Home > CWE List > CWE-1320: Improper Protection for Outbound Error Messages and Alert Signals (4.17) |
|
CWE-1320: Improper Protection for Outbound Error Messages and Alert Signals
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterUntrusted agents can disable alerts about signal conditions exceeding limits or the response mechanism that handles such alerts.
Hardware sensors are used to detect whether a device is operating within design limits. The threshold values for these limits are set by hardware fuses or trusted software such as a BIOS. Modification of these limits may be protected by hardware mechanisms. When device sensors detect out of bound conditions, alert signals may be generated for remedial action, which may take the form of device shutdown or throttling. Warning signals that are not properly secured may be disabled or used to generate spurious alerts, causing degraded performance or denial-of-service (DoS). These alerts may be masked by untrusted software. Examples of these alerts involve thermal and power sensor alerts. ![]()
![]() ![]()
![]()
![]()
![]()
Example 1
Consider a platform design where a Digital-Thermal Sensor (DTS) is used to monitor temperature and compare that output against a threshold value. If the temperature output equals or exceeds the threshold value, the DTS unit sends an alert signal to the processor. The processor, upon getting the alert, input triggers system shutdown. The alert signal is handled as a General-Purpose-I/O (GPIO) pin in input mode. (bad code)
Example Language: Other
The processor-GPIO controller exposes software-programmable controls that allow untrusted software to reprogram the state of the GPIO pin.
Reprogramming the state of the GPIO pin allows malicious software to trigger spurious alerts or to set the alert pin to a zero value so that thermal sensor alerts are not received by the processor. (good code)
Example Language: Other
The GPIO alert-signal pin is blocked from untrusted software access and is controlled only by trusted software, such as the System BIOS.
![]()
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |