CWE-1326: Missing Immutable Root of Trust in Hardware
Weakness ID: 1326
Abstraction: Base Structure: Simple
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.For users who wish to see all available information for the CWE/CAPEC entry.For users who want to customize what details are displayed.
×
Edit Custom Filter
Description
A missing immutable root of trust in the hardware results in the ability to bypass secure boot or execute untrusted or adversarial boot code.
Extended Description
A System-on-Chip (SoC) implements secure boot by verifying or authenticating signed boot code. The signing of the code is achieved by an entity that the SoC trusts. Before executing the boot code, the SoC verifies that the code or the public key with which the code has been signed has not been tampered with. The other data upon which the SoC depends are system-hardware settings in fuses such as whether "Secure Boot is enabled". These data play a crucial role in establishing a Root of Trust (RoT) to execute secure-boot flows.
One of the many ways RoT is achieved is by storing the code and data in memory or fuses. This memory should be immutable, i.e., once the RoT is programmed/provisioned in memory, that memory should be locked and prevented from further programming or writes. If the memory contents (i.e., RoT) are mutable, then an adversary can modify the RoT to execute their choice of code, resulting in a compromised secure boot.
Note that, for components like ROM, secure patching/update features should be supported to allow authenticated and authorized updates in the field.
Relationships
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Hardware Design" (CWE-1194)
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase
Note
Architecture and Design
Implementation
Such issues could be introduced during policy definition, hardware architecture, design, manufacturing, and/or provisioning. They can be identified later during testing or system configuration phases.
Applicable Platforms
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages
Class: Not Language-Specific (Undetermined Prevalence)
Operating Systems
Class: Not OS-Specific (Undetermined Prevalence)
Architectures
Class: Not Architecture-Specific (Undetermined Prevalence)
Technologies
Security Hardware (Undetermined Prevalence)
Class: Not Technology-Specific (Undetermined Prevalence)
Common Consequences
This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope
Impact
Likelihood
Authentication Authorization
Technical Impact: Gain Privileges or Assume Identity; Execute Unauthorized Code or Commands; Modify Memory
High
Demonstrative Examples
Example 1
The RoT is stored in memory. This memory can be modified by an adversary. For example, if an SoC implements "Secure Boot" by storing the boot code in an off-chip/on-chip flash, the contents of the flash can be modified by using a flash programmer. Similarly, if the boot code is stored in ROM (Read-Only Memory) but the public key or the hash of the public key (used to enable "Secure Boot") is stored in Flash or a memory that is susceptible to modifications or writes, the implementation is vulnerable.
In general, if the boot code, key materials and data that enable "Secure Boot" are all mutable, the implementation is vulnerable.
Good architecture defines RoT as immutable in hardware. One of the best ways to achieve immutability is to store boot code, public key or hash of the public key and other relevant data in Read-Only Memory (ROM) or One-Time Programmable (OTP) memory that prevents further programming or writes.
Potential Mitigations
Phase: Architecture and Design
When architecting the system, the RoT should be designated for storage in a memory that does not allow further programming/writes.
Phase: Implementation
During implementation and test, the RoT memory location should be demonstrated to not allow further programming/writes.
Detection Methods
Automated Dynamic Analysis
Automated testing can verify that RoT components are immutable.
Effectiveness: High
Architecture or Design Review
Root of trust elements and memory should be part of architecture and design reviews.
Effectiveness: High
Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
(this CWE ID could be used to map to real-world vulnerabilities)
Reason: Acceptable-Use
Rationale:
This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.
Comments:
Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.