CWE-1312: Missing Protection for Mirrored Regions in On-Chip Fabric Firewall
Weakness ID: 1312
Vulnerability Mapping:
ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities Abstraction: BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.For users who wish to see all available information for the CWE/CAPEC entry.For users who want to customize what details are displayed.
×
Edit Custom Filter
Description
The firewall in an on-chip fabric protects the main addressed region, but it does not protect any mirrored memory or memory-mapped-IO (MMIO) regions.
Extended Description
Few fabrics mirror memory and address ranges, where mirrored regions contain copies of the original data. This redundancy is used to achieve fault tolerance. Whatever protections the fabric firewall implements for the original region should also apply to the mirrored regions. If not, an attacker could bypass existing read/write protections by reading from/writing to the mirrored regions to leak or corrupt the original data.
Common Consequences
This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
The fabric firewall should apply the same protections as the original region to the mirrored regions.
Phase: Implementation
The fabric firewall should apply the same protections as the original region to the mirrored regions.
Relationships
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Hardware Design" (CWE-1194)
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase
Note
Architecture and Design
Implementation
Applicable Platforms
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages
Class: Not Language-Specific (Undetermined Prevalence)
Operating Systems
Class: Not OS-Specific (Undetermined Prevalence)
Architectures
Class: Not Architecture-Specific (Undetermined Prevalence)
Technologies
Class: Not Technology-Specific (Undetermined Prevalence)
Demonstrative Examples
Example 1
A memory-controller IP block is connected to the on-chip fabric in a System on Chip (SoC). The memory controller is configured to divide the memory into four parts: one original and three mirrored regions inside the memory. The upper two bits of the address indicate which region is being addressed. 00 indicates the original region and 01, 10, and 11 are used to address the mirrored regions. All four regions operate in a lock-step manner and are always synchronized. The firewall in the on-chip fabric is programmed to protect the assets in the memory.
The firewall only protects the original range but not the mirrored regions.
The attacker (as an unprivileged user) sends a write transaction to the mirrored region. The mirrored region has an address with the upper two bits set to "10" and the remaining bits of the address pointing to an asset. The firewall does not block this write transaction. Once the write is successful, contents in the protected-memory region are also updated. Thus, the attacker can bypass existing, memory protections.
Firewall should protect mirrored regions.
Detection Methods
Manual Dynamic Analysis
Using an external debugger, send write transactions to mirrored regions to test if original, write-protected regions are modified. Similarly, send read transactions to mirrored regions to test if the original, read-protected signals can be read.
Effectiveness: High
Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
(this CWE ID could be used to map to real-world vulnerabilities)
Reason: Acceptable-Use
Rationale:
This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.
Comments:
Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.