CWE-1250: Improper Preservation of Consistency Between Independent Representations of Shared State
Presentation Filter:
The product has or supports multiple distributed components or sub-systems that are each required to keep their own local copy of shared data - such as state or cache - but the product does not ensure that all local copies remain consistent with each other. In highly distributed environments, or on systems with distinct physical components that operate independently, there is often a need for each component to store and update its own local copy of key data such as state or cache, so that all components have the same "view" of the overall system and operate in a coordinated fashion. For example, users of a social media service or a massively multiplayer online game might be using their own personal computers while also interacting with different physical hosts in a globally distributed service, but all participants must be able to have the same "view" of the world. Alternately, a processor's Memory Management Unit (MMU) might have "shadow" MMUs to distribute its workload, and all shadow MMUs are expected to have the same accessible ranges of memory. In such environments, it becomes critical for the product to ensure that this "shared state" is consistently modified across all distributed systems. If state is not consistently maintained across all systems, then critical transactions might take place out of order, or some users might not get the same data as other users. When this inconsistency affects correctness of operations, it can introduce vulnerabilities in mechanisms that depend on consistent state. The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore. ![]()
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance. Languages Class: Language-Independent (Undetermined Prevalence) Operating Systems Class: OS-Independent (Undetermined Prevalence) Architectures Class: Architecture-Independent (Undetermined Prevalence) Technologies Class: Cloud Computing (Undetermined Prevalence) Security IP (Undetermined Prevalence) Example 1 Suppose a processor's Memory Management Unit (MMU) has 5 other shadow MMUs to distribute its workload for its various cores. Each MMU has the start address and end address of "accessible" memory. Any time this accessible range changes (as per the processor's boot status), the main MMU sends an update message to all the shadow MMUs. Suppose the interconnect fabric does not prioritize such "update" packets over other general traffic packets. This introduces a race condition. If an attacker can flood the target with enough messages so that some of those attack packets reach the target before the new access ranges gets updated, then the attacker can leverage this scenario. Research Gap
Issues related to state and cache - creation,
preservation, and update - are a significant gap in
CWE that is expected to be addressed in future
versions. It likely has relationships to concurrency
and synchronization, incorrect behavior order, and
other areas that already have some coverage in CWE,
although the focus has typically been on independent
processes on the same operating system - not on
independent systems that are all a part of a larger
system-of-systems.
More information is available — Please select a different filter. |
Use of the Common Weakness Enumeration (CWE) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006-2021, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |