CWE

Common Weakness Enumeration

A Community-Developed List of Software Weakness Types

CWE/SANS Top 25 Most Dangerous Software Errors
Home > CWE List > CWE- Individual Dictionary Definition (3.0)  
ID

CWE-924: Improper Enforcement of Message Integrity During Transmission in a Communication Channel

Weakness ID: 924
Abstraction: Class
Structure: Simple
Status: Incomplete
Presentation Filter:
+ Description
The software establishes a communication channel with an endpoint and receives a message from that endpoint, but it does not sufficiently ensure that the message was not modified during transmission.
+ Extended Description
A man-in-the-middle (MITM) attacker might be able to modify the message and spoof the endpoint.
+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfClassClass345Insufficient Verification of Data Authenticity
+ Relevant to the view "Architectural Concepts" (CWE-1008)
NatureTypeIDName
MemberOfCategoryCategory1020Verify Message Integrity
+ Relevant to the view "Development Concepts" (CWE-699)
NatureTypeIDName
ChildOfClassClass345Insufficient Verification of Data Authenticity
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

PhaseNote
Architecture and DesignREALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

(Language-Independent classes): (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Integrity
Confidentiality

Technical Impact: Gain Privileges or Assume Identity

If an attackers can spoof the endpoint, the attacker gains all the privileges that were intended for the original endpoint.
+ Notes

Maintenance

This entry will be made more comprehensive in later CWE versions.
+ Content History
Submissions
Submission DateSubmitterOrganizationSource
2013-06-23CWE Content TeamMITRE
Modifications
Modification DateModifierOrganizationSource
2017-11-08CWE Content TeamMITRE
updated Modes_of_Introduction, Relationships

More information is available — Please select a different filter.
Page Last Updated: November 14, 2017