CWE

Common Weakness Enumeration

A Community-Developed List of Software Weakness Types

CWE/SANS Top 25 Most Dangerous Software Errors
Home > CWE List > CWE- Individual Dictionary Definition (3.0)  
ID

CWE-574: EJB Bad Practices: Use of Synchronization Primitives

Weakness ID: 574
Abstraction: Variant
Structure: Simple
Status: Draft
Presentation Filter:
+ Description
The program violates the Enterprise JavaBeans (EJB) specification by using thread synchronization primitives.
+ Extended Description
The Enterprise JavaBeans specification requires that every bean provider follow a set of programming guidelines designed to ensure that the bean will be portable and behave consistently in any EJB container. In this case, the program violates the following EJB guideline: "An enterprise bean must not use thread synchronization primitives to synchronize execution of multiple instances." The specification justifies this requirement in the following way: "This rule is required to ensure consistent runtime semantics because while some EJB containers may use a single JVM to execute all enterprise bean's instances, others may distribute the instances across multiple JVMs."
+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfBaseBase695Use of Low-Level Functionality
ChildOfBaseBase821Incorrect Synchronization
+ Relevant to the view "Development Concepts" (CWE-699)
NatureTypeIDName
ChildOfBaseBase695Use of Low-Level Functionality
ChildOfBaseBase821Incorrect Synchronization
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

PhaseNote
Architecture and Design
Implementation
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Java (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Other

Technical Impact: Quality Degradation

+ Demonstrative Examples

Example 1

In the following Java example a Customer Entity EJB provides access to customer information in a database for a business application.

(bad code)
Example Language: Java 
@Entity
public class Customer implements Serializable {
private String id;
private String firstName;
private String lastName;
private Address address;

public Customer() {...}

public Customer(String id, String firstName, String lastName) {...}

@Id
public String getCustomerId() {...}

public synchronized void setCustomerId(String id) {...}

public String getFirstName() {...}

public synchronized void setFirstName(String firstName) {...}

public String getLastName() {...}

public synchronized void setLastName(String lastName) {...}

@OneToOne()
public Address getAddress() {...}

public synchronized void setAddress(Address address) {...}

}

However, the customer entity EJB uses the synchronized keyword for the set methods to attempt to provide thread safe synchronization for the member variables. The use of synchronized methods violate the restriction of the EJB specification against the use synchronization primitives within EJBs. Using synchronization primitives may cause inconsistent behavior of the EJB when used within different EJB containers.

+ Potential Mitigations

Phase: Implementation

Do not use Synchronization Primitives when writing EJBs.
+ Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfCategoryCategory1001SFP Secondary Cluster: Use of an Improper API
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
Software Fault PatternsSFP3Use of an improper API
+ Content History
Modifications
Modification DateModifierOrganization
2008-07-01Eric DalciCigital
updated Potential_Mitigations, Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Relationships, Other_Notes
2009-10-29CWE Content TeamMITRE
updated Description, Other_Notes
2010-04-05CWE Content TeamMITRE
updated Demonstrative_Examples
2010-09-27CWE Content TeamMITRE
updated Relationships
2010-12-13CWE Content TeamMITRE
updated Relationships
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2011-06-27CWE Content TeamMITRE
updated Common_Consequences
2012-05-11CWE Content TeamMITRE
updated Relationships
2012-10-30CWE Content TeamMITRE
updated Potential_Mitigations
2014-07-30CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings

More information is available — Please select a different filter.
Page Last Updated: January 18, 2018