CWE-1311: Improper Translation of Security Attributes by Fabric Bridge
Weakness ID: 1311
Vulnerability Mapping:ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities Abstraction:
BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.For users who wish to see all available information for the CWE/CAPEC entry.For users who want to customize what details are displayed.
×
Edit Custom Filter
Description
The bridge incorrectly translates security attributes from either trusted to untrusted or from untrusted to trusted when converting from one fabric protocol to another.
Extended Description
A bridge allows IP blocks supporting different fabric protocols to be integrated into the system. Fabric end-points or interfaces usually have dedicated signals to transport security attributes. For example, HPROT signals in AHB, AxPROT signals in AXI, and MReqInfo and SRespInfo signals in OCP.
The values on these signals are used to indicate the security attributes of the transaction. These include the immutable hardware identity of the controller initiating the transaction, privilege level, and type of transaction (e.g., read/write, cacheable/non-cacheable, posted/non-posted).
A weakness can arise if the bridge IP block, which translates the signals from the protocol used in the IP block endpoint to the protocol used by the central bus, does not properly translate the security attributes. As a result, the identity of the initiator could be translated from untrusted to trusted or vice-versa. This could result in access-control bypass, privilege escalation, or denial of service.
Common Consequences
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
Scope
Impact
Likelihood
Confidentiality Integrity Access Control
Technical Impact: Modify Memory; Read Memory; Gain Privileges or Assume Identity; Bypass Protection Mechanism; Execute Unauthorized Code or Commands
Potential Mitigations
Phase: Architecture and Design
The translation must map signals in such a way that untrusted agents cannot map to trusted agents or vice-versa.
Phase: Implementation
Ensure that the translation maps signals in such a way that untrusted agents cannot map to trusted agents or vice-versa.
Relationships
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Hardware Design" (CWE-1194)
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
Phase
Note
Architecture and Design
Implementation
Applicable Platforms
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages
Verilog
(Undetermined Prevalence)
VHDL
(Undetermined Prevalence)
Technologies
Class: Not Technology-Specific
(Undetermined Prevalence)
Demonstrative Examples
Example 1
The bridge interfaces between OCP and AHB end points. OCP uses MReqInfo signal to indicate security attributes, whereas AHB uses HPROT signal to indicate the security attributes. The width of MReqInfo can be customized as needed. In this example, MReqInfo is 5-bits wide and carries the privilege level of the OCP controller.
The values 5'h11, 5'h10, 5'h0F, 5'h0D, 5'h0C, 5'h0B, 5'h09, 5'h08, 5'h04, and 5'h02 in MReqInfo indicate that the request is coming from a privileged state of the OCP bus controller. Values 5'h1F, 5'h0E, and 5'h00 indicate untrusted, privilege state.
Though HPROT is a 5-bit signal, we only consider the lower, two bits in this example. HPROT values 2'b00 and 2'b10 are considered trusted, and 2'b01 and 2'b11 are considered untrusted.
The OCP2AHB bridge is expected to translate trusted identities on the controller side to trusted identities on the responder side. Similarly, it is expected to translate untrusted identities on the controller side to untrusted identities on the responder side.
(bad code)
Example Language: Verilog
module ocp2ahb
(
ahb_hprot,
ocp_mreqinfo
);
output [1:0] ahb_hprot; // output is 2 bit signal for AHB HPROT
input [4:0] ocp_mreqinfo; // input is 5 bit signal from OCP MReqInfo
wire [6:0] p0_mreqinfo_o_temp; // OCP signal that transmits hardware identity of bus controller
wire y;
reg [1:0] ahb_hprot;
// hardware identity of bus controller is in bits 5:1 of p0_mreqinfo_o_temp signal
assign p0_mreqinfo_o_temp[6:0] = {1'b0, ocp_mreqinfo[4:0], y};
Logic in the case statement only checks for MReqInfo bits 4:2, i.e., hardware-identity bits 3:1. When ocp_mreqinfo is 5'h1F or 5'h0E, p0_mreqinfo_o_temp[2] will be 1. As a result, untrusted IDs from OCP 5'h1F and 5'h0E get translated to trusted ahb_hprot values 2'b00.
Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
(this CWE ID may be used to map to real-world vulnerabilities)
Reason:
Acceptable-Use
Rationale:
This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.
Comments:
Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.