Common Weakness Enumeration

A Community-Developed List of Software & Hardware Weakness Types

CWE Top 25 Most Dangerous Software Errors
Home > CWE List > CWE- Individual Dictionary Definition (4.1)  

CWE-1269: Product Released in Non-Release Configuration

Weakness ID: 1269
Abstraction: Base
Structure: Simple
Status: Incomplete
Presentation Filter:
+ Description
The product released to market is released in pre-production or manufacturing configuration.
+ Extended Description

Products in the pre-production or manufacturing stages are configured to have many debug hooks and debug capabilities, including but not limited to:

  • Ability to override/bypass various cryptographic checks (including authentication, authorization, and integrity)
  • Ability to read/write/modify/dump internal state (including registers and memory)
  • Ability to change system configurations
  • Ability to run hidden or private commands that are not allowed during production (as they expose IP).

The above is by no means an exhaustive list, but it alludes to the greater capability and the greater state of vulnerability of a product during it's preproduction or manufacturing state.

Complexity increases when multiple parties are involved in executing the tests before the final production version. For example, a chipmaker might fabricate a chip and run its own preproduction tests, following which the chip would be delivered to the Original Equipment Manufacturer (OEM), who would now run a second set of different preproduction tests on the same chip. Only after both of these sets of activities are complete, can the overall manufacturing phase be called “complete” and have the “Manufacturing Complete” fuse blown. However, if the OEM forgets to blow the Manufacturing Complete fuse, then the system remains in the manufacturing stage, rendering the system both exposed and vulnerable.

+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
ChildOfPillarPillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things.693Protection Mechanism Failure
+ Relevant to the view "Hardware Design" (CWE-1194)
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1195Manufacturing and Life Cycle Management Concerns
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.


VHDL (Undetermined Prevalence)

Verilog (Undetermined Prevalence)

Class: Compiled (Undetermined Prevalence)

Operating Systems

Class: OS-Independent (Undetermined Prevalence)


Class: Architecture-Independent (Undetermined Prevalence)


Other (Undetermined Prevalence)

Class: Technology-Independent (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

Access Control

Technical Impact: Other

+ Demonstrative Examples

Example 1

This example shows what happens when a preproduction system is made available for production.

(bad code)
Suppose the chipmaker has a way of scanning all the internal memory (containing chipmaker-level secrets) during the manufacturing phase, and the way the chipmaker or the Original Equipment Manufacturer (OEM) marks the end of the manufacturing phase is by blowing a Manufacturing Complete fuse. Now, suppose that whoever blows the Manufacturing Complete fuse inadvertently forgets to execute the step to blow the fuse.

An attacker will now be able to scan all the internal memory (containing chipmaker-level secrets).

(good code)
Blow the Manufacturing Complete fuse.
+ Observed Examples
Regarding SSA-686531, a hardware based manufacturing access on S7-1200 and S7-200 SMART has occurred. A vulnerability has been identified in SIMATIC S7-1200 CPU family (incl. SIPLUS variants) (All versions), SIMATIC S7-200 SMART CPU family (All versions). There is an access mode used during manufacturing of S7-1200 CPUs that allows additional diagnostic functionality. The security vulnerability could be exploited by an attacker with physical access to the UART interface during boot process. At the time of advisory publication, no public exploitation of this security vulnerability was known.
Laptops with Intel chipsets were found to be running in Manufacturing Mode. After this information was reported to the OEM, the vulnerability (CVE-2018-4251) was patched disallowing access to the interface.
+ Potential Mitigations

Phase: Implementation

Ensure that there exists a marker for denoting the Manufacturing Complete stage and that the Manufacturing Complete marker gets updated at the Manufacturing Complete stage (i.e., the Manufacturing Complete fuse gets blown).

Phase: Integration

Ensure that there exists a marker for denoting the Manufacturing Complete stage and that the Manufacturing Complete marker gets updated at the Manufacturing Complete stage (i.e., the Manufacturing Complete fuse gets blown).

Phase: Manufacturing

Ensure that there exists a marker for denoting the Manufacturing Complete stage and that the Manufacturing Complete marker gets updated at the Manufacturing Complete stage (i.e., the Manufacturing Complete fuse gets blown).
+ References
[REF-1103] Lucian Armasu. "Intel ME's Undocumented Manufacturing Mode Suggests CPU Hacking Risks". 2018-10-03. <,37883.html>.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2020-05-31Arun Kanuparthi, Hareesh Khattri, Parbati Kumar Manna, Narasimha Kumar V MangipudiIntel Corporation
More information is available — Please select a different filter.
Page Last Updated: June 25, 2020