Vulnerability Mapping:
ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities Abstraction: BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.For users who wish to see all available information for the CWE/CAPEC entry.For users who want to customize what details are displayed.
×
Edit Custom Filter
Description
The product checks the status of a file or directory before accessing it, which produces a race condition in which the file can be replaced with a link before the access is performed, causing the product to access the wrong file.
Extended Description
While developers might expect that there is a very narrow time window between the time of check and time of use, there is still a race condition. An attacker could cause the product to slow down (e.g. with memory consumption), causing the time window to become larger. Alternately, in some situations, the attacker could win the race by performing a large number of attacks.
Common Consequences
This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope
Impact
Likelihood
Confidentiality Integrity
Technical Impact: Read Files or Directories; Modify Files or Directories
Relationships
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase
Note
Architecture and Design
Implementation
Applicable Platforms
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages
Class: Not Language-Specific (Undetermined Prevalence)
Demonstrative Examples
Example 1
This code prints the contents of a file if a user has permission.
(bad code)
Example Language: PHP
function readFile($filename){
$user = getCurrentUser();
//resolve file if its a symbolic link if(is_link($filename)){
$filename = readlink($filename);
}
if(fileowner($filename) == $user){
echo file_get_contents($realFile); return;
} else{
echo 'Access denied'; return false;
}
}
This code attempts to resolve symbolic links before checking the file and printing its contents. However, an attacker may be able to change the file from a real file to a symbolic link between the calls to is_link() and file_get_contents(), allowing the reading of arbitrary files. Note that this code fails to log the attempted access (CWE-778).
Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
(this CWE ID could be used to map to real-world vulnerabilities)
Reason: Acceptable-Use
Rationale:
This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.
Comments:
Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
Notes
Relationship
This is already covered by the "Link Following" weakness (CWE-59). It is included here because so many people associate race conditions with link problems; however, not all link following issues involve race conditions.
Taxonomy Mappings
Mapped Taxonomy Name
Node ID
Fit
Mapped Node Name
PLOVER
Race condition enabling link following
CERT C Secure Coding
POS35-C
Exact
Avoid race conditions while checking for the existence of a symbolic link
[REF-62] Mark Dowd, John McDonald
and Justin Schuh. "The Art of Software Security Assessment". Chapter 9, "Race Conditions", Page 526. 1st Edition. Addison Wesley. 2006.