Common Weakness Enumeration

A Community-Developed List of Software Weakness Types

CWE/SANS Top 25 Most Dangerous Software Errors
Home > CWE List > CWE- Individual Dictionary Definition (3.0)  

CWE-319: Cleartext Transmission of Sensitive Information

Weakness ID: 319
Abstraction: Base
Structure: Simple
Status: Draft
Presentation Filter:
+ Description
The software transmits sensitive or security-critical data in cleartext in a communication channel that can be sniffed by unauthorized actors.
+ Extended Description
Many communication channels can be "sniffed" by attackers during data transmission. For example, network traffic can often be sniffed by any attacker who has access to a network interface. This significantly lowers the difficulty of exploitation by attackers.
+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
+ Relevant to the view "Architectural Concepts" (CWE-1008)
MemberOfCategoryCategory1013Encrypt Data
+ Relevant to the view "Development Concepts" (CWE-699)
ChildOfBaseBase311Missing Encryption of Sensitive Data
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

Architecture and DesignOMISSION: This weakness is caused by missing a security tactic during the architecture and design phase.
System Configuration
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.


Class: Language-Independent (Undetermined Prevalence)


Mobile (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.


Technical Impact: Read Application Data; Modify Files or Directories

Anyone can read the information by gaining access to the channel being used for communication.
+ Likelihood Of Exploit
+ Demonstrative Examples

Example 1

The following code attempts to establish a connection to a site to communicate sensitive information.

(bad code)
Example Language: Java 
try {
URL u = new URL("");
HttpURLConnection hu = (HttpURLConnection) u.openConnection();
OutputStream os = hu.getOutputStream();

catch (IOException e) {


Though a connection is successfully made, the connection is unencrypted and it is possible that all sensitive data sent to or received from the server will be read by unintended actors.

+ Observed Examples
Passwords transmitted in cleartext.
Chain: Use of HTTPS cookie without "secure" flag causes it to be transmitted across unencrypted HTTP.
Product sends password hash in cleartext in violation of intended policy.
Remote management feature sends sensitive information including passwords in cleartext.
Backup routine sends password in cleartext in email.
Product transmits Blowfish encryption key in cleartext.
Printer sends configuration information, including administrative password, in cleartext.
Chain: cleartext transmission of the MD5 hash of password enables attacks against a server that is susceptible to replay (CWE-294).
Product sends passwords in cleartext to a log server.
Product sends file with cleartext passwords in e-mail message intended for diagnostic purposes.
+ Potential Mitigations

Phase: Architecture and Design

Encrypt the data with a reliable encryption scheme before transmitting.

Phase: Implementation

When using web applications with SSL, use SSL for the entire session from login to logout, not just for the initial login page.

Phase: Testing

Use tools and techniques that require manual (human) analysis, such as penetration testing, threat modeling, and interactive tools that allow the tester to record and modify an active session. These may be more effective than strictly automated techniques. This is especially the case with weaknesses that are related to design and business rules.

Phase: Operation

Configure servers to use encrypted channels for communication, which may include SSL or other secure protocols.
+ Detection Methods

Black Box

Use monitoring tools that examine the software's process as it interacts with the operating system and the network. This technique is useful in cases when source code is unavailable, if the software was not developed by you, or if you want to verify that the build phase did not introduce any new weaknesses. Examples include debuggers that directly attach to the running process; system-call tracing utilities such as truss (Solaris) and strace (Linux); system activity monitors such as FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and sniffers and protocol analyzers that monitor network traffic.

Attach the monitor to the process, trigger the feature that sends the data, and look for the presence or absence of common cryptographic functions in the call tree. Monitor the network and determine if the data packets contain readable commands. Tools exist for detecting if certain encodings are in use. If the traffic contains high entropy, this might indicate the usage of encryption.

+ Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
PLOVERPlaintext Transmission of Sensitive Information
CERT Java Secure CodingSEC06-JDo not rely on the default automatic signature verification provided by URLClassLoader and java.util.jar
CERT Java Secure CodingSER02-JSign then seal sensitive objects before sending them outside a trust boundary
Software Fault PatternsSFP23Exposed Data
+ References
[REF-271] OWASP. "Top 10 2007-Insecure Communications". 2007. <>.
[REF-7] Michael Howard and David LeBlanc. "Writing Secure Code". Chapter 9, "Protecting Secret Data" Page 299. 2nd Edition. Microsoft Press. 2002-12-04. <>.
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 22: Failing to Protect Network Traffic." Page 337. McGraw-Hill. 2010.
[REF-172] Chris Wysopal. "Mobile App Top 10 List". 2010-12-13. <>.
+ Content History
Submission DateSubmitterOrganization
Modification DateModifierOrganization
2008-07-01Eric DalciCigital
updated Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2009-01-12CWE Content TeamMITRE
updated Common_Consequences, Description, Likelihood_of_Exploit, Name, Observed_Examples, Potential_Mitigations, References, Relationships
2009-03-10CWE Content TeamMITRE
updated Potential_Mitigations
2009-05-27CWE Content TeamMITRE
updated Related_Attack_Patterns
2010-02-16CWE Content TeamMITRE
updated References
2010-04-05CWE Content TeamMITRE
updated Applicable_Platforms, Common_Consequences, Time_of_Introduction
2010-06-21CWE Content TeamMITRE
updated Detection_Factors, Relationships
2010-12-13CWE Content TeamMITRE
updated Observed_Examples, Related_Attack_Patterns
2011-03-29CWE Content TeamMITRE
updated Potential_Mitigations
2011-06-01CWE Content TeamMITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2012-05-11CWE Content TeamMITRE
updated Demonstrative_Examples, References, Related_Attack_Patterns, Relationships, Taxonomy_Mappings
2013-02-21CWE Content TeamMITRE
updated Applicable_Platforms, References
2013-07-17CWE Content TeamMITRE
updated Relationships
2014-02-18CWE Content TeamMITRE
updated Related_Attack_Patterns
2014-06-23CWE Content TeamMITRE
updated Relationships
2014-07-30CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2017-05-03CWE Content TeamMITRE
updated Related_Attack_Patterns
2017-11-08CWE Content TeamMITRE
updated Likelihood_of_Exploit, Modes_of_Introduction, References, Relationships
Previous Entry Names
Change DatePrevious Entry Name
2009-01-12Plaintext Transmission of Sensitive Information

More information is available — Please select a different filter.
Page Last Updated: January 18, 2018