CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-379: Creation of Temporary File in Directory with Insecure Permissions (4.16)  
ID

CWE-379: Creation of Temporary File in Directory with Insecure Permissions

Weakness ID: 379
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product creates a temporary file in a directory whose permissions allow unintended actors to determine the file's existence or otherwise access that file.
+ Extended Description
On some operating systems, the fact that the temporary file exists may be apparent to any user with sufficient privileges to access that directory. Since the file is visible, the application that is using the temporary file could be known. If one has access to list the processes on the system, the attacker has gained information about what the user is doing at that time. By correlating this with the applications the user is running, an attacker could potentially discover what a user's actions are. From this, higher levels of security could be breached.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Confidentiality

Technical Impact: Read Application Data

Since the file is visible and the application which is using the temp file could be known, the attacker has gained information about what the user is doing at that time.
+ Potential Mitigations

Phase: Requirements

Many contemporary languages have functions which properly handle this condition. Older C temp file functions are especially susceptible.

Phase: Implementation

Try to store sensitive tempfiles in a directory which is not world readable -- i.e., per-user directories.

Phase: Implementation

Avoid using vulnerable temp file functions.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 377 Insecure Temporary File
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Software Development" (CWE-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1219 File Handling Issues
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Likelihood Of Exploit
Low
+ Demonstrative Examples

Example 1

In the following code examples a temporary file is created and written to. After using the temporary file, the file is closed and deleted from the file system.

(bad code)
Example Language:
FILE *stream;
if( (stream = tmpfile()) == NULL ) {

perror("Could not open new temporary file\n");
return (-1);
}
// write data to tmp file
...
// remove tmp file
rmtmp();

However, within this C/C++ code the method tmpfile() is used to create and open the temp file. The tmpfile() method works the same way as the fopen() method would with read/write permission, allowing attackers to read potentially sensitive information contained in the temp file or modify the contents of the file.

(bad code)
Example Language: Java 
try {
File temp = File.createTempFile("pattern", ".suffix");
temp.deleteOnExit();
BufferedWriter out = new BufferedWriter(new FileWriter(temp));
out.write("aString");
out.close();
}
catch (IOException e) {
}

Similarly, the createTempFile() method used in the Java code creates a temp file that may be readable and writable to all users.

Additionally both methods used above place the file into a default directory. On UNIX systems the default directory is usually "/tmp" or "/var/tmp" and on Windows systems the default directory is usually "C:\\Windows\\Temp", which may be easily accessible to attackers, possibly enabling them to read and modify the contents of the temp file.


+ Observed Examples
Reference Description
A hotkey daemon written in Rust creates a domain socket file underneath /tmp, which is accessible by any user.
A Java-based application for a rapid-development framework uses File.createTempFile() to create a random temporary file with insecure default permissions.
+ Detection Methods

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 743 CERT C Secure Coding Standard (2008) Chapter 10 - Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 877 CERT C++ Secure Coding Section 09 - Input Output (FIO)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 964 SFP Secondary Cluster: Exposure Temporary File
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1403 Comprehensive Categorization: Exposed Resource
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Guessed or visible temporary file
CERT C Secure Coding FIO15-C Ensure that file operations are performed in a secure directory
+ References
[REF-18] Secure Software, Inc.. "The CLASP Application Security Process". 2005. <https://cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf>. URL validated: 2024-11-17.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 9, "Temporary Files", Page 538. 1st Edition. Addison Wesley. 2006.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
CLASP
+ Modifications
Modification Date Modifier Organization
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
2008-09-08 CWE Content Team MITRE
updated Common_Consequences, Relationships, Other_Notes, Taxonomy_Mappings
2008-11-24 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2009-05-27 CWE Content Team MITRE
updated Description, Name
2009-07-27 CWE Content Team MITRE
updated Description, Other_Notes, Potential_Mitigations
2011-06-01 CWE Content Team MITRE
updated Common_Consequences
2011-09-13 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-05-11 CWE Content Team MITRE
updated References, Relationships
2012-10-30 CWE Content Team MITRE
updated Demonstrative_Examples
2014-07-30 CWE Content Team MITRE
updated Relationships
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Demonstrative_Examples, Taxonomy_Mappings
2019-06-20 CWE Content Team MITRE
updated Type
2020-02-24 CWE Content Team MITRE
updated Name, References, Relationships, Type
2021-03-15 CWE Content Team MITRE
updated Demonstrative_Examples
2023-01-31 CWE Content Team MITRE
updated Description
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, Relationships, Time_of_Introduction
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-10-26 CWE Content Team MITRE
updated Observed_Examples
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 Guessed or Visible Temporary File
2009-05-27 Creation of Temporary File in Directory with Insecure Permissions
2020-02-24 Creation of Temporary File in Directory with Incorrect Permissions
Page Last Updated: November 19, 2024