CWE-354: Improper Validation of Integrity Check Value
Weakness ID: 354
Abstraction: Base Structure: Simple
Status: Draft
Presentation Filter:
Description
The software does not validate or incorrectly validates the integrity check values or "checksums" of a message. This may prevent it from detecting if the data has been modified or corrupted in transmission.
Extended Description
Improper validation of checksums before use results in an unnecessary risk that can easily be mitigated. The protocol specification describes the algorithm used for calculating the checksum. It is then a simple matter of implementing the calculation and verifying that the calculated checksum and the received checksum match. Improper verification of the calculated checksum and the received checksum can lead to far greater consequences.
Relationships
The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More general than a Base weakness.
Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More general than a Base weakness.
Base - a weakness that is described in an abstract fashion, but with sufficient details to infer specific methods for detection and prevention. More general than a Variant weakness, but more specific than a Class weakness.
Relevant to the view "Development Concepts" (CWE-699)
Nature
Type
ID
Name
ChildOf
Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More general than a Base weakness.
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase
Note
Architecture and Design
Implementation
REALIZATION: This weakness is caused during implementation of an architectural security tactic.
Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope
Impact
Likelihood
Integrity Other
Technical Impact: Modify Application Data; Other
Integrity checks usually use a secret key that helps authenticate the data origin. Skipping integrity checking generally opens up the possibility that new data from an invalid source can be injected.
Integrity Other
Technical Impact: Other
Data that is parsed and used may be corrupted.
Non-Repudiation Other
Technical Impact: Hide Activities; Other
Without a checksum check, it is impossible to determine if any changes have been made to the data after it was sent.
memset(msg, 0x0, MAX_MSG); clilen = sizeof(cli); if (inet_ntoa(cli.sin_addr)==...) n = recvfrom(sd, msg, MAX_MSG, 0, (struct sockaddr *) & cli, &clilen);
}
(bad code)
Example Language: Java
while(true) {
DatagramPacket packet = new DatagramPacket(data,data.length,IPAddress, port); socket.send(sendPacket);
}
Potential Mitigations
Phase: Implementation
Ensure that the checksums present in messages are properly checked in accordance with the protocol specification before they are parsed and used.
Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature
Type
ID
Name
MemberOf
View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries).
More information is available — Please select a different filter.
Page Last Updated:
March 29, 2018
Use of the Common Weakness Enumeration and the associated references from this website are subject to the
Terms of Use. For more information, please email
cwe@mitre.org.