CWE-1338: Improper Protections Against Hardware Overheating
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterA hardware device is missing or has inadequate protection features to prevent overheating.
Hardware, electrical circuits, and semiconductor silicon have thermal side effects, such that some of the energy consumed by the device gets dissipated as heat and increases the temperature of the device. For example, in semiconductors, higher-operating frequency of silicon results in higher power dissipation and heat. The leakage current in CMOS circuits increases with temperature, and this creates positive feedback that can result in thermal runaway and damage the device permanently. Any device lacking protections such as thermal sensors, adequate platform cooling, or thermal insulation is susceptible to attacks by malicious software that might deliberately operate the device in modes that result in overheating. This can be used as an effective denial of service (DoS) or permanent denial of service (PDoS) attack. Depending on the type of hardware device and its expected usage, such thermal overheating can also cause safety hazards and reliability issues. Note that battery failures can also cause device overheating but the mitigations and examples included in this submission cannot reliably protect against a battery failure. There can be similar weaknesses with lack of protection from attacks based on overvoltage or overcurrent conditions. However, thermal heat is generated by hardware operation and the device should implement protection from overheating. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: Not Technology-Specific (Undetermined Prevalence) Class: ICS/OT (Undetermined Prevalence) Power Management Hardware (Undetermined Prevalence) Processor Hardware (Undetermined Prevalence) Example 1 Malicious software running on a core can execute instructions that consume maximum power or increase core frequency. Such a power-virus program could execute on the platform for an extended time to overheat the device, resulting in permanent damage. Execution core and platform do not support thermal sensors, performance throttling, or platform-cooling countermeasures to ensure that any software executing on the system cannot cause overheating past the maximum allowable temperature. The platform and SoC should have failsafe thermal limits that are enforced by thermal sensors that trigger critical temperature alerts when high temperature is detected. Upon detection of high temperatures, the platform should trigger cooling or shutdown automatically.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |