CWE-385: Covert Timing Channel
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterCovert timing channels convey information by modulating some aspect of system behavior over time, so that the program receiving the information can observe system behavior and infer protected information.
In some instances, knowing when data is transmitted between parties can provide a malicious user with privileged information. Also, externally monitoring the timing of operations can potentially reveal sensitive data. For example, a cryptographic operation can expose its internal state if the time it takes to perform the operation varies, based on the state. Covert channels are frequently classified as either storage or timing channels. Some examples of covert timing channels are the system's paging rate, the time a certain transaction requires to execute, and the time it takes to gain access to a shared bus. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Example 1 In this example, the attacker observes how long an authentication takes when the user types in the correct password. When the attacker tries their own values, they can first try strings of various length. When they find a string of the right length, the computation will take a bit longer, because the for loop will run at least once. Additionally, with this code, the attacker can possibly learn one character of the password at a time, because when they guess the first character right, the computation will take longer than a wrong guesses. Such an attack can break even the most sophisticated password with a few hundred guesses. (bad code)
Example Language: Python
def validate_password(actual_pw, typed_pw):
if len(actual_pw) <> len(typed_pw):
return 0
for i in len(actual_pw): if actual_pw[i] <> typed_pw[i]:
return 0
return 1 Note that in this example, the actual password must be handled in constant time as far as the attacker is concerned, even if the actual password is of an unusual length. This is one reason why it is good to use an algorithm that, among other things, stores a seeded cryptographic one-way hash of the password, then compare the hashes, which will always be of the same length.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
As of CWE 4.9, members of the CWE Hardware SIG are working to improve CWE's coverage of transient execution weaknesses, which include issues related to Spectre, Meltdown, and other attacks that create or exploit covert channels. As a result of that work, this entry might change in CWE 4.10.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |