Vulnerability Mapping:
ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities Abstraction: BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.For users who wish to see all available information for the CWE/CAPEC entry.For users who want to customize what details are displayed.
×
Edit Custom Filter
Description
The elevated privilege level required to perform operations such as chroot() should be dropped immediately after the operation is performed.
Common Consequences
This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope
Impact
Likelihood
Access Control Confidentiality
Technical Impact: Gain Privileges or Assume Identity; Read Application Data; Read Files or Directories
An attacker may be able to access resources with the elevated privilege that could not be accessed with the attacker's original privileges. This is particularly likely in conjunction with another flaw, such as a buffer overflow.
Potential Mitigations
Phases: Architecture and Design; Operation
Very carefully manage the setting, management, and handling of privileges. Explicitly manage trust zones in the software.
Phase: Architecture and Design
Strategy: Separation of Privilege
Follow the principle of least privilege when assigning access rights to entities in a software system.
Phase: Architecture and Design
Strategy: Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges.
Relationships
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Software Development" (CWE-699)
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Architectural Concepts" (CWE-1008)
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase
Note
Implementation
REALIZATION: This weakness is caused during implementation of an architectural security tactic.
Operation
Applicable Platforms
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages
Class: Not Language-Specific (Undetermined Prevalence)
Demonstrative Examples
Example 1
The following example demonstrates the weakness.
(bad code)
Example Language: C
setuid(0); // Do some important stuff setuid(old_uid); // Do some non privileged stuff.
// privileged code goes here, for example: System.loadLibrary("awt"); return null; // nothing to return
}
Example 3
The following code calls chroot() to restrict the application to a subset of the filesystem below APP_HOME in order to prevent an attacker from using the program to gain unauthorized access to files located elsewhere. The code then opens a file specified by the user and processes the contents of the file.
(bad code)
Example Language: C
chroot(APP_HOME); chdir("/"); FILE* data = fopen(argv[1], "r+"); ...
Constraining the process inside the application's home directory before opening any files is a valuable security measure. However, the absence of a call to setuid() with some non-zero value means the application is continuing to operate with unnecessary root privileges. Any successful exploit carried out by an attacker against the application can now result in a privilege escalation attack because any malicious operations will be performed with the privileges of the superuser. If the application drops to the privilege level of a non-root user, the potential for damage is substantially reduced.
Weakness Ordinalities
Ordinality
Description
Primary
(where the weakness exists independent of other weaknesses)
Detection Methods
Automated Static Analysis - Binary or Bytecode
According to SOAR, the following detection techniques may be useful:
Cost effective for partial coverage:
Compare binary / bytecode to application permission manifest
Effectiveness: SOAR Partial
Dynamic Analysis with Automated Results Interpretation
According to SOAR, the following detection techniques may be useful:
Cost effective for partial coverage:
Host-based Vulnerability Scanners - Examine configuration for flaws, verifying that audit mechanisms work, ensure host configuration meets certain predefined criteria
Effectiveness: SOAR Partial
Manual Static Analysis - Source Code
According to SOAR, the following detection techniques may be useful:
Highly cost effective:
Manual Source Code Review (not inspections)
Cost effective for partial coverage:
Focused Manual Spotcheck - Focused manual analysis of source
Effectiveness: High
Automated Static Analysis - Source Code
According to SOAR, the following detection techniques may be useful:
Cost effective for partial coverage:
Source code Weakness Analyzer
Context-configured Source Code Weakness Analyzer
Effectiveness: SOAR Partial
Automated Static Analysis
According to SOAR, the following detection techniques may be useful:
Cost effective for partial coverage:
Permission Manifest Analysis
Effectiveness: SOAR Partial
Architecture or Design Review
According to SOAR, the following detection techniques may be useful:
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
(this CWE ID could be used to map to real-world vulnerabilities)
Reason: Acceptable-Use
Rationale:
This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.
Comments:
Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
Notes
Other
If system privileges are not dropped when it is reasonable to do so, this is not a vulnerability by itself. According to the principle of least privilege, access should be allowed only when it is absolutely necessary to the function of a given system, and only for the minimal necessary amount of time. Any further allowance of privilege widens the window of time during which a successful exploitation of the system will provide an attacker with that same privilege. If at all possible, limit the allowance of system privilege to small, simple sections of code that may be called atomically.
When a program calls a privileged function, such as chroot(), it must first acquire root privilege. As soon as the privileged operation has completed, the program should drop root privilege and return to the privilege level of the invoking user.
Maintenance
CWE-271, CWE-272, and CWE-250 are all closely related and possibly overlapping. CWE-271 is probably better suited as a category.
Taxonomy Mappings
Mapped Taxonomy Name
Node ID
Fit
Mapped Node Name
7 Pernicious Kingdoms
Least Privilege Violation
CLASP
Failure to drop privileges when reasonable
CERT C Secure Coding
POS02-C
Follow the principle of least privilege
The CERT Oracle Secure Coding Standard for Java (2011)
SEC00-J
Do not allow privileged blocks to leak sensitive information across a trust boundary
The CERT Oracle Secure Coding Standard for Java (2011)
SEC01-J
Do not allow tainted variables in privileged blocks