CWE-1314: Missing Write Protection for Parametric Data Values
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe device does not write-protect the parametric data values for sensors that scale the sensor value, allowing untrusted software to manipulate the apparent result and potentially damage hardware or cause operational failure.
Various sensors are used by hardware to detect any devices operating outside of the design limits. The threshold limit values are set by hardware fuses or trusted software such as the BIOS. These limits may be related to thermal, power, voltage, current, and frequency. Hardware mechanisms may be used to protect against alteration of the threshold limit values by untrusted software. The limit values are generally programmed in standard units for the type of value being read. However, the hardware-sensor blocks may report the settings in different units depending upon sensor design and operation. The raw sensor output value is converted to the desired units using a scale conversion based on the parametric data programmed into the sensor. The final converted value is then compared with the previously programmed limits. While the limit values are usually protected, the sensor parametric data values may not be. By changing the parametric data, safe operational limits may be bypassed. ![]()
![]() ![]()
![]() ![]()
![]()
![]() Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Sensor Hardware (Undetermined Prevalence) Example 1
Malicious software executes instructions to increase power consumption to the highest possible level while causing the clock frequency to increase to its maximum value. Such a program executing for an extended period of time would likely overheat the device, possibly resulting in permanent damage to the device. A ring, oscillator-based temperature sensor will generally report the sensed value as oscillator frequency rather than degrees centigrade. The temperature sensor will have calibration values that are used to convert the detected frequency into the corresponding temperature in degrees centigrade. Consider a SoC design where the critical maximum temperature limit is set in fuse values to 100C and is not modifiable by software. If the scaled thermal sensor output equals or exceeds this limit, the system is commanded to shut itself down. The thermal sensor calibration values are programmable through registers that are exposed to system software. These registers allow software to affect the converted temperature output such that the output will never exceed the maximum temperature limit. (bad code)
Example Language: Other
The sensor frequency value is scaled by applying the function: Sensed Temp = a + b * Sensor Freq
where a and b are the programmable calibration data coefficients. Software sets a and b to zero ensuring the sensed temperature is always zero. This weakness may be addressed by preventing access to a and b. (good code)
Example Language: Other
The sensor frequency value is scaled by applying the function: Sensed Temp = a + b * Sensor Freq
where a and b are the programmable calibration data coefficients. Untrusted software is prevented from changing the values of either a or b, preventing this method of manipulating the temperature.
![]()
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |