CWE-307: Improper Restriction of Excessive Authentication Attempts
Presentation Filter:
The software does not implement sufficient measures to prevent multiple failed authentication attempts within in a short time frame, making it more susceptible to brute force attacks. The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore. ![]()
![]()
![]()
![]()
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance. Languages Class: Language-Independent (Undetermined Prevalence) The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Example 1 In January 2009, an attacker was able to gain administrator access to a Twitter server because the server did not restrict the number of login attempts. The attacker targeted a member of Twitter's support team and was able to successfully guess the member's password using a brute force attack by guessing a large number of common words. After gaining access as the member of the support staff, the attacker used the administrator panel to gain access to 33 accounts that belonged to celebrities and politicians. Ultimately, fake Twitter messages were sent that appeared to come from the compromised accounts.
Example 2 The following code, extracted from a servlet's doPost() method, performs an authentication lookup every time the servlet is invoked. (bad code) Example Language: Java String username = request.getParameter("username");
String password = request.getParameter("password"); int authResult = authenticateUser(username, password); However, the software makes no attempt to restrict excessive authentication attempts. Example 3 This code attempts to limit the number of login attempts by causing the process to sleep before completing the authentication. (bad code) Example Language: PHP $username = $_POST['username'];
$password = $_POST['password']; sleep(2000); $isAuthenticated = authenticateUser($username, $password); However, there is no limit on parallel connections, so this does not increase the amount of time an attacker needs to complete an attack. Example 4 In the following C/C++ example the validateUser method opens a socket connection, reads a username and password from the socket and attempts to authenticate the username and password. (bad code) Example Language: C int validateUser(char *host, int port)
{ int socket = openSocketConnection(host, port);
if (socket < 0) { printf("Unable to open socket connection"); }return(FAIL); int isValidUser = 0; char username[USERNAME_SIZE]; char password[PASSWORD_SIZE]; while (isValidUser == 0) { if (getNextMessage(socket, username, USERNAME_SIZE) > 0) {
if (getNextMessage(socket, password, PASSWORD_SIZE) > 0) { }isValidUser = AuthenticateUser(username, password); }return(SUCCESS); The validateUser method will continuously check for a valid username and password without any restriction on the number of authentication attempts made. The method should limit the number of authentication attempts made to prevent brute force attacks as in the following example code. (good code) Example Language: C int validateUser(char *host, int port)
{ ...
int count = 0; while ((isValidUser == 0) && (count < MAX_ATTEMPTS)) { if (getNextMessage(socket, username, USERNAME_SIZE) > 0) {
if (getNextMessage(socket, password, PASSWORD_SIZE) > 0) { }isValidUser = AuthenticateUser(username, password); }count++; if (isValidUser) { return(SUCCESS); }else { return(FAIL); }
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
More information is available — Please select a different filter. |
Use of the Common Weakness Enumeration (CWE) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006-2020, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |