CWE

Common Weakness Enumeration

A Community-Developed List of Software Weakness Types

CWE/SANS Top 25 Most Dangerous Software Errors
Home > CWE List > CWE- Individual Dictionary Definition (3.0)  
ID

CWE-499: Serializable Class Containing Sensitive Data

Weakness ID: 499
Abstraction: Variant
Structure: Simple
Status: Draft
Presentation Filter:
+ Description
The code contains a class with sensitive data, but the class does not explicitly deny serialization. The data can be accessed by serializing the class through another class.
+ Extended Description
Serializable classes are effectively open classes since data cannot be hidden in them. Classes that do not explicitly deny serialization can be serialized by any other class, which can then in turn use the data stored inside it.
+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfClassClass664Improper Control of a Resource Through its Lifetime
CanPrecedeClassClass200Information Exposure
+ Relevant to the view "Development Concepts" (CWE-699)
NatureTypeIDName
MemberOfCategoryCategory490Mobile Code Issues
CanPrecedeClassClass200Information Exposure
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

PhaseNote
Implementation
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Java: (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Confidentiality

Technical Impact: Read Application Data

an attacker can write out the class to a byte stream, then extract the important data from it.
+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

This code creates a new record for a medical patient:

(bad)
Example Language: Java 
class PatientRecord {
private String name;
private String socialSecurityNum;
public Patient(String name,String ssn) {
this.SetName(name);
this.SetSocialSecurityNumber(ssn);

}

}

This object does not explicitly deny serialization, allowing an attacker to serialize an instance of this object and gain a patient's name and Social Security number even though those fields are private.

+ Potential Mitigations

Phase: Implementation

In Java, explicitly define final writeObject() to prevent serialization. This is the recommended solution. Define the writeObject() function to throw an exception explicitly denying serialization.

Phase: Implementation

Make sure to prevent serialization of your objects.
+ Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
CLASPInformation leak through serialization
CERT Java Secure CodingSER03-JDo not serialize unencrypted, sensitive data
CERT Java Secure CodingSER05-JDo not serialize instances of inner classes
Software Fault PatternsSFP23Exposed Data
+ Content History
Submissions
Submission DateSubmitterOrganizationSource
CLASP
Modifications
Modification DateModifierOrganizationSource
2008-07-01Eric DalciCigital
updated Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Common_Consequences, Description, Relationships, Taxonomy_Mappings
2009-07-27CWE Content TeamMITRE
updated Demonstrative_Examples
2011-06-01CWE Content TeamMITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2012-05-11CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2012-10-30CWE Content TeamMITRE
updated Demonstrative_Examples
2014-07-30CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2017-11-08CWE Content TeamMITRE
updated Relationships
Previous Entry Names
Change DatePrevious Entry Name
2008-04-11Information Leak through Serialization

More information is available — Please select a different filter.
Page Last Updated: November 14, 2017