CWE

Common Weakness Enumeration

A Community-Developed List of Software & Hardware Weakness Types

CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.5)  
ID

CWE-1318: Missing Support for Security Features in On-chip Fabrics or Buses

Weakness ID: 1318
Abstraction: Base
Structure: Simple
Status: Incomplete
Presentation Filter:
+ Description
On-chip fabrics or buses either do not support or are not configured to support privilege separation or other security features, such as access control.
+ Extended Description

Certain on-chip fabrics and buses, especially simple and low-power buses, do not support security features. Apart from data transfer and addressing ports, some fabrics and buses do not have any interfaces to transfer privilege, immutable identity, or any other security attribute coming from the bus master. Similarly, they do not have dedicated signals to transport security-sensitive data from slave to master, such as completions for certain types of transactions. Few other on-chip fabrics and buses support security features and define specific interfaces/signals for transporting security attributes from master to slave or vice-versa. However, including these signals is not mandatory and could be left unconfigured when generating the register-transfer-level (RTL) description for the fabric. Such fabrics or buses should not be used to transport any security attribute coming from the bus master. In general, peripherals with security assets should not be connected to such buses before the transaction from the bus master reaches the bus, unless some form of access control is performed at a fabric bridge or another intermediate module.

+ Relationships
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfPillarPillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things.693Protection Mechanism Failure
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Hardware Design" (CWE-1194)
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1198Privilege Separation and Access Control Issues
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
PhaseNote
Architecture and Design
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Language-Independent (Undetermined Prevalence)

Operating Systems

Class: OS-Independent (Undetermined Prevalence)

Architectures

Class: Architecture-Independent (Undetermined Prevalence)

Technologies

Processor IP (Undetermined Prevalence)

Class: Technology-Independent (Undetermined Prevalence)

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Confidentiality
Integrity
Access Control
Availability

Technical Impact: DoS: Crash, Exit, or Restart; Read Memory; Modify Memory

Medium
+ Demonstrative Examples

Example 1

Several systems on chips (SoCs) use the Advanced-Microcontroller Bus Architecture (AMBA) Advanced-Peripheral Bus (APB) protocol. APB is a simple, low-power bus and uses the PPROT[2:0] bits to indicate the security state of the bus masters ;PPROT[0] indicates privilege, PPROT[1] indicates secure/non-secure transaction, and PPROT[2] indicates instruction/data. Assume that there is no fabric bridge in the SoC. One of the slaves, the power-management unit, contains registers that store the thermal-shutdown limits.

The APB bus is used to connect several bus masters, each with a unique and immutable hardware identity, to several slaves. For a CPU supporting 8 potential identities (each with varying privilege levels), 16 types of outgoing transactions can be made--8 read transactions with each supported privilege level and 8 write transactions with each supported privilege level.

Since APB PPROT can only support up to 8 transaction types, access-control checks cannot be performed on transactions going to the slaves at the right granularity for all possible transaction types. Thus, potentially, user code running on the CPU could maliciously corrupt the thermal-shutdown-configuration registers to burn the device, resulting in permanent denial of service.

In this scenario, only peripherals that need access protection from 8 of the 16 possible transaction types can be connected to the APB bus. Peripherals that require protection from the remaining 8 transaction types can be connected to a different APB bus. Alternatively, a bridge could be implemented to handle such complex scenarios before forwarding traffic to the APB bus.

Example 2

The Open-Core-Protocol (OCP) fabric supports two configurable, width-optional signals for transporting security attributes: MReqInfo and SRespInfo. MReqInfo is used to transport security attributes from bus master to slave, and SRespInfo is used to transport security attributes from slave to bus master. An SoC uses OCP to connect several bus masters, each with a unique and immutable hardware identity, to several slaves. One of the bus masters, the CPU, reports the privilege level (user or super user) in addition to the unique identity. One of the slaves, the power-management unit, contains registers that store the thermal-shutdown limits.

Since MReqInfo and SRespInfo are not mandatory, these signals are not configured when autogenerating RTL for the OCP fabric. Thus, the fabric cannot be used to transport security attributes from bus masters to slave.

Code running at user-privilege level on the CPU could maliciously corrupt the thermal-shutdown-configuration registers to burn the device and cause permanent denial of service.

To address this, configure the fabric to include MReqInfo and SRespInfo signals and use these to transport security identity and privilege level to perform access-control checks at the slave interface.

+ Potential Mitigations

Phase: Architecture and Design

If fabric does not support security features, implement security checks in a bridge or any component that is between the master and the fabric. Alternatively, connect all fabric slaves that do not have any security assets under one such fabric and connect peripherals with security assets to a different fabric that supports security features.
+ Detection Methods

Architecture or Design Review

Review the fabric specification and ensure that it contains signals to transfer security-sensitive signals.

Effectiveness: High

Manual Static Analysis - Source Code

Lack of security features can also be confirmed through manual RTL review of the fabric RTL.

Effectiveness: High

+ References
[REF-1139] ARM. "AMBA APB Protocol Specification, Version 2.0". 2010. <https://www.eecs.umich.edu/courses/eecs373/readings/IHI0024C_amba_apb_protocol_spec.pdf>.
[REF-1140] OCP-IP. "Open Core Protocol Specification, Release 2.2". 2006. <http://read.pudn.com/downloads95/doc/388103/OCPSpecification%202.2.pdf>.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2020-05-20Arun Kanuparthi, Hareesh Khattri, Parbati Kumar MannaIntel Corporation
More information is available — Please select a different filter.
Page Last Updated: July 20, 2021