CWE

Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Types

Common Weakness Scoring System
Common Weakness Risk Analysis Framework
Home > CWE List > CWE- Individual Dictionary Definition (2.8)  

Presentation Filter:

CWE-276: Incorrect Default Permissions

 
Incorrect Default Permissions
Weakness ID: 276 (Weakness Variant)Status: Draft
+ Description

Description Summary

The software, upon installation, sets incorrect permissions for an object that exposes it to an unintended actor.
+ Time of Introduction
  • Architecture and Design
  • Implementation
  • Installation
  • Operation
+ Applicable Platforms

Languages

All

+ Common Consequences
ScopeEffect
Confidentiality
Integrity

Technical Impact: Read application data; Modify application data

+ Likelihood of Exploit

Medium

+ Detection Methods

Automated Static Analysis - Binary / Bytecode

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:

  • Inter-application Flow Analysis

Effectiveness: SOAR Partial

Manual Static Analysis - Binary / Bytecode

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:

  • Binary / Bytecode disassembler - then use manual analysis for vulnerabilities & anomalies

Effectiveness: SOAR Partial

Dynamic Analysis with automated results interpretation

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:

  • Host-based Vulnerability Scanners – Examine configuration for flaws, verifying that audit mechanisms work, ensure host configuration meets certain predefined criteria

  • Web Application Scanner

  • Web Services Scanner

  • Database Scanners

Effectiveness: SOAR Partial

Dynamic Analysis with manual results interpretation

According to SOAR, the following detection techniques may be useful:

Highly cost effective:

  • Host Application Interface Scanner

Cost effective for partial coverage:

  • Fuzz Tester

  • Framework-based Fuzzer

  • Automated Monitored Execution

  • Forced Path Execution

Effectiveness: SOAR High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Highly cost effective:

  • Manual Source Code Review (not inspections)

Cost effective for partial coverage:

  • Focused Manual Spotcheck - Focused manual analysis of source

Effectiveness: SOAR High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:

  • Context-configured Source Code Weakness Analyzer

Effectiveness: SOAR Partial

Automated Static Analysis

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:

  • Configuration Checker

Effectiveness: SOAR Partial

Architecture / Design Review

According to SOAR, the following detection techniques may be useful:

Highly cost effective:

  • Formal Methods / Correct-By-Construction

Cost effective for partial coverage:

  • Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness: SOAR High

+ Observed Examples
ReferenceDescription
Executables installed world-writable.
Home directories installed world-readable.
World-writable log files allow information loss; world-readable file has cleartext passwords.
World-readable directory.
Windows product uses insecure permissions when installing on Solaris (genesis: port error).
Insecure permissions for a shared secret key file. Overlaps cryptographic problem.
Default permissions of a device allow IP spoofing.
+ Potential Mitigations

Phases: Architecture and Design; Operation

Very carefully manage the setting, management, and handling of privileges. Explicitly manage trust zones in the software.

Phase: Architecture and Design

Strategy: Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area.

Ensure that appropriate compartmentalization is built into the system design and that the compartmentalization serves to allow for and further reinforce privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide when it is appropriate to use and to drop system privileges.

+ Weakness Ordinalities
OrdinalityDescription
Primary
(where the weakness exists independent of other weaknesses)
+ Relationships
NatureTypeIDNameView(s) this relationship pertains toView(s)
ChildOfCategoryCategory275Permission Issues
Development Concepts (primary)699
ChildOfWeakness ClassWeakness Class732Incorrect Permission Assignment for Critical Resource
Research Concepts (primary)1000
ChildOfCategoryCategory743CERT C Secure Coding Section 09 - Input Output (FIO)
Weaknesses Addressed by the CERT C Secure Coding Standard (primary)734
ChildOfCategoryCategory857CERT Java Secure Coding Section 12 - Input Output (FIO)
Weaknesses Addressed by the CERT Java Secure Coding Standard (primary)844
ChildOfCategoryCategory877CERT C++ Secure Coding Section 09 - Input Output (FIO)
Weaknesses Addressed by the CERT C++ Secure Coding Standard (primary)868
ChildOfCategoryCategory946SFP Secondary Cluster: Insecure Resource Permissions
Software Fault Pattern (SFP) Clusters (primary)888
+ Causal Nature

Implicit

+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
PLOVERInsecure Default Permissions
CERT C Secure CodingFIO06-CCreate files with appropriate access permissions
CERT Java Secure CodingFIO01-JCreate files with appropriate access permission
CERT C++ Secure CodingFIO06-CPPCreate files with appropriate access permissions
+ References
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 3, "Insecure Defaults", Page 69.. 1st Edition. Addison Wesley. 2006.
+ Content History
Submissions
Submission DateSubmitterOrganizationSource
PLOVERExternally Mined
Modifications
Modification DateModifierOrganizationSource
2008-07-01Eric DalciCigitalExternal
updated Time_of_Introduction
2008-09-08CWE Content TeamMITREInternal
updated Relationships, Taxonomy_Mappings, Weakness_Ordinalities
2008-11-24CWE Content TeamMITREInternal
updated Relationships, Taxonomy_Mappings
2009-05-27CWE Content TeamMITREInternal
updated Description, Name
2011-06-01CWE Content TeamMITREInternal
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-09-13CWE Content TeamMITREInternal
updated Relationships, Taxonomy_Mappings
2012-05-11CWE Content TeamMITREInternal
updated References, Related_Attack_Patterns, Relationships, Taxonomy_Mappings
2012-10-30CWE Content TeamMITREInternal
updated Potential_Mitigations
2014-07-30CWE Content TeamMITREInternal
updated Detection_Factors, Relationships
Previous Entry Names
Change DatePrevious Entry Name
2009-05-27Insecure Default Permissions
Page Last Updated: July 30, 2014