CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.15)  
ID

CWE-62: UNIX Hard Link

Weakness ID: 62
Vulnerability Mapping: ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities
Abstraction: VariantVariant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product, when opening a file or directory, does not sufficiently account for when the name is associated with a hard link to a target that is outside of the intended control sphere. This could allow an attacker to cause the product to operate on unauthorized files.
+ Extended Description
Failure for a system to check for hard links can result in vulnerability to different types of attacks. For example, an attacker can escalate their privileges if a file used by a privileged program is replaced with a hard link to a sensitive file (e.g. /etc/passwd). When the process opens the file, the attacker can assume the privileges of that process.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Confidentiality
Integrity

Technical Impact: Read Files or Directories; Modify Files or Directories

+ Potential Mitigations

Phase: Architecture and Design

Strategy: Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software system.

Denying access to a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good compartmentalization in the system to provide protected areas that can be trusted.

+ Relationships
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.59Improper Link Resolution Before File Access ('Link Following')
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
PhaseNote
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

Operating Systems

Class: Unix (Undetermined Prevalence)

+ Observed Examples
ReferenceDescription
Hard link attack, file overwrite; interesting because program checks against soft links
Hard link and possibly symbolic link following vulnerabilities in embedded operating system allow local users to overwrite arbitrary files.
Server creates hard links and unlinks files as root, which allows local users to gain privileges by deleting and overwriting arbitrary files.
Operating system allows local users to conduct a denial of service by creating a hard link from a device special file to a file on an NFS file system.
Web hosting manager follows hard links, which allows local users to read or modify arbitrary files.
Package listing system allows local users to overwrite arbitrary files via a hard link attack on the lockfiles.
The Finder in Mac OS X and earlier allows local users to overwrite arbitrary files and gain privileges by creating a hard link from the .DS_Store file to an arbitrary file.
Hard link race condition
"Zip Slip" vulnerability in Go-based Open Container Initiative (OCI) registries product allows writing arbitrary files outside intended directory via symbolic links or hard links in a gzipped tarball.
setuid root tool allows attackers to read secret data by replacing a temp file with a hard link to a sensitive file
+ Weakness Ordinalities
OrdinalityDescription
Resultant
(where the weakness is typically related to the presence of some other weaknesses)
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.743CERT C Secure Coding Standard (2008) Chapter 10 - Input Output (FIO)
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.877CERT C++ Secure Coding Section 09 - Input Output (FIO)
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.980SFP Secondary Cluster: Link in Resource Name Resolution
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1404Comprehensive Categorization: File Handling
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID could be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
PLOVERUNIX hard link
CERT C Secure CodingFIO05-CIdentify files using multiple file attributes
Software Fault PatternsSFP18Link in resource name resolution
+ References
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 9, "Hard Links", Page 518. 1st Edition. Addison Wesley. 2006.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Modifications
Modification DateModifierOrganization
2008-07-01Eric DalciCigital
updated Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Applicable_Platforms, Relationships, Taxonomy_Mappings, Weakness_Ordinalities
2008-10-14CWE Content TeamMITRE
updated Description
2008-11-24CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2011-09-13CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2012-05-11CWE Content TeamMITRE
updated Observed_Examples, References, Relationships
2012-10-30CWE Content TeamMITRE
updated Potential_Mitigations
2014-07-30CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2017-11-08CWE Content TeamMITRE
updated Applicable_Platforms, Causal_Nature, Observed_Examples, Relationships, Taxonomy_Mappings
2020-02-24CWE Content TeamMITRE
updated Relationships
2022-04-28CWE Content TeamMITRE
updated Research_Gaps
2022-10-13CWE Content TeamMITRE
updated Observed_Examples
2023-01-31CWE Content TeamMITRE
updated Description
2023-04-27CWE Content TeamMITRE
updated Relationships
2023-06-29CWE Content TeamMITRE
updated Mapping_Notes
2023-10-26CWE Content TeamMITRE
updated Observed_Examples
2024-07-16
(CWE 4.15, 2024-07-16)
CWE Content TeamMITRE
updated Observed_Examples
Page Last Updated: July 16, 2024