = 0; i < Integer.MAX_VALUE; i++) {
count += i;
}
+ Potential Mitigations

Phase: Implementation

Use of boxed primitives should be limited to certain situations such as when calling methods with typed parameters. Examine the use of boxed primitives prior to use. Use SparseArrays or ArrayMap instead of HashMap to avoid performance overhead.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
SEI CERT Oracle Coding Standard for JavaEXP04-JDo not pass arguments to certain Java Collections Framework methods that are a different type than the collection parameter type
+ References
+ Content History
Submissions
Submission DateSubmitterOrganization
2019-10-14Joe Harvey
More information is available — Please select a different filter.
Page Last Updated: February 19, 2020