CWE

Common Weakness Enumeration

A Community-Developed List of Software & Hardware Weakness Types

CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.4)  
ID

CWE-1334: Unauthorized Error Injection Can Degrade Hardware Redundancy

Weakness ID: 1334
Abstraction: Base
Structure: Simple
Status: Draft
Presentation Filter:
+ Description
An unauthorized agent can inject errors into a redundant block to deprive the system of redundancy or put the system in a degraded operating mode.
+ Extended Description

To ensure the performance and functional reliability of certain components, hardware designers can implement hardware blocks for redundancy in the case that others fail. This redundant block can be prevented from performing as intended if the design allows unauthorized agents to inject errors into it. In this way, a path with injected errors may become unavailable to serve as a redundant channel. This may put the system into a degraded mode of operation which could be exploited by a subsequent attack.

+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfPillarPillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things.284Improper Access Control
+ Relevant to the view "Hardware Design" (CWE-1194)
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1198Privilege Separation and Access Control Issues
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

PhaseNote
Architecture and DesignSuch issues could be introduced during hardware architecture and design and identified later during Testing or System Configuration phases.
ImplementationSuch issues could be introduced during implementation and identified later during Testing or System Configuration phases.
IntegrationSuch issues could be introduced during integration and identified later during Testing or System Configuration phases.
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Language-Independent (Undetermined Prevalence)

Operating Systems

Class: OS-Independent (Undetermined Prevalence)

Architectures

Class: Architecture-Independent (Undetermined Prevalence)

Technologies

Class: Technology-Independent (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Integrity
Availability

Technical Impact: DoS: Crash, Exit, or Restart; DoS: Instability; Quality Degradation; DoS: Resource Consumption (CPU); DoS: Resource Consumption (Memory); DoS: Resource Consumption (Other); Reduce Performance; Reduce Reliability; Unexpected State

+ Potential Mitigations

Phase: Architecture and Design

Ensure the design does not allow error injection in modes intended for normal run-time operation. Provide access controls on interfaces for injecting errors.

Phase: Implementation

Disallow error injection in modes which are expected to be used for normal run-time operation. Provide access controls on interfaces for injecting errors.

Phase: Integration

Add an access control layer atop any unprotected interfaces for injecting errors.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2020-07-29James PangburnAccellera IP Security Assurance (IPSA) Working Group
More information is available — Please select a different filter.
Page Last Updated: March 15, 2021