CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-1248: Semiconductor Defects in Hardware Logic with Security-Sensitive Implications (4.16)  
ID

CWE-1248: Semiconductor Defects in Hardware Logic with Security-Sensitive Implications

Weakness ID: 1248
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The security-sensitive hardware module contains semiconductor defects.
+ Extended Description

A semiconductor device can fail for various reasons. While some are manufacturing and packaging defects, the rest are due to prolonged use or usage under extreme conditions. Some mechanisms that lead to semiconductor defects include encapsulation failure, die-attach failure, wire-bond failure, bulk-silicon defects, oxide-layer faults, aluminum-metal faults (including electromigration, corrosion of aluminum, etc.), and thermal/electrical stress. These defects manifest as faults on chip-internal signals or registers, have the effect of inputs, outputs, or intermediate signals being always 0 or always 1, and do not switch as expected. If such faults occur in security-sensitive hardware modules, the security objectives of the hardware module may be compromised.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Availability
Access Control

Technical Impact: DoS: Instability

+ Potential Mitigations

Phase: Testing

While semiconductor-manufacturing companies implement several mechanisms to continuously improve the semiconductor manufacturing process to ensure reduction of defects, some defects can only be fixed after manufacturing. Post-manufacturing testing of silicon die is critical. Fault models such as stuck-at-0 or stuck-at-1 must be used to develop post-manufacturing test cases and achieve good coverage. Once the silicon packaging is done, extensive post-silicon testing must be performed to ensure that hardware logic implementing security functionalities is defect-free.

Phase: Operation

Operating the hardware outside device specification, such as at extremely high temperatures, voltage, etc., accelerates semiconductor degradation and results in defects. When these defects manifest as faults in security-critical, hardware modules, it results in compromise of security guarantees. Thus, operating the device within the specification is important.

+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 693 Protection Mechanism Failure
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Hardware Design" (CWE-1194)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1195 Manufacturing and Life Cycle Management Concerns
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1206 Power, Clock, Thermal, and Reset Concerns
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1388 Physical Access Issues and Concerns
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Manufacturing May be introduced due to issues in the manufacturing environment or improper handling of components, for example.
Operation May be introduced by improper handling or usage outside of rated operating environments (temperature, humidity, etc.)
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

Operating Systems

Class: Not OS-Specific (Undetermined Prevalence)

Architectures

Class: Not Architecture-Specific (Undetermined Prevalence)

Technologies

Class: Not Technology-Specific (Undetermined Prevalence)

+ Demonstrative Examples

Example 1

The network-on-chip implements a firewall for access control to peripherals from all IP cores capable of mastering transactions.

(bad code)
Example Language: Other 
A manufacturing defect in this logic manifests itself as a logical fault, which always sets the output of the filter to "allow" access.

Post-manufacture testing must be performed to ensure that hardware logic implementing security functionalities is defect-free.


+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1413 Comprehensive Categorization: Protection Mechanism Failure
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ References
[REF-1067] Brian Bailey. "Why Chips Die". <https://semiengineering.com/why-chips-die/>.
[REF-1068] V. Lakshminarayan. "What causes semiconductor devices to fail". <Original>. URL validated: 2023-04-07.
+ Content History
+ Submissions
Submission Date Submitter Organization
2020-02-12
(CWE 4.0, 2020-02-24)
Arun Kanuparthi, Hareesh Khattri, Parbati Kumar Manna, Narasimha Kumar V Mangipudi Intel Corporation
+ Modifications
Modification Date Modifier Organization
2020-08-20 CWE Content Team MITRE
updated Modes_of_Introduction, Related_Attack_Patterns
2022-06-28 CWE Content Team MITRE
updated Relationships
2023-01-31 CWE Content Team MITRE
updated Related_Attack_Patterns, Relationships
2023-04-27 CWE Content Team MITRE
updated Description, References, Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
Page Last Updated: November 19, 2024