CWE-297: Improper Validation of Certificate with Host Mismatch
Weakness ID: 297
Vulnerability Mapping:ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities Abstraction:
VariantVariant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.For users who wish to see all available information for the CWE/CAPEC entry.For users who want to customize what details are displayed.
×
Edit Custom Filter
Description
The product communicates with a host that provides a certificate, but the product does not properly ensure that the certificate is actually associated with that host.
Extended Description
Even if a certificate is well-formed, signed, and follows the chain of trust, it may simply be a valid certificate for a different site than the site that the product is interacting with. If the certificate's host-specific data is not properly checked - such as the Common Name (CN) in the Subject or the Subject Alternative Name (SAN) extension of an X.509 certificate - it may be possible for a redirection or spoofing attack to allow a malicious host with a valid certificate to provide data, impersonating a trusted host. In order to ensure data integrity, the certificate must be valid and it must pertain to the site that is being accessed.
Even if the product attempts to check the hostname, it is still possible to incorrectly check the hostname. For example, attackers could create a certificate with a name that begins with a trusted name followed by a NUL byte, which could cause some string-based comparisons to only examine the portion that contains the trusted name.
This weakness can occur even when the product uses Certificate Pinning, if the product does not verify the hostname at the time a certificate is pinned.
Common Consequences
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
Scope
Impact
Likelihood
Access Control
Technical Impact: Gain Privileges or Assume Identity
The data read from the system vouched for by the certificate may not be from the expected system.
Authentication Other
Technical Impact: Other
Trust afforded to the system in question - based on the malicious certificate - may allow for spoofing or redirection attacks.
Potential Mitigations
Phase: Architecture and Design
Fully check the hostname of the certificate and provide the user with adequate information about the nature of the problem and how to proceed.
Phase: Implementation
If certificate pinning is being used, ensure that all relevant properties of the certificate are fully validated before the certificate is pinned, including the hostname.
Relationships
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Architectural Concepts" (CWE-1008)
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
Phase
Note
Implementation
When the product uses certificate pinning, the developer might not properly validate all relevant components of the certificate before pinning the certificate. This can make it difficult or expensive to test after the pinning is complete.
Implementation
REALIZATION: This weakness is caused during implementation of an architectural security tactic.
Applicable Platforms
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages
Class: Not Language-Specific
(Undetermined Prevalence)
Technologies
Class: Mobile
(Undetermined Prevalence)
Class: Not Technology-Specific
(Undetermined Prevalence)
Likelihood Of Exploit
High
Demonstrative Examples
Example 1
The following OpenSSL code obtains a certificate and verifies it.
(bad code)
Example Language: C
cert = SSL_get_peer_certificate(ssl); if (cert && (SSL_get_verify_result(ssl)==X509_V_OK)) {
// do secret things
}
Even though the "verify" step returns X509_V_OK, this step does not include checking the Common Name against the name of the host. That is, there is no guarantee that the certificate is for the desired host. The SSL connection could have been established with a malicious host that provided a valid certificate.
Web browser does not validate Common Name, allowing spoofing of https sites.
Detection
Methods
Automated Static Analysis
Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)
Effectiveness: High
Dynamic Analysis with Manual Results Interpretation
Set up an untrusted endpoint (e.g. a server) with which the product will connect. Create a test certificate that uses an invalid hostname but is signed by a trusted CA and provide this certificate from the untrusted endpoint. If the product performs any operations instead of disconnecting and reporting an error, then this indicates that the hostname is not being checked and the test certificate has been accepted.
Black Box
When Certificate Pinning is being used in a mobile application, consider using a tool such as Spinner [REF-955]. This methodology might be extensible to other technologies.
Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
(this CWE ID may be used to map to real-world vulnerabilities)
Reason:
Acceptable-Use
Rationale:
This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.
Comments:
Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
Taxonomy
Mappings
Mapped Taxonomy Name
Node ID
Fit
Mapped Node Name
CLASP
Failure to validate host-specific certificate data
[REF-245] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh and Vitaly Shmatikov. "The Most Dangerous Code in the World: Validating SSL Certificates in Non-Browser Software". 2012-10-25.
<http://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf>.
[REF-243] Sascha Fahl, Marian Harbach, Thomas Muders, Matthew Smith and Lars Baumgärtner, Bernd Freisleben. "Why Eve and Mallory Love Android: An Analysis of Android SSL (In)Security". 2012-10-16.
<http://www2.dcsec.uni-hannover.de/files/android/p50-fahl.pdf>.
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 23: Improper Use of PKI, Especially SSL." Page 347. McGraw-Hill. 2010.