CWE-350: Reliance on Reverse DNS Resolution for a Security-Critical Action
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product performs reverse DNS resolution on an IP address to obtain the hostname and make a security decision, but it does not properly ensure that the IP address is truly associated with the hostname.
Since DNS names can be easily spoofed or misreported, and it may be difficult for the product to detect if a trusted DNS server has been compromised, DNS names do not constitute a valid authentication mechanism. When the product performs a reverse DNS resolution for an IP address, if an attacker controls the DNS server for that IP address, then the attacker can cause the server to return an arbitrary hostname. As a result, the attacker may be able to bypass authentication, cause the wrong hostname to be recorded in log files to hide activities, or perform other attacks. Attackers can spoof DNS names by either (1) compromising a DNS server and modifying its records (sometimes called DNS cache poisoning), or (2) having legitimate control over a DNS server associated with their IP address. ![]()
![]() ![]()
![]()
![]() Languages Class: Not Language-Specific (Undetermined Prevalence) Example 1 The following code samples use a DNS lookup in order to decide whether or not an inbound request is from a trusted host. If an attacker can poison the DNS cache, they can gain trusted status. (bad code)
Example Language: C
struct hostent *hp;struct in_addr myaddr;
char* tHost = "trustme.example.com"; myaddr.s_addr=inet_addr(ip_addr_string); hp = gethostbyaddr((char *) &myaddr, sizeof(struct in_addr), AF_INET); if (hp && !strncmp(hp->h_name, tHost, sizeof(tHost))) { trusted = true; } else {trusted = false; }(bad code)
Example Language: Java
String ip = request.getRemoteAddr();
InetAddress addr = InetAddress.getByName(ip); if (addr.getCanonicalHostName().endsWith("trustme.com")) { trusted = true; }(bad code)
Example Language: C#
IPAddress hostIPAddress = IPAddress.Parse(RemoteIpAddress);
IPHostEntry hostInfo = Dns.GetHostByAddress(hostIPAddress); if (hostInfo.HostName.EndsWith("trustme.com")) { trusted = true; }IP addresses are more reliable than DNS names, but they can also be spoofed. Attackers can easily forge the source IP address of the packets they send, but response packets will return to the forged IP address. To see the response packets, the attacker has to sniff the traffic between the victim machine and the forged IP address. In order to accomplish the required sniffing, attackers typically attempt to locate themselves on the same subnet as the victim machine. Attackers may be able to circumvent this requirement by using source routing, but source routing is disabled across much of the Internet today. In summary, IP address verification can be a useful part of an authentication scheme, but it should not be the single factor required for authentication. Example 2 In these examples, a connection is established if a request is made by a trusted host. (bad code)
Example Language: C
sd = socket(AF_INET, SOCK_DGRAM, 0);
serv.sin_family = AF_INET; serv.sin_addr.s_addr = htonl(INADDR_ANY); servr.sin_port = htons(1008); bind(sd, (struct sockaddr *) & serv, sizeof(serv)); while (1) { memset(msg, 0x0, MAX_MSG); clilen = sizeof(cli); h=gethostbyname(inet_ntoa(cliAddr.sin_addr)); if (h->h_name==...) n = recvfrom(sd, msg, MAX_MSG, 0, (struct sockaddr *) & cli, &clilen); (bad code)
Example Language: Java
while(true) {
DatagramPacket rp=new DatagramPacket(rData,rData.length);
outSock.receive(rp); String in = new String(p.getData(),0, rp.getLength()); InetAddress IPAddress = rp.getAddress(); int port = rp.getPort(); if ((rp.getHostName()==...) & (in==...)) { out = secret.getBytes(); DatagramPacket sp =new DatagramPacket(out,out.length, IPAddress, port); outSock.send(sp); These examples check if a request is from a trusted host before responding to a request, but the code only verifies the hostname as stored in the request packet. An attacker can spoof the hostname, thus impersonating a trusted client.
![]()
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |