CWE-1261: Improper Handling of Single Event Upsets
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterTechnology trends such as CMOS-transistor down-sizing, use of new materials, and system-on-chip architectures continue to increase the sensitivity of systems to soft errors. These errors are random, and their causes might be internal (e.g., interconnect coupling) or external (e.g., cosmic radiation). These soft errors are not permanent in nature and cause temporary bit flips known as single-event upsets (SEUs). SEUs are induced errors in circuits caused when charged particles lose energy by ionizing the medium through which they pass, leaving behind a wake of electron-hole pairs that cause temporary failures. If these failures occur in security-sensitive modules in a chip, it might compromise the security guarantees of the chip. For instance, these temporary failures could be bit flips that change the privilege of a regular user to root. ![]()
![]() ![]()
![]() ![]()
![]()
![]() Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: Not Technology-Specific (Undetermined Prevalence) Example 1 This is an example from [REF-1089]. See the reference for full details of this issue. Parity is error detecting but not error correcting. (bad code)
Example Language: Other
Due to single-event upsets, bits are flipped in memories. As a result, memory-parity checks fail, which results in restart and a temporary denial of service of two to three minutes.
(good code)
Example Language: Other
Using error-correcting codes could have avoided the restart caused by SEUs.
Example 2 In 2016, a security researcher, who was also a patient using a pacemaker, was on an airplane when a bit flip occurred in the pacemaker, likely due to the higher prevalence of cosmic radiation at such heights. The pacemaker was designed to account for bit flips and went into a default safe mode, which still forced the patient to go to a hospital to get it reset. The bit flip also inadvertently enabled the researcher to access the crash file, perform reverse engineering, and detect a hard-coded key. [REF-1101] ![]()
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |