CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-1041: Use of Redundant Code (4.16)  
ID

CWE-1041: Use of Redundant Code

Weakness ID: 1041
Vulnerability Mapping: PROHIBITED This CWE ID must not be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product has multiple functions, methods, procedures, macros, etc. that contain the same code.
+ Extended Description

This issue makes it more difficult to maintain the product, which indirectly affects security by making it more difficult or time-consuming to find and/or fix vulnerabilities. For example, if there are two copies of the same code, the programmer might fix a weakness in one copy while forgetting to fix the same weakness in another copy.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Other

Technical Impact: Reduce Maintainability

+ Potential Mitigations

Phase: Implementation

Merge common functionality into a single function and then call that function from across the entire code base.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 710 Improper Adherence to Coding Standards
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Software Development" (CWE-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1006 Bad Coding Practices
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Demonstrative Examples

Example 1

In the following Java example the code performs some complex math when specific test conditions are met. The math is the same in each case and the equations are repeated within the code. Unfortunately if a future change needs to be made then that change needs to be made in all locations. This opens the door to mistakes being made and the changes not being made in the same way in each instance.

(bad code)
Example Language: Java 
public class Main {
public static void main(String[] args) {
double s = 10.0;
double r = 1.0;
double pi = 3.14159;
double surface_area;

if(r > 0.0) {
// complex math equations
surface_area = pi * r * s + pi * Math.pow(r, 2);

}

if(r > 1.0) {
// a complex set of math
surface_area = pi * r * s + pi * Math.pow(r, 2);

}

}


}

It is recommended to place the complex math into its own function and then call that function whenever necessary.

(good code)
Example Language: Java 
public class Main {
private double ComplexMath(double r, double s) {
//complex math equations
double pi = Math.PI;
double surface_area = pi * r * s + pi * Math.pow(r, 2);
return surface_area;

}

public static void main(String[] args) {
double s = 10.0;
double r = 1.0;
double surface_area;

if(r > 0.0) {
surface_area = ComplexMath(r, s);

}

if(r > 1.0) {
surface_area = ComplexMath(r, s);

}

}


}

+ Weakness Ordinalities
Ordinality Description
Indirect
(where the weakness is a quality issue that might indirectly make it easier to introduce security-relevant weaknesses or make them more difficult to detect)
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1130 CISQ Quality Measures (2016) - Maintainability
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1307 CISQ Quality Measures - Maintainability
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1412 Comprehensive Categorization: Poor Coding Practices
+ Vulnerability Mapping Notes

Usage: PROHIBITED

(this CWE ID must not be used to map to real-world vulnerabilities)

Reason: Other

Rationale:

This entry is primarily a quality issue with no direct security implications.

Comments:

Look for weaknesses that are focused specifically on insecure behaviors that have more direct security implications.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OMG ASCMM ASCMM-MNT-19
+ References
[REF-960] Object Management Group (OMG). "Automated Source Code Maintainability Measure (ASCMM)". ASCMM-MNT-19. 2016-01. <https://www.omg.org/spec/ASCMM/>. URL validated: 2023-04-07.
+ Content History
+ Submissions
Submission Date Submitter Organization
2018-07-02
(CWE 3.2, 2019-01-03)
CWE Content Team MITRE
Entry derived from Common Quality Enumeration (CQE) Draft 0.9.
+ Contributions
Contribution Date Contributor Organization
2022-08-15 Drew Buttner MITRE
Suggested new demonstrative examples, mitigations, and applicable platforms.
+ Modifications
Modification Date Modifier Organization
2020-08-20 CWE Content Team MITRE
updated Relationships
2022-10-13 CWE Content Team MITRE
updated Applicable_Platforms, Demonstrative_Examples, Potential_Mitigations
2023-01-31 CWE Content Team MITRE
updated Description
2023-04-27 CWE Content Team MITRE
updated References, Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Mapping_Notes
Page Last Updated: November 19, 2024