Common Weakness Enumeration

A Community-Developed List of Software Weakness Types

CWE/SANS Top 25 Most Dangerous Software Errors
Home > CWE List > CWE- Individual Dictionary Definition (3.0)  

CWE-477: Use of Obsolete Function

Weakness ID: 477
Abstraction: Base
Structure: Simple
Status: Draft
Presentation Filter:
+ Description
The code uses deprecated or obsolete functions, which suggests that the code has not been actively reviewed or maintained.
+ Extended Description

As programming languages evolve, functions occasionally become obsolete due to:

  • Advances in the language
  • Improved understanding of how operations should be performed effectively and securely
  • Changes in the conventions that govern certain operations

Functions that are removed are usually replaced by newer counterparts that perform the same task in some different and hopefully improved way.

+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
ChildOfClassClass710Improper Adherence to Coding Standards
+ Relevant to the view "Development Concepts" (CWE-699)
MemberOfCategoryCategory1006Bad Coding Practices
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.


(Language-Independent classes): (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.


Technical Impact: Quality Degradation

+ Demonstrative Examples

Example 1

The following code uses the deprecated function getpw() to verify that a plaintext password matches a user's encrypted password. If the password is valid, the function sets result to 1; otherwise it is set to 0.

Example Language:
getpw(uid, pwdline);
for (i=0; i<3; i++){
cryptpw=strtok(pwdline, ":");

result = strcmp(crypt(plainpw,cryptpw), cryptpw) == 0;

Although the code often behaves correctly, using the getpw() function can be problematic from a security standpoint, because it can overflow the buffer passed to its second parameter. Because of this vulnerability, getpw() has been supplanted by getpwuid(), which performs the same lookup as getpw() but returns a pointer to a statically-allocated structure to mitigate the risk. Not all functions are deprecated or replaced because they pose a security risk. However, the presence of an obsolete function often indicates that the surrounding code has been neglected and may be in a state of disrepair. Software security has not been a priority, or even a consideration, for very long. If the program uses deprecated or obsolete functions, it raises the probability that there are security problems lurking nearby.

Example 2

In the following code, the programmer assumes that the system always has a property named "cmd" defined. If an attacker can control the program's environment so that "cmd" is not defined, the program throws a null pointer exception when it attempts to call the "Trim()" method.

Example Language: Java 
String cmd = null;
cmd = Environment.GetEnvironmentVariable("cmd");
cmd = cmd.Trim();

Example 3

The following code constructs a string object from an array of bytes and a value that specifies the top 8 bits of each 16-bit Unicode character.

Example Language: Java 
String name = new String(nameBytes, highByte);

In this example, the constructor may not correctly convert bytes to characters depending upon which charset is used to encode the string represented by nameBytes. Due to the evolution of the charsets used to encode strings, this constructor was deprecated and replaced by a constructor that accepts as one of its parameters the name of the charset used to encode the bytes for conversion.

+ Potential Mitigations

Phase: Implementation

Refer to the documentation for the obsolete function in order to determine why it is deprecated or obsolete and to learn about alternative ways to achieve the same functionality.

Phase: Requirements

Consider seriously the security implications of using an obsolete function. Consider using alternate functions.
+ Detection Methods

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Binary / Bytecode Quality Analysis
Cost effective for partial coverage:
  • Bytecode Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness: High

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Binary / Bytecode disassembler - then use manual analysis for vulnerabilities & anomalies

Effectiveness: SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Debugger

Effectiveness: High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Manual Source Code Review (not inspections)
Cost effective for partial coverage:
  • Focused Manual Spotcheck - Focused manual analysis of source

Effectiveness: High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Source Code Quality Analyzer
  • Source code Weakness Analyzer
  • Context-configured Source Code Weakness Analyzer

Effectiveness: High

Automated Static Analysis

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Origin Analysis

Effectiveness: High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Formal Methods / Correct-By-Construction
  • Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness: High

+ Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
MemberOfCategoryCategory3987PK - Code Quality
MemberOfCategoryCategory1001SFP Secondary Cluster: Use of an Improper API
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
7 Pernicious KingdomsObsolete
Software Fault PatternsSFP3Use of an improper API
CERT Perl Secure CodingDCL30-PLCWE More SpecificDo not import deprecated modules
CERT Perl Secure CodingEXP30-PLCWE More SpecificDo not use deprecated or obsolete functions or modules
+ Content History
Submission DateSubmitterOrganizationSource
7 Pernicious Kingdoms
Modification DateModifierOrganizationSource
2008-07-01Eric DalciCigital
updated Potential_Mitigations, Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Relationships, Other_Notes, Taxonomy_Mappings
2009-03-10CWE Content TeamMITRE
updated Other_Notes
2009-05-27CWE Content TeamMITRE
updated Demonstrative_Examples
2009-07-27CWE Content TeamMITRE
updated Demonstrative_Examples
2011-03-29CWE Content TeamMITRE
updated Demonstrative_Examples
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2011-06-27CWE Content TeamMITRE
updated Common_Consequences
2012-05-11CWE Content TeamMITRE
updated Relationships
2012-10-30CWE Content TeamMITRE
updated Potential_Mitigations
2014-06-23CWE Content TeamMITRE
updated Description, Other_Notes, Potential_Mitigations
2014-07-30CWE Content TeamMITRE
updated Detection_Factors, Relationships, Taxonomy_Mappings
2017-11-08CWE Content TeamMITRE
updated Applicable_Platforms, Name, Relationships, Taxonomy_Mappings
Previous Entry Names
Change DatePrevious Entry Name
2017-11-08Use of Obsolete Functions

More information is available — Please select a different filter.
Page Last Updated: November 14, 2017