CWE-329: Generation of Predictable IV with CBC Mode
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product generates and uses a predictable initialization Vector (IV) with Cipher Block Chaining (CBC) Mode, which causes algorithms to be susceptible to dictionary attacks when they are encrypted under the same key.
CBC mode eliminates a weakness of Electronic Code Book (ECB) mode by allowing identical plaintext blocks to be encrypted to different ciphertext blocks. This is possible by the XOR-ing of an IV with the initial plaintext block so that every plaintext block in the chain is XOR'd with a different value before encryption. If IVs are reused, then identical plaintexts would be encrypted to identical ciphertexts. However, even if IVs are not identical but are predictable, then they still break the security of CBC mode against Chosen Plaintext Attacks (CPA). This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Technologies Class: ICS/OT (Undetermined Prevalence) Example 1 In the following examples, CBC mode is used when encrypting data: (bad code)
Example Language: C
EVP_CIPHER_CTX ctx;
char key[EVP_MAX_KEY_LENGTH]; char iv[EVP_MAX_IV_LENGTH]; RAND_bytes(key, b); memset(iv,0,EVP_MAX_IV_LENGTH); EVP_EncryptInit(&ctx,EVP_bf_cbc(), key,iv); (bad code)
Example Language: Java
public class SymmetricCipherTest {
public static void main() {
byte[] text ="Secret".getBytes(); byte[] iv ={ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };KeyGenerator kg = KeyGenerator.getInstance("DES"); kg.init(56); SecretKey key = kg.generateKey(); Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding"); IvParameterSpec ips = new IvParameterSpec(iv); cipher.init(Cipher.ENCRYPT_MODE, key, ips); return cipher.doFinal(inpBytes); In both of these examples, the initialization vector (IV) is always a block of zeros. This makes the resulting cipher text much more predictable and susceptible to a dictionary attack.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
As of CWE 4.5, terminology related to randomness, entropy, and
predictability can vary widely. Within the developer and other
communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a
measurement. There are no commonly-used definitions, even within
standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary,
distinguish between them in ways that are appropriate for
different communities but do not reduce the usability of CWE for
mapping, understanding, or other scenarios.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2024, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |