CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.14)  
ID

CWE-484: Omitted Break Statement in Switch

Weakness ID: 484
Vulnerability Mapping: ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities
Abstraction: BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product omits a break statement within a switch or similar construct, causing code associated with multiple conditions to execute. This can cause problems when the programmer only intended to execute code associated with one condition.
+ Extended Description
This can lead to critical code executing in situations where it should not.
+ Relationships
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.670Always-Incorrect Control Flow Implementation
ChildOfPillarPillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things.710Improper Adherence to Coding Standards
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Software Development" (CWE-699)
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.438Behavioral Problems
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
PhaseNote
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

C (Undetermined Prevalence)

C++ (Undetermined Prevalence)

Java (Undetermined Prevalence)

C# (Undetermined Prevalence)

PHP (Undetermined Prevalence)

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Other

Technical Impact: Alter Execution Logic

This weakness can cause unintended logic to be executed and other unexpected application behavior.
+ Likelihood Of Exploit
Medium
+ Demonstrative Examples

Example 1

In both of these examples, a message is printed based on the month passed into the function:

(bad code)
Example Language: Java 
public void printMessage(int month){
switch (month) {

case 1: print("January");
case 2: print("February");
case 3: print("March");
case 4: print("April");
case 5: print("May");
case 6: print("June");
case 7: print("July");
case 8: print("August");
case 9: print("September");
case 10: print("October");
case 11: print("November");
case 12: print("December");
}
println(" is a great month");
}
(bad code)
Example Language:
void printMessage(int month){
switch (month) {

case 1: printf("January");
case 2: printf("February");
case 3: printf("March");
case 4: printf("April");
case 5: printff("May");
case 6: printf("June");
case 7: printf("July");
case 8: printf("August");
case 9: printf("September");
case 10: printf("October");
case 11: printf("November");
case 12: printf("December");
}
printf(" is a great month");
}

Both examples do not use a break statement after each case, which leads to unintended fall-through behavior. For example, calling "printMessage(10)" will result in the text "OctoberNovemberDecember is a great month" being printed.

+ Potential Mitigations

Phase: Implementation

Omitting a break statement so that one may fall through is often indistinguishable from an error, and therefore should be avoided. If you need to use fall-through capabilities, make sure that you have clearly documented this within the switch statement, and ensure that you have examined all the logical possibilities.

Phase: Implementation

The functionality of omitting a break statement could be clarified with an if statement. This method is much safer.
+ Weakness Ordinalities
OrdinalityDescription
Primary
(where the weakness exists independent of other weaknesses)
Indirect
(where the weakness is a quality issue that might indirectly make it easier to introduce security-relevant weaknesses or make them more difficult to detect)
+ Detection Methods

White Box

Omission of a break statement might be intentional, in order to support fallthrough. Automated detection methods might therefore be erroneous. Semantic understanding of expected product behavior is required to interpret whether the code is correct.

Black Box

Since this weakness is associated with a code construct, it would be indistinguishable from other errors that produce the same behavior.

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries).884CWE Cross-section
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.962SFP Secondary Cluster: Unchecked Status Condition
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1306CISQ Quality Measures - Reliability
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1307CISQ Quality Measures - Maintainability
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1412Comprehensive Categorization: Poor Coding Practices
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID could be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
CLASPOmitted break statement
Software Fault PatternsSFP4Unchecked Status Condition
+ References
[REF-18] Secure Software, Inc.. "The CLASP Application Security Process". 2005. <https://cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf>.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 7, "Switch Statements", Page 337. 1st Edition. Addison Wesley. 2006.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2006-07-19
(CWE Draft 3, 2006-07-19)
CLASP
+ Modifications
Modification DateModifierOrganization
2008-07-01Eric DalciCigital
updated Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Applicable_Platforms, Description, Detection_Factors, Relationships, Other_Notes, Taxonomy_Mappings
2008-11-24CWE Content TeamMITRE
updated Applicable_Platforms, Demonstrative_Examples, Description, Detection_Factors, Name, Other_Notes, Potential_Mitigations, Weakness_Ordinalities
2011-06-01CWE Content TeamMITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2012-05-11CWE Content TeamMITRE
updated Common_Consequences, References, Relationships, Taxonomy_Mappings
2012-10-30CWE Content TeamMITRE
updated Demonstrative_Examples
2014-07-30CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2017-11-08CWE Content TeamMITRE
updated Demonstrative_Examples, Relationships
2019-01-03CWE Content TeamMITRE
updated Weakness_Ordinalities
2020-02-24CWE Content TeamMITRE
updated References, Relationships
2020-08-20CWE Content TeamMITRE
updated Relationships
2023-01-31CWE Content TeamMITRE
updated Description, Detection_Factors
2023-04-27CWE Content TeamMITRE
updated Detection_Factors, Relationships
2023-06-29CWE Content TeamMITRE
updated Mapping_Notes
2023-10-26CWE Content TeamMITRE
updated Demonstrative_Examples
+ Previous Entry Names
Change DatePrevious Entry Name
2008-11-24Omitted Break Statement
Page Last Updated: February 29, 2024