CWE

Common Weakness Enumeration

A Community-Developed List of Software Weakness Types

CWE/SANS Top 25 Most Dangerous Software Errors
Home > CWE List > CWE- Individual Dictionary Definition (3.0)  
ID

CWE-256: Plaintext Storage of a Password

Weakness ID: 256
Abstraction: Variant
Structure: Simple
Status: Incomplete
Presentation Filter:
+ Description
Storing a password in plaintext may result in a system compromise.
+ Extended Description
Password management issues occur when a password is stored in plaintext in an application's properties or configuration file. Storing a plaintext password in a configuration file allows anyone who can read the file access to the password-protected resource.
+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfBaseBase522Insufficiently Protected Credentials
+ Relevant to the view "Architectural Concepts" (CWE-1008)
NatureTypeIDName
MemberOfCategoryCategory1013Encrypt Data
+ Relevant to the view "Development Concepts" (CWE-699)
NatureTypeIDName
ChildOfBaseBase522Insufficiently Protected Credentials
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

PhaseNote
Architecture and DesignOMISSION: This weakness is caused by missing a security tactic during the architecture and design phase.
Architecture and DesignDevelopers sometimes believe that they cannot defend the application from someone who has access to the configuration, but this belief makes an attacker's job easier.
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Language-Independent (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Access Control

Technical Impact: Gain Privileges or Assume Identity

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

The following code reads a password from a properties file and uses the password to connect to a database.

(bad code)
Example Language: Java 
...
Properties prop = new Properties();
prop.load(new FileInputStream("config.properties"));
String password = prop.getProperty("password");
DriverManager.getConnection(url, usr, password);
...

This code will run successfully, but anyone who has access to config.properties can read the value of password. If a devious employee has access to this information, they can use it to break into the system.

Example 2

The following code reads a password from the registry and uses the password to create a new network credential.

(bad code)
Example Language: Java 
...
String password = regKey.GetValue(passKey).toString();
NetworkCredential netCred = new NetworkCredential(username,password,domain);
...

This code will run successfully, but anyone who has access to the registry key used to store the password can read the value of password. If a devious employee has access to this information, they can use it to break into the system

Example 3

The following examples show a portion of properties and configuration files for Java and ASP.NET applications. The files include username and password information but they are stored in plaintext.

This Java example shows a properties file with a plaintext username / password pair.

(bad code)
Example Language: Java 
# Java Web App ResourceBundle properties file
...
webapp.ldap.username=secretUsername
webapp.ldap.password=secretPassword
...

The following example shows a portion of a configuration file for an ASP.Net application. This configuration file includes username and password information for a connection to a database but the pair is stored in plaintext.

(bad code)
Example Language: ASP.NET 
...
<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;" providerName="System.Data.Odbc" />
</connectionStrings>
...

Username and password information should not be included in a configuration file or a properties file in plaintext as this will allow anyone who can read the file access to the resource. If possible, encrypt this information and avoid CWE-260 and CWE-13.

+ Potential Mitigations

Phase: Architecture and Design

Avoid storing passwords in easily accessible locations.

Phase: Architecture and Design

Consider storing cryptographic hashes of passwords as an alternative to storing in plaintext.
A programmer might attempt to remedy the password management problem by obscuring the password with an encoding function, such as base 64 encoding, but this effort does not adequately protect the password because the encoding can be detected and decoded easily.

Effectiveness: None

+ Weakness Ordinalities
OrdinalityDescription
Primary
(where the weakness exists independent of other weaknesses)
+ Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
7 Pernicious KingdomsPassword Management
Software Fault PatternsSFP23Exposed Data
+ References
[REF-207] John Viega and Gary McGraw. "Building Secure Software: How to Avoid Security Problems the Right Way". 1st Edition. Addison-Wesley. 2002.
+ Content History
Submissions
Submission DateSubmitterOrganization
7 Pernicious Kingdoms
Modifications
Modification DateModifierOrganization
2008-09-08CWE Content TeamMITRE
updated Relationships, Other_Notes, Taxonomy_Mappings, Weakness_Ordinalities
2009-07-27CWE Content TeamMITRE
updated Demonstrative_Examples
2011-06-01CWE Content TeamMITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2012-05-11CWE Content TeamMITRE
updated Demonstrative_Examples, References, Relationships, Taxonomy_Mappings
2012-10-30CWE Content TeamMITRE
updated Demonstrative_Examples, Potential_Mitigations
2014-06-23CWE Content TeamMITRE
updated Description, Modes_of_Introduction, Other_Notes, Potential_Mitigations, Relationships
2014-07-30CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2017-11-08CWE Content TeamMITRE
updated Applicable_Platforms, Causal_Nature, Likelihood_of_Exploit, Modes_of_Introduction, Relationships
Previous Entry Names
Change DatePrevious Entry Name
2008-01-30Plaintext Storage

More information is available — Please select a different filter.
Page Last Updated: January 18, 2018