CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.15)  
ID

CWE-1310: Missing Ability to Patch ROM Code

Weakness ID: 1310
Vulnerability Mapping: ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities
Abstraction: BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
Missing an ability to patch ROM code may leave a System or System-on-Chip (SoC) in a vulnerable state.
+ Extended Description

A System or System-on-Chip (SoC) that implements a boot process utilizing security mechanisms such as Root-of-Trust (RoT) typically starts by executing code from a Read-only-Memory (ROM) component. The code in ROM is immutable, hence any security vulnerabilities discovered in the ROM code can never be fixed for the systems that are already in use.

A common weakness is that the ROM does not have the ability to patch if security vulnerabilities are uncovered after the system gets shipped. This leaves the system in a vulnerable state where an adversary can compromise the SoC.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Other

Technical Impact: Varies by Context; Reduce Maintainability

When the system is unable to be patched, it can be left in a vulnerable state.
High
+ Potential Mitigations

Phases: Architecture and Design; Implementation

Secure patch support to allow ROM code to be patched on the next boot.

Effectiveness: Moderate

Note: Some parts of the hardware initialization or signature verification done to authenticate patches will always be "not patchable."

Phases: Architecture and Design; Implementation

Support patches that can be programmed in-field or during manufacturing through hardware fuses. This feature can be used for limited patching of devices after shipping, or for the next batch of silicon devices manufactured, without changing the full device ROM.

Effectiveness: Moderate

Note: Patches that use hardware fuses will have limitations in terms of size and the number of patches that can be supported. Note that some parts of the hardware initialization or signature verification done to authenticate patches will always be "not patchable."
+ Relationships
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.1329Reliance on Component That is Not Updateable
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Hardware Design" (CWE-1194)
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1196Security Flow Issues
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
PhaseNote
Architecture and DesignThis issue could be introduced during hardware architecture and design and can be identified later during Testing.
ImplementationThis issue could be introduced during implementation and can be identified later during Testing.
IntegrationThis issue could be introduced during integration and can be identified later during Testing.
ManufacturingThis issue could be introduced during manufacturing and can be identified later during Testing.
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

Operating Systems

Class: Not OS-Specific (Undetermined Prevalence)

Architectures

Class: Not Architecture-Specific (Undetermined Prevalence)

Technologies

Class: System on Chip (Undetermined Prevalence)

+ Demonstrative Examples

Example 1

A System-on-Chip (SOC) implements a Root-of-Trust (RoT) in ROM to boot secure code. However, at times this ROM code might have security vulnerabilities and need to be patched. Since ROM is immutable, it can be impossible to patch.

ROM does not have built-in application-programming interfaces (APIs) to patch if the code is vulnerable. Implement mechanisms to patch the vulnerable ROM code.


Example 2

The example code is taken from the SoC peripheral wrapper inside the buggy OpenPiton SoC of HACK@DAC'21. The wrapper is used for connecting the communications between SoC peripherals, such as crypto-engines, direct memory access (DMA), reset controllers, JTAG, etc. The secure implementation of the SoC wrapper should allow users to boot from a ROM for Linux (i_bootrom_linux) or from a patchable ROM (i_bootrom_patch) if the Linux bootrom has security or functional issues.The example code is taken from the SoC peripheral wrapper inside the buggy OpenPiton SoC of HACK@DAC'21. The wrapper is used for connecting the communications between SoC peripherals, such as crypto-engines, direct memory access (DMA), reset controllers, JTAG, etc. The secure implementation of the SoC wrapper should allow users to boot from a ROM for Linux (i_bootrom_linux) or from a patchable ROM (i_bootrom_patch) if the Linux bootrom has security or functional issues.

(bad code)
Example Language: Verilog 

...
bootrom i_bootrom_patch (
.clk_i ,
.req_i ( rom_req ),
.addr_i ( rom_addr ),
.rdata_o ( rom_rdata_patch )
);
bootrom_linux i_bootrom_linux (
.clk_i ,
.req_i ( rom_req ),
.addr_i ( rom_addr ),
.rdata_o ( rom_rdata_linux )
);
assign rom_rdata = (ariane_boot_sel_i) ? rom_rdata_linux : rom_rdata_linux;
...

The above implementation causes the ROM data to be hardcoded for the linux system (rom_rdata_linux) regardless of the value of ariane_boot_sel_i. Therefore, the data (rom_rdata_patch) from the patchable ROM code is never used [REF-1396].

This weakness disables the ROM's ability to be patched. If attackers uncover security vulnerabilities in the ROM, the users must replace the entire device. Otherwise, the weakness exposes the system to a vulnerable state forever.

A fix to this issue is to enable rom_rdata to be selected from the patchable rom (rom_rdata_patch) [REF-1397].

(good code)
Example Language: Verilog 

...
bootrom i_bootrom_patch (
.clk_i ,
.req_i ( rom_req ),
.addr_i ( rom_addr ),
.rdata_o ( rom_rdata_patch )
);
bootrom_linux i_bootrom_linux (
.clk_i ,
.req_i ( rom_req ),
.addr_i ( rom_addr ),
.rdata_o ( rom_rdata_linux )
);
assign rom_rdata = (ariane_boot_sel_i) ? rom_rdata_patch : rom_rdata_linux;
...

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1415Comprehensive Categorization: Resource Control
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID could be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2020-04-25
(CWE 4.3, 2020-12-10)
Narasimha Kumar V MangipudiIntel Corporation
+ Contributions
Contribution DateContributorOrganization
2022-09-07Jason FungIntel
suggested removal of incorrect references
2023-11-29Chen Chen, Rahul Kande, Jeyavijayan RajendranTexas A&M University
suggested demonstrative example
2023-11-29Shaza Zeitouni, Mohamadreza Rostami, Ahmad-Reza SadeghiTechnical University of Darmstadt
suggested demonstrative example
+ Modifications
Modification DateModifierOrganization
2021-03-15CWE Content TeamMITRE
updated Maintenance_Notes
2021-07-20CWE Content TeamMITRE
updated Demonstrative_Examples, Maintenance_Notes
2022-04-28CWE Content TeamMITRE
updated Applicable_Platforms, Common_Consequences, Potential_Mitigations, Relationships
2022-10-13CWE Content TeamMITRE
updated References, Related_Attack_Patterns
2023-04-27CWE Content TeamMITRE
updated Relationships
2023-06-29CWE Content TeamMITRE
updated Mapping_Notes
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content TeamMITRE
updated Demonstrative_Examples, References
Page Last Updated: July 16, 2024