Home > CWE List > CWE-1279: Cryptographic Operations are run Before Supporting Units are Ready (4.16) |
|
CWE-1279: Cryptographic Operations are run Before Supporting Units are Ready
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterPerforming cryptographic operations without ensuring that the supporting inputs are ready to supply valid data may compromise the cryptographic result.
Many cryptographic hardware units depend upon other hardware units to supply information to them to produce a securely encrypted result. For example, a cryptographic unit that depends on an external random-number-generator (RNG) unit for entropy must wait until the RNG unit is producing random numbers. If a cryptographic unit retrieves a private encryption key from a fuse unit, the fuse unit must be up and running before a key may be supplied.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Verilog (Undetermined Prevalence) VHDL (Undetermined Prevalence) Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Processor Hardware (Undetermined Prevalence) Class: Not Technology-Specific (Undetermined Prevalence) Example 1 The following pseudocode illustrates the weak encryption resulting from the use of a pseudo-random-number generator output. (bad code)
Example Language: Pseudocode
If random_number_generator_self_test_passed() == TRUE
then Seed = get_random_number_from_RNG() else Seed = hardcoded_number In the example above, first a check of RNG ready is performed. If the check fails, the RNG is ignored and a hard coded value is used instead. The hard coded value severely weakens the encrypted output. (good code)
Example Language: Pseudocode
If random_number_generator_self_test_passed() == TRUE
then Seed = get_random_number_from_RNG() else enter_error_state()
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |