CWE-1256: Improper Restriction of Software Interfaces to Hardware Features
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product provides software-controllable
device functionality for capabilities such as power and
clock management, but it does not properly limit
functionality that can lead to modification of
hardware memory or register bits, or the ability to
observe physical side channels.
It is frequently assumed that physical attacks such as fault injection and side-channel analysis require an attacker to have physical access to the target device. This assumption may be false if the device has improperly secured power management features, or similar features. For mobile devices, minimizing power consumption is critical, but these devices run a wide variety of applications with different performance requirements. Software-controllable mechanisms to dynamically scale device voltage and frequency and monitor power consumption are common features in today's chipsets, but they also enable attackers to mount fault injection and side-channel attacks without having physical access to the device. Fault injection attacks involve strategic manipulation of bits in a device to achieve a desired effect such as skipping an authentication step, elevating privileges, or altering the output of a cryptographic operation. Manipulation of the device clock and voltage supply is a well-known technique to inject faults and is cheap to implement with physical device access. Poorly protected power management features allow these attacks to be performed from software. Other features, such as the ability to write repeatedly to DRAM at a rapid rate from unprivileged software, can result in bit flips in other memory locations (Rowhammer, [REF-1083]). Side channel analysis requires gathering measurement traces of physical quantities such as power consumption. Modern processors often include power metering capabilities in the hardware itself (e.g., Intel RAPL) which if not adequately protected enable attackers to gather measurements necessary for performing side-channel attacks from software. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: Not Technology-Specific (Undetermined Prevalence) Memory Hardware (Undetermined Prevalence) Power Management Hardware (Undetermined Prevalence) Clock/Counter Hardware (Undetermined Prevalence) Example 1 This example considers the Rowhammer problem [REF-1083]. The Rowhammer issue was caused by a program in a tight loop writing repeatedly to a location to which the program was allowed to write but causing an adjacent memory location value to change. (bad code)
Example Language: Other
Continuously writing the same value to the same address causes the value of an adjacent location to change value.
Preventing the loop required to defeat the Rowhammer exploit is not always possible: (good code)
Example Language: Other
Redesign the RAM devices to reduce inter capacitive coupling making the Rowhammer exploit impossible.
While the redesign may be possible for new devices, a redesign is not possible in existing devices. There is also the possibility that reducing capacitance with a relayout would impact the density of the device resulting in a less capable, more costly device. Example 2 Suppose a hardware design implements a set of software-accessible registers for scaling clock frequency and voltage but does not control access to these registers. Attackers may cause register and memory changes and race conditions by changing the clock or voltage of the device under their control. Example 3 Consider the following SoC design. Security-critical settings for scaling clock frequency and voltage are available in a range of registers bounded by [PRIV_END_ADDR : PRIV_START_ADDR] in the tmcu.csr module in the HW Root of Trust. These values are writable based on the lock_bit register in the same module. The lock_bit is only writable by privileged software running on the tmcu. We assume that untrusted software running on any of the Core{0-N} processors has access to the input and output ports of the hrot_iface. If untrusted software can clear the lock_bit or write the clock frequency and voltage registers due to inadequate protection, a fault injection attack could be performed.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2024, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |