CWE-1247: Missing or Improperly Implemented Protection Against Voltage and Clock Glitches
Weakness ID: 1247
Abstraction: Base Structure: Simple
Status: Incomplete
Presentation Filter:
Description
The device does not contain or contains improperly implemented circuitry or sensors to detect and mitigate voltage and clock glitches and protect sensitive information or software contained on the device.
Extended Description
A device might support features such as secure boot which are supplemented with hardware and firmware support. This involves establishing a chain of trust, starting with an immutable root of trust by checking the signature of the next stage (culminating with the OS and runtime software) against a golden value before transferring control. The intermediate stages typically set up the system in a secure state by configuring several access control settings. Similarly, security logic for exercising a debug or testing interface may be implemented in hardware, firmware, or both. A device needs to guard against fault attacks such as voltage glitches and clock glitches that an attacker may employ in an attempt to compromise the system.
Relationships
The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things.
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase
Note
Operation
Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope
Impact
Likelihood
Confidentiality Integrity Availability Access Control
Technical Impact: Gain Privileges or Assume Identity; Bypass Protection Mechanism; Read Memory; Modify Memory; Execute Unauthorized Code or Commands
Demonstrative Examples
Example 1
Below is a representative snippet of C code that is part of the secure-boot flow. A signature of the runtime-firmware image is calculated and compared against a golden value. If the signatures match, the bootloader loads runtime firmware. If there is no match, an error halt occurs. If the underlying hardware executing this code does not contain any circuitry or sensors to detect voltage or clock glitches, an attacker might launch a fault-injection attack right when the signature check is happening (at the location marked with the comment), causing a bypass of the signature-checking process.
(bad code)
Example Language: Other
...
if (signature_matches) // <-Glitch Here
{
load_runtime_firmware();
}
else
{
do_not_load_runtime_firmware();
}
...
After bypassing secure boot, an attacker can gain access to system assets to which the attacker should not have access.
(informative)
If the underlying hardware detects a voltage or clock glitch, the information can be used to prevent the glitch from being successful.
Lack of anti-glitch protections allows an attacker to launch a physical attack to bypass the secure boot and read protected eFuses.
Potential Mitigations
Phases: Architecture and Design; Implementation
At the circuit-level, using Tunable Replica Circuits (TRCs) or special flip-flops such as Razor flip-flops helps mitigate glitch attacks. Working at the SoC or platform base, level sensors may be implemented to detect glitches. Implementing redundancy in security-sensitive code (e.g., where checks are performed)also can help with mitigation of glitch attacks.
[REF-1061] Keith Bowman, James Tschanz, Chris Wilkerson, Shih-Lien Lu, Tanay Karnik, Vivek De
and Shekhar Borkar. "Circuit Techniques for Dynamic Variation Tolerance". <https://dl.acm.org/doi/10.1145/1629911.1629915>.
[REF-1062] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan Pham, Conrad Ziesler, David Blaauw, Todd Austin, Krisztian Flautner
and Trevor Mudge. "Razor: A Low-Power Pipeline Based on Circuit-Level Timing Speculation". <https://web.eecs.umich.edu/~taustin/papers/MICRO36-Razor.pdf>.
[REF-1063] James Tschanz, Keith Bowman, Steve Walstra, Marty Agostinelli, Tanay Karnik
and Vivek De. "Tunable Replica Circuits and Adaptive Voltage-Frequency Techniques for Dynamic Voltage, Temperature, and Aging Variation Tolerance". <https://ieeexplore.ieee.org/document/5205410>.
[REF-1064] Bilgiday Yuce, Nahid F. Ghalaty, Chinmay Deshpande, Conor Patrick, Leyla Nazhandali
and Patrick Schaumont. "FAME: Fault-attack Aware Microprocessor Extensions for Hardware Fault Detection and Software Fault Response". <https://dl.acm.org/doi/10.1145/2948618.2948626>.
[REF-1065] Keith A. Bowman, James W. Tschanz, Shih-Lien L. Lu, Paolo A. Aseron, Muhammad M. Khellah, Arijit Raychowdhury, Bibiche M. Geuskens, Carlos Tokunaga, Chris B. Wilkerson, Tanay Karnik
and Vivek De. "A 45 nm Resilient Microprocessor Core for Dynamic Variation Tolerance". <https://ieeexplore.ieee.org/document/5654663>.