CWE

Common Weakness Enumeration

A Community-Developed List of Software & Hardware Weakness Types

New to CWE? click here!
2021 CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.11)  
ID

CWE-1281: Sequence of Processor Instructions Leads to Unexpected Behavior

Weakness ID: 1281
Abstraction: Base
Structure: Simple
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
Specific combinations of processor instructions lead to undesirable behavior such as locking the processor until a hard reset performed.
+ Extended Description

If the instruction set architecture (ISA) and processor logic are not designed carefully and tested thoroughly, certain combinations of instructions may lead to locking the processor or other unexpected and undesirable behavior. Upon encountering unimplemented instruction opcodes or illegal instruction operands, the processor should throw an exception and carry on without negatively impacting security. However, specific combinations of legal and illegal instructions may cause unexpected behavior with security implications such as allowing unprivileged programs to completely lock the CPU.

+ Relationships
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfPillarPillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things.691Insufficient Control Flow Management
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Hardware Design" (CWE-1194)
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1201Core and Compute Issues
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
PhaseNote
Architecture and DesignUnexpected behavior from certain instruction combinations can arise from bugs in the ISA
ImplementationUnexpected behavior from certain instruction combinations can arise because of implementation details such as speculative execution, caching etc.
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

Operating Systems

Class: Not OS-Specific (Undetermined Prevalence)

Architectures

Class: Not Architecture-Specific (Undetermined Prevalence)

Technologies

Class: Not Technology-Specific (Undetermined Prevalence)

Processor Hardware (Undetermined Prevalence)

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Integrity
Availability

Technical Impact: Varies by Context

+ Demonstrative Examples

Example 1

The Pentium F00F bug is a real-world example of how a sequence of instructions can lock a processor. The "cmpxchg8b" instruction compares contents of registers with a memory location. The operand is expected to be a memory location, but in the bad code snippet it is the eax register. Because the specified operand is illegal, an exception is generated, which is the correct behavior and not a security issue in itself. However, when prefixed with the "lock" instruction, the processor deadlocks because locked memory transactions require a read and write pair of transactions to occur before the lock on the memory bus is released. The exception causes a read to occur but there is no corresponding write, as there would have been if a legal operand had been supplied to the cmpxchg8b instruction. [REF-1331]

(bad code)
Example Language: x86 Assembly 
lock cmpxchg8b eax

Example 2

The Cyrix Coma bug was capable of trapping a Cyrix 6x86, 6x86L, or 6x86MX processor in an infinite loop. An infinite loop on a processor is not necessarily an issue on its own, as interrupts could stop the loop. However, on select Cyrix processors, the x86 Assembly 'xchg' instruction was designed to prevent interrupts. On these processors, if the loop was such that a new 'xchg' instruction entered the instruction pipeline before the previous one exited, the processor would become deadlocked. [REF-1323]

Example 3

The Motorola MC6800 microprocessor contained the first documented instance of a Halt and Catch Fire instruction - an instruction that causes the normal function of a processor to stop. If the MC6800 was given the opcode 0x9D or 0xDD, the processor would begin to read all memory very quickly, in sequence, and without executing any other instructions. This will cause the processor to become unresponsive to anything but a hard reset. [REF-1324]

+ Observed Examples
ReferenceDescription
A bug in some Intel Pentium processors allow DoS (hang) via an invalid "CMPXCHG8B" instruction, causing a deadlock
+ Potential Mitigations

Phase: Testing

Implement a rigorous testing strategy that incorporates randomization to explore instruction sequences that are unlikely to appear in normal workloads in order to identify halt and catch fire instruction sequences.

Phase: Patching and Maintenance

Patch operating system to avoid running Halt and Catch Fire type sequences or to mitigate the damage caused by unexpected behavior. See [REF-1108].
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1410Comprehensive Categorization: Insufficient Control Flow Management
+ References
[REF-1108] Intel Corporation. "Deep Dive: Retpoline: A Branch Target Injection Mitigation". <https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/overview.html>. URL validated: 2023-04-07.
[REF-1323] "Cyrix coma bug". Wikipedia. 2006-03-22. <https://en.wikipedia.org/wiki/Cyrix_coma_bug>.
[REF-1324] Gary Wheeler. "Undocumented M6800 Instructions". 1977-12. <https://spivey.oriel.ox.ac.uk/wiki/images-corner/1/1a/Undoc6800.pdf>. URL validated: 2023-04-20.
[REF-1331] Robert R. Collins. "The Pentium F00F Bug". 1998-05-01. <https://www.drdobbs.com/embedded-systems/the-pentium-f00f-bug/184410555>. URL validated: 2023-04-25.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2020-05-15Nicole FernTortuga Logic
+ Modifications
Modification DateModifierOrganization
2020-08-20CWE Content TeamMITRE
updated Related_Attack_Patterns
2021-03-15CWE Content TeamMITRE
updated Potential_Mitigations
2021-07-20CWE Content TeamMITRE
updated Name, Observed_Examples
2022-10-13CWE Content TeamMITRE
updated Applicable_Platforms, Demonstrative_Examples
2023-04-27CWE Content TeamMITRE
updated Demonstrative_Examples, Description, References, Relationships
+ Previous Entry Names
Change DatePrevious Entry Name
2021-07-20Sequence of Processor Instructions Leads to Unexpected Behavior (Halt and Catch Fire)
Page Last Updated: April 27, 2023