Common Weakness Enumeration

A Community-Developed List of Software Weakness Types

CWE/SANS Top 25 Most Dangerous Software Errors
Home > CWE List > CWE- Individual Dictionary Definition (3.0)  

CWE-673: External Influence of Sphere Definition

Weakness ID: 673
Abstraction: Class
Structure: Simple
Status: Draft
Presentation Filter:
+ Description
The product does not prevent the definition of control spheres from external actors.
+ Extended Description
Typically, a product defines its control sphere within the code itself, or through configuration by the product's administrator. In some cases, an external party can change the definition of the control sphere. This is typically a resultant weakness.
+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
ChildOfClassClass664Improper Control of a Resource Through its Lifetime
ParentOfCompositeComposite426Untrusted Search Path
+ Relevant to the view "Architectural Concepts" (CWE-1008)
MemberOfCategoryCategory1011Authorize Actors
+ Relevant to the view "Development Concepts" (CWE-699)
MemberOfCategoryCategory3617PK - Time and State
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

Architecture and Design
ImplementationREALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.


Technical Impact: Other

+ Demonstrative Examples

Example 1

Consider a blog publishing tool, which might have three explicit control spheres: the creation of articles, only accessible to a "publisher;" commenting on articles, only accessible to a "commenter" who is a registered user; and reading articles, only accessible to an anonymous reader. Suppose that the application is deployed on a web server that is shared with untrusted parties. If a local user can modify the data files that define who a publisher is, then this user has modified the control sphere. In this case, the issue would be resultant from another weakness such as insufficient permissions.

Example 2

In Untrusted Search Path (CWE-426), a user might be able to define the PATH environment variable to cause the product to search in the wrong directory for a library to load. The product's intended sphere of control would include "resources that are only modifiable by the person who installed the product." The PATH effectively changes the definition of this sphere so that it overlaps the attacker's sphere of control.

+ Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
MemberOfCategoryCategory991SFP Secondary Cluster: Tainted Input to Environment
+ Notes


A "control sphere" is a set of resources and behaviors that are accessible to a single actor, or a group of actors. A product's security model will typically define multiple spheres, possibly implicitly. For example, a server might define one sphere for "administrators" who can create new user accounts with subdirectories under /home/server/, and a second sphere might cover the set of users who can create or delete files within their own subdirectories. A third sphere might be "users who are authenticated to the operating system on which the product is installed." Each sphere has different sets of actors and allowable behaviors.
+ Content History
Modification DateModifierOrganization
2008-07-01Eric DalciCigital
updated Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Description, Relationships, Other_Notes
2009-10-29CWE Content TeamMITRE
updated Other_Notes, Theoretical_Notes
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2012-05-11CWE Content TeamMITRE
updated Relationships
2013-02-21CWE Content TeamMITRE
updated Relationships
2014-07-30CWE Content TeamMITRE
updated Relationships
2017-11-08CWE Content TeamMITRE
updated Modes_of_Introduction, Relationships, Relevant_Properties

More information is available — Please select a different filter.
Page Last Updated: January 18, 2018