CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-1190: DMA Device Enabled Too Early in Boot Phase (4.16)  
ID

CWE-1190: DMA Device Enabled Too Early in Boot Phase

Weakness ID: 1190
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product enables a Direct Memory Access (DMA) capable device before the security configuration settings are established, which allows an attacker to extract data from or gain privileges on the product.
+ Extended Description

DMA is included in a number of devices because it allows data transfer between the computer and the connected device, using direct hardware access to read or write directly to main memory without any OS interaction. An attacker could exploit this to access secrets. Several virtualization-based mitigations have been introduced to thwart DMA attacks. These are usually configured/setup during boot time. However, certain IPs that are powered up before boot is complete (known as early boot IPs) may be DMA capable. Such IPs, if not trusted, could launch DMA attacks and gain access to assets that should otherwise be protected.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Access Control

Technical Impact: Bypass Protection Mechanism; Modify Memory

DMA devices have direct write access to main memory and due to time of attack will be able to bypass OS or Bootloader access control.
High
+ Potential Mitigations

Phase: Architecture and Design

Utilize an IOMMU to orchestrate IO access from the start of the boot process.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 696 Incorrect Behavior Order
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Hardware Design" (CWE-1194)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1196 Security Flow Issues
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

Technologies

Class: System on Chip (Undetermined Prevalence)

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1410 Comprehensive Categorization: Insufficient Control Flow Management
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ References
[REF-1038] "DMA attack". 2019-10-19. <https://en.wikipedia.org/wiki/DMA_attack>.
[REF-1039] A. Theodore Markettos, Colin Rothwell, Brett F. Gutstein, Allison Pearce, Peter G. Neumann, Simon W. Moore and Robert N. M. Watson. "Thunderclap: Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from Untrustworthy Peripherals". 2019-02-25. <https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_05A-1_Markettos_paper.pdf>.
[REF-1040] Maximillian Dornseif, Michael Becher and Christian N. Klein. "FireWire all your memory are belong to us". 2005. <http://www.orkspace.net/secdocs/Conferences/CanSecWest/2005/0wn3d%20by%20an%20iPod%20-%20Firewire1394%20Issues.pdf>. URL validated: 2023-04-07.
[REF-1041] Rory Breuk, Albert Spruyt and Adam Boileau. "Integrating DMA attacks in exploitation frameworks". 2012-02-20. <https://www.os3.nl/_media/2011-2012/courses/rp1/p14_report.pdf>.
[REF-1042] Maximillian Dornseif. "Owned by an iPod". 2004. <https://web.archive.org/web/20060505224959/https://pacsec.jp/psj04/psj04-dornseif-e.ppt>. URL validated: 2023-04-07.
[REF-1044] Dmytro Oleksiuk. "My aimful life". 2015-09-12. <http://blog.cr4.sh/2015/09/breaking-uefi-security-with-software.html>.
[REF-1046] A. Theodore Markettos and Adam Boileau. "Hit by a Bus:Physical Access Attacks with Firewire". 2006. <https://security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf>.
+ Content History
+ Submissions
Submission Date Submitter Organization
2019-10-15
(CWE 4.0, 2020-02-24)
Arun Kanuparthi, Hareesh Khattri, Parbati Kumar Manna, Narasimha Kumar V Mangipudi Intel Corporation
+ Modifications
Modification Date Modifier Organization
2020-08-20 CWE Content Team MITRE
updated Related_Attack_Patterns
2023-04-27 CWE Content Team MITRE
updated References, Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
Page Last Updated: November 19, 2024