CWE-1290: Incorrect Decoding of Security Identifiers
Weakness ID: 1290
Abstraction: Base Structure: Simple
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.For users who wish to see all available information for the CWE/CAPEC entry.For users who want to customize what details are displayed.
×
Edit Custom Filter
Description
The product implements a decoding mechanism to decode certain bus-transaction signals to security identifiers. If the decoding is implemented incorrectly, then untrusted agents can now gain unauthorized access to the asset.
Extended Description
In a System-On-Chip (SoC), various integrated circuits and hardware engines generate transactions such as to access (reads/writes) assets or perform certain actions (e.g., reset, fetch, compute, etc.). Among various types of message information, a typical transaction is comprised of source identity (to identify the originator of the transaction) and a destination identity (to route the transaction to the respective entity). Sometimes the transactions are qualified with a security identifier. The security identifier helps the destination agent decide on the set of allowed actions (e.g., access an asset for read and writes). A decoder decodes the bus transactions to map security identifiers into necessary access-controls/protections.
A common weakness that can exist in this scenario is incorrect decoding because an untrusted agent's security identifier is decoded into a trusted agent's security identifier. Thus, an untrusted agent previously without access to an asset can now gain access to the asset.
Relationships
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Hardware Design" (CWE-1194)
Nature
Type
ID
Name
ChildOf
Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase
Note
Implementation
Architecture and Design
Applicable Platforms
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages
Class: Not Language-Specific (Undetermined Prevalence)
Operating Systems
Class: Not OS-Specific (Undetermined Prevalence)
Architectures
Class: Not Architecture-Specific (Undetermined Prevalence)
Technologies
Bus/Interface Hardware (Undetermined Prevalence)
Class: Not Technology-Specific (Undetermined Prevalence)
Common Consequences
This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope
Impact
Likelihood
Confidentiality Integrity Availability Access Control
Technical Impact: Modify Memory; Read Memory; DoS: Resource Consumption (Other); Execute Unauthorized Code or Commands; Gain Privileges or Assume Identity; Quality Degradation
High
Demonstrative Examples
Example 1
Consider a system that has four bus masters and a decoder. The decoder is supposed to decode every bus transaction and assign a corresponding security identifier. The security identifier is used to determine accesses to the assets. The bus transaction that contains the security information is Bus_transaction [15:14], and the bits 15 through 14 contain the security identifier information. The table below provides bus masters as well as their security identifiers and trust assumptions:
Bus Master
Security Identifier Decoding
Trust Assumptions
Master_0
"00"
Untrusted
Master_1
"01"
Trusted
Master_2
"10"
Untrusted
Master_3
"11"
Untrusted
The assets are the AES-Key registers for encryption or decryption. The key is 128 bits implemented as a set of four 32-bit registers. The AES_KEY_ACCESS_POLICY is used to define which agents with a security identifier in the transaction can access the AES-key registers. The size of the security identifier is 4 bits (i.e., bit 3 through 0). Each bit in these 4 bits defines a security identifier. There are only 4 security identifiers that are allowed accesses to the AES-key registers. The number of the bit when set (i.e., "1") allows respective action from an agent whose identity matches the number of the bit. If clear (i.e., "0"), disallows the respective action to that corresponding agent.
Register
Field description
AES_ENC_DEC_KEY_0
AES key [0:31] for encryption or decryption Default 0x00000000
AES_ENC_DEC_KEY_1
AES key [32:63] for encryption or decryption Default 0x00000000
AES_ENC_DEC_KEY_2
AES key [64:95] for encryption or decryption Default 0x00000000
AES_ENC_DEC_KEY_3
AES key [96:127] for encryption or decryption Default 0x00000000
AES_KEY_ACCESS_POLCY
[31:4] Default 0x00000000 [3:0]-0x01 agent with Security Identified "1" has access to AES_ENC_DEC_KEY_0 through AES_ENC_DEC_KEY_3 registers
The following Pseudo code outlines the process of checking the value of the Security Identifier within the AES_KEY_ACCESS_POLICY register:
(informative)
Example Language: Other
If (AES_KEY_ACCESS_POLICY[Security_Identifier] == "1")
Allow access to AES-Key registers
Else
Deny access to AES-Key registers
Below is a decoder's Pseudo code that only checks for bit [14] of the bus transaction to determine what Security Identifier it must assign.
(bad code)
Example Language: Other
If (Bus_transaction[14] == "1")
Security_Identifier == "1"
Else
Security_Identifier == "0"
The security identifier is two bits, but the decoder code above only checks the value of one bit. Two Masters have their bit 0 set to "1" - Master_1 and Master_3. Master_1 is trusted, while Master_3 is not. The code above would therefore allow an untrusted agent, Master_3, access to the AES-Key registers in addition to intended trusted Master_1.
The decoder should check for the entire size of the security identifier in the bus-transaction signal to assign a corresponding security identifier. The following is good Pseudo code:
(good code)
Example Language: Other
If (Bus_transaction[15:14] == "00")
Security_Identifier == "0"
If (Bus_transaction[15:14] == "01")
Security_Identifier == "1"
If (Bus_transaction[15:14] == "10")
Security_Identifier == "2"
If (Bus_transaction[15:14] == "11")
Security_Identifier == "3"
Potential Mitigations
Phase: Architecture and Design
Security identifier decoders must be reviewed for design consistency and common weaknesses.
Phase: Implementation
Access and programming flows must be tested in pre-silicon and post-silicon testing in order to check for this weakness.
Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.