CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.15)  
ID

CWE-333: Improper Handling of Insufficient Entropy in TRNG

Weakness ID: 333
Vulnerability Mapping: ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities
Abstraction: VariantVariant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
True random number generators (TRNG) generally have a limited source of entropy and therefore can fail or block.
+ Extended Description
The rate at which true random numbers can be generated is limited. It is important that one uses them only when they are needed for security.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Availability

Technical Impact: DoS: Crash, Exit, or Restart

A program may crash or block if it runs out of random numbers.
+ Potential Mitigations

Phase: Implementation

Rather than failing on a lack of random numbers, it is often preferable to wait for more numbers to be created.
+ Relationships
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.755Improper Handling of Exceptional Conditions
ChildOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.331Insufficient Entropy
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Architectural Concepts" (CWE-1008)
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1013Encrypt Data
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
PhaseNote
Architecture and Design
ImplementationREALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Likelihood Of Exploit
Low
+ Demonstrative Examples

Example 1

This code uses a TRNG to generate a unique session id for new connections to a server:

(bad code)
Example Language:
while (1){
if (haveNewConnection()){
if (hwRandom()){
int sessionID = hwRandom();
createNewConnection(sessionID);
} } }

This code does not attempt to limit the number of new connections or make sure the TRNG can successfully generate a new random number. An attacker may be able to create many new connections and exhaust the entropy of the TRNG. The TRNG may then block and cause the program to crash or hang.


+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.861The CERT Oracle Secure Coding Standard for Java (2011) Chapter 18 - Miscellaneous (MSC)
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.905SFP Primary Cluster: Predictability
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1414Comprehensive Categorization: Randomness
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID could be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Maintenance

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely. Within the developer and other communities, "randomness" is used heavily. However, within cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-used definitions, even within standards documents and cryptography papers. Future versions of CWE will attempt to define these terms and, if necessary, distinguish between them in ways that are appropriate for different communities but do not reduce the usability of CWE for mapping, understanding, or other scenarios.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
CLASPFailure of TRNG
The CERT Oracle Secure Coding Standard for Java (2011)MSC02-JGenerate strong random numbers
+ References
[REF-18] Secure Software, Inc.. "The CLASP Application Security Process". 2005. <https://cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf>.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2006-07-19
(CWE Draft 3, 2006-07-19)
CLASP
+ Modifications
Modification DateModifierOrganization
2008-07-01Eric DalciCigital
updated Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Common_Consequences, Relationships, Other_Notes, Taxonomy_Mappings
2009-05-27CWE Content TeamMITRE
updated Description, Name
2009-10-29CWE Content TeamMITRE
updated Description, Other_Notes
2011-06-01CWE Content TeamMITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2012-05-11CWE Content TeamMITRE
updated Relationships
2012-10-30CWE Content TeamMITRE
updated Demonstrative_Examples
2017-11-08CWE Content TeamMITRE
updated Applicable_Platforms, Likelihood_of_Exploit, Modes_of_Introduction, Relationships
2019-01-03CWE Content TeamMITRE
updated Taxonomy_Mappings
2020-02-24CWE Content TeamMITRE
updated References, Relationships
2021-07-20CWE Content TeamMITRE
updated Maintenance_Notes
2023-04-27CWE Content TeamMITRE
updated Relationships
2023-06-29CWE Content TeamMITRE
updated Mapping_Notes
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content TeamMITRE
updated Relationships
+ Previous Entry Names
Change DatePrevious Entry Name
2008-04-11Failure of TRNG
2009-05-27Failure to Handle Insufficient Entropy in TRNG
Page Last Updated: July 16, 2024